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Abstract. A pseudorandom correlation generator (PCG) is a recent
tool for securely generating useful sources of correlated randomness, such
as random oblivious transfers (OT) and vector oblivious linear evalua-
tions (VOLE), with low communication cost.
We introduce a simple new design for PCGs based on so-called expand-
accumulate codes, which first apply a sparse random expander graph to
replicate each message entry, and then accumulate the entries by com-
puting the sum of each prefix. Our design offers the following advantages
compared to state-of-the-art PCG constructions:
– Competitive concrete efficiency backed by provable security against

relevant classes of attacks;
– An offline-online mode that combines near-optimal cache-friendliness

with simple parallelization;
– Concretely efficient extensions to pseudorandom correlation func-

tions, which enable incremental generation of new correlation in-
stances on demand, and to new kinds of correlated randomness that
include circuit-dependent correlations.

To further improve the concrete computational cost, we propose a method
for speeding up a full-domain evaluation of a puncturable pseudoran-
dom function (PPRF). This is independently motivated by other cryp-
tographic applications of PPRFs.

1 Introduction

Correlated secret randomness is a powerful and ubiquitous resource for crypto-
graphic applications. In the context of secure multiparty computation (MPC)
with a dishonest majority, simple sources of correlated randomness can serve as
a “one-time pad” for lightweight, concretely efficient protocols [Bea91]. As a clas-
sical example, consider the case of a random oblivious transfer (OT) correlation,
in which Alice and Bob receive (s0, s1) and (b, sb) respectively, where s0, s1, b are
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random bits. Given 2n independent instances of this simple OT correlation, Al-
ice and Bob can evaluate any Boolean circuit with n gates (excluding XOR and
NOT gates) on their inputs, with perfect semi-honest security, by each sending
2 bits and performing a small constant number of Boolean operations per gate.

The usefulness of correlated randomness for MPC gave rise to the following
popular two-phase approach. First, the parties run an input-independent prepro-
cessing protocol for secure distributed generation of correlated randomness. This
correlated randomness is then consumed by an online protocol that performs a
secure computation on the inputs. Traditional approaches for implementing the
preprocessing protocol (e.g., [IKNP03, DPSZ12, KPR18]) have an Ω(n) com-
munication cost that usually forms the main efficiency bottleneck of the entire
protocol.

This situation changed in a recent line of work, initiated in [BCG+17, BCGI18,
BCG+19b], that suggested a new approach. At the heart of the new approach is
the following simple observation: by settling for generating a pseudorandom cor-
relation, which is indistinguishable from the ideal target correlation even from
the point of view of insiders, the offline communication can be sublinear in n
while retaining the asymptotic and concrete efficiency advantages of the online
protocol.

This approach was implemented through the notion of a pseudorandom cor-
relation generator (PCG) [BCGI18, BCG+19b]. A PCG enables two or more
parties to locally stretch short correlated seeds into long pseudorandom strings
that emulate a specified ideal target correlation, such as n instances of the OT
correlation. This was recently extended to the notion of a pseudorandom corre-
lation function (PCF) [BCG+20b], which essentially emulates random access to
exponentially many PCG outputs, analogously to the way a standard pseudo-
random function (PRF) extends a standard pseudorandom generator (PRG).

Generating pseudorandom correlations: a template. To construct these primi-
tives, a general template was put forth in [BCGI18], and further refined in sub-
sequent works. At a high level, the template combines two key ingredients: a
method to generate a sparse version of the target correlation, and a carefully
chosen linear code where the syndrome decoding problem is conjectured to be in-
tractable. To give a concrete example, let us focus on the vector oblivious linear
evaluation (VOLE) correlation, which is in a sense a minimal step above sim-
ple linear correlations. The correlation distributes (u⃗, v⃗) to Alice and (∆, w⃗) to
Bob; here, u⃗, v⃗, w⃗ are length-n vectors over a finite field F and ∆ ∈ F is a scalar,
all chosen at random subject to satisfying the correlation w⃗ = ∆ · u⃗+ v⃗. Among
other applications [DIO20, BMRS21, YSWW21, RS21b], VOLE is an appealing
target correlation because (a simple variant of) VOLE can be locally converted
into n pseudorandom instances of OT correlation using a suitable hash func-
tion [IKNP03, BCG+19b].

For the first ingredient, there is a simple construction that allows generating
(from short seeds) pairs (u⃗, v⃗) and (∆, w⃗) as above, but where u⃗ is a random
unit vector. This uses a puncturable pseudorandom function (PPRF), a type of
PRF where some keys can be restricted to hide the PRF value at a fixed point.
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A bit more concretely, v⃗ and w⃗ will be generated by evaluating the PRF on its
entire domain; the missing value will be at the only position i where ui ̸= 0,
and the party with the punctured key will fill it using a share of PRFK(i) +
∆ · ui. Such a PPRF can be efficiently constructed from any length-doubling
PRG [GGM86, KPTZ13, BW13, BGI14]. With a t-fold repetition of this process
(keeping ∆ the same across all instances), after locally summing their expanded
vectors, the parties obtain the target correlation, where u⃗ is t-sparse. As long as
t remains small, the seed size is small as well.

The aim of the second ingredient is to transform this sparse correlation into
a pseudorandom correlation. To this end, the parties multiply their vectors with
a public compressing matrix H, obtaining (H · u⃗,H · v⃗) and (∆,H · w⃗). When H
is random, H · u⃗ is pseudorandom: this is exactly the dual variant of the learning
parity with noise (LPN) assumption [BFKL94, IPS09]. However, computing H · v⃗
(or H · w⃗) takes time Ω(n2). When n is in the millions, as in typical MPC
applications, this is clearly infeasible. A better approach is to sample H from a
distribution such that (1) H · u⃗ is still plausibly pseudorandom, and yet (2) the
mapping v⃗ 7→ H ·v⃗ can be computed efficiently, ideally in time Õ(n) or even O(n).

The quest for the right code. In essence, all previous works in this area [BCGI18,
BCG+19b, BCG+19a, SGRR19, BCG+20b, YWL+20, BCG+20a, CRR21] have
built upon this template, sometimes for more general classes of correlations [BCG+20b],
sometimes to achieve the more flexible notion of PCF [BCG+20a], or trying
to strike the best balance between security and efficiency [BCGI18, BCG+19a,
CRR21]. At the heart of all these works is, every time, a careful choice of which
linear code to use. In [BCGI18, BCG+19a], it is suggested that relying on LDPC
codes or on quasi-cyclic codes provides a reasonable balance between security
(since the underlying LPN assumptions are well studied [Ale03, ABB+20]) and
efficiency. In contrast, [CRR21] advocates a more aggressive choice, building a
new concrete linear code, highly optimized for correlated randomness generation,
guided by heuristic considerations and extensive computer simulations. Taking
a different route, [BCG+20a] shows how a newly defined family of variable den-
sity linear codes allows generating a virtually unbounded amount of correlated
randomness on demand, and [BCG+20b] generates more general correlations us-
ing an LPN variant over polynomial rings.

These works demonstrate that with a careful choice of code, silent preprocess-
ing can have an extremely high throughput [CRR21] (as fast as generating tens
of millions of pseudorandom oblivious transfers per second on one core of a stan-
dard laptop with low communication costs), broad expressiveness [BCG+20b]
(handling richer correlations which are crucial in some advanced MPC proto-
cols [ANO+21, RS21a]), and advantageous flexibility [BCG+20a] (generating any
amount of correlated randomness on demand). Nonetheless, on most aspects, this
area of research is in its infancy. Some important correlations remain frustrat-
ingly out of reach, such as circuit-dependent correlations (used e.g. in [DNNR17,
HOSS18, WRK17b, Cou19, BGI19]), or authenticated multiplication triples over
F2 (used in [HSS17, WRK17a]). The current fastest construction [CRR21] lacks
any clear theoretical security analysis, but constructions built on firmer grounds
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are an order of magnitude slower. Finally, the PCFs of [BCG+20a] are only real-
istically usable in a regime of parameters where they lack any security analysis.

The quest for constructions with clear, rigorous security arguments and very
high concrete efficiency remains largely open; its fulfilment, we believe, is a
promising path towards making MPC truly efficient on a large scale.

1.1 Our Contributions

In this work, we push forward the study of efficient generation of correlated
randomness, significantly improving over the state of the art on several fronts.
Our main contributions are threefold.

Expand-accumulate codes. We put forth a new simple family of linear codes,
called expand-accumulate codes (EA codes), which are related to the well-studied
class of repeat-accumulate codes [DJM98]. To encode a message with an EA code,
a sparse degree-ℓ expander is first applied to the input, effectively replicating each
message entry a small number of times; the result is then accumulated by comput-
ing the sum of all prefixes. We demonstrate that such an EA code is a particularly
appealing choice of linear code in the context of generating correlated pseudo-
randomness, which uniquely combines multiple attractive features: firm security
foundations, extremely high concrete efficiency, and a high level of parallelization
and cache-friendliness. Furthermore, the special structure of EA codes allows us
to obtain several advanced constructions, including PCFs (with better efficiency
and security foundations compared to [BCG+20a]), and the first practical PCGs
for useful correlations such as circuit-dependent correlations. In more detail:

1. We formally prove that the (dual-)LPN assumption for EA codes, denoted
EA-LPN, cannot be broken by a large class of attacks, which captures in
particular all relevant known attacks on LPN. Our analysis comes with
concrete, usable security bounds for realistic parameters. In contrast, pre-
vious works either only achieved provable bounds in a purely asymptotic
sense [BCG+20a] (with poor concrete efficiency), or heuristically extrapo-
lated plausible parameters through computer simulations on small instances [CRR21].

2. We also derive sets of more aggressive parameters through heuristics and
simulations to obtain apple-to-apple efficiency comparisons with the work
of [CRR21]. We show that EA codes are highly competitive with the code
of [CRR21], while having a much simpler structure (hence simpler to imple-
ment and more amenable to analysis).

3. When implemented in an “offline-online” mode, PCGs built from EA-LPN are
highly parallelizable, allowing for simultaneously achieving low latency and
high throughput. This stands in stark contrast with essentially all previous
constructions, including the recent high-throughput construction from [CRR21].1

1 A notable exception is the “primal” PCG construction of [BCGI18], which is also
parallelizable. However, this PCG is limited to quadratic stretch; in practice, this
makes it less efficient than other alternatives, even when using the bootstrapping
approach from [YWL+20].
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Hence, over multicore architectures, we expect our new PCG to outperform
all alternatives by a large margin.

4. We obtain the first practical PCG constructions for different kinds of use-
ful correlations including circuit-dependent correlations (which show up in
communication-efficient MPC protocols [DNNR17, HOSS18, WRK17b, Cou19,
BGI19] and in constant-round MPC protocols based on garbled circuits [WRK17b]).
Generating n bits of correlations with our construction requires O(n log2 n)
work. In contrast, the only known previous approaches either use LPN
but incur a prohibitive Ω(n2) cost [BCG+19b] or require expensive high-
end cryptographic primitives, such as multi-key threshold FHE [DHRW16,
BCG+19b].

5. Finally, we construct a pseudorandom correlation function from the EA-LPN
assumption, the first such construction to be both concretely efficient and
standing on firm security arguments. The only other practically feasible
constructions of PCFs are the variable-density construction of [BCG+20a]
(which is much slower, even for aggressive parameters, and only has asymp-
totic security guarantees) and the recent construction of [OSY21] (which re-
lies on the standard DCR assumption, but is also slower, is restricted to OT
and VOLE correlations – our construction can handle other useful correla-
tions – and is not post-quantum – our construction plausibly is).

Offline-online pseudorandom correlation generators. PCGs allow one to expand,
in a “silent” fashion (i.e. without any communication), short seeds into long
sources of correlated pseudorandomness. This silent expansion largely dominates
the overall computational cost of the entire protocol: in the online phase, the
computation amounts to a few cheap xor operations per gate, and the limiting
factor is communication. Even with a very high bandwidth, the latency of multi-
round protocols can form a bottleneck. This implies that, in many settings, some
idle computation time is wasted during the online phase. We put forth a new
notion of PCG, called offline-online PCG, which seeks to push the vast majority
of the offline work back to the online phase, but in an incremental fashion that
minimizes latency.

In more detail, most of the computational slowdown in the silent expansion
of modern PCGs is incurred by cache misses. Indeed, most of the efficiency
improvements of the PCG of [CRR21] come precisely from heuristically building
a cache-friendly linear code. However, constructing such cache-friendly codes
with firm security foundations remains elusive. Moreover, the cache-friendliness
of the construction from [CRR21] comes at the expense of a fully sequential
silent expansion. Instead, we suggest a new approach: using EA codes, cache
misses are bound to occur because of their expander-based structure; however,
it is relatively easy to push all these cache misses to the online phase, where they
will happen during idle moments (caused by bandwidth limitations or latency).
Concretely, EA codes achieve the following:

– In the offline phase, the sparse version of the correlation is generated using
a PPRF; this amounts to computing a few hundred binary trees of hashes (a
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la GGM), which is highly parallelizable and cache-friendly. In the literature,
this is typically referred to as the full evaluation part, because it amounts
to evaluating several PRRFs on their entire domain.

– Still in the offline phase, an accumulation step is performed, which converts a
vector (x1, x2, · · · , xN ) in an accumulated vector (x1, x1⊕x2, · · · ,

⊕N
i=1 xi).

This can be done with N − 1 xors of short strings in one pass, which is
extremely fast and cache-friendly; furthermore, this accumulation is easy
to parallelize with a simple two-pass algorithm while still retaining cache-
friendliness.

– At the end of the offline phase, a length-N vector y⃗ of short strings is stored,
where N is a small constant factor times the target amount n of correlations
(concretely, N ≈ 5 · n in our instantiations). Eventually, to generate an
instance of the target correlation, one must retrieve ℓ random entries of y⃗, and
xor them, where the output locality parameter ℓ corresponds to the degree
of the graph defining the EA code. This is where cache misses can occur;
however, this step is still highly parallelizable, and these random accesses
can easily be arranged to fill exactly the idle computation time of the online
phase. Concretely, for conservative parameters fully within the bound of
our theoretical analysis, ℓ can be set to about 40 when producing n ≥ 220

correlations; using more aggressive parameters, setting ℓ as low as 7 seems to
nonetheless provide a sufficient security level according to our experiments.

Our estimates suggest that relying on offline-online PCGs instead of standard
PCGs will likely lead to significant improvements in MPC protocols. The offline
part of our EA-based offline-online PCGs is insanely fast – we estimate of the
order of 100ms to generate the offline material for 10 million random OTs on a
single core of a standard laptop, a runtime which can be sped up by almost a
factor of k when k processors are available, even with a few dozen processors.

Further speedups in the offline phase. Up to this point, we discussed the applica-
tion of a new family of linear codes to speed up PCGs and achieve new advanced
constructions. We now turn our attention to the other main component of a PCG:
the full evaluation procedure, which boils down to evaluating several PPRFs
on their entire domain. Concretely, using the GGM PPRF [GGM86, KPTZ13,
BW13, BGI14], generating a length-N vector with this procedure requires 2N
calls to a hash function along the leaves of a full binary tree. We obtain new
PPRF constructions that aim to reduce the total number of calls to the under-
lying hash function. Our main construction reduces the number of calls to 1.5N ;
we prove its security in the random oracle model. We also put forth a candidate
construction with the same 1.5N cost in the ideal cipher model (supporting an
implementation based on standard block ciphers such as AES), but leave its se-
curity analysis open. We describe several additional optimizations; in particular:

– We show that, by “flattening the GGM tree,” the number of calls can be
further reduced, at the cost of sightly increasing the seed size (and seed
distribution cost). Concretely, we can reduce the total number of calls to
1.17N , only increasing the seed size and seed distribution time by a factor
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of 1.5 (this is a desirable tradeoff, since these costs vanish when N increases,
and are typically marginal with standard parameters).

– We show that, in the specific context of generating OT correlations, the cost
can be further reduced to N (without the flattening optimization) or 0.67N
(with flattening) calls to the hash function.

We note that these contributions are of a very different nature compared to our
previous constructions, and add to the growing body of work on the analysis
in idealized models of symmetric primitives for MPC applications [GKWY20,
CT21]. Since full evaluations of PPRFs have many applications beyond PCGs,
to problems such as zero-knowledge proofs [KKW18, CDG+20, KZ20, FS21],
circuit garbling [HK21], secure shuffling [CGP20] and private information re-
trieval [MZR+13], these results are also of independent interest.

1.2 Technical Overview

We now survey the technical tools that we use to achieve our results.

EA codes. A generator matrix H for an EA code is of the form H = BA, where
B ∈ Fn×N

2 is a matrix with sparse rows, and A ∈ FN×N
2 is the accumulator

matrix, that is, x⃗⊺A = (x1, x1+x2, . . . , x1+ · · ·+xN ). We propose the EA-LPN-
assumption which states that samples of the form He⃗, where e⃗ ∈ FN

2 is a random
sparse vector, are computationally indistinguishable from uniform.

In order to provide evidence for the EA-LPN-assumption, we show that it is
not susceptible to linear tests. While this class of tests is very large, they all boil
down to the same general strategy: given the vector b⃗ (which is either uniformly
random or He⃗ with e⃗ sparse), one looks at the matrix H, chooses some nonzero
vector x⃗ ∈ Fn

2 , and then checks if the dot product x⃗⊺ · b⃗ is biased towards 0. If
x⃗⊺H and e⃗ are both sufficiently dense then we can rule out the possibility that
x⃗⊺ · (He⃗) = (x⃗⊺H) · e⃗ has noticeable bias. As we would like to keep e⃗ as sparse as
possible, we need to show that for every nonzero vector x⃗ ∈ Fn

2 , x⃗⊺H has large
weight. In other words, we need to show that the code generated by H has good
minimum distance.

We now briefly outline how we show that a random EA code has good mini-
mum distance. It is convenient for us to assume that the coordinates of B are all
sampled independently as Bernoulli random variables with probability p. Writ-
ing (y1, . . . , yN ) := x⃗⊺H = x⃗⊺(BA) we can view the sequence of y1, . . . , yN as
an N -step random walk (over the randomness of B) on a Markov chain with
state space {0, 1}, where the transition probabilities are governed by the Ham-
ming weight HW(x⃗). Furthermore the spectral gap of this Markov chain is eas-
ily computable, allowing us to apply an expander Hoeffding bound which tells
us that the random walk y1, . . . , yN is unlikely to spend too much time on the
0 state; equivalently, it is unlikely that HW(y⃗⊺) = HW(x⃗⊺H) is too small. By
taking a union bound over all nonzero vectors x⃗ ∈ Fn

2 and doing a case-analysis
based on HW(x⃗), we can show that so long as p = Ω(logN/N), except with
probability 1− 1/poly(N) the code has minimum distance Ω(N). If one desires
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negligible in N failure probability this can also be obtained by slightly increas-
ing p: e.g., p = Ω(log2 N/N) suffices to guarantee n−O(logN) failure probability.
Further, we can show that this this analysis is (asymptotically) tight.

Offline-online PCGs from EA codes. We introduce the notion of offline-online
PCGs, where an offline and online key are generated. Each party σ uses its offline
key to generate a local offline string Yσ from which it can later use its online key
to generate a (vector of) samples from the target correlation. We call the length
of Yσ the storage cost, and the number of entries that must be read from Yσ to
generate a single sample the output locality.

Recall that the goal of VOLE is to obtain correlations ((u⃗, v⃗), (∆, w⃗)), where
u⃗, v⃗, w⃗ are length-n vectors over a finite field F and ∆ ∈ F is a scalar, all chosen
at random subject to satisfying the correlation w⃗ = ∆ · u⃗ + v⃗. Using PPRFs,
during the offline phase the parties expand their keys to obtain strings w⃗′, u⃗′, v⃗′ ∈
FN , where u⃗′ is a sparse, EA-LPN noise vector and w⃗′, v⃗′ are pseudorandom
conditioned on satisfying w⃗′ = ∆ · u⃗′ + v⃗′. Further, the parties already perform
the accumulation step and output u⃗off = A · u⃗′ and v⃗off = A · v⃗′, and w⃗out =
A · w⃗′ and ∆, respectively. In the online phase, the parties can then recover
a tuple ((ui, vi), (∆,wi)) by checking only an expected number of p · N of the
offline strings, resulting in an online locality of p · N . We can thereby obtain
offline-online PCGs with highly parallelizable and cache-friendly offline phase,
and online phase with low locality (recall that we can choose p as low as p =
c · logN/N , thereby resulting in ℓ = c · logN).

PCFs from EA codes. We have already described a general recipe for using
compressing matrices H for which the LPN assumption plausibly holds to con-
struct PCGs; indeed, we even sketched an offline-online PCG. However, in or-
der to use EA codes to obtain PCFs, more care is required. Recall that a PCF
must behave in an incremental fashion, using the short correlated seeds to pro-
vide as many pseudorandom instances of the target correlation as required. The
main challenge is that to obtain a PCF we need to set N to be superpolyno-
mial in the security parameter, and thus computing matrix-vector products of
the form A · e⃗ is too expensive. Fortunately, we can avoid the need to explicitly
compute A · e⃗ by appealing to distributed comparison functions (DCFs). DCFs,
which can be constructed with PRGs as is the case for distributed point func-
tions [BGI16, BCG+21], allow one to efficiently share a comparison function
fβ
<α : [N ] → F which maps every x < α to β and every x ≥ α to 0. When the

noise e⃗ has a regular structure (i.e., it consists of N/t unit vectors concatenated
together) one can naturally view A · e⃗ (after permuting the coordinates) as a con-
catenation of comparison functions. We furthermore observe that for construct-
ing PCFs for VOLE and OT we can use a relaxed version of a DCF, denoted
RDCF, as we only require α to be hidden from one of the two parties.

In the following we give a high-level overview of our RDCF construction.
For simplicity we assume we want to share a comparison function with range
({0, 1}λ,⊕), although our construction generalizes to arbitrary abelian groups
(G,+). Our construction follows the spirit of the DCF construction of [BCG+21],
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C(·) G0(·) G1(·)

Fig. 1: Pictorial representation of our relaxed DCF construction. In our example the
path α = 10 ∈ {0, 1}2 is marked in blue, the box marked in red corresponds to box
where β is added, and the boxes filled in gray correspond to the key of P0 (in knowledge
of α) and P1, respectively.

but one party knowing α allows for significant savings. We build on PRGs
G0, G1, C : {0, 1}λ → {0, 1}λ such that the concatenation of the three is a secure
PRG. In Figure 1 we give a pictorial representation of the relaxed DCF con-
struction, which we explain in the following.

To evaluate the RDCF on an input x, one traverses the tree and adds up all
“C” values on the path from the root to the corresponding leaf and finally adds
the “G” value of this leaf. The idea is that P0 will add β (blinded by a “C” value)
to the output, if and only if it leaves the path defined by α to the left (which
happens if and only if x < α). For concreteness, say one wants to evaluate the
RDCF in Figure 1 on input x = 00. Then, both parties add the first box on the
second level (the first “C” value, marked in red), the first box on the third level
(the second “C” value) and the second box on the third level (the “G” value
of the leaf), which P1 can both derive from its key. The corresponding output
shares add up to β as required, since β is added to the first “C” value held by
P0. Further, β remains hidden from P0 by the pseudorandomness of the PRG C.

One of our improvements compared to the DCF construction of [BCG+21]
is that we observe that we only need “C” values on the left children, since only
there the β value has to be hidden potentially. This leads to shorter keys and
savings on the number of PRG evaluations.

Overall, comparing with the standard DCF construction of [BCG+21] where
each key is of size 2 logN(λ + log |F|), in our RDCF one of the party’s keys is
only of size λ, and the other is roughly half the size of [BCG+21]. Further, our
construction reduces the number of calls to AES (when using this to implement
a PRG) by 25% on average.

Additionally, we show that in the setting where a full evaluation is feasible
(i.e., where one is interested in an iterative PCG rather than a full-fledged PCF),
the keys of our RDCF can be distributed in 2-PC with a simple, 2-round protocol
based on 2-round OT following the techniques of [Ds17, BCG+19a], whereas the
corresponding distributed setup protocol for the DCF construction of [BCG+21]
would require logN rounds.
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PCF Constructions. Given our relaxed DCF, we readily obtain a PCF for the
subfield VOLE correlation, which also implies a PCF for oblivious transfer when
combined with a suitable hash function [BCG+20a]. We also show how to build a
PCF for general degree-2 correlations: in particular, we get a two-party PCF for
authenticated multiplication triples over any ring R, and can also support gen-
eral, circuit-dependent correlations. For this, instead of comparison functions,
we need a way to secret share the product of comparison functions. Fortunately,
this can be done using function secret sharing for 2-dimensional interval func-
tions [BGI16], based on any PRG.

We show that our EA-LPN-based PCFs can obtain good concrete efficiency.
With conservative parameter choices, which our simulated experiments show re-
sist linear attacks, our PCF for VOLE has comparable key size to the most ag-
gressive variant of the PCF from [BCG+20a] (which did not have any provable
security analysis), while we need around an order of magnitude less computation.
For our degree-2 PCFs, to get good concrete efficiency we need to rely on more
aggressive EA-LPN parameters with a lower noise weight. With this, our PCFs
for VOLE/OT have key sizes of under 1MB, and takes only a few thousand PRG
evaluations to compute each output. Our PCF for general degree-2 correlations
(including multiplication triples, matrix triples and circuit-dependent correla-
tions) has key sizes of around 200MB, and requires 2–3M PRG evaluations per
output. The degree-2 PCF from [BCG+20a] does not come close to this level of ef-
ficiency, since it is not compatible with the most efficient variant of LPN they use.

Speeding up the offline phase. The final task that we set for ourselves is to im-
prove the runtime of the offline phase for PCGs, where the offline phase requires
evaluating several punctured PRFs (PPRFs) on their entire domain, a function-
ality called FullEval. As alluded to earlier we apply the GGM construction to
obtain a PPRF from a hash function. The standard way to do this is as follows:
given hash functions H0, H1 (which can be modeled as random oracles (RO))
one generates the GGM tree corresponding to secret key k, that is, the depth m
binary tree where the root is labeled by k and the left and right child of a node
labeled by x are labeled by H0(x) and H1(x), respectively.To puncture a key at
a point α ∈ {0, 1}m one gives the values of the nodes of the co-path, i.e., the
siblings of each node appearing on the path indexed by α.

To save on the calls to the hash function we consider the following definition:
given an RO H we define H0(x) = H(x) and H1(x) = H(x) ⊕ x. Note that this
clearly fails to give a PPRF, as given H(x) and H(x)⊕ x one can recover x and
thereby distinguish the value at the punctured point from random. Nonetheless,
we can show that the resulting construction yields a weaker primitive that we
call a strong unpredictable punctured function (strong UPF), which informally
means that given a key punctured at a point α one essentially cannot predict
the value at α any better than by randomly guessing. While this primitive is
weaker, we note that it already suffices for some applications (such as PCGs
for OT), reducing the number of necessary calls to the random oracle for a full
evaluation by half. If one subsequently hashes the right child at the leaves, we
can further show that this does yield a genuine PPRF. In this way, we require
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only 1.5N calls to the hash function for a FullEval, whereas the standard GGM
approach requires 2N calls, providing us with a 25% cost reduction.

To prove the construction yields a strong UPF, we observe that the punctured
key can be equivalently sampled by choosing random values for the co-path and
then programming the random oracle so as to be consistent with these choices.
Assuming there are no collisions, such a punctured key is then independent of the
value of the function at α, so the only way for an adversary to learn the value at
α is if it happens to query H at one of m values on the path that it does not see.

To increase our savings, we consider k-ary trees for k > 2, which informally
corresponds to “flattening” the GGM tree. This does incur a (k− 1) log2 k factor
increase in the size of the punctured key; however, with the standard GGM
construction of a PPRF the number of calls to the hash function in an invocation
of FullEval now drops to (1 + 1/(k − 1))N . By combining this with the first
optimization, when k = 3 we can decrease the number of calls to H to 1.33N ,
and when k = 4 to 1.17N .

Lastly, given the current hardware support of AES, we also put forward a
candidate construction of a weaker notion of UPF given an ideal invertible per-
mutation. Recall that the standard strategy to construct a hard-to-invert func-
tion from an invertible permutation is via the Davies-Meyer construction, where
H is defined as H(k) := P (k)⊕k for an invertible permutation P . Unfortunately,
instantiating H this way clearly breaks down with our previous construction, as
H1(k) would become equal to P (k), and hence be invertible. Instead, the idea
of the construction is to set H0(k) := H(k) ⊕ k and H1(k) := H(k) + k mod 2λ.
While on first glance one might seem easy to predict given the other, we show
that this is not the case, thereby giving some evidence that the corresponding
candidate indeed achieves unpredictability. We cannot hope to achieve the same
strong notion of unpredictability as we do with our random oracle construction
though, since H(k) ⊕ k does in general leak some information about H1(k) :=
H(k)+k mod 2λ. Still, by subsequently hashing the right child at all leaves stan-
dard unpredictability would be sufficient to obtain a true PPRF, thereby yield-
ing a 25% cost reduction for PPRF constructions implemented with fixed-key
AES. We leave the full analysis of the construction to future work.

1.3 Roadmap

We start by giving preliminaries in Section 2. In Section 3 we present EA codes
and provide a security analysis of EA-LPN. In Section 4 we provide new con-
structions of PCFs based on the EA-LPN assumption. Finally, in Section , we
give a brief overview of optimizations for the offline costs of PCG constructions.
For a formal definition of offline-online PCGs and a construction of offline-online
PCGs for subfield VOLE from EA codes, we refer to the full version of this paper.

2 Preliminaries

For preliminaries on bias and Markov chains we refer to the full version of this
paper.
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2.1 Learning Parity With Noise and LPN-Friendly Codes

We define the LPN assumption over a ring R with dimension n, number of
samples N , w.r.t. a code generation algorithm C, and a noise distribution D:

Definition 1 (Dual LPN). Let D(R) = {Dn,N (R)}n,N∈N denote a family of
efficiently sampleable distributions over a ring R, such that for any n,N ∈ N,
Im(Dn,N (R)) ⊆ RN . Let C be a probabilistic code generation algorithm such
that C(n,N,R) outputs a matrix H ∈ Rn×N . For dimension n = n(λ), num-
ber of samples (or block length) N = N(λ), and ring R = R(λ), the (dual)
(D,C,R)-LPN(n,N) assumption states that

{(H, b⃗) | H $← C(n,N,R), e⃗ $← Dn,N (R), b⃗← H · s⃗}
c
≈ {(H, b⃗) | H $← C(n,N,R), b⃗ $← RN}.

Note that the generator matrix H sampled from C is used in the reverse
direction compared to encoding: a codeword is a vector x⃗ ·H, where x⃗ ∈ R1×n,
while the assumption is about vectors of the form H · e⃗ for e⃗ ∈ RN . The dual
LPN assumption is also called the syndrome decoding assumption in the code-
based cryptography literature; in this case, H is typically seen as the parity-check
matrix of a code generated by a matrix G such that H ·G = 0. The dual LPN
assumption as written above is equivalent to the (perhaps more common) primal
LPN assumption with respect to G (a matrix G ∈ RN×N−n such that H ·G = 0),
which states that G · s⃗+ e⃗ is indistinguishable from random, where s⃗

$← RN−n

and e⃗
$← Dn,N (R); the equivalence follows from the fact that H ·(G·s⃗+e⃗) = H ·e⃗.

We say that a family of codes sampled by a code generation algorithm C is
LPN-friendly when instantiating the general LPN assumption with these codes
leads to a secure flavor of the assumption for standard noise distributions. Of
course, when we call a code “LPN-friendly”, this implicitly means “plausibly LPN-
friendly in light of known cryptanalysis of LPN”.

Examples of noise distributions. Several choices of noise distribution are
common in the literature. Fix for example R = F2 (all the distributions below
generalize to other structures) and a parameter t which governs the average
density of nonzero entry in a random noise vector. Then the following choices
are standard:

– Bernoulli noise: the noise vector e⃗ is sampled from BerNt/N (F2). This is the
most common choice in theory papers.

– Exact noise: the noise vector e⃗ is a uniformly random weight-t vector from
FN
2 ; let us denote HWN

t (F2) this distribution. This is the most common
choice in concrete LPN-based constructions.

– Regular noise: the noise vector e⃗ is a concatenation of t random unit vec-
tors from FN/t

2 ; let us denote RegNt (F2) this distribution. This is a very nat-
ural choice in the construction of pseudorandom correlation generators as
it significantly improves efficiency [BCGI18, BCG+19b, BCG+19a] without
harming security.
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Examples of LPN-friendly codes. Over the years, many codes have been
conjectured to be LPN friendly. Common choices include setting H to be a uni-
formly random matrix over F2 (this is the standard LPN assumption), the gen-
erating matrix of an LDPC code [Ale03] (often called the “Alekhnovich assump-
tion”), a quasi-cyclic code (used in several recent submissions to the NIST post-
quantum competition [ABB+17, AMBD+18, MAB+18] and in previous works
on pseudorandom correlation generators, such as [BCG+19a]), Toeplitz matri-
ces [GRS08, LM13] and many more. All these variants of LPN generalize natu-
rally to larger fields (and LPN is typically believed to be at least as hard, if not
harder, over larger fields).

When designing new LPN-based primitives, different choices of code lead to
different performance profiles. Established codes, such as those listed above, have
the advantage of having been analyzed by experts for years or decades; however,
it might happen in some applications that all established codes lead to poor
performance. Plausibly secure but yet-unstudied codes could yield considerable
performance improvements. In light of this, we require a heuristic to select plau-
sibly LPN-friendly codes. Such a heuristic has been implicit in the literature for
some time, and was put forth explicitly in recent works [BCG+20a, CRR21].

From large minimum distance to LPN-friendliness. The core observation
is that essentially all known attacks (attacks based on Gaussian elimination
and the BKW algorithm [BKW00, Lyu05, LF06, EKM17] and variants based
on covering codes [ZJW16, BV16, BTV16, GJL20], information set decoding
attacks [Pra62, Ste88, FS09, BLP11, MMT11, BJMM12, MO15, EKM17, BM18],
statistical decoding attacks [AJ01, FKI06, Ove06, DAT17], generalized birthday
attacks [Wag02, Kir11], linearization attacks [BM97, Saa07], attacks based on
finding low weight code vectors [Zic17], or on finding correlations with low-degree
polynomials [ABG+14, BR17]) fit in a common framework of linear tests which
corresponds, roughly, to attacks where an adversary tries to detect a bias in the
LPN samples by computing a linear function of these samples. (The choice of
the linear function itself can depend arbitrarily on the code matrix.) Then, it is
relatively easy to show that for any noise distribution D whose nonzero entries
“hit any large subset” with high enough probability, the LPN assumption with
respect to a code generator C and D provably resists (exponentially) all linear
tests as long as a random code from C has high minimum distance with good
probability. This is formalized below.

Definition 2 (Security against Linear Tests). Let R be a ring, and let
D = {Dn,N}n,N∈N denote a family of noise distributions over RN . Let C be a
probabilistic code generation algorithm such that C(n,N) outputs a matrix H ∈
Rn×N . Let ε, η : N 7→ [0, 1] be two functions. We say that the (D,C,R)-LPN(n,N)
is (ε, η)-secure against linear tests if for any (possibly inefficient) adversary A
which, on input H outputs a nonzero v⃗ ∈ Rn, it holds that

Pr[H
$← C(n,N), v⃗

$← A(H) : biasv⃗(DH) ≥ ε(λ)] ≤ η(λ),
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where DH denotes the distribution induced by sampling e⃗← Dn,N , and outputting
the LPN samples H · e⃗.

The minimum distance of a matrix H, denoted d(H), is the minimum weight
of a vector in its row-span. Then, we have the following straightforward lemma:

Lemma 3. Let D = {Dn,N}n,N∈N denote a family of noise distributions over
RN . Let C be a probabilistic code generation algorithm. Then for any d ∈ N, the
(D,C,R)-LPN(n,N) assumption is (εd, ηd)-secure against linear tests, where

εd = max
HW(v⃗)>d

biasv⃗(Dn,N ), and ηd = Pr
H

$←C(n,N)

[d(H) ≥ d].

For example, using a Bernoulli noise distribution of error rate t/N , for any v⃗
of weight at least d, it holds that biasv⃗(Ber

n
t/N (F2)) = (1− 2t/N)d/2 < e−2td/N ;

that is, if the relative distance d/N of the code is a constant (i.e. the code is a
good code), the bias will decrease exponentially with t. Similar calculations show
that for any v⃗ of weight at least d, biasv⃗(RegNt ) ≤ (1−2(d/t)/(N/t))t < e−2td/N .

When the minimum distance heuristic fails. From the above, one can be tempted
to conjecture that any good code, say, together with Bernoulli noise, is LPN-
friendly. However, this is known to fail in at least three situations:

1. When the code is strongly algebraic. For example, Reed-Solomon codes,
which have a strong algebraic structure, have high minimum distance, but
can be decoded efficiently with the Berlekamp-Massey algorithm, hence they
do not lead to a secure LPN instance (and indeed, Berlekamp-Massey does
not fit in the linear test framework).

2. When the noise is structured (which is the case e.g. for regular noise) and
the adversary can see enough samples. This opens the door to algebraic
attacks such as the Arora-Ge attack [AG11]. However, this typically requires
a large number of samples: for example, using regular noise, one needs N =
Ω((N − n)2) for the attack to apply. In contrast, all our instances will have
N = O(N − n).

3. When R has a subring, one can always project onto the subring before
performing a linear attack; this technically does not directly fit in the lin-
ear test framework. When analyzing security against linear test, one must
therefore account for all subrings the attacker could first project the prob-
lem onto. In polynomial rings, the reducible case of cyclotomics is discussed
in [BCG+20b]. In integer rings like Z2k , one weakness is that projecting onto
Z2 can make error values become zero with probability 1/2 [LWYY22], re-
ducing the effective noise rate. To fix this, [LWYY22] propose an alterna-
tive noise distribution that is provably as secure as LPN over F2, but with
k times the noise rate. Alternatively, a plausible fix without increasing the
noise rate is to choose error values to be invertible, which ensures they are
non-zero in all subrings.
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The above three scenarios are the only exceptions we are aware of. Hence the
following natural rule of thumb: if a code is combinatorial in nature (it is not a
strongly algebraic code, such as Reed-Solomon or Reed-Müller), and if the code
rate is not too close to 1 (e.g. code rate 1/2, i.e. n = N/2), then being a good
code makes it a plausible LPN-friendly candidate.

2.2 Puncturable Pseudorandom Functions

Pseudorandom functions (PRF), introduced in [GGM86], are keyed functions
which are indistinguishable from truly random functions. A puncturable pseudo-
random function (PPRF) is a PRF F such that given an input x, and a PRF
key k, one can generate a punctured key, denoted k{x}, which allows evaluating
F at every point except for x, and does not reveal any information about the
value F.Eval(k, x). PPRFs have been introduced in [KPTZ13, BW13, BGI14].

Definition 4 (t-Puncturable Pseudorandom Function). A puncturable pseu-
dorandom function (PPRF) with key space K, domain X , and range Y, is a pseu-
dorandom function F with an additional punctured key space Kp and three prob-
abilistic polynomial-time algorithms (F.KeyGen, F.Puncture, F.Eval) such that

– F.KeyGen(1λ) outputs a random key K ∈ K,
– F.Puncture(K, {S}), on input a ley K ∈ K, and a subset S ⊂ X of size t,

outputs a punctured key K{S} ∈ Kp,
– F.Eval(K{S}, x), on input a key K{S} punctured at all points in S, and a

point x, outputs F (K,x) if x /∈ S, and ⊥ otherwise,

The security requirement is that for any set S, given a punctured key K{S}, the
values (F (K,x))x∈S are pseudorandom.

In the full version of this paper, we recall the PPRF construction based on any
length-doubling pseudorandom generator from [KPTZ13, BW13, BGI14].

2.3 Pseudorandom Correlation Generators and Functions

For a full definition of pseudorandom correlation generators and function, we
refer to [BCG+19b] and [BCG+20a], or to the full version of this paper. In the
following we only provide a sketch of the definitions.

Correlation. We say a PPT algorithm Y is a correlation, if Y on input 1λ

outputs a pair of strings (y0, y1) ∈ {0, 1}τ0×{0, 1}τ1 where τ0(λ), τ1(λ) ∈ poly(λ)
describe the output lengths.

The security definition of PCGs requires the target correlation to satisfy
a technical requirement, which roughly says that it is possible to efficiently
sample from the conditional distribution of y0 given y1 and vice versa. More
precisely, we require the existence of a PPT algorithm RSample that on in-
put (σ, yσ) outputs y1−σ, such that the distributions {(yσ, y1−σ) | (y0, y1) ←
Y(1λ)} and {(yσ, y′1−σ) | (y0, y1) ← Y(1λ), y′1−σ ← RSample(σ, yσ)} are statisti-
cally close. We call such a correlation generator reverse-sampleable.



16 E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, N. Resch, P. Scholl

By Yn we define the algorithm outputting n instance according to Y. We
refer to such an algorithm also as correlation generator. Further, we extend
RSample to input vectors Rσ of the form Rσ = (y1σ, . . . , y

n
σ ) by applying RSample

componentwise.

Pseudorandom correlation generator. If Y is a reverse-sampleable correlation
generator, then a pseudorandom correlation generator (PCG) for Y with stretch
n is a tuple of PPT algorithms (PCG.Gen,PCG.Expand), such that the following
holds

– PCG.Gen(1λ) outputs a pair of seeds (k0, k1);
– PCG.Expand(σ, kσ) on input of σ ∈ {0, 1} and a seed kσ, deterministically

outputs a bit string Rσ ∈ ({0, 1}τσ )n.
– Correctness. The correlation obtained via:

{(R0, R1) |(k0, k1) $← PCG.Gen(1λ), (Rσ ← PCG.Expand(σ, kσ))σ=0,1}

is computationally indistinguishable from Yn(1λ).
– Security. For any σ ∈ {0, 1}, the following two distributions are computa-

tionally indistinguishable:

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ)} and

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),R1−σ ← PCG.Expand(σ, k1−σ),

Rσ
$← RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C.

Examples of correlations. A random OT correlation is a pair (y0, y1) ∈ {0, 1}2×
{0, 1}2, where y0 = (u, v) for two random bits u, v, and y1 = (b, u · b ⊕ v) for
a random bit b. OT correlations is perhaps the most common and fundamental
type of correlation in secure computation (though many others – such as Beaver
triples, authenticated Beaver triples, or function-dependent correlations – are
also standard).

It is known that, to generate n pseudorandom OT correlations, it suffices to
generate the following simpler correlation: Alice gets a (pseudo)random pair of
length-n vectors (u⃗, v⃗), where u⃗

$← Fn
2 and v⃗ ∈ Fn

2λ , and Bob gets x
$← F2λ and

w⃗ ← x · u⃗ + v⃗. This correlation (known as the subfield vector-OLE correlation)
can be locally converted by Alice and Bob into n pseudorandom OT correlations
using a correlation-robust hash function; see [BCG+19b] for details.

For a general template to construct PCGs for VOLE from PPRFs and LPN-
friendly codes, we refer to [BCG+19b], or the full version of this paper.

Pseudorandom correlation function. If Y is a reverse-sampleable correlation gen-
erator, then a pseudorandom correlation function (PCF) for Y with input length
ν = ν(λ) ∈ N is a tuple of PPT algorithms (PCF.Gen,PCF.Eval) with the follow-
ing syntax:
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– PCF.Gen(1λ) outputs a pair of keys (k0, k1);
– PCF.Eval(σ, kσ, x) on input of σ ∈ {0, 1}, a key kσ and an input x ∈ {0, 1}ν ,

deterministically outputs a tuple (y0, y1) ∈ {0, 1}τ0 × {0, 1}τ1 .

Correctness and security are defined similarly to a PCG, except that instead of
obtaining the complete (potentially exponential-sized) output the adversary gets
to query the output string an arbitary polynomial number of times, to obtain
a tuple (x,Eval(σ, kσ, x)) (or the according reverse-sampled correlation) for x
sampled uniformly at random.

3 Expand-Accumulate Codes

In this section we introduce expand-accumulate codes, which are defined by the
product H = BA for a sparse expanding matrix B and the accumulator matrix
A. We conjecture that the LPN problem is hard to solve for this matrix ensemble
and provide theoretical evidence for this conjecture by demonstrating that it
resists linear attacks.

3.1 Expand-Accumulate Codes, and the EA-LPN Assumption

First, we formally define the accumulator matrix.

Definition 5 (Accumulator Matrix). For a positive integer N and ring R,
the accumulator matrix A ∈ RN×N is the matrix with 1’s on and below the main
diagonal, and 0’s elsewhere.

In particular, if Ax⃗ = y⃗ with x⃗, y⃗ ∈ RN , we have the following relations:

yi =

i∑
j=1

xj ∀i ∈ [N ] yi := xi + yi−1 ∀2 ≤ i ≤ N . (1)

Note in particular that (1) guarantees that the vector-matrix product Ax⃗
can be computed with only N − 1 (sequential) ring addition operations. In par-
ticular, when R is the binary field F2, this requires just N − 1 xor operations.
Furthermore, this can be computed even more efficiently in parallel, which is a
major benefit of our construction; please see the full version for more details.
We now formally introduce expand-accumulate (EA) codes, which underline our
main constructions of offline-online PCGs.2

Definition 6 (Expand-Accumulate (EA) codes). Let n,N ∈ N with n ≤ N
and let R be a ring. For a desired density p ∈ (0, 1), a generator matrix for an
expand-accumulate (EA) code is sampled as follows:

2 These codes are heavily inspired by repeat-accumulate codes; the full version elabo-
rates further on this point.
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– Sample row vectors r⃗⊺1 , r⃗
⊺
2 , . . . , r⃗

⊺
n

$← BerNp (R) independently and put

B =


r⃗⊺1
r⃗⊺2

...
...

...
r⃗⊺n

 .

– Output the matrix-matrix product BA, where A ∈ RN×N is the accumulator
matrix.

We use EA(n,N, p,R) to denote a code sampled from this distribution, and the
sampling of the corresponding generator matrix is denoted H

$← EAGen(n,N, p,R).
When the ring R is omitted it is assumed R = F2.

Remark 7. While it is more standard in the coding-theoretic literature to use G
for a generator matrix of a code, as we are interested in the dual LPN assumption
connected to a code, we actually view H as the parity-check matrix for the code
for which the EA code is the dual. Thus, as H is the standard notation for a
parity-check matrix, we have chosen to use this notation for the generator matrix
of an EA code.

3.2 The EA-LPN Assumption and Security Analysis

In this work, we provide a new (dual) LPN-type assumption connected to EA
codes which we term EA-LPN. It is obtained by specializing Definition 1 to
the case where the code generation algorithm samples H

$← EAGen. For the
noise distribution D(R), we can consider Bernoulli noise BerNt/N (R), exact noise
HWN

t (R), and regular noise RegNt (R).
Definition 8 (EA-LPN Assumption). Let D(R) = {DN (R)}N∈N denote a
family of efficiently sampleable distributions over R, such that for any N ∈ N,
Im(DN (R)) ⊆ RN . For a dimension n = n(λ), number of samples N = N(λ),
ring R = R(λ) and parameter p = p(λ) ∈ (0, 1) the (D,R)-EA-LPN(n(λ), N(λ), p(λ))
assumption states that

{(H, b⃗) | H $← EAGen(n,N, p,R), e⃗ $← DN (R), b⃗← H · e⃗}
c
≈ {(H, b⃗) | H $← EAGen(n,N, p,R), b⃗ $← RN}.

In order to provide evidence for the EA-LPN-assumption, we will show that
it is secure against linear tests (Definition 2), at least when R = F2. To do this,
recalling Lemma 3, it suffices to show that d(H) is large (with high probability).
The technical core of our proof is the following bound on the probability that a
message vector x⃗ ∈ Fn

2 of weight r is mapped to a codeword of weight ≤ δN .

Lemma 9. Let n,N ∈ N with n ≤ N and put R = n
N . Fix p ∈ (0, 1/2) and

δ > 0, and put β = 1/2 − δ. Let r ∈ N and let x⃗ ∈ Fn
2 be a vector of weight r.

Define ξr = (1− 2p)r. Then,

Pr
[
HW(x⃗⊺H) ≤ δN | H $← EAGen(n,N, p)

]
≤ 2 exp

(
−21− ξr

1 + ξr
Nβ2

)
.
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To prove this lemma, we imagine revealing the coordinates of the random
vector x⃗⊺H one at a time, and observe that this can be viewed as a random walk
on a Markov chain with state space {0, 1} and second eigenvalue ξr. We can then
apply an Expander Hoeffding bound to guarantee that such a random walk is
unlikely to spend too much time on the 0 state, which is equivalent to saying
that the random vector x⃗⊺H does not have too small weight. For space reasons,
the proof is deferred to the full version of this paper.

We now state the main theorem of this section.

Theorem 10. Let n,N ∈ N with n ≤ N and put R = n
N , which we assume to

be a constant. Let C > 0 and set p = C lnN
N ∈ (0, 1/2). Fix δ ∈ (0, 1/2) and put

β = 1/2− δ. Assume the following relation holds:

R < min

{
2

ln 2
· 1− e−1

1 + e−1
· β2,

2

e

}
(2)

Then, assuming N is sufficiently large we have

Pr
[
d(H) ≥ δN | H $← EAGen(n,N, p)

]
≥ 1− 2

n∑
r=1

(
n

r

)
exp

(
−21− ξr

1 + ξr
Nβ2

)
(3)

≥ 1− 2RN−2β
2C+2.

Informally, the conclusion is that when p = Θ(logN/N) a constant rate EA
code will have distance Ω(N) with probability 1−1/poly(N). If one would like the
failure probability to be negligible in N this can still be achieved by increasing
p: for example, if p = Θ(log2 N/N) the failure probability is N−O(logN). The
proof is again deferred to the full version.

3.3 Discussion

In our investigation of EA codes we considered many variants and studied plau-
sibly secure concrete parameter choices. For space reasons, many of these de-
tails are necessarily deferred to the full version. In this section, we summarize
our main findings.

Different expanding matrices. Rather than sampling each row of B accord-
ing to the Bernoulli distribution, one could naturally try the exact distribution
HWN

ℓ (F2), or even the regular distribution RegNℓ (F2). Unfortunately, these ma-
trices are not as amenable to analysis. Nonetheless, after running some computer
simulations we are willing to conjecture that they should behave relatively simi-
larly: once ℓ = Ω(logN) we can hope to have constant rate and relative distance.
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Arbitrary rings. We also consider the minimum distance of EA codes over
arbitrary rings. Guided by computer simulations, we are willing to conjecture
that the minimum distance should only increase as the ring size increases, thereby
implying that its resilience to linear attacks only increases. However, we caution
that for rings like F2k “modular reduction/projection” attacks allow one to work
modulo 2 and, e.g., recover the coordinates bit-by-bit (this attack is outside
the scope of the linear tests framework). Thus, the general conclusion is that
the security one obtains for the EA-LPN assumption should only increase as the
characteristic of the ring increases.

Pseudodistance. By showing that H has large distance, we can rule out any
linear test. However, we are are only concerned with efficient linear tests, i.e.,
tests that can efficiently find the attack vector from the matrix H. So long as δ
and R satisfy δ < (1−R)/2 (this rules out the standard information set decoding
attack) we conjecture that it is infeasible to find x⃗ for which HW(x⃗⊺H) ≤ δN
when p = Ω(logN/N) is sufficiently large.

Rejection sampling. Our analysis suggests that when an EA code fails to
have good minimum distance it is often for the simple reason that the generator
matrix H already has a low weight row. Thus, we propose testing the matrix
after it is sampled to verify that indeed all the rows have large weight, and we
heuristically argue that this leads to significant savings in the failure probability.

Density of B. From a theoretical standpoint, we can unfortunately show that
the condition that p = Ω(logN/N) is necessary. However, from a concrete stand-
point we believe it is reasonable to choose the density of B much smaller. We
elaborate upon this further in the following section.

3.4 Concrete Parameter Choices

Conservative parameters. In this section, we consider relatively conservative
parameter choices, and compute the failure probability as given by (3). That is,
instead of computing the probability that d(H) ≤ δN for H ← EA(n,N, p) as
2RN−2Cβ2+2 (where, as in the theorem statement, β = 1/2 − δ, R = n/N and
p = C lnN

N ) we endeavour to numerically compute the bound

2

n∑
r=1

(
n

r

)
exp

(
−21− ξr

1 + ξr
Nβ2

)
,

where as before ξr = (1− 2p)r. For our applications we would like n = 220, 225
and 230. It is reasonable to choose R = 0.2, implying N = 5 · n. Our results are
summarized in Figure 2.

For context, we recall Lemma 3 which translates minimum distance into
security against linear tests. It says that if H $← EAGen(n,N, p) has minimum



Correlated Pseudorandomness from Expand-Accumulate Codes 21

C = 3 C = 2.5 C = 2.3

δ
n

220 225 230 220 225 230 220 225 230

0.005 0.000317 0.0000686 0.0000148 0.0133 0.00645 0.00312 0.0599 0.0401 0.0268
0.02 0.00120 0.000347 0.000100 0.0410 0.0253 0.0156 0.174 0.147 0.124
0.05 0.0157 0.00794 0.00402

Fig. 2: In this table, we list the (extrapolated) analytical upper bounds on the failure
probabilities for various parameter choices. The rate is set to 1/5, i.e., N = 5n. If the
cell is empty it is because the extrapolated value exceeds 1.

distance δN with probability at least η(λ) and the error vector e⃗ ∈ FN
2 has

(expected) weight t (e.g., e⃗
$← BerNt/N (F2), HWN

t/N (F2) or RegNt (F2)), then if
we want (2−λ, η(λ))-security against linear tests we require e−2tδ ≤ 2−λ, i.e.,
t ≥ (ln 2)·λ

2δ .
Looking at Figure 2, for n = 230 and N = 5n, if t = 664 then we have t >

(ln 2)·98
2·0.05 , which implies that H

$← EAGen
(
n,N, 3 lnN

N

)
is (2−98−log2 5, 0.00402)-

secure3 against linear tests. Decreasing C, if H $← EAGen
(
n,N, 2.3 lnN

N

)
then so

long as t ≥ 1658 it is (2−98−log2 5, 0.124)-secure against linear tests.
For all of the extrapolated values in Figure 2, we provide the necessary num-

ber of noisy coordinates for 128 bits of security against linear tests.

Density of B, concretely. However, when it comes to concrete parameter choices,
it is reasonable to be more aggressive. Our intuition, which is guided by the
proof of Theorem 10, tells us that if there is to be a low-weight vector in an
EA code, then it is likely obtained as the encoding of a low-weight message. In
particular, if an EA code has distance d it is probably because H

$← EAGen
has a row of weight d. Furthermore, while there could very well be lower weight
vectors in the EA codes, we do not see an easy means to find these vectors.
Recalling the discussion of the notion of pseudodistance, this already implies that
the construction could be secure against efficient linear attacks.

Being aggressive, we consider ℓ = 7, 9, 11, and then empirically estimate the
minimum (relative) weight of a row of an EA matrix H

$← EAGenReg(n, 5 ·n, ℓ)4
for n = 220, 225, 230. For ℓ = 7, 9, 11, we endeavour to empirically estimate the
minimum row weight of a matrix H

$← EAGenReg(n, 5 · n, ℓ).5
These experiments embolden us to make the following sort of conjecture:

given a matrix H
$← EAGenReg(230, 5 · 230, 7), we expect it to be hard to find

a vector in the row-span of H with relative weight less than 0.02, even though
3 Note that as computing a dot-product requires 5 · 230 time, this is sufficient for 128

bits of security.
4 The regular distribution appears to us to be the most reasonable in practice; however,

other distributions appear to behave similarly.
5 The regular distribution appears to us to be the most reasonable in practice; however,

other distributions appear to behave similarly.
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δ
n

220 225 230

0.005 7326 6979 6632
0.02 1832 1745 1658
0.05 732 698 664

(a) Value of t required for 128−log2 N-bit secu-
rity against linear tests. The failure probability
for different values of C is found in Figure 2.

n
ℓ 7 9 11

220 0.0613 0.0923 0.121
225 0.0370 0.0624 0.0879
230 0.0223 0.0422 0.06391

(b) The (extrapolated, empirical) average
minimum row-weight for H sampled as
H ← EAGenReg(n, 5n, ℓ).

we expect there to exist (many) such vectors. We leave testing of the validity of
this assumption as an interesting challenge for future work.

Relation to Silver. [CRR21] also introduced a new code family, called Silver.
However, their security analysis is purely based on computer simulation. Con-
cretely, the authors of [CRR21] sampled random choices of code parameters, and
sampled many instances of the code for small value of n. Then, they approxi-
mated the minimum distance for each sample by encoding low-weight vectors,
and estimated the variance from the distance distribution. From that, they ex-
trapolated a lower bound on the minimum distance for multiple small values of
n, which they further extrapolated, from the curve of these lower bounds, to
larger values of n. In the end, they picked the parameters that led to the best
extrapolations.

We applied a relatively similar heuristic, by using computer simulations to
approximate the minimum distance of our code for small values of n, and ex-
trapolating its behavior for large values of n, with the purpose of enabling an
apple-to-apple comparison with Silver. We observed that, already when setting
the number of ones per row of B to only 7 and using t ≈ 5000 noisy coordinates,
we achieve heuristic security guarantees roughly on par with Silver. Note that
the choice of increasing t to lower the row-weight of B is well motivated, since
it vanishes when n grows and only influences the seed size, which is Ω(tλ log n).

4 Pseudorandom Correlated Functions from Expand-
Accumulate Codes

In this section, we give a high-level summary of the ideas behind the PCF for
subfield-VOLE. For more details on how to obtain PCFs for subfield VOLE, OT
and general degree-two correlations over a ring under (variants of) the EA-LPN
assumption, we refer to the full version of this paper.

Fix an extension field F of F2; we target PCF for the (subfield) VOLE correla-
tion over F. That is, PCF.Gen outputs a pair (k0, k1) of correlated keys such that
for any input x, writing (u, v)← PCF.Eval(0, k0, x) and w ← PCF.Eval(1, k1, x),
it always holds that w = ∆ · u+ v, where ∆ ∈ F is the same accross all evalua-
tions, (v, w) ∈ F2, and u ∈ F2. We refer to the full version for a reminder of the
formal definition of the security properties of a PCF. As for PCGs, one can
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use a correlation-robust hash function to turn a PCF for subfield-VOLE over
F = F2λ (where λ is a security parameter) into a PCF for the (one out of two)
oblivious transfer correlation over F.

The main difference between an offline-online PCG and a PCF is that the lat-
ter must operate in a fully incremental fashion: given the short correlated keys,
the parties should be able to obtain pseudorandom instances of the target cor-
relation on demand, without having to stretch the entire pseudorandom corre-
lation. At a high level, our PCF construction proceeds as follows: given the two
keys k0, k1, the parties will be able to locally retrieve (in time logarithmic in N)
additive shares (over F) of any given position in the vector ∆ ·A · e⃗, where ∆ ∈ F
is a scalar known to P1, e⃗ is a sparse noise vector (over F2) known to P0, and A
is the accumulator matrix of Definition 5.

Suppose we manage to achieve the above. Then, a random input x to the
PCF is parsed by both players as defining a random row Bx of the sparse matrix
B; that is, x is the randomness used to sample a row Bx from BerNp (F2). Let ℓ be
the number of ones in the sampled row; with the parameters of our analysis, ℓ =
O(logN) with overwhelming probability. Let e⃗′ = A · e⃗ denote the accumulated
noise vector. To evaluate PCF.Eval on x, the parties compute shares of ∆ · e′i for
all ℓ positions i corresponding to non-zero entries in Bx, and locally sum their
shares. This procedure takes total time O(ℓ logN) = O(log2 N), polylogarithmic
in N : we can therefore set N to be exponential in the security parameter λ to
allow for an exponential stretch. Defining ui ← B · e′i and (−vi, wi) to be the
shares computed this way, it is easy to check that the relation ∆ · ui + vi = wi

holds, and that ui is indeed pseudorandom under the EA-LPN assumption.
It remains to find a way to locally construct these shares of ∆ · e′i. Here, ob-

serve that we cannot use anymore a puncturable pseudorandom function as in
our construction of offline-online PCG: the accumulation step, while very effi-
cient and parallelizable, runs in time linear in N . For a PCF, however, N is nec-
essarily superpolynomial, since a PCF allows to stretch (on demand) an arbi-
trary polynomial amount of correlated pseudorandomness. Fortunately, we can
sidestep this unaffordable accumulation step by relying on a primitive known as
a distributed comparison function (DCF), of which very efficient instantiations
(from any one-way function) were recently proposed in [BGI19, BCG+21]. For
subfield VOLE, it’s enough to use a weaker form of distributed comparison func-
tion, where one party knows part of the function, which we show can be con-
structed more efficiently.

5 Optimizing Offline Cost

Up to now, focus has been placed on optimizing the online portion of the offline-
online PCG constructions, corresponding to the choice and analysis of advan-
tageous linear codes. In this section, we turn attention to the offline portion of
our construction, consisting of two primary components:

1. Evaluating several punctured PRFs (PPRFs) on their entire domain (a func-
tionality called FullEval), and
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2. Performing an accumulation step, which converts a vector (x1, · · · , xN ) to
an accumulated vector (x1, x1 ⊕ x2, · · · ,

⊕N
i=1 xi).

Recall that with respect to the general template of PCG construction, the com-
bination of the accumulation step and the online process in our construction
jointly play the role of applying a compressing linear map x⃗ 7→ H · x⃗ as dictated
by the selected linear code.

We remark that all previous works in this line (of constructing PCGs from the
linear code plus PPRF template) focused almost exclusively on optimizing this
x⃗ 7→ H · x⃗ step, which was for a long time the dominant cost of the construction.
We now instead focus on reducing the cost of the FullEval (and accumulation)
component. Our motivations are threefold:

1. First, in the recent work of [CRR21], the cost of the mapping is reduced so
significantly that, according to their evaluation, the cost of FullEval now ac-
counts for about half of the total computation. Reducing the cost of FullEval
has therefore an important impact on the total runtime.

2. Second, using our new notion of offline-online PCGs and instantiating them
with expand-accumulate codes, the offline part boils down solely to a FullEval
computation and an accumulation. The cost of accumulate is exceptionally
small, and dominated by the cost of FullEval (by several orders of magnitude).
Hence, reducing the cost of FullEval directly translate to reducing the cost
of the offline PCG expansion, by the same factor.

3. Eventually, PCGs are not the sole target: other cryptographic primitives also
sometimes rely on the FullEval algorithm of a PPRF. Reducing the cost of
FullEval directly translates to improvements for these primitives.

The high-level intuition of our main results in this section correspond to the
observation that for PCG construction, in fact a PPRF is a stronger tool than
necessary. In doing so, we put forth and explore a weaker notion with the aim
of improved efficiency.

In the following we give an overview of our results. For details, we refer to
the full version of this paper.

Overview of the results. First, we give high-level optimizations for the offline
operations. This includes procedures for parallelizing the accumulation step, as
well as methods for improving the computation cost of FullEval for GGM-type
constructions such as PPRF in exchange for increased key size, by “flattening”
the depth of the GGM tree.

Next, we introduce a relaxed version of PPRF, a (strong) unpredictable punc-
tured function (UPF). We provide constructions of (strong) UPFs in the random
oracle (RO) model (ROM) that require half the number of RO calls for FullEval
as compared with the standard RO-based PPRF construction. Given the current
existence of hardware support for AES, we additionally provide a conjectured
construction given access to the Random Invertible Permutation Model (RIPM).

We further explore conversions from UPF to the (stronger) standard notion
of PPRF in the random oracle model, beginning with a generic compiler that
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simply applies the random oracle to each UPF output. For our specific RO-based
UPF construction of the previous subsection, we show that this same goal can
be achieved by applying the RO to only half of the UPF outputs. In turn, this
provides a construction of standard PPRF in the RO model in which FullEval
on a domain of size N requires only 1.5N calls to the random oracle.

Finally, we prove that for some PCG constructions, strong UPFs already
suffice in the place of PPRFs. In particular, this holds for the PCG constructions
of subfield VOLE and Silent OT. In these applications, we can thus replace the
PPRF by our RO-based strong UPF, in which FullEval on a domain of size N
requires only N calls to the random oracle, in comparison to 2N when based on
PPRF.

Applications and bottom line. Using the baseline GGM PPRF with domain size
N , the cost of FullEval (i.e., evaluating the entire binary tree with N leaves) boils
down to 2N calls to the underlying primitives (in concrete instantiations, this can
translate to 2N evaluations of fixed-key AES). To reduce this cost, we suggest to
replace the GGM PPRF by our proposed PPRF construction. Concretely, com-
puting all leaves of the UPF requires exactly N calls to the underlying primitive
(modeled either as a random oracle or as a random invertible permutation) in
each of our two constructions. Converting the UPF to a PPRF requires further
hashing half of the leaves, leading to a total cost of 1.5N calls to the underlying
primitive. This is a 25% cost reduction compared to the GGM PPRF approach.

The “tree-flattening” optimizations translate to a 41.5% reduction of the
FullEval time, hence of the entire offline time of our offline-online PCG construc-
tion. Since FullEval also amounts to roughly 50% of the cost of the full PCG ex-
pansion in [CRR21], plugging our new constructions should directly translate to
a reduction of the total cost by about 20% (which is quite significant given how
fast the construction already is).

As mentioned, for certain PCG constructions, such as Silent OT, these num-
bers jump already to 50% cost reduction of FullEval, corresponding to roughly
25% reduction in the overall cost of full PCG expansion.

These results also have further implications beyond PCGs. The FullEval al-
gorithm of PPRFs and related primitives is also used in some zero-knowledge
applications, typically in the MPC-in-the-head paradigm. Some examples in-
clude Picnic [KKW18, CDG+20] and its variants [KZ20], the signature schemes
of [Beu20], or the zero-knowledge proof of [FS21]. FullEval is also used in some
constructions of private information retrieval, such as [MZR+13]; the list is not
exhaustive. In all these applications, replacing FullEval by our improved variant
leads to computational savings (the amount of which depends on how dominant
the cost of FullEval is in each application).
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