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Abstract. We construct a classically verifiable succinct interactive ar-
gument for quantum computation (BQP) with communication complex-
ity and verifier runtime that are poly-logarithmic in the runtime of the
BQP computation (and polynomial in the security parameter). Our pro-
tocol is secure assuming the post-quantum security of indistinguishabil-
ity obfuscation (iO) and Learning with Errors (LWE). This is the first
succinct argument for quantum computation in the plain model ; prior
work (Chia-Chung-Yamakawa, TCC ’20) requires both a long common
reference string and non-black-box use of a hash function modeled as a
random oracle.
At a technical level, we revisit the framework for constructing classically
verifiable quantum computation (Mahadev, FOCS ’18). We give a self-
contained, modular proof of security for Mahadev’s protocol, which we
believe is of independent interest. Our proof readily generalizes to a set-
ting in which the verifier’s first message (which consists of many public
keys) is compressed. Next, we formalize this notion of compressed public
keys; we view the object as a generalization of constrained/programmable
PRFs and instantiate it based on indistinguishability obfuscation.
Finally, we compile the above protocol into a fully succinct argument
using a (sufficiently composable) succinct argument of knowledge for NP.
Using our framework, we achieve several additional results, including
– Succinct arguments for QMA (given multiple copies of the witness),
– Succinct non-interactive arguments for BQP (or QMA) in the quan-

tum random oracle model, and
– Succinct batch arguments for BQP (or QMA) assuming post-quantum

LWE (without iO).

1 Introduction

Efficient verification of computation is one of the most fundamental and intrigu-
ing concepts in computer science, and lies at the heart of the P vs. NP question.
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It has been studied in the classical setting for over three decades, giving rise to
beautiful notions such as interactive proofs [GMR85], multi-prover interactive
proofs [BGKW88], probabilistically checkable proofs [BFL90,ALM+92,AS92],
and culminating with the notion of a succinct (interactive and non-interactive)
argument [Kil92,Mic94]. Roughly speaking, a succinct argument for a T -time
computation enables a prover running in poly(T ) time to convince a polylog(T )-
time verifier of the correctness of the computation using only polylog(T ) bits of
communication, with soundness against all polynomial-time cheating provers.

In a breakthrough result in 2018, Mahadev [Mah18] presented an interac-
tive argument system that enables a classical verifier to check the correctness
of an arbitrary quantum computation. Mahadev’s protocol represents a differ-
ent kind of interactive argument — unlike the traditional setting in which the
prover simply has more computational resources (i.e., running time) than the ver-
ifier, the prover in Mahadev’s protocol works in a qualitatively more powerful
computational model. More precisely, for any T -time quantum computation, Ma-
hadev’s protocol enables a quantum prover running in time poly(T ) to convince
a classical poly(T )-time verifier with poly(T ) bits of classical communication.
Soundness holds against all quantum polynomial-time cheating provers under
the post-quantum hardness of the learning with errors (LWE) problem.

A fundamental question is whether we can get the best of both worlds: can the
prover have both a more powerful computational model and significantly greater
computational resources? Namely, we want an interactive argument system for
T -time quantum computation in which the quantum prover runs in poly(T ) time
and convinces a polylog(T )-time classical verifier with polylog(T ) bits of classical
communication.

We answer this question affirmatively, both for poly(T )-time quantum com-
putations, corresponding to the complexity class BQP, and also for the non-
deterministic analog QMA.

Theorem 1.1 (Succinct Arguments for BQP). Let λ be a security pa-
rameter. Assuming the existence of a post-quantum secure indistinguishability
obfuscation scheme (iO) and the post-quantum hardness of the learning with er-
rors problem (LWE), there is an interactive argument system for any T -time
quantum computation on input x,1 where

– the prover is quantum and runs in time poly(T, λ),
– the verifier is classical and runs in time poly(log T, λ) + Õ(|x|),2 and
– the protocol uses poly(log T, λ) bits of classical communication.

Theorem 1.2 (Succinct Arguments for QMA). Assuming the existence
of a post-quantum secure indistinguishability obfuscation scheme (iO) and the

1 A T -time quantum computation is a language L decidable by a bounded-error T -
time quantum Turing machine [BV97]. We leave it to future work to address more
complex tasks such as sampling problems (as in [CLLW20]).

2 As in the classical setting, some dependence on |x| is necessary at least to read the
input; as in [Kil92], we achieve a fairly minimal |x|-dependence.
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post-quantum hardness of the learning with errors problem (LWE), there is an
interactive argument system for any T -time quantum computation on input x
and a poly(T )-qubit witness, where

– the prover is quantum and runs in time poly(T, λ), using polynomially many
copies of the witness,3

– the verifier is classical and runs in time poly(log T, λ) + Õ(x), and
– the protocol uses poly(log T, λ) bits of classical communication.

A New Proof of Security for the [Mah18] Protocol. One might hope to prove The-
orems 1.1 and 1.2 by treating the Mahadev result as a “black box” and showing
that any (classical) interactive argument for quantum computations can be com-
pressed into a succinct protocol via a suitable cryptographic compiler. This is
especially appealing given the extremely technical nature of Mahadev’s security
proof. Unfortunately, for reasons that will become clear in the technical overview,
this kind of generic compilation seems unlikely to be achievable in our setting.
Even worse, there does not appear to be any easily formalized property of the
Mahadev protocol that would enable such a compilation.

Instead, our solution consists of two steps.

(1) We build a modified variant of the [Mah18] protocol and give an entirely self-
contained proof of security. This modified protocol satisfies a few technical
conditions that the original [Mah18] does not; most prominently, the first
verifier message of our modified protocol is already succinct.

(2) We give a generic compiler that converts the protocol from Step (1) into a
succinct argument system.

Our Step (1) also results in a self-contained proof of security of the original
[Mah18] protocol that is more modular and amenable to further modification
and generalization, which we believe will be useful for future work. Our analysis
builds upon [Mah18] itself as well as an alternative approach described in Vidick’s
(unpublished) lecture notes [Vid20]. A concrete consequence of our new proof
is that one of the two “hardcore bit” security requirements of the main building
block primitive (“extended noisy trapdoor claw-free functions”) in [Mah18] is not
necessary.

Additional Results. Beyond our main result of succinct arguments for BQP and
QMA, we explore a number of extensions and obtain various new protocols with
additional properties.

– Non-Interactive: Although our protocols are not public-coin, we show how
to modify them in order to apply the Fiat-Shamir transformation and round-
collapse our protocols. As a result, we obtain designated-verifier non-interactive
arguments for BQP (and the non-deterministic analog QMA) with security
in the quantum random oracle model (QROM).

3 We inherit the need for polynomially-many copies of the witness from prior works.
This is a feature common to all previous classical verification protocols, and even to
the quantum verification protocol of [FHM18].
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– Zero-Knowledge: We show how to lift both variants of our protocol (inter-
active and non-interactive) to achieve zero-knowledge. We show a generic
transformation based on classical two-party computation for reactive func-
tionalities that makes our protocols simulatable. This transformation does
not add any new computational assumption to the starting protocol.

– Batch Arguments from LWE: For the case of batch arguments, i.e., where the
parties engage in the parallel verification of n statements, we show a succinct
protocol that only assumes the post-quantum hardness of LWE (without iO).
In this context, succinctness requires that the verifier’s complexity scales
with the size of a single instance, but is independent of n.

Prior Work. As discussed above, Mahadev [Mah18] constructs a non-succinct
argument system for BQP/QMA under LWE. The only prior work addressing
succinct classical arguments for quantum computation is the recent work of
Chia, Chung and Yamakawa [CCY20]. [CCY20] constructs a classically verifiable
argument system for quantum computation in the following setting:

– The prover and verifier share a poly(T )-bits long, structured reference string
(which requires a trusted setup to instantiate) along with a hash function h
(e.g. SHA-3).

– The “online communication” of the protocol is succinct (poly(log T )).
– Security is heuristic: it can be proved when h is modeled as a random oracle,

but the protocol description itself explicitly requires the code of h (i.e. uses
h in a non-black-box way).

We specifically note that when viewed in the plain model (i.e., without setup),
the verifier must send the structured reference string to the prover, resulting in a
protocol that is not succinct. We note that [CCY20] was specifically optimizing
for a two-message protocol, but their approach seems incapable of achieving
succinctness in the plain model even if further interaction is allowed.

By contrast, our succinct interactive arguments are in the plain model and
are secure based on well-formed cryptographic assumptions, and our succinct
2-message arguments are proved secure in the QROM (and do not require a long
common reference string).

Finally, we remark that our approach to achieving succinct arguments fun-
damentally (and likely necessarily) differs from [CCY20] because we manipulate
the “inner workings” of the [Mah18] protocol; by contrast [CCY20] makes “black-
box” use of a specific soundness property of the [Mah18] protocol (referred to as
“computational orthogonality” by [ACGH20]) and is otherwise agnostic to how
the protocol is constructed.
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2 Technical Overview

Our starting point is Mahadev’s protocol for classical verification of quantum
computation [Mah18], the core ingredient of which is a measurement protocol.

2.1 Recap: Mahadev’s Measurement Protocol

We begin by reviewing Mahadev’s N -qubit measurement protocol. In Mahadev’s
protocol, a quantum prover holding an N -qubit quantum state ρ interacts with
a classical verifier, who wants to obtain the result of measuring ρ according to
measurement bases h ∈ {0, 1}N (hi specifies a basis choice for the ith qubit,
with hi = 1 corresponding to the Hadamard basis and hi = 0 corresponding to
the standard basis).

Trapdoor Claw-Free Functions. At the heart of the protocol is a cryptographic
primitive known as an injective/claw-free trapdoor function (a variant of lossy
trapdoor functions [PW08,PVW08,GVW15]), which consists of two trapdoor
function families Inj (for injective) and Cf (for claw-free), with the following
syntactic requirements:4

– Each function in Cf ∪ Inj is indexed by a public-key pk, where functions
fpk ∈ Inj are injective and functions fpk ∈ Cf are two-to-one. Moreover,
pk can be sampled along with a secret key sk that enables computing f−1

pk

(i.e., f−1
pk (y) consists of a single pre-image if fpk ∈ Inj, and two pre-images if

fpk ∈ Cf).
– All functions in Inj and Cf have domain {0, 1}ℓ+1 (for some ℓ) and the two

pre-images of y under fpk ∈ Cf are of the form (0, x0) and (1, x1) for some
x0, x1 ∈ {0, 1}ℓ.

An injective/claw-free trapdoor function must satisfy the following security prop-
erties:5

4 The actual syntactic requirements are somewhat more complex due to the fact that
the functions in question are probabilistic.

5 In fact, Mahadev’s proof relies on two different hardcore bit properties, but we show
in this work that only the adaptive hardcore bit property is needed.
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1. Claw-Free/Injective Indistinguishability. A random function in fpk ←
Cf is computationally indistinguishable from a random function fpk ← Inj.

2. Adaptive Hardcore Bit. Given fpk ← Cf, it is computationally infeasible
to output both (1) a pair (x, y) satisfying fpk(x) = y and (2) a non-zero
string d ∈ {0, 1}ℓ+1 such that d · (1, x0 ⊕ x1) = 0, where (0, x0) and (1, x1)
are the two preimages of y.6

To build some intuition about the usefulness of such function families, notice
that they can be used to commit to a single classical bit quite easily. The com-
mitment key is a function fpk ∈ Inj, and commitment to a bit b is y = fpk(b, x) for
a random x ∈ {0, 1}n. It is not hard to verify that this is a statistically binding
and computationally hiding commitment of b. On the other hand, if fpk ∈ Cf, it
is a statistically hiding and computationally binding commitment of b.7

Protocol Description. With this intuition in mind, we now describe a (slightly
simplified version of) the Mahadev measurement protocol. Mahadev’s protocol
is a many-fold sequential repetition of the following one-bit challenge protocol.

V→ P: The verifier samples N pairs of functions and their trapdoors: for every
i ∈ [ℓ], he samples (pki, ski) ← Inj if hi = 0 and (pki, ski) ← Cf if hi = 1.
He sends the N -tuple of public keys (function descriptions) (pk1, . . . , pkN )
to the prover.

P→ V: The prover holds an N -qubit state ρ on register B = B1 ⊗ · · · BN . She
initializes registers X = X1 ⊗ · · · XN so that each Xi is an ℓ-qubit register
in uniform superposition. Then she evaluates each fpki on the ℓ + 1 qubit
register Bi ⊗ Xi and measures the output to obtain yi. Finally, she sends
(y1, . . . , yN ) to the verifier, keeping the registers B,X for herself.

V→ P: The verifier picks a random challenge bit c← {0, 1} and sends it to the
prover. c = 0 indicates a “test round” and c = 1 indicates a “measurement
round”.

P→ V: If c = 0 (“test”), the prover measures each Bi⊗Xi in the standard basis,
obtaining (bi, xi) ∈ {0, 1} × {0, 1}ℓ, and sends (bi, xi)

N
i=1 to the verifier.

If c = 1 (“measure”), she measures each Bi ⊗Xi in the Hadamard basis (i.e.,
she applies the Hadamard gate H on each qubit and then measures in the
standard basis), obtaining di ∈ {0, 1}ℓ+1, and sends (di)

N
i=1 to the verifier.

V (output): If c = 0 (“test”), V either accepts or rejects the interaction but
outputs nothing. In particular, V checks that fpki(bi, xi) = yi. If any of the
checks fail, reject.
If c = 1 (“measure”), proceed as follows. Let R ⊆ [N ] be the set of indices
where hi = 1, corresponding to Hadamard basis measurements, and let S =
[N ] \R be the set of indices corresponding to standard basis measurements.
For each i ∈ R, V computes the two inverses (0, xi,0) and (1, xi,1) of yi
(which are guaranteed to exist since fpk,i ∈ Cf) using ski. V sets ui :=

6 The full definition places a slightly stronger restriction on d than simply being non-
zero. However, this simplified version will suffice for this overview.

7 In particular, fpk ∈ Cf satisfies Unruh’s definition of collapse-binding [Unr16].
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d ·(1, xi,0⊕xi,1) as the ith measurement outcome. For every i ∈ S, V ignores
di, and sets vi to be the first bit of f−1

pki
(yi), computed using the trapdoor

ski (this is well-defined since fpk,i ∈ Inj). Finally V outputs the N -bit string
(u, v) ∈ {0, 1}R × {0, 1}S .

Mahadev [Mah18] proves that if a malicious prover P∗ passes the test round
with probability 1, then there exists anN -qubit quantum state ρ∗ — independent
of the verifier’s measurement basis h — such that the result of measuring ρ∗

according to h is computationally indistinguishable from the verifier’s N -bit
output distribution in the measurement round.8 While her definition requires
that such a ρ∗ exists, Vidick and Zhang [VZ21] showed that Mahadev’s proof
steps implicitly define an extractor that efficiently produces ρ∗ using black-box
access to P∗.

2.2 Defining a (Succinct) Measurement Protocol

Our first (straightforward but helpful) step is to give an explicit definition of
a commit-and-measure protocol that abstracts the completeness and soundness
properties of Mahadev’s measurement protocol as established in [Mah18,VZ21].
Roughly speaking, a commit-and-measure protocol is sound if, for any malicious
prover P∗ that passes the test round with probability 1 and any basis choice h,
there exists an efficient extractor that (without knowledge of h) interacts with
prover and outputs an extracted state τ such that the following are indistin-
guishable:

– the distribution of verifier outputs obtained in the measurement round from
interacting with P∗ using basis choice h, and

– the distribution of measurement outcomes obtained from measuring τ ac-
cording to h.

This abstraction will be particularly helpful for reasoning about our eventual
succinct measurement protocols, which will necessitate modifying Mahadev’s
original protocol.

Can a Measurement Protocol be Succinct? Given the definition of a measurement
protocol, an immediate concern arises with respect to obtaining succinct argu-
ments: the verifier’s input to the measurement protocol – the basis vector h – is
inherently non-succinct. Since the number of qubits N grows with the runtime
of the BQP computation when used to obtain quantum verification [FHM18],
this poses an immediate problem.

Our solution to this problem is to only consider basis vectors h that are
succinct ; our formalization is that h must be the truth table of an efficiently
8 This can be extended to provers that pass the test round with probability 1 − ε

by the gentle measurement lemma. In particular, an efficient distinguisher can only
distinguish the verifier’s output distribution from the result of measuring some ρ∗

with advantage poly(ε).
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computable function f : [logN ] → {0, 1}. For any such h, we can represent the
verifier’s input as a circuit C that computes h, removing the above obstacle.

However, in order for there to be any hope of this idea working, it must be
the case that measurement protocols for bases with succinct representations are
still useful for constructing delegation for BQP. Fortunately, it has been shown
[ACGH20] that classically verifiable (non-succinct) arguments for BQP can be
constructed by invoking Mahadev’s measurement protocol (and, by inspection
of the proof, any measurement protocol satisfying our definition) on a uniformly
random basis string h ← {0, 1}N . Then, by computational indistinguishability,
it is also possible to use a pseudorandom string h that has a succinct representa-
tion, i.e., h = (PRFs(1), . . . ,PRFs(N)) for some (post-quantum) pseudorandom
function PRF.

Thus, we focus for the moment on constructing a succinct measurement pro-
tocol for h with succinct representation, and return to the full delegation problem
later.

2.3 Constructing a Verifier-Succinct Measurement Protocol

Inspecting the description of the [Mah18] protocol, there are three distinct rea-
sons that the protocol is not succinct:

1. The verifier’s first message, which consists of N TCF public keys, is non-
succinct.

2. The prover’s two messages, consisting of the commitments yi and openings
zi respectively, are non-succinct.

3. The verifier’s decision predicate, as it is a function of these commitments
and openings, requires poly(N) time to evaluate.

The latter two issues turn out to be not too difficult to resolve (although there
is an important subtlety that we discuss later); for now, we focus on resolving
(1), which is our main technical contribution. Concretely, we want to construct
a measurement protocol for succinct bases h where the verifier’s first message is
succinct.

Idea: Compress the Verifier’s message with iO. Given the problem formulation,
a natural idea presents itself: instead of having V send over N i.i.d. public keys
pki, perhaps V can send a succinct program PK that contains the description
of N public keys pki that are in some sense “pseudoindependent!” Using the
machinery of obfuscation and the “punctured programs” technique [SW14], it is
straightforward to write down a candidate program for this task: simply obfus-
cate the following code.

Here, C is an efficient circuit with truth table h, and Gen(1λ,mode) indicates
sampling either from Inj or Cf depending on whether hi = C(i) = 0 or hi =
C(i) = 1.

Letting PK denote an obfuscation of the above program, V could send PK
to P and allow the prover to compute each pki = PK(i) on its own, and the
protocol could essentially proceed as before, except that the verifier will have to
expand its PRF seed s into (sk1, . . . , skN ) in order to compute its final output.
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Input: index i ≤ N
Hardwired Values: Puncturable PRF seed s. Circuit C.

– Compute mode = C(i) and r = PRFs(i).
– Compute (pki, ski)← Gen(1λ,mode; r).
– Output pki.

Problem: Proving Soundness. While it is not hard to describe this plausible
modification to the [Mah18] protocol that compresses the verifier’s message, it is
very unclear how to argue that the modified protocol is sound. The obfuscation
literature has no shortage of proof techniques developed over the last 10 years,
but since we have made a “non-black-box” modification of the [Mah18] protocol,
a deep understanding of the [Mah18] proof of soundness is required in order to
understand to what extent these techniques are compatible with the application
at hand.

We believe it should be possible to incorporate punctured programming tech-
niques into Mahadev’s proof of soundness in [Mah18] and conclude the desired
soundness property of the new protocol. However, doing so would result in an
extremely complex proof that would require the reader to verify the entirety of
the [Mah18] (already very complicated) original security proof with our modifi-
cations in mind.

2.4 Proof of Soundness

Given the complicated nature of the [Mah18] proof of soundness, we instead
give a simpler and more modular proof of soundness for the [Mah18] measure-
ment protocol. Moreover, we give this proof for a generic variant of the [Mah18]
protocol where the prover is given an arbitrary representation PK of N TCF
public keys and show that precisely two properties of this representation PK are
required in order for the proof to go through:

– An appropriate generalization of the “dual-mode” property of individual
TCFs must hold for PK: for any two circuits C1, C2, it should be that PK1

generated from basis C1 is computationally indistinguishable from PK2 gen-
erated from basis C2. In fact, a stronger variant of this indistinguishability
must hold: it should be the case that PK1 ≈c PK2 even if the distinguisher
is given all secret keys skj such that C1(j) = C2(j).

– For every i, the adaptive hardcore bit property of fpki should hold even given
skj for all j ̸= i.

Since these two properties are (essentially) all that is required for our proof to
go through, in order to obtain a verifier-succinct protocol, it suffices to show that
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the obfuscated program PK above satisfies these two properties, which follows
from standard techniques.

Thus, we proceed by describing our new soundness proof for the [Mah18]
measurement protocol, which transparently generalizes to the verifier-succinct
setting.

The “Operational Qubits” Approach. Let P ∗ denote a prover that passes the test
round (i.e., makes the verifier accept on the 0 challenge) with probability 1. Our
goal is to show that the prover in some sense “has an N -qubit state” such that
measuring this state in the h-bases produces the same (or an indistinguishable)
distribution as the verifier’s protocol output, which we will denote DP∗,Out. This
N -qubit state should be efficiently computable from the prover’s internal state
|ψ⟩; specifically, we use |ψ⟩ to denote the prover’s state after its first message y
has been sent.

In order to show this, taking inspiration from [Vid20],9 we will proceed in
two steps:

1. Identify N “operational qubits” within |ψ⟩. That is, we will identify a set
of 2N observables Z1, . . . , ZN , X1, . . . , XN (analogous to the “Pauli observ-
ables” σz,1, . . . , σz,N , σx,1, . . . σx,N ) such that measuring |ψ⟩ with these ob-
servables gives the outcome distribution DP∗,Out.

Provided that these 2N observables roughly “behave like” Pauli ob-
servables with respect to |ψ⟩ (e.g. satisfy the X/Z uncertainty principle),
one could then hope to:

2. Extract a related state |ψ′⟩ such that measuring |ψ′⟩ in the actual stan-
dard/Hadamard bases matches the “pseudo-Pauli” {Zj}, {Xi}, measure-
ments of |ψ⟩ (and therefore DP∗,Out).

Relating the Verifier’s Output to Measuring |ψ⟩. Our current goal is to achieve
Step (1) above. Let |ψ⟩ denote P ∗’s post-commitment state and let U denote
the unitary such that P ∗’s opening is a measurement of U |ψ⟩ in the Hadamard
basis.

Now, let us consider the verifier’s output distribution. The ith bit of the
verifier’s output when hi = 1 is defined to be d · (x0,i ⊕ x1,i) (where d is the
opening sent by the prover) of U |ψ⟩ in the Hadamard basis. For each such i, we
can define an observable Xi characterizing this measurement, that roughly takes
the form

Xi ≈ U†(HZi
⊗ Id)

(∑
d

(−1)d·(1,x0,i⊕x1,i) |d⟩⟨d|Zi
⊗ IdI,{Zj}j ̸=i

)
(HZi

⊗ Id)U.

9 [Vid20] gives a soundness proof for a variant of the [Mah18] protocol, but in a quali-
tatively weaker setting. [Vid20] only proves indistinguishability of N -qubit measure-
ments that are either all in the standard basis or all in the Hadamard basis, and only
proves indistinguishability with respect to linear tests of the distribution (that is,
[Vid20] proves small-bias rather than full indistinguishability). Both of these relax-
ations are unacceptable in our setting, and achieving the latter specifically requires
a different proof strategy.
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Here we have slightly simplified the expression forXi for the sake of presentation;
the correct definition of Xi (see the full version) must account for the case
where d is rejected by the verifier. To reiterate, the observable Xi is a syntactic
interpretation of the verifier’s output mi as a function of |ψ⟩.

On the other hand, when hi = 0, the verifier’s output mi is not a priori
a measurement of |ψ⟩; indeed, the verifier ignores the prover’s second message
and just inverts yi. However, under the assumption that the prover P ∗ passes
the test round with probability 1 − negl(λ), making use of the fact that fpki is
injective, this yi-inverse must be equal to what the prover would have sent in
the test round. This defines another observable on |ψ⟩ that we call Zi:

Zi =
∑
b,x

(−1)b |b, x⟩⟨b, x|Zi
⊗ IdI,{Zj}j ̸=i

.

Finally, note that the operator Zi syntactically makes sense even when hi = 1.
However, Xi cannot even be defined when fpki is injective, corresponding to
hi = 0, since Xi explicitly requires two inverses of yi. Therefore, from now on,
we sample all (pki, ski)← Cf (forcing all TCFs to be 2-to-1).

This brings us to the punchline of this step: by invoking a computational
assumption (the indistinguishability of Cf and Inj), we can define observables
(Xi, Zi) for all i ∈ [N ] such that for every i and every basis choice h, the
distribution resulting from measuring |ψ⟩ with Xi (resp. Zi) matches the ith bit
of the verifier’s output distribution.

With a little more work, one can actually show that the verifier’s entire
output distribution in the h-basis is computationally indistinguishable from the
following distribution DP∗,2-to-1:

– Sample keys (pki, ski)← Cf. Run P ∗ to obtain y, |ψ⟩.
– For each i such that hi = 0, measure the first bit of the prover’s ith response

register in the standard basis to obtain (and output) a bit bi.
– Measure U |ψ⟩ in the Hadamard basis, obtaining strings (d1, . . . , dN ).
– For each i such that hi = 1, compute (and output) di · (1, x0,i ⊕ x1,i).

Aside: Why are these Zj and Xi helpful? As alluded to earlier, this approach is
inspired by operational definitions of “having an N -qubit state,” which consists
of a state |ψ⟩ and 2N “pseudo-Pauli” observables Z1, . . . , ZN , X1, . . . XN that
behave “like Pauli observables” on |ψ⟩. For example, it is possible to prove that
many of the “Pauli group relations” hold approximately on these Xi, Zj with
respect to |ψ⟩, meaning that (for example)

⟨ψ|ZiXiZi +Xi |ψ⟩ = negl(λ)

and
⟨ψ|ZjXiZj −Xi |ψ⟩ = negl(λ)

for i ̸= j. In fact, these relations turn out to encode the two basic properties of the
TCF fpki : the adaptive hardcore bit property (encoded in the first relation) and
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that fpki is indistinguishable from injective10 (encoded in the second relation)!
We will not directly prove the relations here, but they are implicit in our full
security proof and are the motivation for this proof strategy.

The Extracted State. Given these protocol observables Z1, . . . , ZN , X1, . . . , XN ,
it remains to implement Step (2) of our overall proof strategy: extracting a state
|ψ′⟩ whose standard/Hadamard measurement outcomes match DP∗,Out. At a
high level, this is achieved by “teleporting” the state |ψ⟩ onto a fresh N -qubit
register in a way that transforms the “pseudo-Paulis" {Xi}, {Zj} into real Pauli
observables {σx,i}, {σz,j}.

Fix a choice of {Xi, Zi}, |ψ⟩ ← Samp. For ease of notation, write H = Z ⊗
I⊗U so that |ψ⟩ ∈ H. We would like an efficient extraction procedure that takes
as input |ψ⟩ ∈ H and generates an N -qubit state τ such that, roughly speaking,
measuring |ψ⟩ withX/Z and measuring τ with σX/σZ produce indistinguishable
outcomes.

Intuition for the Extractor. Before we describe our extractor, we first pro-
vide some underlying intuition. For an arbitrary N -qubit Hilbert space, let
σx,i/σz,i denote the Pauli σx/σz observable acting on the ith qubit. For each
r, s ∈ {0, 1}N , define the N -qubit Pauli “parity” observables

σx(r) :=
∏

i:ri=1

σx,i , σz(s) :=
∏

i:ri=1

σz,i.

Suppose for a moment that |ψ⟩ ∈ H is already an N -qubit state (i.e., H is an
N -qubit Hilbert space) and moreover, that each Xi/Zi observable is simply the
corresponding Pauli observable σx,i/σz,i. While these assumptions technically
trivialize the task (the state already has the form we want from the extracted
state), it will be instructive to write down an extractor that “teleports”
this state into another N-qubit external register.

We can do this by initializing two N -qubit registers A1 ⊗ A2 to |ϕ+⟩⊗N

where |ϕ+⟩ is the EPR state (|00⟩+ |11⟩)/
√
2 (the ith EPR pair lives on the ith

qubit of A1 and A2). Now consider the following steps, which are inspired by
the (N -qubit) quantum teleportation protocol

1. Initialize a 2N -qubit ancilla W to
∣∣02N〉, and apply H⊗2N to obtain the

uniform superposition.
2. Apply a “controlled-Pauli” unitary, which does the following for all r, s ∈
{0, 1}N and all |ϕ⟩ ∈ H ⊗A1:

|r, s⟩W |ϕ⟩H,A1
→ |r, s⟩W (σx(r)σz(s)H ⊗ σx(r)σz(s)A1

) |ϕ⟩H,A1

3. Apply the unitary that XORs onto W the outcome of performing N Bell-
basis measurements11 on A1 ⊗A2 onto W, i.e., for all u, v, r, s ∈ {0, 1}N :

|u, v⟩W (σx(r)σz(s)⊗ Id)A1,A2

∣∣ϕ+〉⊗N

A1,A2

10 Technically, the property encoded is the collapsing of fpki , which is implied by (but
not equivalent to) being indistinguishable from injective.

11 The Bell basis consists of the 4 states (σa
xσ

b
z ⊗ Id)

∣∣ϕ+
〉

for a, b ∈ {0, 1} on 2 qubits.
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7→ |u⊕ r, v ⊕ s⟩W (σx(r)σz(s)⊗ Id)A1,A2

∣∣ϕ+〉⊗N

A1,A2
.

Finally, discard W.

One can show that the resulting state is

1

2N

∑
r,s∈{0,1}N

(σx(r)σz(s)⊗ σx(r)σz(s)⊗ Id) |ψ⟩H
∣∣ϕ+〉A1,A2

=
∣∣ϕ+〉H,A1

|ψ⟩A2
,

(1)
where |ψ⟩ is now “teleported” into the A2 register.

The Full Extractor. To generalize this idea to the setting where |ψ⟩ ∈ H is an
arbitrary quantum state and {Xi, Zi}i are an arbitrary collection of 2N observ-
ables, we simply replace each σx(r) and σz(s) acting on H above with the corre-
sponding parity observables X(r), Z(s), defined analogously (for r, s ∈ {0, 1}N
as

Z(s) =

N∏
i=1

Zsi
i and X(r) =

N∏
i=1

Xri
i .

The rough intuition is that as long as the {Xi} and {Zi} observables “behave
like” Pauli observables with respect to |ψ⟩, the resulting procedure will “teleport”
|ψ⟩ into the N -qubit register A2.

Relating Extracted State Measurements to Verifier Outputs. With the extracted
state defined to be the state on A2 after performing the “generalized teleporta-
tion” described above, it remains to prove that the distribution DP∗,Ext resulting
from measuring the extracted state onA2 in the h-bases is indistinguishable from
DP∗,2-to-1.

One can show (by a calculation) that DP∗,Ext is the following distribution
(differences from DP∗,2-to-1 in red)

1. Sample keys (pki, ski)← Cf. Run P ∗ to obtain y, |ψ⟩.
2. For each i such that hi = 0, measure the first bit of the prover’s ith response

register in the standard basis to obtain (and output) a bit bi.
3. For each i such that hi = 1, flip a random bit wi and apply the unitary Zwi

i .
4. Measure U |ψ⟩ in the Hadamard basis, obtaining strings (d1, . . . , dN ).
5. For each i such that hi = 1, compute (and output) di · (1, x0,i ⊕ x1,i) ⊕ wi.

We prove indistinguishability between the N -bit distributions DP∗,Ext and
DP∗,2-to-1 by considering N hybrid distributions, where the difference between
Hybrid j − 1 and Hybrid j is:

– an additional application of the unitary Zj in Item 3, and
– an additional XOR of ej (the jth standard basis vector) in Item 5.

To conclude the soundness proof, we show that Hybrid j − 1 and Hybrid j
in the following three steps.
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– First, we prove that the marginal distributions of Hybrid (j−1) and Hybrid
j on N \ {j} are indistinguishable due to the collapsing property of fpkj .
Intuitively this holds because the marginal distributions on N \ {j} only
differ by the application of Zj , which is undetectable by collapsing.

– By invoking an elementary lemma about N -bit indistinguishability, the task
reduces to proving a 1-bit indistinguishability of the jth bit of Hybrid (j −
1) and Hybrid j, conditioned on an efficiently computable property of the
marginal distributions on N \ {j}.

– Finally, we show that the indistinguishability of the jth bit holds due to
the adaptive hardcore bit property of fpkj . At a very high level, the above
jth bit property involves a measurement of Xj , and the two hybrids differ
in whether a random Zb

j is applied before Xj is measured; in words, this
exactly captures the adaptive hardcore bit security game.
We refer the reader to the full version for a complete proof of indistinguisha-
bility.

2.5 From a Verifier-Succinct Measurement Protocol to Succinct
Arguments for BQP

Using Sections 2.3 and 2.4, we have constructed a verifier-succinct measurement
protocol, for succinctly represented basis strings, with a single bit verifier chal-
lenge. What remains is to convert this into a (fully) succinct argument system
for BQP (or QMA). This is accomplished via the following transformations:

– Converting a measurement protocol into a quantum verification protocol.
As described earlier, this is achieved by combining the [FHM18] proto-
col for BQP verification with a limited quantum verifier (as modified by
[ACGH20]) with our measurement protocol, using a PRF to generate a pseu-
dorandom basis choice instead of a uniformly random basis choice for the
[FHM18,ACGH20] verifier. This results in a verifier-succinct argument sys-
tem for BQP/QMA with constant soundness error.

– Parallel repetition to reduce the soundness error. This follows from the “com-
putational orthogonal projectors” property of the 1-bit challenge protocol
and follows from [ACGH20] (we give a somewhat more abstract formulation
of their idea in the full version). This results in a verifier-succinct argument
system for BQP/QMA with negligible soundness error.

– Converting a verifier-succinct argument system into a fully succinct argu-
ment system. We elaborate on this last transformation below, as a few diffi-
culties come up in this step.

Assume that we are given a (for simplicity, 4-message) verifier-succinct ar-
gument system for BQP/QMA. Let m1,m2,m3,m4 denote the four messages in
such an argument system. In order to obtain a fully succinct argument system,
we must reduce (1) the prover communication complexity |m2| + |m4|, and (2)
the runtime of the verifier’s decision predicate.

The first idea that comes to mind is to ask the prover to send short (e.g.
Merkle tree) commitments σ2 and σ4 of m2 and m4, respectively, instead of
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sending m2 and m4 directly. At the end of the interaction, the prover and ver-
ifier could then engage in a succinct interactive argument (of knowledge) for a
(classical) NP statement that “the verifier would have accepted the committed
messages underlying σ2 and σ4”. One could potentially employ Kilian’s succinct
interactive argument of knowledge for NP which was recently shown to be post-
quantum secure under the post-quantum LWE assumption [CMSZ21].

There are a few issues with this naive idea. First of all, the verifier’s decision
predicate is private (it depends on the secret key SK in the measurement protocol
and the PRF seed for its basis), so the NP statement above is not well-formed.
One reasonable solution to this issue is to simply have the verifier send this
secret information st after the verifier-succinct protocol emulation has occurred
and before the NP-succinct argument has started. For certain applications (e.g.
obtaining a non-interactive protocol in the QROM) we would like to have a
public-coin protocol; this can be achieved by using fully homomorphic encryption
to encrypt this secret information in the first round rather than sending it in the
clear in a later round. For this overview, we focus on the private-coin variant of
the protocol.

Now, we can indeed write down the appropriate NP relation12

RV ={((h,m1, σ2,m3, σ4, st), (m2,m4)) : σ2 = h(m2) and
σ4 = h(m4) and V (st,m1,m2, c,m4) = accept}

and execute the aforementioned strategy. However, this construction turns out
not to work. Specifically, it does not seem possible to convert a cheating prover
P ∗ in the above fully succinct protocol into a cheating prover P ∗∗ for the verifier-
succinct protocol; for example, P ∗∗ needs to be able to produce a message m2

given onlym1 from the verifier; meanwhile, the messagem1 can only be extracted
from P ∗ by repeatedly rewinding P ∗’s last message algorithm, which requires
the verifier’s secret information st as input! This does not correspond to a valid
P ∗∗, who does not have access to st when computing m2.

Our refined compiler is to execute several arguments of knowledge: one right
after the prover sends σ2, proving knowledge of m2; another one right after she
sends σ4, proving knowledge of m4 (both before receiving the secret state st from
the verifier); and a third one for the relation RV described above. The first two
arguments of knowledge are for the relation

RH = {(h, σ),m) : h(m) = σ}

This allows for immediate extraction of m2 and m3 and appears to clear the
way for a reduction between the verifier-succinct and fully succinct protocol
soundness properties.

However, there is one remaining problem: the argument-of-knowledge prop-
erty of Kilian’s protocol proved by [CMSZ21] is insufficiently composable to be
used in our compiler. They demonstrate an extractor for Kilian’s protocol that
12 Note that the verifier also takes as input the QMA instance, but we suppress it here

for clarity.
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takes any quantum cheating prover that convinces the verifier and extracts a
witness from them. However, their post-quantum extractor might significantly
disturb the prover’s state, meaning that once we extract m2 above, we may not
be able to continue the prover execution in our reduction.

Fortunately, a recent work [LMS21] shows that a slight variant of Kilian’s
protocol is a succinct argument of knowledge for NP satisfying a composable
extraction property called “state-preservation.” This security property is exactly
what is required for our compiler to extract a valid cheating prover strategy P ∗∗

for the verifier-succinct argument given a cheating prover P ∗ for the compiled
protocol. A complete discussion of this is given in the full version.

This completes our construction of a succinct argument system for BQP (and
QMA). We discuss additional results (2-message protocols, zero knowledge, batch
arguments) in the full version of this paper.
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