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Abstract. Quantum tokenized signature schemes (Ben-David and Sattath, QCrypt
2017) allow a sender to generate and distribute quantum unclonable states which
grant their holder a one-time permission to sign in the name of the sender. Such
schemes are a strengthening of public-key quantum money schemes, as they imply
public-key quantum money where some channels of communication in the system
can be made classical.
An even stronger primitive is semi-quantum tokenized signatures, where the
sender is classical and can delegate the generation of the token to a (possibly
malicious) quantum receiver. Semi-quantum tokenized signature schemes imply
a powerful version of public-key quantum money satisfying two key features:

– The bank is classical and the scheme can execute on a completely classical
communication network. In addition, the bank is stateless and after the cre-
ation of a banknote, does not hold any information nor trapdoors except the
balance of accounts in the system. Such quantum money scheme solves the
main open problem presented by Radian and Sattath (AFT 2019).

– Furthermore, the classical-communication transactions between users in the
system are direct and do not need to go through the bank. This enables the
transactions to be both classical and private.

While fully-quantum tokenized signatures (where the sender is quantum and
generates the token by itself) are known based on quantum-secure indistinguisha-
bility obfuscation and injective one-way functions, the semi-quantum version
is not known under any computational assumption. In this work we construct
a semi-quantum tokenized signature scheme based on quantum-secure indistin-
guishability obfuscation and the sub-exponential hardness of the Learning with
Errors problem. In the process, we show new properties of quantum coset states
and a new hardness result on indistinguishability obfuscation of classical subspace
membership circuits.

1 Introduction

Quantum money schemes are one of the basis pillars in quantum cryptography,
allowing a bank to distribute quantum unclonable states in a system of users, who
can trade the states as currency. The gold standard of quantum money requires the
scheme to be public-key [2], including two quantum algorithms, Bank and QV,
with the following syntax: Bank samples a quantum token (pk, |qt⟩pk)← Bank,
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where |qt⟩pk is a quantum state and pk is a classical public verification key. pk
can be distributed in the user network and the quantum part |qt⟩pk can be sent
to some specific user. The copy of |qt⟩pk can then be passed around between
users in the system, and be publicly verified with QV using the key pk. The core
security guarantee assures that tokens are unclonable by anyone but the bank,
or even more tightly, no user can generate two states that both pass the quantum
verification QV(·, pk).

By combining intrinsic properties of quantum information with crypto-
graphic techniques, public-key quantum money holds great promise for the
future of information technology. Such quantum cryptographic schemes imple-
ment functionalities that are known to be impossible in a world where only clas-
sical computation exists and also create a basis of techniques towards even more
advanced primitives, like quantum lightning [8] and quantum copy-protection of
programs [1]. Notably, public-key quantum money gives a solution to the prob-
lem of privacy in a currency system, where we want a system that is both, secure
(a banknote keeps its value and cannot be counterfeited) and private (transac-
tion’s information can be kept only to the two parties involved, in particular, the
bank does not have to know).

Unfortunately, by the standard definition, to execute a quantum money
scheme we need quantum computation to generate and verify tokens, and quan-
tum communication to transfer tokens between devices1. Ideally, however, we
would like to minimize the required model, and use quantum computation and
only classical communication - more precisely, making the communication clas-
sical while keeping the key advantages of quantum money (e.g. privacy of
transactions) is a central open problem in quantum cryptography. Besides the
intriguing theoretical question and the fact that there is a fundamental difference
between classical and quantum communication2, practical differences include
(1) the fact that a classical communication network can be based on information
broadcasting (which uses information cloning to execute), which in particular
enables communication between mobile devices, and (2) that transactions based
on classical communication has the potential to provide proof of payment, as the
clonable classical transcript can serve as a proof.

Looking more closely on the classical communication problem, there are
three directions of communication in a token system: (1) from the bank to a user,

1Note that quantum teleportation is a known technique to transfer quantum information using
classical communication channels. However, assuming no available quantum channel, physical
contact is required to distribute the entangled EPR pairs that are used for teleporting the quantum
data.

2e.g. classical information is more stable and classical communication is likely to be more
efficient, as a consequence of the better algorithmic efficiency and lower rate of classical error
correcting codes, compared to their quantum counterparts.
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(2) from a user to another user, and (3) from a user to the bank. It is a known
fact that the classical communication problem can be partially solved, by getting
stronger no-cloning guarantees. Specifically, there are three known levels of no-
cloning security for the quantum tokens. These levels enable increased classical
communication, as we will later see.

1. No Cloning: The most basic security level of a quantum token is unclon-
ability. No cloning says that a quantum polynomial-time malicious receiver
Rec∗ that obtains a single token (pk, |qt⟩pk) cannot output two quantum states
|qt1⟩, |qt2⟩, such that both pass the public quantum verification QV(·, pk).

2. Classically Certifiable Destruction: The next, stronger guarantee is clas-
sically certifiable destruction (CCD). In this version, along with Bank, QV,
there are two additional algorithms; a quantum algorithm GenCert and a
classical algorithm CV. While QV allows to publicly verify quantum tokens
as before, GenCert allows to destroy the quantum token and output crt, a
classical certificate of destruction for it. This certificate can later be verified
by the classical verification algorithm CV using the public key pk.
CCD security says that no adversary Rec∗ can get a single token (pk, |qt⟩pk)
and output both, a quantum token |qt⟩′ that passes the verification ofQV(·, pk)
and crt a classical certificate for its destruction that passes the classical ver-
ification of CV(·, pk). Note that this guarantee is at least as strong as the
previous no-cloning, because as part of the correctness of schemes with
CCD, for any quantum token |qt⟩′ that passes the verification QV(·, pk),
a valid classical certificate of destruction crt that passes CV(·, pk) can be
generated (thus two copies of the quantum token imply one quantum token
and one classical certificate of destruction for it).

3. Tokenized Signing: The third and strongest known level of no-cloning se-
curity is tokenized signing. In such scheme like before we have Bank, QV,
GenCert, CV, except that now GenCert gets not only the quantum token
(pk, |qt⟩pk), but also a bit b ∈ {0, 1}. The bit b acts as a target for the
destruction process. Specifically, given (pk, |qt⟩pk) and b ∈ {0, 1}, the algo-
rithm generates crtb ← GenCert(pk, |qt⟩pk, b), a "certificate of destruction
with respect to the bit b". The classical verification algorithm then gets, ad-
ditionally to the classical certificate crt and the public key pk, a bit b, and
verifies that indeed crt is a valid certificate for the bit b.
The tokenized signatures security guarantee says that no Rec∗ can get a
single token (pk, |qt⟩pk) and generate two classical certificates crt0, crt1
that pass the classical verification with the two different bits, that is, crt0
passes for b = 0 and crt1 passes for b = 1. This guarantee is at least as
strong as the previous CCD. To see this, assume there is an adversary Rec∗

that outputs a quantum token |qt⟩′ that passes quantum verification and a
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classical receipt crt that passes classical verification. crt passes classical
verification which means it passes it for some bit b ∈ {0, 1} - we can
find out what the bit b is by executing classical verification on crt with
input target 0 and input target 1, and then use |qt⟩′ to generate a targeted
classical certificate of destruction for ¬b. In this process we obtain crtb,
crt¬b. The targeted destruction mechanism allows us to think of (pk, |qt⟩pk)
as a one-time signature token to sign in the name of the bank on a single
bit, and in particular, we can think of the certificate generation algorithm
as a quantum signing algorithm crtb ← Sign(pk, |qt⟩pk, b), hence the name
signature tokens.

User-to-bank classical communication from CCD tokens. When we move
from standard unclonable tokens to CCD tokens, any user can effectively "send"
tokens to the bank, using only classical communication: by destroying the token
crt ← GenCert(pk, |qt⟩pk) and sending the classical crt to the bank, the user
proves to the bank that it cannot spend the money of that token anymore in the
network, and the bank can reimburse the balance of that user. Still, CCD tokens
do not solve any of the other two directions of communication: from the bank to
a user, and from one user to another user.

1.1 The Advantages of Quantum Signature Tokens

Having the strongest no-cloning guarantee, the power behind signature tokens
emerges when the tokens are used in a sequence: We can take λ i.i.d. signature
tokens (pk1, |qt⟩pk1), (pk2, |qt⟩pk2), · · · , (pkλ, |qt⟩pkλ) as a single "string signa-
ture token" unit that can sign on any length-λ string. Along with the sequence of
tokens, the bank decides on a token value x ∈ N∪{0} (in the context of quantum
money, this is how much money the bank assigns to that token), samples a unique
(with high probability) identifier which is a random serial number s← {0, 1}λ,
and a classical signature σ := σ(pk1,··· ,pkλ,x,s) for the entire classical part of the
token. The signature token is then

pk = (pk1, · · · , pkλ, x, s, σ) , |qt⟩pk =
(
|qt⟩pk1 , |qt⟩pk2 , · · · , |qt⟩pkλ

)
.

Note that σ is a signature for the entire sequence together, thus one cannot mix
and match signatures of two different strings s1, s2 produced from two different
tokens, in order to get a signature for a third string s3. Tokens of value x = 0
can be regarded as "dummy tokens" - we next show how they can be used.
User-to-user classical communication from signature tokens. Like CCD to-
kens, string signature tokens enable the previous classical communication from
user to bank (as they are only a strengthening of CCD tokens), but moreover,
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they enable an additional direction of classical communication, from one user
to another. More elaborately, one user Rec1 holding a token (pk1, |qt⟩pk1)
of value x1, can transfer the value x1 to another user Rec2 holding a token
(pk2, |qt⟩pk2) of value of 0, by using |qt⟩pk1 to sign on s2, the serial number of
the token (pk2, |qt⟩pk2). After the produced signature is sent to Rec2, the token
(pk2, |qt⟩pk2) can be considered to have the value x1.

Additionally to enabling user-to-user classical communication, two derived
abilities of string signature tokens are as follows:

– Online token destruction: When the bank wants a certificate of destruction
for any token, it samples a random string d ← {0, 1}λ and asks the user to
sign on d with the signature token.

– Token value split: To split the value x of the token (pk1, |qt⟩pk1) between
two tokens (pk2, |qt⟩pk2), (pk3, |qt⟩pk3) into u2, u3 ∈ N ∪ {0} such that
u2 + u3 = x (i.e. the value of (pk2, |qt⟩pk2) is added u2 and the value of
(pk3, |qt⟩pk3) is added u3), we can hash the serial numbers s2, s3 of the
two target tokens along with the partition u2, u3 of x to a length-λ string,
H(s2, s3, u2, u3) = y for a collision resistant hash function H : {0, 1}∗ →
{0, 1}λ, and then use (pk1, |qt⟩pk1) to sign on y. This effectively gives a
classical proof for the new values of the tokens (pk2, |qt⟩pk2), (pk3, |qt⟩pk3).

More advantages of signature tokens for quantum money. Aside from direct
classical transactions, we get additional unique characteristics to a public-key
quantum money system that is based on string signature tokens: (1) No token
database: When a user wants to return a token to the bank and get its bank
account balance reimbursed (using only classical communication), the user and
bank can execute the online destruction mechanism. In contrast, in a quantum
money system based on CCD tokens, where the token return mechanism is the
user simply generating a classical certificate of destruction by itself and sending
it to the bank, the bank needs to maintain a database of all previously-destroyed
tokens, so malicious users cannot illegally re-use the mechanism and send the
same classical certificate of destruction multiple times, for the same token. (2)
Dynamic payment amounts: The value split mechanism gives one the ability
for granular payment amounts, where a user can dynamically choose the amount
it wants to pay (unlike in the CCD-based scheme where the value x of a token
is fixed during its creation by the bank). (3) Provable payments: When one
user sends a direct payment to a second user, by signing on the serial number
of a dummy token which the second users holds, this signature on the serial
number is also a proof of payment, which we do not have in the CCD tokens
setting (without going through the bank). (4) Private classical payments: While
in a scheme based on tokenized signatures, classical user-to-user transactions
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are direct and thus private, the bank can still obtain information when the user
returns a banknote. The online destruction mechanism enables that when the
user returns the signature for d using a token that was worth x, if it wishes
to hide the token’s information (i.e. all information of that token except its
worth) and maintain privacy, it can encrypt the classical signature for d and
send the encryption together with a zero-knowledge proof that the content of the
encryption is a signature for d, and the token that signed on it has a value of x.
This mechanism is still secure for the bank, as with high probability, it will never
sample a repeating test string d.

1.2 Semi-Quantum Tokenized Signatures

We know how to construct public-key quantum money with signature tokens
based on quantum-secure indistinguishability obfuscation and injective one-way
functions, from a combination of the work of Ben-David and Sattath [3] with the
work of Coladangelo, Liu, Liu, and Zhandry [4]. While such quantum money
scheme can cover two out of three directions of communication classically (i.e.
from users to the bank and from users to other users), the direction from the
bank to users still needs to be quantum.

A strengthening of public-key quantum money is public-key semi-quantum
money, where everything is the same as before (i.e. same syntax and hierarchy
of no-cloning levels of the tokens), but the bank is a classical algorithm, which
in particular makes the interaction from bank to users classical. More precisely,
the generation of a token is by an interactive protocol between the classical
bank Bank and a possibly malicious, quantum receiver Rec: (pk, |qt⟩pk) ←
⟨Bank,Rec⟩(OUTBank,OUTRec), i.e. the output of the bank is pk (this is the public
key which the bank can now distribute), and the output of the receiver is the
quantum state |qt⟩pk. Similarly to before, no-cloning guarantees (i.e. standard
no-cloning, CCD or tokenized signing) apply for the state |qt⟩pk, but crucially,
these guarantees now need to hold even given the fact the actual generator of the
state is a possibly malicious receiver Rec∗. Radian and Sattath [5] introduced
the notion of semi-quantum money, and showed a construction of public-key
semi-quantum money with CCD tokens, based on quantum lightning [8] - a
primitive which to this day we do not know how to construct.

Shmueli [7] later constructs a public-key semi-quantum money scheme with
CCD tokens, based on quantum-secure indistinguishability obfuscation and the
sub-exponential quantum hardness of the Learning With Errors problem. This
means that based on these computational assumptions, we know how to construct
a public-key quantum money scheme that covers two directions of communica-
tion classically: from the bank to users (because the scheme is semi-quantum
and a user can execute the receiver in the token generation protocol) and from
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a user to the bank (because the tokens are CCD tokens, and as we have seen
earlier, such tokens enable returning tokens to the bank by destroying them and
sending the receipt to the bank)3. So, looking on what we saw until now,

– Public-key fully-quantum money with signature tokens is missing the clas-
sical direction from the bank to users, and,

– Public-key semi-quantum money with CCD tokens is missing the classical
direction from one user to another.

It remains an open question to classically cover all three directions of commu-
nication at once. We don’t know how to construct such primitive under any
computational assumption.

A construction of public-key semi-quantum money with signature tokens, or
in short, a semi-quantum tokenized signature scheme, solves the above problem,
and more. Such scheme has a classical bank like the scheme from [7], but unlike
the previous scheme, it also has the 4 fundamental advantages of signature
tokens for quantum money (mentioned in Section 1.1). In particular, Radian
and Sattath [5] leave two open problems in their work: One open problem
of constructing a memory-dependent public-key semi-quantum money, and a
stronger and the main open problem of constructing a memoryless public-key
semi-quantum money (both notions are defined in their work). The public-key
semi-quantum money with CCD tokens of Shmueli [7] solves the construction
of a memory-dependent scheme, while constructing a semi-quantum tokenized
signature scheme will resolve the main question of constructing a memoryless
scheme.

Our focus in this work is to construct a semi-quantum tokenized signature
scheme. On the technical side of things, such scheme will show for the first time
that it is possible for a classical computer to securely delegate the generation of
quantum states that maintain the tokenized signing property.

1.3 Results

We resolve the open question and construct a semi-quantum tokenized signa-
ture scheme, based on the existence of indistinguishability obfuscation (iO) for
classical circuits secure against quantum polynomial-time attacks, and on that
the Learning With Errors [6] problem has sub-exponential indistinguishability
against quantum computers, that is, there exists some constant δ ∈ (0, 1) such

3A nice property of a semi-quantum CCD tokens scheme is in-direct classical-communication
transactions from user to user: A user can return a token to the bank, and then the bank can clas-
sically send a newly-generated token with the same value to the recipient user of that transaction.
Observe, however, that such in-direct transactions are always known by the bank and thus are not
private, which is one of the fundamental problems that quantum money is intended to solve.

7



that for every quantum polynomial-time algorithm, Decisional LWE cannot be
solved with advantage greater than 2−λδ , where λ ∈ N is the security parameter
of LWE4.

Formally, we have the following main Theorem.

Theorem 1. Assume that Decisional LWE has sub-exponential quantum indis-
tinguishability and that indistinguishability obfuscation for classical circuits
exists with security against quantum polynomial time distinguishers. Then, there
is a semi-quantum tokenized signature scheme.

The remaining of the paper is as follows. In Section 2 we explain the main
ideas in our construction. The Preliminaries are omitted from this proceedings
version and are given in the full version of this work. In Section 3 we present our
construction of semi-quantum tokenized signatures with correctness proof and
proof for security against sabotage. The full version of the paper also contains
the security proof against signature counterfeiting.

2 Technical Overview

In this section we explain the main technical ideas in our construction and the
structure of the overview is as follows. In Section 2.1 we review the previous
works related to our goal of constructing semi-quantum tokenized signatures, and
explain why a straightforward extension of these works does not work to obtain
our goal. In Section 2.2 we describe our construction and the reasoning behind
it, with no security proof. In Section 2.3 we explain how the security of the entire
scheme is reduced to proving a new hardness property of indistinguishability
obfuscation, which is captured by our main technical Lemma in the full version
of this work. Finally, in Section 2.4 we explain the main steps of proving this
Lemma.

2.1 Semi-quantum CCD Tokens and Fully-quantum Signature Tokens

Starting off based on previous work, there is a single protocol [7] where a clas-
sical Bank can delegate to a quantum Rec the generation of quantum unclonable
tokens - this scheme lets the bank and receiver sample together by interaction
(pk, |qt⟩pk) ← ⟨Bank,Rec⟩(OUTBank,OUTRec) a token for the receiver (the public
key is the output of the bank, which the bank can then share with anyone, in par-
ticular the receiver). More precisely, the tokens in the scheme are CCD tokens. As

4Note that this assumption is weaker than assuming that Decisional LWE is hard for sub-
exponential time quantum algorithms, which is considered a standard cryptographic assumption.
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mentioned in the introduction, the scheme also includes public quantum verifica-
tion QV(pk, |qt⟩pk) ∈ {0, 1}, certificate generation crt← GenCert(pk, |qt⟩pk),
and public classical verification CV(pk, crt) ∈ {0, 1}.

Our direction in this overview will be to upgrade the construction to be
able to generate not only CCD, but signature tokens. This means to have a
signing procedure σb ← Sign(pk, |qt⟩pk, b) instead of the certificate generation
crt← GenCert(pk, |qt⟩pk), and the classical verification will become a classical
signature verification CV(pk, σb, b) ∈ {0, 1}. Looking at another previous work
[3, 4] which uses a quantum bank but manages to build the stronger signature
tokens, it makes sense to try and combine the techniques of the two works. These
two works are even more so inviting to be fused, as it is the case that in both works,
the tokens are coset states - states of the form |S⟩x,z :=

∑
u∈S(−1)⟨z,u⟩|x+ u⟩

for a subspace S ⊆ {0, 1}λ and two strings x, z ∈ {0, 1}λ. Let us recall the
high-order bits in the two works, and then examine their possible joining.

Recap: Coset states as fully-quantum signature tokens. The fully-quantum
tokenized signature scheme of [3, 4] is as follows: The bank samples a random λ

2 -
dimensional subspace S ⊆ {0, 1}λ, random strings x, z ∈ {0, 1}λ and generates
|qt⟩pk := |S⟩x,z i.e.

∑
u∈S(−1)⟨z,u⟩|x+ u⟩. The public verification key of the

state is pk =
(
OS+x,OS⊥+z

)
, for OS+x ← iO(CS+x),OS⊥+z ← iO(CS⊥+z),

where iO is a quantum-secure indistinguishability obfuscator for classical circuits
andCS+x, CS⊥+z are circuits that check membership in the corresponding cosets
S + x, S⊥ + z. The entire token (pk, |qt⟩pk) is sent to the receiver.

Public quantum verification QV of the scheme is the standard procedure to
verify a coset state [2]: Given input a quantum λ-qubit register QT, (1) Check
that the output qubit of OS+x(QT) is 1, then (2) perform Quantum Fourier
Transform (QFT) in base 2 i.e. H⊗λ on QT, then (3) Check that the output
qubit of OS⊥+z(QT) is 1. It is a known fact in the literature that a successful
verification in such procedure projects the state to be exactly |qt⟩pk = |S⟩x,z .
Finally, regarding the signing algorithm Sign(pk, |qt⟩pk, b), to sign on b = 0 just
measure |qt⟩pk, and to sign on b = 1 measure in the Hadamard basis i.e. perform
H⊗λ and then measure. Accordingly, a valid signature for b = 0 is any string
in S + x, which can be publicly verified using OS+x, and a valid signature for
b = 1 is any string in S⊥ + z, which can be publicly verified using OS⊥+z .

The main technical part of the works [3, 4] is to show that it is computationally
impossible, given

((
OS+x,OS⊥+z

)
, |S⟩x,z

)
, to output both s ∈ (S + x) and

s⊥ ∈
(
S⊥ + z

)
.

Recap: Coset states as semi-quantum CCD tokens. Moving to the semi-
quantum setting, the scheme of [7] includes a 3-message coset state generation
protocol, as follows:
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1. The classical Bank samples a random λ
2 -dimensional subspace S ⊆ {0, 1}λ

(represented by a matrix MS ∈ {0, 1}
λ
2
×λ), and sends to the receiver

(Mx
S , ctx), an encryption of the matrix MS under hybrid quantum fully-

homomorphic encryption (QFHE)5.
2. The quantum receiverRec homomorphically evaluates the circuitCssg, which

is a quantum circuit that gets as input the classical description of a subspace
S ⊆ {0, 1}λ e.g. by a matrix, and generates a uniform superposition over S.
Thus, the receiver obtains a quantum, homomorphically evaluated ciphertext,(

|S⟩x′,z′ , ct(x′,z′)

)
← QHE.Eval ((Mx

S , ctx), Cssg) ,

and sends to Bank the classical part ct(x′,z′).
3. Bankdecrypts (x′, z′) = QHE.Dec(ct(x′,z′)) and sends obfuscationsOS+x′ ←

iO(CS+x′), OS⊥+z′ ← iO(CS⊥+z′) as the public verification key pk.

The coset state |S⟩x′,z′ which the receiver holds is the quantum part |qt⟩pk of
the token. Accordingly, public quantum verification QV is identical to that of
[3, 4], the certificate generation crt ← GenCert(pk, |qt⟩pk) is simply a stan-
dard basis measurement and the classical certificate verification is just verifying
CV(pk, crt) := OS+x′(crt).

In the security argument it is shown that it is computationally impossible to
output both, the quantum state |qt⟩′ that passes the verification QV(pk, ·) and a
certificate of destruction for it i.e. any string s ∈ (S + x′). The work does not
claim that the generated coset state maintains the tokenized signing property, in
fact, it is not even defined what it means that a tokens signs on 0 or 1.
Attacking the combined scheme. As we said in the beginning of the overview,
we should first try to combine the schemes. Since both schemes have the same
token structure (a coset state) and public key (obfuscations of the membership
functions for the primal and dual cosets), to combine the schemes, all we need
to do is to take the token generation protocol of [7] and define a signature for
b = 0 to be any s ∈ (S+x′) and a signature for b = 1 to be any s⊥ ∈ (S⊥+z′).
To argue that the combined scheme maintains the tokenized signing property,
it is required to prove that for any quantum polynomial-time receiver Rec∗ that
interacts with the classical Bank during the token generation protocol, it is
impossible to output (s, s⊥).

As it turns out, there is a simple way for an adversary to break the tokenized
signing security of the combined protocol. More elaborately, consider the fol-

5A hybrid QFHE scheme is one where every encryption of a quantum state |ψ⟩ is of the form(
|ψ⟩x,z, ct(x,z)

)
, where |ψ⟩x,z is a quantum OTP encryption of |ψ⟩ with keys x, z ∈ {0, 1}λ,

and ct(x,z) is a classical FHE encryption of the keys.
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lowing attacker Rec∗ that interacts with Bank in the protocol of [7] (described
in the previous paragraph):

1. Rec∗ obtains (Mx
S , ctx), the first message from Bank.

2. Rec∗ samples a random r ∈ {0, 1}
λ
2 and homomorphically evaluates the

following classical circuit Cr,1: The circuit Cr,1 takes as input the matrix
MS ∈ {0, 1}

λ
2
×λ and outputs s := rT ·MS , a vector in the row span. The

receiver gets the ciphertext (ctx′ , s⊕ x′).
3. Rec∗ samples a random r⊥ ∈ {0, 1}

λ
2 and homomorphically evaluates the

following classical circuit Cr⊥,2: The circuit Cr⊥,2 takes as input the matrix
MS ∈ {0, 1}

λ
2
×λ, computes a basis for S⊥ in the form of a matrix MS⊥ ∈

{0, 1}
λ
2
×λ and outputs s⊥ :=

(
r⊥

)T ·MS⊥ , a vector in the row span. The
receiver gets the ciphertext

(
ctx′′ , s⊥ ⊕ x′′

)
.

Assume without the loss of generality that in the QFHE, the classical FHE scheme
that encrypts the classical QOTP keys x, z, is a bit encryption scheme (this
assumption is w.l.o.g. as we do have such QFHE schemes where the classical FHE
is a bit-encryption scheme. In fact, this is true for most known constructions).
This means in particular that the ciphertext ctx′,z′ which the receiver sends in
the second message of the protocol is comprised of two ciphertexts, ctx′ , ctz′ .

Going back to our attack, the malicious receiver Rec∗ can send (ctx′ , ctx′′)
as the second message in the protocol (which was originally ctx′,z′) to Bank,
which decrypts to get x′, x′′, and sends the obfuscations accordingly: OS+x′ ,
OS⊥+x′′ in the third message of the protocol. Finally, note that the receiver
still holds (s ⊕ x′) ∈ (S + x′) and thus a signature for b = 0, and also holds
(s⊥ ⊕ x′′) ∈ (S⊥ + x′′) and thus a signature for b = 1.

2.2 Signing Coset States by Splitting

With accordance to the above attack, if we wish to stay with the classical gener-
ation protocol of [7], we need to move to a different signing procedure - this will
be our first new technique. Formally, we would like to reduce the task of break-
ing the security of QFHE, to the task of breaking the security of the tokenized
signature scheme. Note that S is a random subspace of dimension λ

2 and thus

takes a tiny fraction of 2
λ
2

2λ
= 2−

λ
2 inside the set of all length-λ strings {0, 1}λ.

This means that by the security of the QFHE, it should be computationally hard
to get (Mx

S , ctx) the classical QFHE encryption of a basis for S, and find a
non-zero vector in S. Thus, what we aim for as a very first step is a definition of
valid signatures for b = 0 and b = 1 such that given σ0, σ1, two signatures for 0
and 1, it is possible to efficiently derive a vector s ∈ (S \ {0}).
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We suggest the following signature definitions for a bit b ∈ {0, 1}: At
the beginning of the protocol, additionally to choosing S at random, the bank
randomly splits S (which has λ

2 dimensions) into S0, a
(
λ
2 − 1

)
-dimensional

subspace of S, and the coset S0 + w, for w ∈ (S \ S0). Note that these two
parts are exactly two disjoint halves of S. If we define a signature for b to be
any string in S0 + b · w + x′, then one can verify that the sum of any pair of
signatures σ0 ∈ (S + x′) , σ1 ∈ (S + w + x′) is a non-zero vector inside S. The
above only opens the way for the solution, as we did not yet solve the two main
technical parts:

– Signing: Given the generated coset state |S⟩x′,z′ , how can the honest Rec
always succeed in signing on b? Simply measuring |S⟩x′,z′ will yield the
wanted signature only with probability 1/2.

– Security: Given our mechanism for signing (which we did not describe yet),
how can we prove security for the new scheme? This part is presented in
Sections 2.3 and 2.4 of the overview.

Projecting on half the coset with overwhelming probability. We put the se-
curity of the scheme aside for the rest of Section 2.2 and focus on proving
correctness, that is, explaining how to sign. We show how to transform |S⟩x′,z′

into |S0 + b · w⟩x′,z′ given b ∈ {0, 1}, which will suffice, as a signature can be
obtained at that point with probability 1, by measurement. To enable the transfor-
mation, the first change in the protocol is that in the third and last message of the
protocol, where the bank usually sends the public key pk :=

(
OS+x′ ,OS⊥+z′

)
,

it now sends an expanded key: pk′ :=
(
OS0+x′ ,OS0+w+x′ ,OS⊥+z′

)
.

Given the state |S⟩x′,z′ and pk′ :=
(
OS0+x′ ,OS0+w+x′ ,OS⊥+z′

)
, we explain

how to sign on b = 0 (the procedure for b = 1 is symmetric) by getting the state
|S0⟩x

′,z′ . By measuring the output bit of OS0+x′(|Sx′,z′⟩), if we succeed (which
happens with probability 1/2) we are done, and if we fail we have |S0 + w⟩x′,z′ .
It will be enough for the procedure to make the correction and go from the faulty
state |S0 + w⟩x′,z′ back to the original state |S⟩x′,z′ - since the original state re-
enables the experiment of obtaining the correct state |S0⟩x

′,z′ with probability
1/2, we can make λ consecutive iterations of trying to project |S⟩x′,z′ to |S0⟩x

′,z′

(and correct otherwise), and thus fail with an overall probability of 1− 2−λ.

Correction of a faulty coset state. The correction procedure from |S0 + w⟩x′,z′

to |S⟩x′,z′ is as follows: We start with performing QFT (i.e.H⊗λ) on |S0 + w⟩x′,z′

which gives us ∑
u∈S⊥

0

(−1)⟨x′+w,u⟩|z′ + u⟩ .

12



We can write the above state as∑
(u∈S⊥

0 )∧(⟨u,w⟩=0)

(−1)⟨x′+w,u⟩|z′ + u⟩+
∑

(u∈S⊥
0 )∧(⟨u,w⟩=1)

(−1)⟨x′+w,u⟩|z′ + u⟩

=
∑

(u∈S⊥
0 )∧(⟨u,w⟩=0)

(−1)⟨x′,u⟩|z′ + u⟩ −
∑

(u∈S⊥
0 )∧(⟨u,w⟩=1)

(−1)⟨x′,u⟩|z′ + u⟩.

Notice that u ∈ S⊥ if and only if
(
u ∈ S⊥

0

)
∧ (⟨u,w⟩ = 0), also, the set of

vectors u′ such that
(
u′ ∈ S⊥

0

)
∧ (⟨u′, w⟩ = 1) is exactly S⊥+ v, for any v such

that
(
v ∈ S⊥

0

)
∧ (⟨v, w⟩ = 1). We thus write the above sum as∑

u∈S⊥

(−1)⟨x′,u⟩|z′ + u⟩ −
∑
u∈S⊥

(−1)⟨x′,u+v⟩|z′ + u+ v⟩ .

The left sum in the above state is exactly |S⊥⟩z′,x′ , which means that if we project
the above state with measuring the output bit of OS⊥+z′(·) and get 1, we have
|S⊥⟩z′,x′ and by executing QFT we go back to |S⟩x′,z′ , as required.

In case we get 0 then we have
∑

u∈S⊥(−1)⟨x
′,u+v⟩|z′ + u+ v⟩ and we go

for the last part of the correction: We can clear the global phase,∑
u∈S⊥

(−1)⟨x′,u+v⟩|z′ + u+ v⟩ = (−1)⟨x′,v⟩
∑
u∈S⊥

(−1)⟨x′,u⟩|z′ + u+ v⟩

≡
∑
u∈S⊥

(−1)⟨x′,u⟩|z′ + u+ v⟩ ,

and execute QFT to get ∑
u∈S

(−1)⟨z′+v,u⟩|x′ + u⟩ .

We can write the above state by splitting the sum to S0 and S0 + w,∑
u∈S0

(−1)⟨z′+v,u⟩|x′ + u⟩+
∑
u∈S0

(−1)⟨z′+v,u+w⟩|x′ + u+ w⟩ ,

and the advantage in that is, because
(
v ∈ S⊥

0

)
∧ (⟨v, w⟩ = 1), the above state

can be written as∑
u∈S0

(−1)⟨z′,u⟩|x′ + u⟩ −
∑
u∈S0

(−1)⟨z′,u+w⟩|x′ + u+ w⟩

= |S0⟩x
′,z′ − |S0 + w⟩x′,z′ .
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Finally, although we can correct the above state to be |S⟩x′,z′ := |S0⟩x
′,z′ +

|S0 + w⟩x′,z′ (by a phase flip conditioned on the acceptance bit of the circuit
OS0+w+x′), there is no need. This follows because the above state is again a state
that enables projecting it on |S0⟩x

′,z′ with success probability of 1/2, and if we
fail we get −|S0 + w⟩x′,z′ ≡ |S0 + w⟩x′,z′ , which were exactly the properties
we needed from |S⟩x′,z′ .

2.3 Proving CCD Security Versus Proving Tokenized Signing Security

To quickly touch base on where we currently stand, our new generation protocol
for signature tokens is the same as the CCD token generation from [7] (which is
described in Section 2.1), with two differences:

– The last message fromBank toRec in the new protocol ispk′ :=
(
OS0+x′ ,OS0+w+x′ ,OS⊥+z′

)
rather than pk =

(
OS+x′ ,OS⊥+z′

)
from the previous.

– Instead of the certificate generation crt← GenCert(pk, |S⟩x′,z′) of the previ-
ous work which just makes a measurement to the coset state (and does not re-
ally use pk), we now have a bit-signing procedureσb ← Sign(pk′, |S⟩x′,z′ , b),
described in Section 2.2.

Until now we did not cover any of the security aspects of our construction,
only the correctness. This following part of the overview, which explains the
security argument in high-level, is constructed as follows: We recall the security
arguments from previous work [7] that are still relevant for our new construction,
until we arrive at the key point of difference between the current work and
the previous. Next, we explain why the previous techniques do not cover this
difference. Finally, we explain how our main technical Lemma covers this gap
and enables us to prove that the new scheme produces signature tokens. The
overview for the proof of Lemma is presented in Section 2.4.
Previous techniques and our security argument outline. In our reduction
setting, given a malicious Rec∗ that breaks the security of the semi-quantum
tokenized signature scheme, we construct an adversaryAQHE against the QFHE
scheme, in the following manner:

1. AQHE gets the ciphertext (Mx
S , ctx) as input (for a random S with dimension

λ
2 ) and passes it directly to Rec∗ as the first message of the bank in the
protocol.

2. Rec∗ returns ct∗ as the second message in the protocol.
3. AQHE computes (O1,O2,O3) as the third message in the protocol and sends

to Rec∗.
4. Rec∗ outputs two signatures σ0, σ1. These signatures are used by AQHE,

which outputs the sum σ0 + σ1 as an attempt for a non-zero vector in S.
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The reason why this sum is indeed a non-zero vector in S, at least when the
messages of the bank are honestly generated, was explained earlier, in the
beginning of Section 2.2.

Note that the third message (O1,O2,O3) of AQHE needs to be computationally
indistinguishable from

(
OS0+x′ ,OS0+w+x′ ,OS⊥+z′

)
, the third message in the

original protocol. Crucially, in the original protocol, the secret key fhek of
the QFHE is used to generate this third message. Specifically, the bank obtains
(x′, z′) by decryption. Having fhek is clearly not possible for the QFHE adversary
AQHE, and the reduction needs to overcome this difficulty.

We prove the reduction by a hybrid argument, and use three previously known
tools in the process.

Subspace-hiding obfuscation: We use the well-known subspace-hiding [8] prop-
erty of indistinguishability obfuscation, which says that (as long as quantum-
secure injective one-way functions exist) the obfuscation OS+x ← iO(CS+x) is
indistinguishable from an obfuscation OT+x ← iO(CT+x), for a random super-
space S ⊆ T - as long as the dimension of T is not too largeFor any constant
δ ∈ (0, 1], the indistinguishability holds for dimension bounded by λ−λδ., even
if S is known to the attempting distinguisher.

Sub-exponential security of QFHE: Another aid we use is the assumption that the
QFHE has sub-exponential security6, which in turn implies that it should not be
possible to get a non-zero vector in S with probability greater than≈ 2−λδ′ . Note
that since we can pick δ the parameter indicating the dimension of the subspaces
T0, T1 to be any constant, we can take it as a function of δ′, in particular, δ := δ′

2 .
Such choice of parameters implies 2−λδ

>> 2−λδ′ .

Blind sampling of obfuscations: As part of the security argument in [7] it is
shown that given any fixed pair T0, T1 of subspaces with dimension λ−λδ each,
even if we do not know x′, z′, we can successfully sample from a distribution
indistinguishable from (OT0+x′ ,OT0+w+x′ ,OT1+z′) with probability ≈ 2−λδ .

Together, the above seemingly paves the way to finish the proof by a hybrid
argument:

– Hyb0 : In the first hybrid AQHE acts exactly like the bank and computes
the third message

(
OS0+x′ ,OS0+w+x′ ,OS⊥+z′

)
using the secret QFHE key

fhek. As we know, two valid signatures σ0, σ1 in this setting indeed imply
that σ0 + σ1 is a non-zero vector in S.

6The sub-exponential security says that there exists some constant δ′ ∈ (0, 1] such that it
is impossible for any quantum polynomial-time attacker to distinguish encryptions of differing
plaintexts with advantage greater than 2−λδ′

.
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– Hyb1 : In the next hybridAQHE still holds fhek, but sends (OT0+x′ ,OT0+w+x′ ,
OT1+z′) instead. This is indistinguishable from the previous hybrid by the
subspace hiding property of the iO. Recall the sub-exponential security of
the QFHE where the exponent constant is δ′ ∈ (0, 1]. We take the dimension
of the random superspaces S0 ⊆ T0, S⊥ ⊆ T1 to be both λ−λδ, for δ := δ′

2 .
– Hyb2 : In the next hybridAQHE still holds fhek, but the subspaces T0, T1 are

fixed by an averaging argument, to be the pair of subspaces that maximize
the probability for a successful attack i.e. σ0 + σ1 ∈ (S \ {0}). Note that S
is a random subspace of dimension λ

2 subjected to S0 ⊆ T0, T⊥
1 ⊆ S. By

the sub-exponential security of the QFHE and by the fact that this restriction
on S still leaves it enough entropy, it is still computationally impossible to
find a non-zero vector in S with probability >> 2−λδ′ .

– Hyb3 : In this experimentAQHE does not hold fhek, and given the fixed sub-
spaces T0, T1 samples from (OT0+x′ ,OT0+w+x′ ,OT1+z′) and still succeeds
with probability ≈ 2−λδ , by blind sampling of the obfuscated circuits.

All hybrids from Hyb0 to Hyb2 are indistinguishable, thus in Hyb2 we still have
σ0 + σ1 ∈ (S \ {0}), but the secret QFHE key fhek is still needed. Hyb3 then
successfully samples from the same output distribution ofHyb2, without holding
fhek and with probability ≈ 2−λδ

>> 2−λδ′ , which finishes the proof as with
this same probability we get a non-zero vector in S, in contradiction to the
sub-exponential security of the QFHE.
Key point of difference - quantumness in the reduction. We inserted one
small, but fatal inaccuracy to the above hybrid argument: When we use subspace-
hiding techniques to hide S, it becomes no longer correct that getting any vector
s ∈ (S \{0}) is sufficient to break the QFHE security. More precisely, in the last
hybrid Hyb2 and on, the subspaces T0, T1 are fixed and moreover, T⊥

1 ⊆ S. This
makes getting s ∈ (S \ {0}) not only possible, but trivial: any s ∈ (T⊥

1 \ {0})
will do. In order to break the QFHE we will need s ∈ (S \ T⊥

1 ).
To understand why needing s ∈ (S\T⊥

1 ) rather than only s ∈ (S\{0}) tears
apart the above security proof sketch for signature tokens, let us first understand
why the above argument actually holds when we want to prove that the tokens
in the scheme maintain the weaker, CCD security guarantee. In a nutshell, the
key difference is that in the CCD security reduction we are able to use the
quantumness of the output of the adversary Rec∗.

A successful adversary Rec∗ against CCD security manages to output not
only two classical strings as signatures, σ0, σ1, but one certificate crt ∈ (S+x′)
along with the quantum state |S⟩x′,z′ :=

∑
u∈S(−1)⟨z

′,u⟩|x′ + u⟩. The use of
such output in the reduction is by adding crt to the superposition |S⟩x′,z′ ; this
only cancels the x′-pad and gets us |S⟩0λ,z′ . Now, the quantum state |S⟩0λ,z′
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does not give us just an arbitrary non-zero vector in S, but measuring it gives us
a uniform sample from S. In particular, it is easy to get s ∈ (S \ T⊥

1 ) from such
measurement, because the fraction of T⊥

1 in S is negligible, which means that
with overwhelming probability, the random sample lands outside T⊥

1 .
Technically, the above hybrid argument fails to prove tokenized signing al-

ready inHyb1; Even though the hybridsHyb0,Hyb1 are indeed indistinguishable,
and even though in both of them we can know S0, w, x

′, z′ and check whether
the output of Rec∗ still maintains σ0 ∈ (S0 + x′), σ1 ∈ (S0 + w + x′), it can
still be the case that σ0+σ1 ∈ T⊥

1 . Then, this fact that σ0+σ1 ∈ T⊥
1 is dragged

for the remaining hybrids, which invalidates the proof - the reduction does not
find a vector in (S \ T⊥

1 ), and thus QFHE security is unbroken.
Avoiding the dual subspace to prove tokenized signing security. It seems that
we need a property of the indistinguishability obfuscator that is of different nature
from the subspace-hiding property. We want to claim that given an obfuscation
OT1 of a random superspace of S⊥, it is computationally hard to find a vector
in the dual subspace T⊥

1 . Note that such hardness property will finish our proof:
We can use it after moving from the above Hyb0 to Hyb1, claiming that in Hyb1,
the adversary cannot find vectors in T⊥

1 . Finally, since the adversary does find
vectors in S, we know that the vector in S we found σ0+σ1 is in

(
S \ T⊥

1

)
. This

property can then be carried for the rest of the hybrid experiments, to break the
security of the QFHE in the end.

Ideally we indeed would like to prove such strong hardness property, but
we do not manage to do so, in fact, it isn’t even true that it is always hard:
If the dimension of T⊥

1 , the subspace of S is big enough (which means that
the randomly sampled primal superspace T1 is not that much bigger than S⊥),
just by outputting a vector in S, we must be able to land inside T⊥

1 with good
probability.

What we do manage to show in our main technical Lemma is a dual subspace
anti-concentration property, that says that while it may be possible to hit the dual
subspace T⊥

1 after getting an obfuscation OT1 ← iO(CT1) (for a random high-
dimensional superspace of S⊥), it is hard to concentrate there exclusively. In
other words, such adversary will always have to make a near miss, i.e. even if
it tries to avoid S, if it manages to hit T⊥

1 with a noticeable probability, it has
to accidentally hit the background subspace S sometimes, that is, also with a
noticeable probability.

2.4 Hardness of Concentration in Dual of Obfuscated Subspace
The last part remaining is to state and prove our anti-concentration Lemma. The
statement roughly says the following: Assume that quantum-secure injective one-
way functions exist, that iO is a quantum-secure indistinguishability obfuscator
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for classical circuits and that S ⊆ {0, 1}λ is a subspace of dimension λ
2 . Let

δ ∈ (0, 1] a constant, and for a quantum polynomial-time adversary A, which is
given OT ← iO(T ) an obfuscation of a random (λ− λδ)-dimensional subspace
T ⊆ {0, 1}λ subjected to S ⊆ T , denote by s := A(O(T )) the output of
A. Then, for any quantum polynomial-time A, if the output vector s satisfies
s ∈ (T⊥ \ {0}) i.e. inside the dual of T , with a noticeable probability ε0, then,
there is a noticeable probability ε1 such that s also satisfies s(S⊥ \ T⊥) i.e. it is
inside S⊥ but outside T⊥.

Our strategy for proving the lemma is showing a hardness reduction from
obfuscated subspace distinguishing (breaking subspace hiding) to obfuscated
subspace dual concentration (breaking the anti-concentration Lemma). More
formally, assume there is a quantum polynomial-time adversary A that violates
our anti-concentration lemma. This means that given O(T ), the output A(OT )
is in T⊥ \ {0} with a noticeable probability, but is also concentrated there (with
respect to S⊥), that is, the output A(OT ) is in S⊥ \ T⊥ with only a negligible
probability. We aim to use this output pattern to construct a new adversary Ash

that distinguishes between an obfuscation OS of S and an obfuscation OT of
T , a random (λ − λδ)-dimensional superspace of S. Our proof will consider
two logical cases, which are split with accordance to the behavior of the output
A(OS) ofA on a random obfuscation of the membership circuit for the subspace
S.
First Case:A(OS) is in some small subspace of S⊥ with good probability. In
the first case there exists some subspaceTA insideS⊥ such that the outputA(OS)
ofA, for a random obfuscation OS ← iO(S), is in TA with some non-negligible
probability ε.

The main observation in the first case is given by three points, the combina-
tion of which gives us a way to use A in order to break subspace hiding:

1. The output of A for an obfuscation OS ← iO(S) of S is in some specific
subspace TA with a non-negligible probability, which means in particular
that givenA, there exists a basis BA for the subspace TA. This basis BA can
serve the new adversary Ash as non-uniform classical advice. This means
that Ash can check membership in TA efficiently by Gaussian elimination.

2. T is a random superspace of S with λ− λδ dimensions. This means that the
dual T⊥ of T is a relatively small subspace (of only λδ dimensions) and is
random inside S⊥. Combining this fact with the fact that TA is a fixed and
small subspace of S⊥, the probability for T⊥ and TA to have a non-zero-
vector intersection is exponentially small and in particular negligible.

3. The output A(OT ) of A for an obfuscation of T is concentrated in T⊥ with
respect to S⊥. This means that there is at most a negligible chance that
A(OT ) is in S⊥ but outside T⊥.
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Recalling that TA is inside S⊥, it can be verified by the reader that the combi-
nation of 2 and 3 implies that the output A(OT ) hits the subspace TA with at
most a negligible probability. On the other hand, the outputA(OS) hits TA with
a non-negligible probability. Finally, an adversary Ash can get an obfuscation z
which is either from OS ← iO(S) or from OT ← iO(T ) (for an appropriately
random T ), execute A(z) and check if the result is in TA - this gives an adver-
sary that breaks subspace hiding with a non-negligible advantage in quantum
polynomial time.
Second Case: A(OS) is scattered. In the second case we assume the negation
of the first case, that is, there is no small subspace TA of S⊥ such that the output
A(OS) is inside this subspace with a non-negligible probability. In first glance
on the second case, it seems that the output ofA is indistinguishable between the
two input distributions OS and OT : while by the definition of the second case,
the output A(OS) is scattered in S⊥ (and also outside S⊥), the output A(OT )
is constrained to be in T⊥ when inside S⊥, but since the subspace itself T⊥ is
scattered in S⊥, this also implies that A(OT ) is somewhat of a random vector.

The key to solving the second case is first asking what happens over many
samples, that is, let us assume for a moment that subspace hiding is extendable
to many samples, and O

(1)
S , O(2)

S , · · · , O(λ)
S is indistinguishable from O

(1)
T , O(2)

T ,
· · · , O(λ)

T . Because A(OS) is scattered, when looking on the outputs A(O(1)
S ),

A(O(2)
S ), · · · , A(O(λ)

S ), we get random vectors with no particular pattern (at the
least, with respect to small subspaces of dimension ≤ λδ). However, when we
look at the series of outputs A(O(1)

T ), A(O(2)
T ), · · · , A(O(λ)

T ), since A(OT ) is
obligated to either be in T⊥ or not be in the larger S⊥ at all, and T⊥ has a small
dimension λδ, we get an interesting and efficiently recognizable pattern.
Second Case: Dimension Recognition rather than Subspace Recognition
and Double Obfuscation. If we are buildingAsh, an adversary against subspace
hiding, T is unknown toAsh. However, the adversaryAsh can useA to recognize
the dimension of the dual subspace T⊥. Given the samples O(1)

T , O(2)
T , · · · , O(λ)

T ,
we can check whether A(O(i)

T ) is in S⊥ or not - if it is inside S⊥, we put that
vector vi aside. At the end of this process, we get some set B∗ of size ≤ λ.
Now, from the fact that A(OT ) is concentrated in T⊥, one can verify that the
dimension of B∗ is bounded by λδ with overwhelming probability. On the other
hand, the same process of building B∗, when we are given samples O(1)

S , O(2)
S ,

· · · , O(λ)
S that are obfuscations of S rather than T , will yield a subspace B∗ of

dimension > λδ. The last fact follows exactly because A(OS) is scattered, and
does not hit a particular subspace TA with a non-negligible probability (unlike
the behavior of A(OS) in the first logical case). In conclusion, an adversary
Ash that gets z(1), z(2), · · · , z(λ) which are either i.i.d samples from iO(S) or
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from iO(T ), executesA(z(1)), · · · ,A(z(λ)), builds the basis B∗ and checks if its
dimension is bigger or bounded by λδ, can distinguish between the two extended
distributions.

We saw that if the distributions DS := (O
(1)
S , O(2)

S , · · · , O(λ)
S ) and DT :=

(O
(1)
T , O

(2)
T , · · · , O

(λ)
T {T superspace of S, dim(T ) = λ− λδ}) are indistin-

guishable, we are done. However, a standard hybrid argument does not show
this: a hybrid argument easily shows that subspace hiding implies that DS is in-
distinguishable from D′

T := (OT1 , OT2 , · · · , OTλ
), that is, a distribution where

in every one of the λ obfuscations Ti is sampled independently of the previ-
ous samples and is only subjected to being a superspace of S with dimension
λ− λδ. In our target distribution DT , the superspace T is sampled once, and all
λ obfuscations are of the same subspace T .

Finally, we show how to use double obfuscation in order to complete our
reduction. Specifically, what we show in the body of the paper (in the proof of
the anti concentration Lemma) is that given a single sample zT ← iO(T ), by
the standard security of indistinguishability obfuscation, λ second obfuscations
(O(1) ← iO(zT ), · · · , O(λ) ← iO(zT )) of the already obfuscated once zT are
indistinguishable from DT . It is also shown that a double obfuscation of S, that
is, OOS

← iO(iO(S)) preserves all of the properties of a single obfuscation, in
particular, the output A(OOS

) is also scattered like A(OS).
The above finishes our reduction: An adversaryAsh that breaks subspace hid-

ing will get z either from iO(S) or from iO
(
{T superspace of S, dim(T ) = λ− λδ}

)
,

and sample λ i.i.d. second obfuscations (O(1)
z , · · · , O(λ)

z ) of z.Ash will then ex-
ecute A on each of the λ samples, get a vector vi for each execution and put it
aside if vi ∈ S⊥ - these vectors put aside are denoted with B∗. As we saw, if z is
an obfuscation of S then the dimension of B∗ is bounded by λδ with a negligible
probability, and if z is an obfuscation of T then B∗ has dimension ≤ λδ with a
non-negligible probability, which finishes our proof.

3 Semi-Quantum Tokenized Signatures Construction

In this section we present our construction of a semi-quantum tokenized signa-
tures (SQTS) scheme, proof of correctness and proof of security against quantum
and classical sabotage.
Ingredients and notation:

– A quantum hybrid fully homomorphic encryption scheme (QHE.Gen,QHE.Enc,
QHE.OTP, QHE.Dec, QHE.QOTP, QHE.Eval), with sub-exponential ad-
vantage security.

– An indistinguishability obfuscation scheme iO.
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In Figure 1 we describe the token generation protocol and token quantum veri-
fication procedures. In Figure 2 we describe the quantum signing algorithm and
the classical signature verification procedures.

Protocol 1

Token Generation Protocol: Sen is classical and Rec is quantum. The joint input is the
security parameter λ ∈ N.

1. Sen samples a random λ
2

-dimensional subspace S ⊆ {0, 1}λ, described by a ma-

trix MS ∈ {0, 1}
λ
2
×λ. Samples OTP key px ← {0, 1}

λ2

2 to encrypt M
(px)
S =

QHE.OTPpx(MS), and then fhek ← QHE.Gen(1λ, 1ℓ(λ)) for some polynomial ℓ(·),
ctpx ← QHE.Encfhek(px). Sen sends the encryption (M

(px)
S , ctpx) to Rec.

2. Let C the quantum circuit that for an input matrix M ∈ {0, 1}
λ
2
×λ, outputs a uni-

form superposition of its row span. The receiver Rec homomorphically evaluates C:
(|S⟩x,z, ctx,z) ← QHE.Eval

(
(M

(px)
S , ctpx), C

)
, saves the quantum part |S⟩x,z and

sends the classical part ctx,z to Sen.
3. Sen decrypts (x, z) = QHE.Decfhek(ctx,z). If x ∈ S, the interaction is terminated. Let

MS⊥ ∈ {0, 1}
λ
2
×λ a basis for S⊥ (as a matrix), let w the first row in MS and let

MS0 ∈ {0, 1}(
λ
2
−1)×λ the rest of the matrix MS , without w.

Sen computes indistinguishability obfuscations OS0+x ← iO(MS0 , x), OS0+w+x ←
iO(MS0 , w + x), OS⊥+z ← iO(MS⊥ , z), all with padding poly′(λ) for some poly-
nomial poly′.
The output of Sen is pk :=

(
OS0+x,OS0+w+x,OS⊥+z

)
, the output of Rec is |qt⟩pk :=

|S⟩x,z .

Quantum Token Verification:

– QV
((
OS0+x,OS0+w+x,OS⊥+z

)
,QT

)
: Given a public key and a λ-qubit quantum

register QT, the verifier checks two things:
• Checks that the output qubit of (OS0+x ∨ OS0+w+x) (QT) is 1.
• Executes Hadamard transform H⊗λ on QT and then checks that the output qubit

of OS⊥+z(QT) is 1.
If both checks passed, the verifier executesH⊗λ again on QT and accepts the signature
token.

Fig. 1: Token generation protocol between the classical sender and quantum re-
ceiver, and quantum token verification procedure of our semi-quantum tokenized
signature scheme.
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Protocol 2

Quantum Signing Algorithm:

– Sign
((
OS0+x,OS0+w+x,OS⊥+z

)
,QT, b

)
: Given a public key, a λ-qubit quantum

register QT and b ∈ {0, 1}, the signing algorithm repeats the following procedure λ
times and if the loop did not terminate in the middle, it outputs ⊥.
1. Measure the output qubit of OS0+b·w+x(QT), let m ∈ {0, 1} the measurement

result.
(a) If m = 1, measure the register QT to get measurement σb, output σb and

terminate.
(b) If m = 0, execute H⊗λ on QT, measure the output qubit of OS⊥+z(QT),

and execute H⊗λ on QT once again. Restart the loop.

Classical Signature Verification:

– CV
((
OS0+x,OS0+w+x,OS⊥+z

)
, σb, b

)
: To verify a classical signature candidate σb

for the bit b, the verifier outputs the bit OS0+b·w+x(σb).

Fig. 2: The quantum signature algorithm and the classical signature verification
procedure of our semi-quantum tokenized signature scheme.

3.1 Correctness and Security Against Sabotage

We first prove that our scheme is correct, which includes two steps: (1) If the
scheme’s algorithms are ran honestly then the protocol ends successfully, with
the output of the honest receiver having negligible trace distance to |S⟩x,z . (2)
We recall that |S⟩x,z passes the quantum verification with probability 1, which
overall means that the probability to pass the quantum verification is 1−negl(λ).

Claim. If the token generation protocol is executed honestly, the quantum token
|qt⟩pk has negligible trace distance from the state |S⟩x,z :=

∑
u∈S(−1)⟨z,u⟩|x+ u⟩

(the output of the protocol is defined to be ⊥ in case the honest sender aborted
the interaction), where x, z are the values obtained by the decryption executed
by the sender in step 3 of the protocol.

Proof. By the statistical correctness of the QFHE, at the end of step 2 of the
generation protocol, the quantum state that the honest Rec holds in its quantum-
evaluated register has negligible trace distance to |S⟩x,z , that is, this negligible
distance holds with probability 1 over the first two messages of the protocol.

Now, we claim that the probability for such honest Rec to have x ∈ S
is negligible. So, assume towards contradiction it was noticeable. Because the
probability for x ∈ S is noticeable, it has to be the case that with a noticeable
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probability, when we execute the honest protocol, at the end of step 2 the receiver
holds a state with negligible trace distance to |S⟩x,z for x ∈ S. Now, for any
x ∈ S it follows that |S⟩x,z = |S⟩0λ,z . This means that by measuring the
receiver’s state we get a non-zero vector in S with overwhelming probability,
and overall, with a noticeable probability we can get a non-zero vector in S
without even knowing the QFHE secret key.

Getting a non-zero vector in S violates the security of the QFHE, due to the
fact that S is chosen at random and it covers only a negligible fraction out of
{0, 1}λ. So, the honest execution of the protocol terminates on with a negligible
probability.

Overall, with probability 1 − negl(λ), we have x /∈ S, the protocol ends
successfully and the receiver holds a quantum state with negligible trace distance
to |S⟩x,z .

We explain how Claim 3.1 implies the statistical correctness of our scheme.

Proposition 1. The scheme presented in Protocol 1 has statistical correctness.

Proof. In Claim 3.1 we saw that with probability 1−negl(λ), the honest receiver
Rec holds a quantum state with negligible trace distance to |S⟩x,z .

Finally, our public quantum verification QV is the standard QFT-based veri-
fication procedure of a coset state, and a well-known fact in the literature that a
successful verification of such procedure is a projection of the verified state onto
the subspace spanned only by the coset state [2, 3]. Because the trace distance
of |qt⟩pk from |S⟩x,z is negligible, the probability for the state to be verified is
overwhelming.

Overall, with probability 1 − negl(λ) over the execution of the honest pro-
tocol, the receiver’s quantum state passes the quantum verification QV(pk, ·).

Security against quantum sabotage. From the fact that the quantum verifi-
cation QV(pk, ·) is a projector on the coset state, it follows that after a single
successful quantum verification, |qt⟩pk is now |S⟩x,z , which passes the next
quantum verification with probability 1.

It remains to prove the security of the scheme against classical sabotage.

Proposition 2. The scheme presented in Protocol 1 has security against classi-
cal sabotage.

Proof. The starting point of the algorithm is the state after passing successfully
the verification QV(pk, ·), which, as we stated above, means the state is exactly
|S⟩x,z . After the first step of an iteration, if m = 1 we are done as we have
|S0 + b · w⟩x,z after the measurement, which means that by measuring we get
σb ∈ (S0 + b · w) with probability 1. If m = 0 we now have |S0 + (¬b) · w⟩x,z .
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Regarding the second step 1b, denote by m′ ∈ {0, 1} the measured output
bit of OS⊥+z(QT), that is, in step 1b of the signing procedure we execute QFT
on QT, then measure the output qubit of OS⊥+z(QT) (we denoted by m′ the
outcome of this 1-qubit measurement) and then execute QFT on QT again.

One can verify that if m′ = 1 then we have |S⊥⟩z,x before the second QFT,
and thus back to |S⟩x,z after the second QFT. On the other hand, if m′ = 0, after
the second QFT we have |S0⟩x,z − |S0 + w⟩x,z .

In any case, regardless of the value m′, at the end of step 1b of the signing
procedure, the state (which is either |S⟩x,z or |S0⟩x,z − |S0 + w⟩x,z) maintains
the property that after measuring the the output bit of OS0+b·w(QT) (which will
come up in upcoming step 1 of the next iteration) will project the state to be the
correct |S0 + b · w⟩x,z with probability 1/2 and with the remaining probability
1/2 it will be projected to |S0 + (¬b) · w⟩x,z .

We deduce that at the beginning of each of the λ iterations we make, when
we start with step 1, before the step is executed, we have a state that is projected to
|S0 + b · w⟩x,z with probability 1/2 and to |S0 + (¬b) · w⟩x,z with probability
1/2. The entire process will thus fail only if we fail consecutively λ times, where
each experiment is independent from the rest and succeeds with probability 1/2.
Overall, this implies a failure probability of 1− 2−λ.
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