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Abstract. Multiparty randomized encodings (Applebaum, Brakerski,
and Tsabary, SICOMP 2021) reduce the task of securely computing a
complicated multiparty functionality f to the task of securely computing
a simpler functionality g. The reduction is non-interactive and preserves
information-theoretic security against a passive (semi-honest) adversary,
also referred to as privacy. The special case of a degree-2 encoding g
(2MPRE) has recently found several applications to secure multiparty
computation (MPC) with either information-theoretic security or making
black-box access to cryptographic primitives. Unfortunately, as all known
constructions are based on information-theoretic MPC protocols in the
plain model, they can only be private with an honest majority.

In this paper, we break the honest-majority barrier and present the first
construction of general 2MPRE that remains secure in the presence of a
dishonest majority. Our construction encodes every n-party functionality
f by a 2MPRE that tolerates at most t = ⌊2n/3⌋ passive corruptions.

We derive several applications including: (1) The first non-interactive
client-server MPC protocol with perfect privacy against any coalition of
a minority of the servers and up to t of the n clients; (2) Completeness of
3-party functionalities under non-interactive t-private reductions; and (3)
A single-round t-private reduction from general-MPC to an ideal oblivi-
ous transfer (OT). These positive results partially resolve open questions
that were posed in several previous works. We also show that t-private
2MPREs are necessary for solving (2) and (3), thus establishing new
equivalence theorems between these three notions.

Finally, we present a new approach for constructing fully-private
2MPREs based on multi-round protocols in the OT-hybrid model that
achieve perfect privacy against active attacks. Moreover, by slightly re-
stricting the power of the active adversary, we derive an equivalence
between these notions. This forms a surprising, and quite unique, con-
nection between a non-interactive passively-private primitive to an in-
teractive actively-private primitive.
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1 Introduction

Information-theoretic secure multiparty computation (IT-MPC) deals with the
problem of jointly computing a function over distributed inputs while providing
information-theoretic privacy against an adversary that may corrupt a subset
of the parties. IT-MPC has several important features. It does not rely on un-
proven intractability assumptions and does not depend on the computational
power of the adversary. This notion also tends to provide clean frameworks (e.g.,
in the form of idealized models) for studying more complicated cryptographic
questions without facing our ignorance regarding the nature of efficient compu-
tation. Moreover, apart from being a playground for basic theoretical feasibility
results, IT-based solutions often lead to highly efficient protocols with a good
concrete computational complexity. Finally, IT-MPC solutions typically form
the basis for efficient computational MPC solutions that make a black-box use
of cryptographic primitives.

In this paper, we consider several basic questions in the domain of IT-MPC
and reveal new connections between them. By default, we consider n parties
and assume that at most t of them can be passively corrupted by a (semi-
honest) computationally unbounded adversary.4 We refer to this as t-privacy.
The following questions are open for any t ≥ n/2.

MPC in the client-server model. Suppose that n ≥ 2 parties, called clients, wish
to employ m ≥ 3 external parties, called servers, in order to securely compute
some (possibly complex) function of their inputs. We would like to obtain a non-
interactive protocol in which each client sends a single message to each server,
depending on its input and its local randomness, and gets a single message from
each server in return without any additional interaction.

Question 1. Is there a non-interactive client-server MPC protocol with privacy
against any (semi-honest) adversary who corrupts a minority of the m servers
and up to t of the n clients?

This question dates back to the work of Barkol, Ishai and Weinreb [6], who noted
that even the 3-server case is open. Earlier client-server protocols [22,15] only
apply to the settings where less than one third of the servers (and t < n clients)
can be corrupted. The work of Applebaum, Brakerski and Tsabary [4] presented
a client-server protocol that can tolerate any minority of corrupted servers, but

4 For simplicity, here and throughout the paper, we think of functionalities as finite
objects and accordingly derive protocols and simulators with finite fixed complexity.
All our statements carry over to the asymptotic setting (possibly with a tiny loss
of the privacy threshold) and yield constructions whose complexity is polynomial
in the size of the formulas (or branching program) of the underlying functionality.
Furthermore, if one is willing to make a black-box use of a PRG and relax privacy to
computational, these results also extend to size-s circuits, where the complexity is
linear in s [32,8,15]. In fact, all these “liftings” can be done automatically by using
appropriate completeness results from [22,2,4,3]. See the full version for details.
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at the expense of tolerating only t < n/2 corrupted clients. The case t ≥ n/2
remains open. In this context, even a computationally-private solution with good
concrete efficiency would be useful. However, the only known computationally-
secure solution (which is in fact secure against an arbitrary strict subset of
servers) makes a non-black-box use of OT. This solution is obtained by applying
a general transformation from [19] to the 2-round (non-black-box) OT-based
MPC protocols from [20,11].

Completeness of 3PC under non-interactive reductions. Let us move to the stan-
dard model where no servers are available. Classical completeness results, by
Yao [32] and Goldreich, Micali and Wigderson [21], show that, for an arbitrary
corruption threshold t ≤ n, the problem of securely computing a general n-party
functionality t-privately reduces to the problem of securely computing the ele-
mentary finite 2-party Oblivious Transfer (OT) functionality [31,18]. The OT
functionality takes a bit x from the Receiver and a pair of bits (m0,m1) from
the Sender, and delivers to the Receiver the message mx while hiding m1−x from
the Receiver and x from the Sender. In the 2-party setting, Yao’s reduction [32]
is completely non-interactive and makes only parallel invocations of an ideal
OT-oracle without any further interaction. In the multiparty setting, known re-
ductions are either interactive (i.e., make sequential calls to the OT) [21] or
make a non-black-box use of the underlying OT [20], leading to computational
security and to a large, typically impractical, computational overhead. In [3]
it was shown that this limitation is inherent: No 2-party functionality can be
complete under round-preserving black-box (RPBB) reductions. The same paper
also established the completeness of 4-party functionalities, and stated the case
of 3-party functionalities as an open question:

Question 2. What is the minimal primitive that is non-interactively complete
for t-private MPC? Are 3-party functionalities complete?

The round complexity of protocols based on ideal-OT. Let us move back to OT-
based protocols. In light of the negative result of [3], it is natural to ask what is
the best achievable round complexity given a black-box access to an OT oracle.
A partial answer was recently given by Patra and Srinivasan [30] who showed
that, given a black-box access to a 2-round OT protocol, general secure mul-
tiparty computation with full computational privacy (t ≤ n) can be realized
in 3 rounds. This result falls short of providing information-theoretic security
and, more importantly, it strongly relies on an access to an OT protocol. Con-
sequently, we do not know whether a 3-round protocol can be based on other
realizations of 2-round OT such as ones that are based on physical means such
as noisy channels or secure hardware, or on some limited form of a trusted party
(e.g., [14,13,29,27,17,16]).5 To capture such scenarios, we consider a refined ver-
sion of the OT-hybrid model in which the OT takes 2 rounds. That is, if both

5 More generally, one may ask whether k+1 round protocols can be based on k-round
OT, i.e., is it possible to obtain a single-round reduction. We focus on the minimal
case of k = 2 for simplicity, though all our results actually hold for the general case.
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parties send their inputs to an OT in round i, the output is delivered to the re-
ceiver at the end of round i+1. In addition, the parties are allowed to exchange
messages via standard point-to-point private channels. We refer to this model
as the 2-round OT hybrid model.6 (See Remark 10 for further discussion about
the model.) Refining an open question from [3], we ask

Question 3. What is the minimal number of rounds that are needed for t-private
MPC in the 2-round OT hybrid model? Are 3-rounds achievable?

MPC with active perfect privacy in the OT-hybrid model. Let us change gears
and move to the problem of perfect privacy under active attacks in the (stan-
dard) OT-hybrid model without putting any limitation on the round complexity.
The results of Kilian [26] and Ishai, Prabhakaran, and Sahai [25] show that in
this model one can achieve information-theoretic security with abort against a
computationally unbounded adversary that corrupts an arbitrary subset of the
parties. However, unlike the passive case, where one can achieve perfect simula-
tion, current constructions suffer from a negligible statistical simulation error. It
is known that one cannot simultaneously achieve perfect correctness and perfect
privacy (aka perfect security) unless NP is contained in BPP (see, e.g., [23]).
Still one can hope for a protocol that achieves perfect privacy against active
attacks (i.e., a perfect simulation of the adversary’s view) together with some
weak form of correctness. Partial positive results are known for special classes of
functionalities either in the correlated randomness setting [23] or in the 2-party
setting [1]. Remarkably, for general functionalities the following basic question
is wide open:

Question 4. Is general MPC feasible in the OT-hybrid model with perfect pas-
sive correctness and perfect active t-privacy feasible?

The difference between prefect privacy to statistical privacy is analogous to the
difference between perfect zero-knowledge and statistical zero-knowledge. Fur-
thermore, since the communication complexity grows logarithmically with the
inverse error, perfectly-private protocols may lead to more economical solutions.

2MPREs beyond honest majority. In the honest-majority setting (t < n/2),
Questions 1–3 can be settled in the affirmative based on the existence of t-

6 In the terminology of [3] the reduction of Patra and Srinivasan [30] is a “free Black-
Box” reduction, whereas the (2-round) OT hybrid model corresponds to so-called
“strict Black-box reduction”. To illustrate the distinction between the two notions,
note that in a free-BB reduction, party A can, for example, generate several different
“first messages” of the OT protocol, manipulate them (e.g., encrypt them) and
deliver them to B or to a third party. Moreover, the 2nd part of these OT invocations
can be later continued or withdrawn based on additional information (e.g., the inputs
of B). In a strict BB reduction there is no notion of “first message” and the parties
can only feed their inputs into the OT functionality and obtain the output. Thus a
strict-BB reduction implies a free-BB reduction. See further discussion in [30].



Quadratic MPREs Beyond Honest Majority and Their Applications 5

private quadratic multiparty randomized encoding (MPRE).7 The MPRE notion
was introduced in [4] as a multiparty generalization of the notion of randomized
encoding of functions from [22,2]. Roughly speaking, a functionality f has a
t-private quadratic-MPRE (2MPRE) if the task of securely-computing f non-
interactively reduces to a single call to a degree-2 functionality g via a t-private
information-theoretic reduction. In [4] it was shown that every functionality can
be realized by an honest-majority 2MPREs. Other constructions were also given
in [19,28]. All these constructions are essentially based on plain-model MPC
protocols and are therefore limited to the honest-majority setting. In an attempt
to understand whether this limitation is inherent, we ask:

Question 5 ([4]). Is t-private 2MPRE feasible with t > n/2?

2 Our Results

We construct new 2MPREs and derive new connections between Questions 1–5.

2.1 New 2MPREs beyond Honest-Majority

We present the first construction of perfect 2MPRE that achieves privacy against
coalitions of size at most ⌊2n/3⌋.

Theorem 1 (main theorem). Every n-party functionality can be perfectly re-
alized by ⌊2n/3⌋-private 2MPRE.

The theorem “separates” the model of 2MPRE from plain-model MPC, demon-
strating the power of the former. We will later discuss the implications of The-
orem 1. For now observe that for 3-party functionalities the theorem provides
privacy against coalitions of size at most 2. Since privacy against 3-party func-
tionalities vacuously hold, we derive the following corollary.

Corollary 1 (2MPRE for 3PC). Every 3-party functionality can be perfectly
realized by a 3-private 2MPRE.

Note that any tiny improvement to Theorem 1, e.g., from ⌊2n/3⌋-privacy
to ⌈2n/3⌉-privacy would allow us to obtain fully-private MPRE for 4-party
functionalities. Since 4-party functionalities are known to be complete under
non-interactive reductions [3], such an improvement would immediately yield
n-private 2MPREs for any n-party functionality! Thus, the ⌊2n/3⌋ bound is a
natural intermediate point between the case of full corruption t = n and the
honest-majority setting t < n/2. This puts 2MPRE somewhere between the
OT-hybrid model, in which n-privacy can be achieved, to the plain model that
is restricted to (n− 1)/2-privacy.

7 To the best of our knowledge, for Question 4, no solution is known beyond the
trivial case of t < n/3 in which perfect active security can be achieved in the plain
model [10].
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Indeed, while proving Theorem 1, we show that 2MPREs are equivalent to
an MPC model where the parties are allowed to communicate via private point-
to-point channels for an arbitrary number of rounds and at the end are allowed
to make a single call to a degree-2 functionality. If we remove this last round,
we get the standard plain model and if we allow to call degree-2 functionalities
in every round we get the standard OT-hybrid model. In fact, by preprocessing
OTs [7], the OT-hybrid model is equivalent to a model where all the OT-calls
are performed in the first round and all other rounds use private point-to-point
channels. Thus, the “only difference” between the 2MPRE model and the OT-
hybrid model is whether the degree-2 functionality is being invoked before the
plain-model sub-protocol or after it.

2.2 Equivalences and Implications

Theorem 1 implies affirmative answers to Questions 2 and 3 with t = ⌊2n/3⌋.
We prove that 2MPREs are also necessary for the resolution of these questions.

Theorem 2 (Necessity of 2MPRE). The following holds for every n-party
functionality f and privacy threshold 1 ≤ t ≤ n.

1. If f non-interactively t-privately reduces to some 3-party functionality, then
f has a t-private 2MPRE.

2. If f can be t-privately computed in 3 rounds in the 2-round OT hybrid model,
then f has a t-private 2MPRE.

The results of [3] imply that if f has t-private 2MPREs then it non-
interactively t-privately reduces to the following 3-party variant of OT (hereafter
referred to as TOT). Given a pair of bits (x1, y1) from Alice, and a pair of bits
(x2, y2) from Bob, the functionality delivers to Carol the value x1x2 + y1 + y2
where addition and multiplication are computed over the binary field. Alice and
Bob receive no output.8 TOT takes its input from only 2 parties and deliver
it to the third party and so it can be seen as an extremely simple variant of a
3-party functionality. Nevertheless, by combining Theorem 2 with the above im-
plication, we conclude that TOT is complete for 3-party functionalities. Finally,
we observe that TOT can be easily computed in 3 rounds in the 2-round OT
hybrid model (see Section 6). We therefore derive the following equivalence.

Corollary 2. Let f be an n-party functionality and let 1 ≤ t ≤ n be some
integers. The following statements are equivalent:

1. f can be realized by t-private 2MPRE.
2. f non-interactively t-privately reduces to TOT.
3. f non-interactively t-privately reduces to some 3-party functionality.
4. f can be t-privately computed in 3 rounds in the 2-round OT hybrid model.

8 We refer to this as “3-party OT” since the 2-party version of this functionality,
where the output is delivered to, say, Alice, is essentially equivalent to the standard
1-out-of-2 OT.
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The theorem yields an equivalence between Questions 2, 3 and 5. This equiva-
lence is fairly strong: it holds for each functionality separately and carries to the
statistical setting as well while preserving correctness and privacy errors.

The client-server model. Let us get back to the client-server model (Question 1).
It was shown in [4] that t-private 2MPREs imply non-interactive t-private client-
server protocols. As an immediate corollary of Theorem 1, we derive the following
statement.

Corollary 3. Every n-party functionality has a non-interactive client-server
MPC with privacy against any coalition that consists of a minority of the m
servers and up to ⌊2n/3⌋ of the n clients. For the case of 3 clients, we derive
privacy against an arbitrary (mixed) coalition of clients and a minority of the
servers.

Being an information-theoretic protocol, our construction is fairly efficient and
may turn to be useful in 3PC applications.

2.3 2MPREs vs Active Perfect-Privacy

In an attempt to obtain better 2MPREs with privacy threshold larger than
⌊2n/3⌋, we reveal a new connection to the problem of achieving perfect-privacy
under active attacks (Question 4). Specifically, we show that any protocol in the
OT-hybrid model with perfect t-privacy under active attacks and passive perfect
(or statistical) correctness can be turned into a t-private 2MPRE with statistical
correctness error. We find this implication quite surprising; the protocol is an
actively-secure primitive with no round-complexity requirements, whereas the
2MPRE is a passively-secure object whose main feature is low interaction. In
fact, by weakening the notion of active attacks we derive a surprising equivalence
between these 2 objects. Loosely speaking, we consider a weakly-active adversary
that corrupts a subset T of the parties and deviates from the protocol as follows:
For every OT-call between two corrupted parties, the adversary is allowed to
replace the receiver’s received messagem with some arbitrary valuem′. Once this
value is replaced, the adversary must consistently use this fake value according
to the instructions of the protocol. For example, if the protocol instructs the
receiver to pass m to all the parties, then the adversary passes m′ to all the
parties. (See Section 7 for a formal definition.)

We prove the following theorem.

Theorem 3. Let f be an n-party public-output functionality and let 0 ≤ t ≤ n
be an arbitrary privacy threshold. The functionality f has a protocol in the OT-
hybrid model with statistical (passive) correctness and t-perfect privacy against
weakly-active adversaries if and only if f has a t-private 2MPRE with statistical
correctness error.
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The error can be reduced to an arbitrarily small ϵ with O(log(1/ϵ)) overhead
via standard error-reduction techniques. A public-output functionality is a func-
tionality that delivers the same output to all the parties; it is known that gen-
eral functionalities can be reduced to public-output functionalities via a non-
interactive reduction.

Note that in the honest-majority setting, any protocol with perfect passive
t-privacy is also t-perfectly private against a weakly-active adversary (since there
are no calls to OT). In this setting, Theorem 3 yields a new alternative construc-
tion of 2MPREs. In fact, as a by-product, we derive a new completeness result
in the honest-majority setting.

Theorem 4 (completeness of AND◦EQ for honest majority). In the hon-
est majority setting, every n-party functionality f non-interactively reduces to
multiple parallel calls to AND ◦ EQ functionality. The reduction has perfect pri-
vacy and an arbitrarily small 1-sided statistical correctness error.

For parameters ℓ and k, the predicate AND ◦ EQ takes ℓ pairs of k-bit strings,
computes for each pair an equality bit vi that determines whether the ith pair
is equal, and outputs the logical AND of all the bits v1, . . . , vℓ. Specifically, we
allocate a single equality for each pair of parties (i.e., ℓ =

(
n
2

)
).

Features of the AND ◦EQ predicate. Since EQ(x, y) =
∧

i(xi⊕ ȳi), the AND ◦EQ
predicate can be replaced by a conjunction of parities of pairs of bits. Another
feature of this predicate is the following physical implementation: suppose each
pair of parties are connected by pipes (alternatively, electrical wires), one for
each comparison of two bits held by these parties. For each pipe (wire), one can
ensure that water (electricity) flows through only if equality holds. For instance,
an input bit may determine the position of a switch, where the two switches need
to be aligned to enable flow. Finally, connecting all pipes via an Euler path, the
output of the AND ◦ EQ predicate corresponds to whether or not the flow gets
through the system.

2.4 Techniques

To illustrate some of our techniques, let us focus on the 2MPRE construction
and on the implications of protocols that achieve perfect-privacy under active
attacks.

Constructing 2MPREs Our new construction (Theorem 1) is based on two
components. First, we introduce a new round-collapsing lemma that turns a 2-
round protocol that satisfies some “nice” form into a 2MPRE. Then, we design a
nice protocol with ⌈2n/3⌉-privacy and collapse it into a 2MPRE. Let us elaborate
on these steps.
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Round-collapsing lemma. Recall that a 2MPRE can be viewed as a non-
interactive protocol that makes only parallel calls to some degree-2 functionali-
ties (WLOG, we may use only TOT calls). Consider the seemingly more liberal
model where the parties are allowed to make a single round of communication
over private point-to-point channels before calling the TOT functionalities. We
prove that such a nice protocol π can be turned into a 2MPRE. To explain the
high-level idea, let us assume that the protocol π makes a single call to TOT
where A and B are the senders with inputs f and g, respectively, and C receives
TOT(f, g). The messages f and g are computed based on first-round messages
that were sent to A and B during the first round by all the parties P1, . . . , Pn.
Denote by a = (a1, . . . , an) and b = (b1, . . . , bn) the vectors of these first-round
messages. Our goal is to replace the second-round call to TOT with many first-
round calls to TOT. All these TOTs are delivered to the receiver C and the pair
of senders range over all possible pairs of the form (A,B), (A,Pi) or (B,Pi).
Let us imagine, for a moment, that the original TOT computation TOT(f, g)
is replaced with some multi-output function H(f, g) in which each output de-
pends on a single bit either of f or of g. Moreover, let us assume that each bit
of f = f(a) and g = g(b) depends on a single bit of the input. In this case,
each output of H depends on some message, ai or bi, that some Pi have sent in
the first round. Therefore, the corresponding bit of H could be delivered to C
directly at the first round by some party Pi. Of course, we cannot really hope
for such single-bit dependencies. Instead, we replace each of the above compu-
tation with a fully-decomposable randomized encoding [22,2]. Such an encoding
preserves the original information while maintaining privacy, at the expense of
using some secret randomness. The crucial observation is that in our case the
randomness can be chosen either jointly by A and B (for randomizing the TOT
part), or solely by A (for randomizing the f part) or solely by B (for randomizing
the g part). This is due to the fact that we do not need to hide f (resp., g) from
A (resp., B). Overall, this allows us to collapse the computation to first-round
calls to multiple 2-party functionalities.9 The latter can be trivially encoded by
2MPRE, which, by a proper form of composition, leads to 2MPRE for the entire
computation. For full details see Lemma 1 and its proof. By applying the re-
duction repeatedly, one can turn a multi-round plain-model protocol whose last
round makes calls to degree-2 ideal functionalities into a 2MPRE, establishing
the equivalence of these 2 models. The round-preserving lemma plays a central
role in our constructions as well as in our negative results about the necessity of
2MPREs.

Nice protocols. Equipped with the round-collapsing lemma, we explore the power
of nice protocols. To illustrate the power of the model, let us start by observing

9 A related observation is in the heart of other recent round reduction tech-
niques [20,11,4], though we do not see a way to obtain our result based on their
techniques. Specifically, [20,11] makes a non-black-box use of OTs and [4] exploit
the specific properties of Yao’s based randomized encodings. In particular, the latter
result does not seem to extend to arithmetic protocols while our result does.
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that for degree-3 computation (which is known to be complete [22]), the passive
honest-majority version of the BGW protocol [10] gives rise to a nice protocol!
In the standard description of the protocol, in (R1) the parties secret share their
inputs, then the parties multiply their shares locally and (R2) apply a round of
degree-reduction, then the parties apply another local multiplication and (R3)
publish the randomized shares. Since degree reduction is a linear operation one
can replace the last 2 rounds (including the second local multiplication) with a
call to a degree-2 functionality, and derive a “nice” protocol. The resulting con-
struction can be viewed as an abstract version of a recent algebraic construction
of honest-majority arithmetic 2MPREs [28]. The round-collapsing lemma allows
us to derive this result immediately in a conceptually clean way.

Observe that the BGW-based 2MPRE works even if the ideal degree-2 func-
tionality is only private against a corrupted minority. Put differently, we did
not use the full power of the degree-2 oracle that provides privacy against an
arbitrary coalition. Our result for t = ⌊2n/3⌋ is derived by making a stronger
use of this resource. Following BGW, we dedicate the first round to input shar-
ing, except that this time we use a CNF-based secret sharing scheme. That is,
we additively share each input into

(
n
t

)
shares where each share corresponds

to some “unauthorized” t-subset T of the parties, and hand the corresponding
share to all parties outside T . Now a degree-3 computation boils down to a sum
of degree-3 monomials over the additive shares. A threshold of t = ⌊2n/3⌋ − 1
guarantees that for each monomial there must exists a party who holds 2 vari-
ables of the monomials. (A slightly modified version yields t = ⌊2n/3⌋.) By
locally computing these values, we can realize the remaining parts via a call to
a degree-2 functionality. See Section 5. We note that a similar degree-reduction
technique was previously used in the contexts of communication complexity [5]
and information-theoretic private information retrieval [9]. The current applica-
tion is unique in that it applies this technique in the context of feasibility rather
than efficiency.

2MPREs from Perfect Active Privacy Consider the following MPC-in-the-
head type approach [24,25] for transforming a plain-model (passively) t-private
protocol π to a t-private 2MPRE. Each party Pi samples locally a random tape
and guesses randomly a sequence of incoming messages. Then Pi computes,
based on this random view, the vector of outgoing messages that should be sent
in π given this view. Finally, Pi sends her guesses for the incoming messages
together with the computed outgoing messages to an ideal functionality V . The
functionality V checks that the local views match; namely, that each guessed
incoming message is equal to the corresponding outgoing message. If all these
tests pass, V returns the output of the protocol (assume wlog that this output
appears in the transcript), say to all the parties. Otherwise, V outputs zero.

It can be shown that the resulting protocol σ is perfectly private. Correctness
holds when all the guesses succeed which happens with probability 2−c where c
is the communication complexity of π. Since privacy is perfect we can arbitrarily
reduce the correctness error via repetition. The ideal functionality V can be
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written as a conjunction of Equality tests. Since Equality of two bits is a linear
function over F2, and since AND has a degree-2 RE (with statistical correctness
error), V can be replaced with a degree-2 functionality. By instantiating π with
a perfect plain-model honest majority protocol (e.g., BGW) we obtain another
construction of honest-majority 2MPRE, this time with a statistical correctness
error. (Note that so far π is only required to be passively private.)

In order to obtain an MPRE in the honest-minority setting, we start with a
protocol π that operates in the OT-hybrid model and add pair-wise consistency
checks over OT values. That is, each party guesses the incoming messages and
incoming OT messages and computes the corresponding outgoing messages and
OT-inputs. Now V verifies that the local views are pair-wise consistent. Unfor-
tunately, an OT consistency check corresponds to a quadratic relation. Since
these tests are being fed into a degree-2 function (the randomized encoding of
AND), we get a degree-3 encoding of V . We bypass the problem by letting the
pair of parties that use the OT call to locally sample part of the randomness
of the RE. This allows us to reduce the degree at the expense of leaking some
information about the inputs of V . We show that this leakage can still be simu-
lated if the original protocol π is weakly-active perfectly private. See Section 7
for more details.

Organization. Following some preliminaries in Section 3, we relate 2MPREs
to non-interactive protocols in the TOT-hybrid model and prove the round-
collapsing lemma in Section 4. We present our main construction in Section 5,
and dedicate Section 6 to the equivalence between 2MPREs and protocols in
the 2-round-OT hybrid model. Finally, in Section 7, we establish the equivalence
between 2MPREs and perfect privacy under weakly-active attacks. Due to space
limitations some of the proofs are deferred to the full version.

3 Preliminaries

We assume familiarity with standard MPC definitions. Some background is omit-
ted and can be found in the full version. We will extensively use randomized
encoding (RE) of functions and multiparty randomized encoding as means for
transforming and manipulating protocols.

Definition 1 (Randomized Encoding of functions [22]). Let f : X → Y

be a function. We say that a function f̂ : X×R→ Z is a δ-correct and ϵ-private
randomized encoding (RE) of f if the following holds:

– (δ-correctness) There exists a randomized algorithm Dec such that for every
input x ∈ X,

Pr
r←R

[
Dec(f̂(x; r)) ̸= f(x)

]
≤ δ

– (ϵ-privacy) There exists a randomized algorithm Sim such that for every
x ∈ X, the distributions

Sim (f(x)) and f̂(x; r), where r ← R,
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are ϵ-close in statistical distance.

By default, we assume that both correctness and privacy are perfect, i.e., ϵ and
δ are both zero.

By default, the set X (resp., R,Z) is a set of strings of some fixed length. An

RE, f̂ , is fully decomposable if each of its outputs f̂i(x; r) depends on at most

a single input bit of x. The encoding f̂ has degree d if each of its outputs can
be written as a degree-d polynomial over a field F (by default the binary field).

If X = Fn, R = Fρ and Z = Fs, then each output f̂i(x, r) can be written as
a degree-d polynomial in the inputs (x1, . . . , xn, r1, . . . , rρ). The encoding is d-
local if each output depends on at most d inputs (x1, . . . , xn, r1, . . . , rρ). The

complexity of an encoding f̂ is s if the encoding can be computed, simulated,
and decoded by s-size circuits. In the asymptotic setting, when f is treated as a
polynomial-time uniform family of circuits, s is required to be polynomial-time
bounded and the circuits for encoding, decoding and simulating should all be
uniform. All known RE constructions satisfy these properties.

Functionalities. An n-party functionality is a function that maps the inputs of
n parties to a vector of outputs that are distributed among the parties. Without
loss of generality, we assume that the inputs and outputs of each party are taken
from some fixed input and output domains X and Y (e.g., bit strings of fixed
length). We will also make use of randomized functionalities. In this case, we let
f take an additional random input r0 that is chosen uniformly from some finite
domain R, and view r0 as an internal source of randomness that does not belong
to any party. We typically write f(x1, . . . , xn; r0) and use semicolon to separate
the inputs of the parties from the internal randomness of the functionality.

Definition 2 (Multiparty Randomized Encoding (MPRE) [4]). Let f :
Xn → Y n be an n-party functionality. We say that an n-party randomized func-
tionality f̂ : (X ×R)

n × R → Zn is a multiparty randomized encoding of f if
the following holds:

– (δ-correctness): There exists a decoder Dec such that for every party i ∈ [n],
and every input x = (x1, . . . , xn) it holds that

Pr
(r0,r1,...,rn)←Rn+1

[Dec(i, ŷ[i], xi, ri) = y[i]] ≤ δ,

where y = f(x1, . . . , xn), ŷ = f̂ ((x1, r1), . . . , (xn, rn); r0), and y[i] and ŷ[i]
are the restrictions of y and ŷ to the coordinates delivered to party i by f
and f̂ , respectively.

– ((t, ϵ)-privacy): There exists a randomized simulator Sim such that for every
t-subset T ⊆ [n] of parties and every set of inputs x = (x1, . . . , xn) it holds
that the distributions

Sim(T, x[T ], y[T ]), where y = f(x1, . . . , xn)
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and the distributions
(x[T ], r[T ], ŷ[T ])

where

ŷ = f̂ ((x1, r1), . . . , (xn, rn); r0) , and (r0, r1, . . . , rn)← Rn+1

are ϵ-close in statistical distance.

We say that f̂ is perfectly correct if it has δ-correctness for δ = 0, and perfectly
t-private if it has (t, ϵ)-privacy for ϵ = 0. We say that f̂ is t-private if it is both
perfectly correct and perfectly t-private.

Definition 3 (Effective degree and 2MPRE). A (possibly randomized) n-
party functionality f : Xn × R → {0, 1}m has effective degree d if there exist a
tuple of local preprocessing functions (h1, . . . , hn) and a degree-d function h such
that

h (h1(x1), . . . , hn(xn); r) = f(x1, . . . , xn; r),

for every input x1, . . . , xn and internal randomness r.
A functionality f has a t-private quadratic MPRE (2MPRE) if it has a t-

private MPRE with an effective degree of 2. Unless stated otherwise, we assume,
by default, that the privacy and correctness errors are zero.

If f has a t-private 2MPRE h (h1(x1), . . . , hn(xn); r) then it can be computed
by a non-interactive t-private reduction: First, the ith party locally computes
hi on her input and random tape; then she sends the result to the degree-2
functionality h; and finally she locally computes her output by using the MPRE
decoder. In fact, the converse direction also holds, and so f has a t-private
2MPRE if and only if it reduces to a degree 2 functionality g via a non-interactive
t-private reduction that makes a single call to g.10 Despite this equivalence, the
MPRE abstraction will be useful as it will allow us to conveniently manipulate
protocols and gradually turn them into 2MPREs. Specifically, we will often use
the composition lemma [4, Lemma 3.3] that asserts that if f is encoded by an
MPRE g, and g is encoded by an MPRE h then h encodes f . Finally, let us
make the following simple, yet useful, observation. (The proof appears in the
full version.)

Observation 5. Let f be a 3-party functionality that takes its input from only
2 parties (aka 2-input functionality). Then, f has a 3-private 2MPRE.

4 2MPRE and TOT-hybrid model

The TOT-hybrid model. A protocol in the TOT-hybrid model consists of black-
box calls to the TOT functionality. We assume that each 3-tuple of parties

10 The requirement for a single call is without loss of generality in the semi-honest
setting, since multiple parallel calls can be packed in a single call.



14 Benny Applebaum, Yuval Ishai, Or Karni, and Arpita Patra

(A,B,C) can make a call to an ideal TOT functionality TOT : {0, 1}2×{0, 1}2×
{⊥} → {⊥} × {⊥} × {0, 1} where

TOT
(
(x1, y1), (x2, y2),⊥

)
= (⊥,⊥, x1x2 + y1 + y2).

By letting A = C or A = B respectively, TOT calls can emulate OT calls as
well as 2-wise private channels. Still, it will be sometimes convenient to make
explicit use of private point-to-point channels. We will mainly be interested in
non-interactive protocols in this model where the parties make a single round of
parallel calls to the TOT functionality.

The following claim can be derived from [3] who studied a close variant of
TOT known as (2, 3)-MULTPlus. (See the full version for a proof.)

Claim 6. If a functionality F has a t-private 2MPRE then it has a t-private
non-interactive protocol in the TOT-hybrid model.

The converse direction trivially holds since by definition, a non-interactive
protocol in the TOT-hybrid model is also a non-interactive reduction to a degree-
2 functionality. The following lemma provides a stronger converse: It shows that
a 2MPRE can be derived even if we start from a 2-round protocol in the TOT-
hybrid model whose first round only consists of private messages (carried over
private point-to-point channels) and its second rounds consists of parallel calls
to the TOT functionality.

Lemma 1 (Collapsing a round in TOT-hybrid model). Suppose that the
n-party functionality f can be realized by a t-private protocol π in the TOT-
hybrid model whose first round only consists of private messages (carried over
private point-to-point channels) and its second round consists of parallel calls to
the TOT functionality. Then f has a t-private 2MPRE f ′. Moreover, f can be
realized by a t-private non-interactive protocol σ in the TOT-hybrid model. The
transformation holds even if π has a correctness error or a privacy error while
preserving these errors.

Before proving the lemma, we note that once we can collapse a single plain-
model round, we can also collapse multiple plain-model rounds. Specifically,

Corollary 4 (Collapsing multiple rounds in TOT-hybrid model). Sup-
pose that the n-party functionality f can be realized by a t-private multi-round
protocol π in the TOT-hybrid model that makes TOT calls only in the last round
(al;l other rounds are in the plain model). Then f has a t-private 2MPRE f ′.
Moreover, f can be realized by a t-private non-interactive protocol σ in the TOT-
hybrid model. The transformation holds even if π has a correctness error or a
privacy error while preserving these errors.

The proof is deferred to the full version. We move on and prove Lemma 1.

Proof (Proof of Lemma 1). Let f : Xn → {0, 1}m be an n-party functionality,
and let π be δ-correct (t, ϵ)-private protocol in the TOT-hybrid model whose
first-round only consists of private messages and its second-round consists of
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parallel calls to the TOT functionality. For each call to the TOT functionality
with parties A ∈ P and B ∈ P and receiver C ∈ P, the protocol π can be viewed
as computing the following functionality o:

– Each party Pi locally computes messages ai and bi based on its private input
and randomness and sends ai to A and bi to B. As part of this step, A (resp.,
B) sends her private input/randomness to herself.

– The receiver C gets the TOT output

TOT((f0(a), f1(a)), (g0(b), g1(b))),

where a = (ai)i∈[n] and b = (bi)i∈[n] and f0, f1, g0, g1 are some Boolean
functions. (In π the party A computes f0 and f1 locally and the party B
locally computes the functions g0, g1).

To prove the lemma it suffices to encode the functionality o by a perfect
MPRE of effective degree-2. To gain some intuition, imagine the case where a
and b are selected by A and B, respectively. Then the output that is delivered to
C is a 2-party functionality that depends only on values that can be computed
by either A or B. Such a function trivially has an effective degree of 2 as per
Observation 5. Our setting is slightly more involved: While some inputs are
neither chosen by A nor by B, each of these inputs is being leaked either to A
or to B. We show that in this case one can still obtain a 2MPRE.

As our first step, we construct an MPRE for o based on degree-3 RE as
follows. Let ô(a, b; r) be the standard degree-3 fully-decomposable RE from [22,2]
where r = (r1, . . . , rm) is the internal randomness of the RE. Consider the
functionality ô1 in which party A randomly samples α = (αi)i∈[m], party B
randomly samples β = (βi)i∈[m], and party Pi locally computes ai and bi as
before. The functionality ô1 delivers the value

ô(a, b;α+ β)

to C and the vector a to A and b to B. We claim that ô1 is an MPRE of o.
Indeed, correctness follows from the correctness of the RE. As for privacy, fix a
set T ⊆ [n] that contains the receiver C (if C /∈ T simulation is trivial). Observe
that if A or B are not in T , then privacy follows from the privacy of the RE
(since, conditioned on the view of the parties in T , the distribution of C’s output
in ô1 is identical to the distribution of ô(a, b;α + β)). Finally, if both A and B
are in T , then simulating C’s output is trivial since we have both a and b as part
of T ’s view in o.

Next, our goal is to construct a 2MPRE for ô1. First, let us take a step
backward and recall that the degree-3 RE ô(a, b; r) is so-called fully-decomposable
RE, which means that each of its outputs is either a degree-2 function (of the
form ri + rj + rk or rirj + rk or xiri + rj) or an expression of the form

xrjrk + rℓ

where x is either ai, bi or ri and ri, rj , rk, rℓ are part of the internal random bits
r = (r1, . . . , rm) of the RE. Recalling that r = α + β, observe that each output
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bit that ô1 delivers to C is of the form

x(αj+βj)(αk+βk)+(αℓ+βℓ) = xαjαk+xαjβk+xβjαk+xβjβk+(αℓ+βℓ) (1)

where x is either ai, bi or αi + βi. Let us start by breaking this sum to separate
monomials. That is, we define the functionality ô2 that operates identically to
ô1 except that each bit in (1) that ô1 delivers to C is replaced with the tuple

(xαjαk + s1, xαjβk + s2, xβjαk + s3, xβjβk + (αℓ + βℓ)− (s1 + s2 + s3)) (2)

where s1, s2 and s3 are uniform bits that are sampled as part of the internal
randomness of the functionality ô2.

11 The tuple in (2) is a tuple of 4 random
bits whose sum equals to (1). Therefore, (2) perfectly encodes (1) and so ô2
perfectly encodes ô1.

Observe that the first entry of (2) has an effective degree of 2 since A can
precompute αj ·αk. Similarly, the last entry has an effective degree 2 since B can
precompute βj · βk. Moreover if x = αi + βi then the second and third entries
of (2) have also an effective degree of 2. It remains to handle the second and
third entries in the case where x is either ai or bi. Let us focus on the second
entry and assume that x = ai (the other cases are handled similarly). Consider
the functionality ô3 that is identical to ô2 except that instead of delivering the
second entry of (2) to C we deliver to C the tuple

(ai + α′, αjβk + s′, ais
′ + α′αjβk + α′s′ − s2) . (3)

Here s′ is sampled as part of the internal randomness of the functionality, and,
crucially, α′ is sampled uniformly by A. Therefore, (3) has an effective degree
of 2. We claim that ô3 perfectly encodes ô2. Indeed, given an output (y1, y2, y3)
of (3), we can decode the second entry of (2) by outputting the value y1y2 − y3.
As for privacy, consider a set T ⊊ [n] and assume that C ∈ T (again the other
case is trivial). If A /∈ T , then simulation is simple: given y, the second entry of
(2), sample y1, y2 uniformly at random and set y3 = y1y2 − y. If A ∈ T , then
the simulator is given y,ai and α′ as part of A’s private tape, accordingly we set
y1 = ai + α′, sample y2 uniformly and set y3 = y1y2 − y. It is not hard to verify
that the simulation is perfect.

By handling the third entry of (2) similarly, we derive an MPRE of effective
degree 2 that encodes ô2. By the MPRE composition lemma [4, Lemma 3.3],we
conclude that the functionality o admits a perfect 2MPRE. Overall, we encoded
f by a a δ-correct (t, ϵ)-private f ′.

To prove the “Moreover” part, observe that, by Claim 6, f ′ can be per-
fectly realized by a non-interactive protocol π′ in the TOT-hybrid model. By [4,
Prop. 3.1],π′ admits a non-interactive protocol σ in the TOT-Hybrid model that
realizes f with δ-correctness and (t, ϵ)-privacy, as required. ⊓⊔
11 In fact, we could take si to be the sum of a random bit that is sampled by A and a

random bit that is sampled by B.
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5 New 2MPRE Construction

In this section we present our main construction and prove Theorem 1.

5.1 2MPREs for 3-party functionalities

We begin with the following simple observation that deals with a degree-3 func-
tion whose output is delivered to one of the parties who owns one of the multi-
plicands as an input.

Claim 7. The Boolean n-party functionality

f ((x1, y1) , (x2, y2) , (x3, y3) , y4, . . . , yn) =

(
x1x2x3 +

n∑
i=1

yi,⊥, . . . ,⊥

)

(where additions and multiplications are in F2) that delivers the output to P1

admits a 2MPRE with perfect correctness and perfect privacy against arbitrary
coalitions.

Proof. The MPRE f̂ employs private randomness r that is sampled internally
by the functionality. (By [4, Prop. 3.2],one can always replace it by the sum∑

ri where ri is sampled locally by Pi.) The output of f̂ is delivered to P1 and
it consists of two entries:(

x1r +
∑
i

yi, (1− x1)r + x2x3 +
∑
i

yi

)
.

Given the output (z0, z1), party P1 decodes the value of f by outputting zx1
.

Indeed, if x1 = 0 then the output z0 is
∑

i yi and if x1 = 1 then the output z1 is
x2x3 +

∑
i yi, as required. To prove privacy, consider a set of corrupted parties

T ⊊ [n] and assume that P1 ∈ T (the other case is trivial). Given the output y,
the inputs x1, y1 and possibly the inputs of other parties, the simulator samples
a random bit b and outputs the value (z0, z1) where zx1 = y and z1−x1 = b. It is
not hard to verify that this is a perfect simulator. ⊓⊔

As an immediate corollary we derive the following theorem which implies Corol-
lary 1.

Theorem 8 (Corollary 1 restated). Every 3-party functionality f admits a
2MPRE with perfect correctness and perfect privacy against arbitrary coalitions.

Proof. By the completeness of degree-3 REs [22], f can be perfectly encoded by
a degree-3 RE f ′ where each of its outputs is of the form x1x2x3 + r1 + r2 + r3
where xi is an input of Pi and ri is a linear combination of the random inputs of
Pi. Therefore, by composition [4, Lemma 3.3],the theorem follows from Claim 7.

⊓⊔
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5.2
⌊
2n
3

⌋
-private 2MPRE

Theorem 9 (Theorem 1 restated). Let n and t be positive integers for which
t < 2n+1

3 . Then, every n-party functionality admits a t-private 2MPRE.

Unfortunately, the complexity of the resulting MPRE is exponential in n. (This
is the only result in this paper that suffers from this drawback.) However, by
using “player virtualization”, one can derive an efficient poly(n)-time version of
the 2MPRE at the expense of reducing the privacy threshold to 2

3 − ϵ for an
arbitrary small constant ϵ > 0. In fact, we can even take ϵ = on(1). (See the full
version for details.)

Proof. Consider the n-party functionality f that takes a pair of bits (a, α) from
P1, (b, β) from P2 and (c, γ) from P3 and delivers the value

abc+ α+ β + γ

to some designated receiver R ∈ {P1, . . . , Pn}. Since this functionality is known
to be complete under non-interactive reductions [22,2,12] (for an arbitrary pri-
vacy threshold), it suffices to focus on f . Observe that if R ∈ {P1, P2, P3}
the theorem follows from Claim 7, hence we will focus on the case where
R /∈ {P1, P2, P3}. For concreteness, set R = Pn.

We will construct a t-perfect 2-round protocol π for f whose first round
makes use of only private point-to-point channels and its second round makes
parallel calls to TOT. By Lemma 1, such a protocol can be compiled back into
an MPRE with an effective degree of 2.

Before presenting the protocol π, let us start with the following simple pro-
tocol π0:

– At the first round, P1 shares its input a via a t-private CNF secret sharing
among the parties P. That is, for each t-subset S ⊂ P, party P1 samples a
random bit aS conditioned on a =

∑
S aS and delivers aS to all the parties

Pi, i /∈ S. Similarly, P2 shares b into b =
∑

T⊂P,|T |=t bT and sends bT to

every party Pi, i /∈ T and P3 shares c into c =
∑

U⊂P,|U |=t cU and sends cU
to every party Pi, i /∈ U .

– At the second round, the parties make a call to an ideal functionality g that
delivers the value ∑

S⊂P,|S|=t

aS

 ·
 ∑

T⊂P,|T |=t

bT

 ·
 ∑

U⊂P,|U |=t

cU

+ α+ β + γ

to Pn.

It is not hard to verify that the protocol π0 achieves perfect correctness and
perfect t-privacy.

Our next protocol, π1 is obtained by replacing the call to g by a call to
a perfect MPRE for g (with full privacy) and by letting Pn apply the MPRE
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decoder. Specifically, the MPRE ĝ is defined via

(aS · bT · cU + rS,T,U )S,T,U , α+ β + γ −
∑
S,T,U

rS,T,U ,

where S, T, U range over all t-subsets of P, and where each random bit rS,T,U

is taken to the sum of random bits rS,T,U,1, . . . , rS,T,U,n that are sampled locally
by P1, . . . , Pn, respectively. By [4, Prop. 3.1],the privacy and correctness of π1

are inherited from π0.
Next, we claim that each output of ĝ can be perfectly encoded by a func-

tionality of effective degree-2 (with full privacy). Fix some S, T and U , and let
us focus on the output y = aS · bT · cU + rS,T,U . Define the complement sets by

S := P \ S, T := P \ T, U := P \ U,

and let V = S ∪ T ∪U . Recall that aS (resp., bT , cU ) is known to all the parties
in S (resp., T ,U). We distinguish between two cases.

If Pn ∈ V , then the output y can be perfectly encoded by an MPRE of
effective degree 2 by Claim 7. Next, suppose that Pn /∈ V . We claim that in this
case there must exist a party that owns at least 2 out of the 3 elements aS , bT , cU ,
and so the effective degree is 2. Indeed, assume towards a contradiction, that
such a party does not exist. That is, the sets S, T , U are pairwise disjoint. Since
|S| = |T | = |U | = (n − t), it follows that |V | = 3(n − t). Since t < 2n+1

3 ,
|V | > n− 1. But V ⊂ {P1, . . . , Pn−1} and so |V | ≤ n− 1, a contradiction.

Overall, the second round of π1 can be realized by a call to a functionality
ĝ of effective degree 2. Hence, by Claim 6, the second round can be replaced by
parallel calls to TOT, and by Lemma 1, the resulting protocol can be compiled
back into an MPRE with an effective degree of 2, as required. ⊓⊔

6 2MPREs vs. 2-round-OT-hybrid Model

The equivalence between t-private 2MPREs and the completeness of 3-party
functionalities under non-interactive t-private reductions follows from Corol-
lary 1 and Claim 6. In this section we establish an equivalence between 2MPREs
and 3-round protocols in the 2-round-OT-hybrid Model. Recall that in the 2-
round OT hybrid model we assume that OT takes 2 rounds. That is, if both
parties send their inputs to an OT in round i, the output is delivered to the re-
ceiver at the end of round i+1. In addition, the parties are allowed to exchange
messages via standard point-to-point private channels.

Remark 1 (On the 2-round-OT-hybrid Model). The 2-round-OT-hybrid Model
attempts to capture an information-theoretic reduction to OT with the min-
imal possible interaction. (Recall that a single-round reduction in which the
parties exchange messages over private channels and make parallel calls to OT
was shown to be impossible in [3].) A natural suggestion is to consider a 2-
round reduction that is allowed to make oracle calls to OT. However, this allows
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the reduction to make calls to OT both in the first round and in the second
round, which leads to an actual round complexity of 4 when the OT is real-
ized via a 2-round protocol. Our refined notion of 2-round-OT-hybrid Model
is therefore stronger than 2-round reduction to OT. One could also consider a
seemingly stronger model in which the reduction has 2 rounds but only the first
round is allowed to make calls to an ideal OT. Our theorem shows that such
a 2-round “OT-then-plain” reduction is actually equivalent to the 2-round-OT-
hybrid Model.

Theorem 10. The following holds for every n-party functionality f and every
privacy threshold 1 ≤ t ≤ n. The functionality f can be t-privately computed
by a 3-round protocol π in the 2-round OT hybrid model if and only if it has
a t-private 2MPRE. Furthermore, for the “if” direction the resulting protocol
makes OT calls only at the first round and no private messages are exchanged
in the second round and so derive a 2-round “OT-then-plain” reduction. The
transformation preserves the privacy and correctness errors.

The “only if” direction establishes the second item of Theorem 2 (whose first
item follows from Corollary 1.)

Proof. We begin with the easy “if” direction. It suffices to realize the TOT
functionality with a 2-round protocol π′ in the OT-hybrid model with perfect
correctness and perfect privacy against any coalition, in which only the first
round consists of OT calls. Consider a TOT between the parties, Alice, Bob and
Carol, where Alice holds the inputs (x1, y1), Bob holds the inputs (x2, y2), and
Carol should receive z = x1x2 + y1 + y2. The protocol proceeds as follows:

1. (Round 1) Alice samples a random bit α, she sends to Carol the value a =
y1 − α and initiates an OT with Bob.12 In this invocation, Alice plays the
Sender with inputs (α, x1 + α) and Bob uses x2 as the selection bit.

2. (Round 3) Given the output m = x1x2 + α of the OT, Bob sends to Carol
the value b = m+ y2.

3. (Output) Carol outputs the sum a+ b.

Clearly, the protocol can be realized in 3 rounds in the 2-round OT-hybrid
model . Correctness can be easily verified. For privacy, consider any coalition
that contains Carol and either Alice or Bob (all other cases are trivial). Given
z = x1x2+ y1+ y2, sample a random bit a and set Carol’s view to (a, b = z−a).
A corrupted Alice adds nothing to the view (except for her inputs). If Bob is
corrupted, then we are also given the inputs (x2, y2) and we can simulate m by
b− y2. It is not hard to verify that the simulation is perfect.

We move on to prove the more interesting “only if” direction. We show that
any 3-round protocol in the 2-round OT-hybrid model can be transformed into
a protocol in which the party first exchanges private messages and then makes
parallel calls to 3-party functionalities. These functionalities can be replaced

12 Despite the equivalence of addition and subtraction over the binary field, we use
both signs to indicate that the construction generalizes to general fields.
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by 2MPREs (based on Corollary 1) and the resulting 2-round protocol can be
compiled into a 2MPRE via the aid of the round-collapsing lemma (Lemma 1).
Details follow.

Consider the protocol π. For any round number 1 ≤ R ≤ 3 and parties
Pi, Pj , let m

R
i,j be the private message sent from Pi to Pj on round R. Without

loss of generality, we further assume that in each round each party Pi sends to
herself her entire private view, including the input xi and the private random
tape ρi. Since the protocol has only 3 rounds and the OT takes 2 rounds, we may
assume that OT calls are performed either on the first round or on the second
round. Let us further assume that, both in round 1 and in round 2, each pair
of parties (Pi, Pj) performs exactly ℓ OT-calls in which Pi is the sender and Pj

is the receiver. Denote by o2i,j = (o2i,j,1, . . . , o
2
i,j,ℓ) and o3i,j = (o3i,j,1, . . . , o

3
i,j,ℓ)

the vector of OT-outputs of the first-round calls and the second-round calls,
respectively. Observe that oRi,j arrives at the end of round R. For every round
R ∈ [3] and party i, let

mR
i =

(
mR

1,i, . . . ,m
1
n,i

)
and oRi =

(
oR1,i, . . . , o

R
n,i

)
.

By definition, for R ∈ [3] and i, j ∈ [n] there exist functions fR
i,j , g

R
i,j such that

m1
i,j = f1

i,j(xj , ρi),

m2
i,j = f2

i,j

(
m1

i

)
, o2i,j = g2i,j

(
m1

i,i,m
1
j,j

)
,

m3
i,j = f3

i,j

(
m2

i , o
2
i

)
, o3i,j = g3i,j

(
m1

i ,m
1
j

)
.

Note that the g functions “merge” together the OT computation with the local
computation that is being used in order to generate the input to the OT. To
prove the lemma it suffices to securely compute each of these values by a non-
interactive TOT-hybrid protocol with perfect correctness and perfect privacy
against an arbitrary coalition. In fact, by Lemma 1, it suffices to obtain a 2-round
protocol π′ that makes TOT calls only in the second round. First observe that the
values m1

i,j ,m
2
i,j can be easily computed by a 2-round protocol via private point-

point channels in which m2
i,j can be transferred using a TOT call in the round

2. Moreover, since the messages o2i,j = g2i,j
(
m1

ii,m
1
jj

)
and o3i,j = g3i,j

(
m1

i ,m
1
j

)
depend only on values that are known to Pi and Pj after the first round, we can
use Observation 5, and deliver them to Pj by making parallel calls to TOT in
the second round (where Pi is the sender and Pj is the selector and receiver). It
is left to deliver the value m3

i,j .

Fix some i, j ∈ [n], and let f̂ be a fully decomposable RE of f3
i,j , e.g., from [2].

Observe that it suffices to deliver the value of f̂(m2
i , o

2
i ;w) to Pj where the

randomness w is chosen solely by Pi. (Indeed, privacy for coalitions that do not
contain Pi follows from the RE privacy and privacy for coalitions that contain
Pi vacuously holds, since m2

i and o2i are given to the simulator.) Being fully-

decomposable, each output of f̂ depends on the randomness w, selected by Pi,
and on at most a single input bit y of m2

i or o2i . Thus, after some reordering of
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the outputs, we can write f̂(m2
i , o

2
i ;w) as

f̂1(m
2
1,i, o

2
1,i, w), . . . , f̂n(m

2
n,i, o

2
n,i, w)

where the functions f̂1, . . . , f̂n are multi-output functions. Note that o2k,i itself

is the result of g2k,i(m
1
k,k,m

1
i,i). Therefore there exist functions h1, . . . , hn such

that for all k ∈ [n] we can write f̂k(m
2
k,i, o

2
k,i, w) = hk(m

1
k,i,m

1
k,k,m

1
i,i, w). Since

the input to hk is being held by only two parties, Pi and Pj , and is available at
the end of the first round, it can be encoded by a 2MPRE (Observation 5). It
follows, by Claim 6, that hk can be computed by making parallel calls to TOT
at the second round. The theorem follows. ⊓⊔

7 2MPREs vs Perfect Privacy under Active Attacks

In this section we will prove Theorem 3. Most of the work will be devoted to the
construction of 2MPREs, the converse direction will be proved in Section 7.3.
Along the way, we will also prove Theorem 4.

Recall that a public-output functionality is a function that delivers the same
output to all the parties. We begin with the following basic construction.

Construction 11. Let π be a protocol that realizes some Boolean public-output
functionality f(x1, . . . , xn). The protocol π may have an arbitrary number of
rounds, and may use OT calls as well as private channels. We construct a non-
interactive protocol σ that realizes f and makes use of an ideal functionality V
as follows.

1. (Local pre-computation) First, each party Pi uniformly samples a local view
of π. That is, Pi samples a private random tape ri, and randomly “guesses” a
vector of incoming private messages, and a vector of incoming OT messages
corresponding to all the OT calls in which Pi plays the receiver. Then, Pi

appends her input xi to the sampled view, and computes the corresponding
outgoing messages that she would send in π either over private channels or
as inputs to the OT functionality.

2. (Calling V ) The parties send their sampled views and the computed outgoing
messages to an ideal functionality V . We further assume that P1 sends to V
her final π-output. The functionality V verifies that for every pair of parties,
(Pi, Pj), the sampled views are consistent in the following sense:
– For every message m that is delivered from Pi to Pj it holds that the

guess of Pj for m is equal to the value of the outgoing message m as
computed by Pi.

– For every OT-call in which the sender Pi computes her inputs as (a0, a1)
and the receiver Pj computes her input as s, it holds that the value a′

that is guessed by the receiver equals to a0 if s = 0 and to a1 if s = 1.
If all these pair-wise tests succeed and P1’s output is 1, the functionality V
outputs 1 to all the parties. Else, it outputs 0.

3. (Output) The parties terminate with the output that V passes.
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Lemma 2. If π realizes f with perfect correctness, perfect privacy against a
coalition T , and a total communication of c bits (where each OT call is counted
as a single bit), then the protocol σ defined in Construction 11 realizes f with
perfect privacy against T , and a 1-sided correctness error of 1− 2−c.

Proof. Fix an input x = (x1, . . . , xn) for f . It is not hard to see that if f(x) = 0,
the protocol σ always outputs 0. On the other hand, when f(x) = 1 the protocol
σ outputs the correct result only when the sampled views are consistent. Fix the
local random tapes r = (r1, . . . , rn) in π. Under this fixing, all the communication
in a real execution of π is fully determined, and can be represented by a transcript
string Cx,r ∈ {0, 1}c whose ith bit corresponds to the ith bit that is delivered in
π from party A = A(i) to party B = B(i) either via OT or via a private channel.
(We assume, wlog, that the communication in π is ordered in some canonical
way). Since each bit of communication is being guessed by the receiving party
uniformly and independently, the parties submit the consistent transcript Cx,r

with probability exactly 2−c.
We move on to privacy. Fix some coalition T . Syntactically, the view of T in

π consists of the input xT = (xi)i∈T the local random tapes rT = (ri)i∈T and
all the incoming messages that a party in T receives. Let IT denote the set of
all indices i ∈ [c], such that the ith message in π is received by a party in T .
Given a full transcript C ∈ {0, 1}c, we denote by C[IT ] the restriction of C to
the messages that are delivered to members in the coalition T . For convenience,
let us further assume that the final output of the protocol, y, appears as part of
the view. Similarly, the view of T in σ consists of (xT , rT , C

′[IT ], v) where C
′[IT ]

are the guessed incoming messages, and v is the bit that V delivers.
Consider the following randomized mapping g that maps a T -view

(xT , rT , C[IT ], y) under π to a T -view (xT , rT , C
′[IT ], v) under σ: First, uni-

formly sample a sequence e = (e1, . . . , ec) of random bits (where ei = 1 indicates
an “incorrect” guess for the ith bit in the full transcript). Then, copy C[T ] to
C ′[T ] and flip the value of the ith entry if i ∈ IT and ei = 1. Finally, set v to
zero if some ei is‘ one, and otherwise set v = y.

We can define a simulator Sim′ for σ as follows. Given xT and an output y,
use the simulator Sim of π to sample a view (xT , rT , C[IT ], y) under π, apply
the mapping g and output the resulting σ view (xT , rT , C

′[IT ], v). To analyze
the simulator, fix an input x to all the parties. By the privacy of π, the distri-
bution generated by Sim′(xT , f(x)) is identically distributed to the distribution
g(xT , rT , Cx,r[IT ], f(x)) where Cx,r[IT ] is the vector of incoming messages to T
in a real execution of π over the input x and fresh randomness r = (r1, . . . , rn),
and rT = (ri)i∈T .

We complete the argument by showing that g(xT , rT , Cx,r[IT ], f(x)) is dis-
tributed identically to the real execution of σ. We prove that this is the case for
every fixing of r. Indeed, in σ the entire vector of guesses C ′ ∈ {0, 1}c is chosen
uniformly at random, and the coalition T receives the restricted transcript C ′[IT ]
together with a bit v which is equal to 0 if C ′ ̸= Cx,r and to f(x) otherwise.
Equivalently, we could sample an error vector e← {0, 1}c, set C ′ = Cx,r⊕ e and
deliver to T the restricted vector C ′[IT ] with the bit v which is set to 0 if some



24 Benny Applebaum, Yuval Ishai, Or Karni, and Arpita Patra

bit of e is 1, and otherwise takes the value f(x). The resulting distribution is
exactly the one that is sampled by g. The lemma follows. ⊓⊔

Remark 2 (Handling protocols with imperfect correctness). One can use a vari-
ant of Construction 11 in which V outputs an additional consistency bit b that
indicates whether the views were consistent. (Our simulator can simulate this
additional information.) At the post-processing stage, the parties output a spe-
cial “I do not know”, ⊥, symbol when b = 0 and otherwise output the main
output v of V . Assuming that the original protocol π is perfectly correct, the
resulting protocol never errs and outputs a non-⊥ symbol with probability 2−c.

This variant also allows us to handle protocols that have imperfect correct-
ness. Specifically, if the original protocol π suffers from some correctness error
of δ < 0.5 we get a protocol with similar correctness error (conditioned on not
outputting ⊥). Such an error can be reduced to an arbitrary ϵ by taking a major-
ity vote over k = O(log(1/ϵ)2c/(1− 2δ)) independent parallel copies of the new
protocol. This new protocol σk is syntactically similar to σ except that it makes
k calls to (the extended version of) V . This allows us to extend the above lemma
(and all the subsequent results) to the case where π has a correctness error of
δ < 0.5. For simplicity, we omit these extensions from the current version.

7.1 2MPRE for protocols without OT calls

Observation 12. If π does not use OT calls then the functionality V can be
written as

∧
i,j∈[n] zi,j where zi,j is computed by taking the equality between a

string ai,j, computed locally by Pi, and a string bi,j computed locally by Pj. The
length of ai,j and bi,j equals to the number of bits that Pi delivers to Pj in π.

Indeed, ai,j is the vector of messages that Pi should deliver to Pj according to
her local computation (under the sampled view) and bi,j is vector of incoming
messages that Pj receives from Pi according to her guesses.

Corollary 5 (Theorem 4 restated). In the honest majority setting, every
n-party functionality f non-interactively reduces to multiple parallel calls to
AND ◦ EQ functionality. The reduction has perfect privacy and an arbitrarily
small 1-sided statistical correctness error of ϵ. The complexity of the protocol is
O(log(m/ϵ)) where m is the number of outputs of f and the hidden constant in
the O-notation depends on the complexity of f .

Proof. Every n-party functionality f has a protocol in the plain model (i.e.
does not use OT calls) that is perfectly correct and perfectly

⌊
n−1
2

⌋
-private [10].

Assuming that f is a Boolean public-output functionality, we can use Lemma 2
and Observation 12 to non-interactively reduce f to AND ◦ EQ with perfect
privacy and a constant 1-sided correctness error δ against minority coalitions.
(The constant δ depends on the description of f .) We can reduce the error to

ϵ′ by executing the reduction ℓ = O( log(1/ϵ
′)

1−δ ) times in parallel and outputting
1 if and only if at least one of these executions outputs 1. (The latter step is
computed locally, i.e., by the decoder). Since σ has perfect privacy, repeating it in
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parallel does not affect privacy. Finally, since every m-output functionality non-
interactively reduces to m parallel calls to Boolean public-output functionalities,
the statement extends to such functionalities as well, while the error grows to
ϵ = mϵ′ where m is the number of outputs. ⊓⊔

Remark 3 (The complexity of the construction). Recall that every n-party multi-
output functionality f that is computable by s-size formula (or even s-size
branching program) non-interactively n-privately reduces to a functionality g
with poly(s) outputs and each of its output is a constant-size deterministic
public-output functionality (that takes a constant number of input bits from
a constant number of parties) [22,2,3]. Therefore, by Corollary 5, f reduces to
poly(s) log(1/ϵ) calls to AND ◦ EQ over constant fan-in.

Observe that the equality function over k-bit strings, EQ(x, y) can be written as
a linear function L(x, y) = (xi − yi + 1)i∈[k] over an arbitrary finite field F such

that L(x, y) = 1k iff x = y. In addition, the AND predicate admits a degree-2
statistical randomized encoding as follows.

Fact 13 (Encoding AND by Inner-Products [22]). Fix an arbitrary finite
field F. Let v = (v1, . . . , vℓ) be a vector of 0-1 values. Consider the randomized
function

g(v; ρ) :=
∑
i∈[ℓ]

ρi · (1− vi),

where ρ ← Fℓ and the addition and multiplication are taken over F. Then, g
is a randomized encoding of

∧
i∈[ℓ] vi with perfect privacy and correctness error

of 1/|F|. When all vis are 1, we get 0 from g. So the output is decoded as (a)
1 when g outputs 0 and (b) 0 otherwise. Note that when we output 0, this is
always correct. But when we output 1, it may not be correct, since the sum of
ρi’s can lead to zero. Since the sum is random, the probability that it can be 0
is 1/|F|. Lastly, in this case g is a degree-2 function over the binary field. By
default, we let F be a binary extension field. In this case, g can be written as
a degree-2 function over the binary field, and it can be computed by a Boolean
circuit of size ℓ log |F|. Unless stated otherwise, we assume that F is the field of
size 2ℓ+1.13

It follows that AND◦EQ reduces non-interactively to a degree-2 functionality
(with statistical correctness error) and so Corollary 5 yields a new alternative
construction of honest-majority 2MPRE, alas with statistical correctness.

7.2 2MPRE for protocols with OT calls

Note that when the underlying protocol is the OT-hybrid channel, the function-
ality (also a predicate) V has a slightly more complicated form. In particular, it

13 Alternatively, one can instantiate g over the binary field, and reduce the error to ϵ by
repeating the encoding log(1/ϵ) times with fresh independent randomness. See [22].
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computes an AND over degree-2 functions. As a result, we cannot use Fact 13
directly to derive a 2MPRE. We bypass the problem by letting the pair of parties
that use the ith OT call, to locally select the ith randomizer ρi of the AND in
the inner-product based RE of Fact 13. (Note that previously we treated the
randomizers as being part of the internal randomness of the MPRE.) Unfortu-
nately, this leads to a “leaky” 2MPRE of V . We show that this leakage can still
be simulated if the original protocol π is weakly-active private. Details follow.

Definition 4 (Weakly-active adversaries). Let π be an n-party protocol in
the OT-hybrid model. A weakly-active adversary A that corrupts a subset T is
defined by deviating from the protocol π as follows. For every OT-call between
two corrupted parties, a sender S with values (a0, a1) ∈ {0, 1}2 and a receiver
R with selector bit s ∈ {0, 1}, the adversary sets the received value to be some
fixed value a′ ∈ {0, 1}. After these modifications, the adversary honestly follows
the protocol where a′ is used as the received value of the OT instance with inputs
(a0, a1) and s. Such a deviation can be fully specified by a vector a′ = (a′i)i∈OT

where i ∈ OT if the ith bit that is exchanged in π is delivered via an OT between
2 corrupted parties. We write πa′ to denote the protocol that is obtained for a
given fixing of a′.

A protocol π in the OT-hybrid model computes a (deterministic) functionality
f with t-perfect privacy against weakly-active adversaries if for every t-bounded
subset T , and every vector a′ = (a′i)i∈OT

, it holds that

Sim(T, a′, xT , fT (x)) ≡ ViewT,πa′ (x, r),

where r = (r1, . . . , rn) are chosen uniformly at random and ViewT,πa′ (x, r) de-
notes the view of coalition T when running the protocol πa′ with input x =
(x1, . . . , xn) and randomness r = (r1, . . . , rn).

We also require either statistical or perfect correctness against a passive ad-
versary, i.e.,

Pr
r1,...,rn

[π(x1, . . . , xn; r1, . . . , rn) ̸= f(x1, . . . , xn)] ≤ δ,

where ri is the randomness used by the ith party in π.

A leaky version of Construction 11. Before introducing the leaky 2MPRE of
V , it will be useful to consider an intermediate case where V itself is leaky.
Let Ṽ denote the corruption-aware predicate that takes the same input as V in
Construction 11, delivers the same output as V to all the honest parties, but
leaks some additional information to the adversary. Specifically, Ṽ leaks to the
adversary the consistency bit that verifies consistency of the transcript without
taking into account the OT-messages that are exchanged between pairs of cor-
rupted parties. Formally, for a set of corrupted parties T ⊂ [n], the functionality

Ṽ is defined as follows.

– Input: For each index i ∈ [c], (a) if the ith bit in π is a private-channel

message from a sender A(i) to a receiver B(i), then Ṽ receives a bit mi from
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A(i) and m′i from B(i); (b) if the ith bit in π is transferred over an OT-

channel then Ṽ receives (ai,0, ai,1) from the sender A(i) and (si, a
′
i) from the

receiver B(i). In addition, the functionality Ṽ receives from the first party
P1 her output vc+1 (computed based on her guesses).

– Output: The parties receive the output

V =
∧

i∈[c+1]

vi

where for vi is defined as follows. If the ith communication bit of π is de-
livered over a private-channel then vi = 1 if and only if mi = m′i. If the ith
communication bit of π is delivered over an OT-channel then vi = 1 if and
only if a′i = si · ai,1 + (1− si) · ai,0. Lastly, recall that vc+1 = 1 if and only if
the output of P1 is 1. In addition, the adversary receives the value

VT =
∧

i/∈OT

vi

where i ∈ OT if the ith communication bit in π is an OT-message that is
delivered between a pair of corrupted parties A(i), B(i) ∈ T .

Claim 14. Suppose that π realizes f with perfect passive correctness and t-
perfect privacy against weakly-active adversaries. Let σ̃ denote the protocol that
is obtained by instantiating Construction 11 with the functionality (predicate) Ṽ
instead of V . Then, σ̃ realizes f with perfect t-privacy and 1-sided correctness
error of 1− 2−c.

The proof is deferred to the full version.
In order to obtain a 2MPRE we will need the following extension to the

inner-product encoding from Fact 13.

Fact 15 (leaky inner products). Under the notation of Fact 13, the following
holds. For every set S ⊆ [ℓ], let ρS = (ρi)i∈S and vS = (vi)i∈S. There exists a
simulator SimS that, for every v ∈ {0, 1}ℓ, perfectly samples the distribution

(g(v; ρ), ρS , vS) where ρ← Fℓ

given ρS , vS and
∧

i/∈S vi.

Lemma 3 (2MPRE from weak-active privacy). Suppose that the func-
tionality f can be realized in the OT-hybrid model by a protocol π with t-perfect
privacy against weakly-active adversaries and perfect passive correctness. Then
f can be realized by t-private 2MPRE with an arbitrarily small correctness error
of ϵ and with complexity of log(1/ϵ)(n+Tπ)2

O(c) where n is the number of parties
and Tπ is the computational complexity of π.

The proof is deferred to the full version.
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7.3 2MPRE implies weak-active perfect privacy

We prove the converse of Theorem 3.

Lemma 4. If the functionality f has t-private 2MPRE, then it can be realized
in the OT-hybrid model with perfect (passive) correctness and t-perfect privacy
against weakly active adversaries. The transformation carries to the statistical
setting while preserving the error.

Proof. Suppose that f has t-private 2MPRE. By Theorem 10, f can be computed
by a protocol in which the result of OT messages only affect the last-round
messages of the parties. This means that a deviation of a weakly-active adversary
can only affect the view of an honest party after the last round of messages. Put
differently, at the beginning of the last round the view of all honest parties
is consistent with an honest execution of the protocol. Consequently, all the
messages that are being sent to the adversary (including the last round messages)
are consistent with an honest execution of the protocol, and so weak-active
perfect privacy follows from passive perfect privacy, as required. ⊓⊔
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