
On The Insider Security of MLS

Joël Alwen1, Daniel Jost2⋆[0000−0002−6562−9665], and Marta Mularczyk1⋆⋆

1 AWS Wickr, New York, USA
{alwenjo,mulmarta}@amazon.com

2 New York University, New York, USA
daniel.jost@cs.nyu.edu

Abstract. The Messaging Layer Security (MLS) protocol is an open
standard for end-to-end (E2E) secure group messaging being developed
by the IETF, poised for deployment to consumers, industry, and govern-
ment. It is designed to provide E2E privacy and authenticity for messages
in long-lived sessions whenever possible, despite the participation (at
times) of malicious insiders that can adaptively interact with the PKI at
will, actively deviate from the protocol, leak honest parties’ states, and
fully control the network. The core of the MLS protocol (from which
it inherits essentially all of its efficiency and security properties) is a
Continuous Group Key Agreement (CGKA) protocol. It provides asyn-
chronous E2E group management by allowing group members to agree
on a fresh independent symmetric key after every change to the group’s
state (e.g. when someone joins/leaves the group).
In this work, we make progress towards a precise understanding of the
insider security of MLS (Draft 12). On the theory side, we overcome sev-
eral subtleties to formulate the first notion of insider security for CGKA
(or group messaging). Next, we isolate the core components of MLS to
obtain a CGKA protocol we dub Insider Secure TreeKEM (ITK). Fi-
nally, we give a rigorous security proof for ITK. In particular, this work
also initiates the study of insider secure CGKA and group messaging
protocols. Along the way we give three new (very practical) attacks on
MLS and corresponding fixes. (Those fixes have now been included into
the standard.) We also describe a second attack against MLS-like CGKA
protocols proven secure under all previously considered security notions
(including those designed specifically to analyze MLS). These attacks
highlight the pitfalls in simplifying security notions even in the name of
tractability.

1 Introduction

1.1 Background and Motivation

A Continuous Group Key Agreement (CGKA) protocol allows an evolving group
of parties to agree on a continuous sequence of shared symmetric keys. Most

⋆ Research supported by the Swiss National Science Foundation via Fellowship
no. P2EZP2 195410. Work partially done while at ETH Zurich, Switzerland.

⋆⋆ Research supported by the Zurich Information Security and Privacy Center (ZISC).
Work partially done while at ETH Zurich, Switzerland.



2 Joël Alwen, Daniel Jost, and Marta Mularczyk

CGKA protocols are designed to be truly practical even when used over an
adversarial network by large groups of uncoordinated parties with little, if any,
common points of trust.

CGKA protocols should be end-to-end (E2E) secure and use asynchronous
communication (in contrast to older, highly interactive, Dynamic Group Key
Agreement protocols). That is, no assumptions are made about when or for
how long parties are online. Instead, an (untrusted) network is expected only to
buffer packets for each party until they come online again. As a consequence,
all actions a party might wish to take must be performed non-interactively.
Moreover, protocols cannot rely on specially designated parties (like the group
managers in broadcast encryption). To achieve E2E security, protocols shouldn’t
rely on trusted third parties including the PKI that distributes long and short
term public keys.3

Intuitively, CGKA protocols encapsulate the cryptographic core necessary
to build higher-level distributed E2E secure group applications like secure mes-
saging (not unlike how Key Encapsulation captures the core of Public Key En-
cryption). Any change to a group’s state (e.g. parties joining/leaving) initiates a
new epoch in a CGKA session. Each epoch E is equipped with its own uniform
and independent epoch key kE , called the application secret of E, which can
be derived by all group members in E. The term “application secret” reflects
the expectation that kE will be used by a higher-level cryptographic application
during E.4 For example, kE might seed a key schedule to derive (epoch specific)
symmetric keys and nonces, allowing group members in E to use authenticated
encryption for exchanging private and authenticated messages during E.

The Messaging Layer Security Protocol. Probably the most important family of
CGKA protocols today is TreeKEM. An initial version was introduced in [34].
It was soon followed by a more precise description in [18] and the improved
version [14]. Another major revision came with the introduction of the “propose-
and-commit” paradigm [17]. The product of this evolution (implicitly) makes up
most of the cryptographic core of the latest draft (Draft 12) of the Messaging
Layer Security (MLS) protocol [13]. It is this most recent version which is the
main focus of this work.

MLS is being developed under the auspices of the IETF. It aims to set an
open standard for E2E secure group messaging; in particular, for very large
groups (e.g. 50K users). MLS is being developed by an international collabora-
tion of academic cryptographers and industry actors including Cisco, Cloudflare,
Facebook, Google, Twitter, Wickr, and Wire. Together, these already provide
messaging services to over 2 billion users across all sectors of society. The IETF
is currently soliciting more feedback from the cryptographic community in hopes
of finalizing the current draft.

3 Concretely, the servers distributing keys are normally not trusted per se. Instead
trust is established by, say, further equipping participants with tools to perform
out-of-band audits of the responses they receive from the server.

4 In the newest draft of MLS the term “application secret” has been changed to
“encryption secret”.



On The Insider Security of MLS 3

Insider Security. Intuitively, MLS is designed to provide security whenever pos-
sible in the face of a weak PKI and despite potential participation by malicious
insiders with very powerful adaptive capabilities. These include full control of the
network and repeatedly leaking the local states of honest users and even choos-
ing their random coins5. However, thus far it has remained open how to formally
capture (let alone analyze) such a security notion for CGKA/group messaging.
Instead, simplified security models have been used to analyze (various versions
of) TreeKEM. See Sec. 1.3 for a thorough discussion. Most critically, none of
these models let the adversary deliver arbitrary packets; a very natural capabil-
ity for a real-world attacker controlling the network. Further, they do not let the
adversary register public keys in the PKI (let alone without proving knowledge
of the corresponding secret keys) or choose all random coins of corrupt parties.

1.2 Our Contribution

New Security Model. To further our understanding of how MLS behaves against
such insider attacks, we first precisely define insider security of CGKA. In our
new model, the adversary has all above-mentioned capabilities available to ma-
licious insiders. Our notion captures correctness as well as the following security
goals: security of epoch secret keys, authenticity and agreement on group state.
Formally, our model extends the notions in [8] to capture a more accurate and
untrusted PKI (solving an open problem from [8]). E.g., in our model the ad-
versary can register arbitrary (even long term) public keys on behalf of parties
and without proving knowledge of corresponding secrets. Of course, security is
degraded for epochs in which such keys are used but, crucially, only those.

We note that our notion can be used to analyze different CGKA protocols
and compare their security guarantees. We believe that it should be directly
applicable to (propose/commit versions of) protocols like [10,6,29]. Further, in a
subsequent work [28] the authors use it (after small modification) to prove that
their protocol enjoys the same security as TreeKEM.

Security of TreeKEM. Second, we isolate the core features of the full MLS proto-
col, Draft 12 (the most recent draft at the time of writing) sufficient for realizing
an insider secure CGKA protocol. We call the result Insider Secure TreeKEM
(ITK). Specifically, ITK augments TreeKEM with message authentication, tree-
signing, confirmation keys and small parts of MLS’s key schedule.

Third, we prove that ITK is secure in our model. Our analysis unveiled three
new (and quite practical) attacks on MLS Draft 10. All attacks require the
capabilities of malicious insiders, and hence they are outside the models used
so far to analyze MLS, which explains why they went unnoticed until now. We
proposed fixes for each of the three attacks. They have since been incorporated
into to the IETF standard (in Draft 11) and are already reflected in ITK. In
summary, the result of the attacks are as follows:

5 We stress that adversarially chosen coins can lead to real-world attacks, see e.g. [22].



4 Joël Alwen, Daniel Jost, and Marta Mularczyk

1. A malicious insider can invite a victim to an artificial group (that includes
any number of other honest parties) such that the adversary can continue to
derive epoch secrets in the group even after they were supposedly removed
from the group by the victim.

2. A malicious insider can break agreement. That is, they can craft two packets
delivering each to a different honest user with the result that they will both
accept them, agree on their next epoch secret keys, but will in fact be out-
of-sync and no longer accept each other’s messages.

3. The mode of MLS where ITK packets are not encrypted provides weaker
authenticity than intended.

The first attack is the most interesting, since it relies on the flawed design of
the so-called tree-signing mechanism, adopted due to a lack of (even intuitive)
clarity around what it should do (which lead to differing constructions being
proposed and significant debate on the topic within the MLS working group,
e.g. [32,1,35]). This work finally elucidates what is the goal of tree signing.

Justifying the New Model. Finally, to justify our model and the importance of
formally capturing the complete adversarial capabilities against which CGKA
protocols intend to defend, we formally prove the following: First, for each of
the three fixes for the above mentioned attacks, ITK modified to undo the fix
is not secure in our model. Second, we observe that all previous analyses of
CGKA protocols (including TreeKEM and others) in simplified models assumed
CPA security of the encryption schemes they use, implying that this is sufficient
(see e.g. [6,7,10]). We show that this is an oversimplification by demonstrating
a practical attack on ITK modified to use a particular (contrived) CPA secure
scheme, resulting in malicious insiders being able to compute epoch secrets after
having been removed from the group. Again, we show that the above modification
of ITK is not secure in our model. (Fortunately, as implied by [5], the PKE used
in MLS is indeed CCA secure which we show to be sufficient.)

1.3 Related Work

Analyses of MLS. A summary is given in Table 1. The research on CGKA was
initiated with the introduction of the Asynchronous Ratcheting Tree (ART) pro-
tocol by Cohn-Gordon et al. in [24]. ART later was adopted as part of MLS Draft
1, before being replaced by TreeKEM as part of Draft 2. TreeKEM based MLS
has been analyzed in the computational setting (using the game-based approach)
in the works [6,7,21]. The work by [6] analyzed the TreeKEM portion of MLS
and, to this end, coined the respective CGKA abstraction. On the other hand,
[7] considers the full MLS protocol and, importantly, validates the soundness of
the CGKA abstraction as an intermediate building block.

In contrast to this work, [6,7] however used simplified security models. In [6]
the adversary is forced to deliver packets in the same order to all parties and
learns nothing about the coins of parties she has compromised. Meanwhile, [7]
permits arbitrary packet delivery scheduling and leaks the random coins of cor-
rupt parties but still does not allow the adversary to choose corrupt parties’



On The Insider Security of MLS 5

MLS Version Part Analyzed Adversarial Model Considers Group Splits Framework

[24]
Draft 1
(ART)

CGKA in static
groups active yes part game-based,

part symbolic
[6] Draft 6 CGKA passive no game-based

[19] Draft 7 Messaging insider yes symbolic

[7] Draft 11 Messaging semi-active yes game-based

[21] Draft 11 Key derivation insider n/a game-based

[25] Draft 11 Multi-group
messaging n/a n/a n/a

this work Draft 12 CGKA insider yes UC

Table 1: Related work: Analyses of MLS.

coins. Neither model allows fully active attacks. In [6], the adversary cannot
modify/inject packets at all while in [7] she may only deliver modified/injected
packets to an honest party if the party will reject the packet.

Further, [21] focuses exclusively on the pseudorandomness of secrets pro-
duced by the key derivation process in MLS. So, unlike other works, they do not
consider the general effects malformed protocol packets can have (e.g. as part of
an arbitrary active attack). Instead they focus only on a specific set of effects
such packets could have on the key derivation mechanism in MLS. (So for exam-
ple, they make no statements about authenticity.) In contrast to the other two
works, they also only allow for a limited type of adaptivity where adversaries
must leak secrets at the moment they are first derived and no later. On the
other hand, [21] considers a more fine-grained leakage model where secrets can
be individually leaked rather than the whole local state of the victim at once.
Finally, the recent work of [25] considers the PCS guarantees provided by MLS
in the multi-session setting. Surprisingly, they identify significant inefficiencies
in terms of the amount of bandwidth (and computation) required by a multi-
session MLS client to return to a fully secure state after a state compromise.
They present intuitive deficiencies of MLS-style constructions but they do not
define a formal security model.

Complementing the above line of work, the paper [19] analyzed the insider
security of TreeKEM as of Draft 7 in the symbolic setting (in the sense of
Dolev-Yao). Their model covers most intuitive adversary’s abilities and secu-
rity properties considered in this work. Actually, they even consider a slightly
more fine-grained corruption model that allows the adversary to corrupt individ-
ual keys held by parties. It is noteworthy, however, that [19] analyze a version
of TreeKEM that does not yet have any tree-signing mechanism. Consequently,
they find an attack on TreeKEM Draft 7 (that would also appear in our insider
security model) and proposes a strong version of tree signing (aka. “tree-hash
based parent hash”) that prevents it. Unfortunately, that scheme soon became
unworkable (i.e. not correct) as it conflicts with new mechanisms in subsequent
drafts of TreeKEM, namely truncation and unmerged leaves. Thus, Draft 9
TreeKEM/MLS adopted a different, more efficient version of tree signing. In
this work, we show however that the latter version is too weak and propose a
new tree-signing mechanism providing the desired security.



6 Joël Alwen, Daniel Jost, and Marta Mularczyk

Protocol Approach to Improving Efficiency
Adversarial
Model

Considers
Group Splitting Framework

[10] Tainted TreeKEM Geared to a setting with administrators passive yes game-based

[36] Causal TreeKEM Concurrency (static groups, no PCS) passive yes game-based

[20]
Concurrent Group
Ratcheting

Concurrency (static groups)
passive
synchronous

no game-based

[4] CoCoA
Concurrency and partial views of the
group state (*) passive yes game-based

[3] DeCAF
Concurrency and partial views of the
group state (faster PCS than CoCoA)

passive yes game-based

[28] CmPKE Server-aided CGKA: better bandwidth insider yes UC

[9] SAIK Server-aided CGKA: better bandwidth active yes UC

[2] GraftingKeyTrees Utilize multiple overlapping groups n/a n/a n/a

Protocol Security Goal
Adversarial
Model

Considers
Group Splitting Framework

[6] RTreeKEM Stronger PCFS passive no game-based

[8] Optimally Secure Best-possible security active yes UC

[27] Membership Private ART Hiding group roster and
message senders n/a n/a n/a

(*) Partial views means that parties fetch parts of their state on demand from an untrusted server.

Table 2: Related work: Other CGKA protocols. Top: protocols that improve
efficiency over TreeKEM. Bottom: protocols that improve security.

Other CGKA Protocols. Numerous alternative CGKA protocols have been con-
sidered, in various security models, as summarized in Table 2. First, the Tainted
TreeKEM protocol [10] exhibits a different complexity profile than the TreeKEM
protocol, optimized for groups with a small set of “administrators” (i.e., parties
making changes to the group roster). It was shown to enjoy the same security
as TreeKEM, Draft 7, at least with regards to adaptive but passive adversaries.

Another line of research aims for better efficiency than that of TreeKEM.
First, the works [36,20,4,3] achieve this by supporting (to various degrees) con-
current changes to the group state. Further, the works [28,9] proposed a different
communication model of CGKA: Instead of an untrusted broadcast channel, they
consider a more general (untrusted) delivery service that processes the messages
and delivers to each party only the part it needs, greatly improving bandwidth.
We note that [9] uses a simplified security model based on [8], while [28] uses the
model proposed in this work. Finally, the work [2] introduced new techniques to
accommodate for multiple intersecting groups, which may enable to get better
efficiency than running several CGKAs in parallel, partially remedying the issues
uncovered by [25]. (They do not specify a CGKA protocol.)

From a different angle, various constructions aim to improve on the security
guarantees of TreeKEM and MLS. First, the RTreeKEM construction of [6]
improved on the forward secrecy properties of the TreeKEM family of protocols,
albeit by making use of non-standard (but practically efficient) cryptographic
components. Further, the three CGKA protocols in [8] eschew the constraint of
practical efficiency to instead focus on exploring new mechanisms for achieving
the increasingly stringent security notions introduced in that work. In particular,
they introduce two notions of so-called robustness for CGKA. A weakly robust
CGKA ensures that if a honest party in epoch E accepts an arbitrary packet



On The Insider Security of MLS 7

p, then all other honest parties in epoch E either end up in the same state
as that party or reject p. In a strongly robust CGKA it is further guaranteed
that then all other parties currently in E will accept p. Note that neither ITK
nor MLS (as a whole) are strongly robust.6 A variant of strong robustness has
also been considered by [26] who propose efficient zero-knowledge proofs with
which a group member can prove to the delivery server that his message is
well formed. They observe that in case the server behaves honestly, this allows
the server to prevent group splitting attacks (a type of denial-of-service) caused
by malicious insiders. Albeit, they do not introduce or analyze a full CGKA or
messaging protocol. Finally, [27] presented CGKA with novel membership hiding
properties. However, no security definitions are given.

1.4 Outline of the Rest of the Paper

We define insider secure CGKA in Sec. 3. In Sec. 4, we specify the ITK protocol.
We then formalize the exact security properties achieved by ITK and sketch the
respective security proof in Sec. 5. The four attacks are described in Sec. 6.

2 Preliminaries

2.1 Notation

We use v ← x to denote assigning the value x to the variable v and v ←$ S to
denote sampling an element u.a.r. from a set S. If V denotes a variable storing a
set, then we write V +← x and V -← x as shorthands for V ← V ∪{x} and V ←
V \{x}, respectively. We further make use of associative arrays and use A[i]← x
and y ← A[i] to denote assignment and retrieval of element i, respectively.
Additionally, we denote by A[∗]← v the initialization of the array to the default
value v. Further, we use the following keywords: req cond denotes that if the
condition cond is false, then the current function unwinds all state changes and
returns ⊥. assert cond is used in the description of functionalities to validate
inputs of the simulator. It means that if cond is false, then the given functionality
permanently halts, making the real and ideal worlds trivially distinguishable.

2.2 Universal Composability

We use the Universal Composability (UC) framework [23].

The Corruption Model. We use the — standard for CGKA/SGM but non-
standard for UC — corruption model of continuous state leakage (transient pas-
sive corruptions) and adversarially chosen randomness of [8].7 In a nutshell, this
corruption model allows the adversary to repeatedly corrupt parties by sending

6 E.g. a malformed (commit) packet can be constructed by an insider such that part
of the group accepts it but the rest do not.

7 Passive corruptions and full network control allow to emulate active corruptions.



8 Joël Alwen, Daniel Jost, and Marta Mularczyk

them two types of corruption messages: (1) a message Expose causes the party
to send its current state to the adversary (once), (2) a message (CorrRand, b)
sets the party’s rand-corrupted flag to b. If b is set, the party’s randomness-
sampling algorithm is replaced by the adversary providing the coins instead.
Ideal functionalities are activated upon corruptions and can adjust their behav-
ior accordingly.

Restricted Environments. In order to avoid the so-called commitment problem
caused by adaptive corruptions in simulation-based frameworks, we restrict the
environment not to corrupt parties at certain times. (This roughly corresponds
to ruling out “trivial attacks” in game-based definitions. In simulation-based
frameworks, such attacks are no longer trivial, but security against them requires
strong cryptographic tools and is not achieved by most protocols.) To this end,
we use the technique used in [8] (based on prior work by Backes et al. [12]
and Jost et al. [30]) and consider a weakened variant of UC security that only
quantifies over a restricted set of so-called admissible environments that do not
exhibit the commitment problem. Whether an environment Z is admissible or
not is defined as part of the ideal functionality F: The functionality can specify
certain boolean conditions, and Z is then called admissible (for F), if it has
negligible probability of violating any such condition when interacting with F.

3 Insider-Secure Continuous Group Key Agreement

This section defines security of CGKA protocols. For better readability, we skip
some less crucial details. We refer to the full version [11] for the precise definition.

3.1 Overview

Security via Idealized Services. We model security and correctness of CGKA in
the Universal Composability (UC) framework [23]. At a high level, this means
that a CGKA protocol is secure if no efficient environment Z can distinguish
between the following two experiments: First, in the real world experiment, Z
interacts with an instance of the CGKA protocol. It controls all parties, i.e., it
chooses their inputs and receives their outputs and the adversary, i.e., it corrupts
parties. Second, in the ideal world experiment, Z interacts with an ideal CGKA
functionality Fcgka and a simulator S. Fcgka represents the idealized “CGKA
service” a CGKA protocol should provide and is secure by design (like a trusted
third party). S translates the real-world adversary’s actions into corresponding
ones in the ideal world. Since Fcgka is secure by definition, this implies that
the real-world execution cannot exhibit any attacks either. Readers not familiar
with UC should think of Z as the adversary attacking the protocol.

In our model, analogous to [8], whenever Z instructs a party to perform
some group operation (e.g. adding a new member) Fcgka simply hands back an
idealized protocol message to that party — it is then up to Z to deliver those
protocol messages to the other group members, thus not making any assumptions
on the underlying network or the architecture of the delivery service.



On The Insider Security of MLS 9

The Attack Model. In this work, we consider a powerful adversary that (a) fully
controls the network (i.e., the delivery service), and (b) potentially colludes
with malicious insiders. The former is captured by having Z (i.e., the attacker)
deliver packets. The latter is captured by giving the adversary the following
abilities: to register arbitrary PKI keys on behalf of any party, to repeatedly
leak parties’ states and to choose randomness used by parties. The first attack
vector is reflected in our PKI functionalities in Sec. 3.2. The latter two vectors
are reflected in our choice of UC corruption model described in Sec. 2.

We remark that additionally considering a model with malicious insider at-
tacker but an honest delivery infrastructure is an interesting open problem. It
appears, however, that in case of MLS an honest delivery server cannot prevent
most of a malicious insider’s attacks such as group-splitting attacks (see below).

Security Guarantees. Our model captures the following security properties: con-
sistency, confidentiality and authenticity. They are reflected in different aspects
of the ideal functionality Fcgka. We note that Fcgka maintains a symbolic repre-
sentation of the group’s evolution, including corruptions, in the form of a history
graph [7], where nodes represent epochs.

Intuitively, consistency means that all parties in the same epoch agree on the
group state, including e.g. the history of the group’s evolution. This is formalized
by Fcgka outputting consistent information to all parties in the same node of the
graph. Fcgka is parameterized by a predicate safe which identifies confidential
epochs, i.e., ones for which the adversary must have no information about its
group secret, for a given CGKA protocol and graph. For each confidential epoch,
Fcgka chooses a random and independent secret (and outputs it to parties who
decide to fetch it) while for other epochs the key is arbitrary, i.e., chosen by
the simulator. Authenticity for a party A and epoch E holds if Z cannot inject
messages on behalf of A in E. Fcgka is parameterized by a predicate inj-allowed
which decides whether messages can be injected on behalf of the party.

The PKI. In the real-world experiment, the parties execute the protocol that
furthermore interacts with the (untrusted) PKI. The latter is modeled as two UC
functionalities: Authentication Service (AS) which manages long-term identity
keys and Key Service (KS) that allows parties to upload single-use key packages,
used by group members to non-interactively add them to the group (see Sec. 3.2
for details). Our model is agnostic to how these functionalities are realized, as
long as the behavior we describe is implemented.

The primary interaction with the PKI is not group specific and, thus, it is
assumed to be handled by the higher-level protocol embedding CGKA. Intu-
itively, this means that the protocol requires that the environment registers all
keys necessary for a given group operation before performing it. As the PKI
management is exposed to the environment in the real world, those operations
also need to be available in the ideal world. We achieve this by having “ideal-
world variants” of the AS and KS, which should be thought of as part of Fcgka.
The ideal AS records which keys have been exposed, which is then used to define



10 Joël Alwen, Daniel Jost, and Marta Mularczyk

the predicates. The actual keys in the ideal world do not convey any particular
meaning beyond serving as identifiers.

Group-Splitting Attacks. The following attack is inherent to any CGKA proto-
col: A malicious delivery service seletively forwards different packets to different
group members, causing them to have inconsistent views of the group’s evolu-
tion. Such members will never end up in the same epoch again (and so they will
not be able to communicate), as this would contradict the consistency property.
Our ideal functionality Fcgka accounts for this with the history graph forming
a tree, with different branches representing different partitions.

We remark that there is another type of splitting attack where (the delivery
service may be honest but) a malicious insider creates a message that is accepted
by some but not other members of the group. (Note that all parties accepting
the commit will end up in a consistent state.) MLS does not prevent this attack,
and this is reflected in our model. We note that the only way to prevent such
attacks that we are aware of relies on zero-knowledge proofs [8,26] which are not
widely implemented primitives MLS is constrained to use.

On the Choice of UC Security. First, the UC framework lends itself well to strong
and comprehensive security definitions. Indeed, UC definitions naturally gravi-
tate towards strongest possible guarantees. In fact, formalizing weak guarantees
typically takes extra effort: Each of a protocol’s weaknesses must be explicitly
accounted for by providing the simulator all the necessary capabilities to emulate
the effect when interacting with the ideal functionality. In contrast, game-based
notions lend themselves well to simple definitions that focus on the core of a
problem — potentially deliberately ignoring certain attack vectors (such as ac-
tive attacks in many of the secure group-messaging work) for simplicity.

Second, the UC framework provides plenty of useful conventions and building
blocks, such as the interaction with complex setup functionalities. Third, the
UC framework allows us to directly formalize the guarantees, independent of the
concrete scheme. For instance, when an active attacker can inject messages, we
care about the potential effects and not so much about which exact bit-string the
attacker might craft has which effect — which is handled by the simulator in our
UC-based notion. (Game-based formalizations, such as [7], often circumvent this
by augmenting the primitive to output additional information specially needed
for formalizing the game, such as the interpretation of a given message.)

3.2 PKI Setup

In general, we model fully untrusted PKI, where the adversary can register ar-
bitrary keys for any party (looking ahead, security guarantees degrade if such
keys are used in the protocol). This especially models insider attacks.8 All func-
tionalities are formally defined in the full version [11].

8 In particular, we do not assume so-called key-registration with knowledge. This is
a significantly stronger assumption, typically not achieved by the heuristic checks
deployed in reality, and it is not needed for security of ITK.



On The Insider Security of MLS 11

Authentication Service (AS). The AS provides an abstract credential mechanism
that maps from user identities, e.g. phone numbers, to long-term identity keys
of the given user. Different credential mechanisms of MLS are abstracted by the
functionality Fas, which maintains a set of registered pairs (id, spk), denoting
that user id registered the key spk under their identity. It works as follows:

– A party id can check if a pair (id′, spk′) is registered.
– id can register a new key. In this case, Fas generates a pair (spk, ssk) (the key-

generation algorithm is a parameter), sends spk to id and registers (id, spk).
spk can be later retrieved at any time and then deleted.9 If id’s randomness
is corrupted, the adversary provides the key-generation randomness.

– The adversary can register an arbitrary pair (id, spk).
– When a party’s state is exposed, all secret keys it has generated but not

deleted yet are leaked to the adversary.

Key Service (KS). The KS allows parties to upload one-time key packages,
used to add them to groups while they are offline. This is abstracted by the
functionality Fks. Fks maintains pairs (id, kp), denoting a user’s identity and a
registered key package. For each (id, kp), Fks stores id’s long-term key spk which
authenticates the package and for some (id, kp), it stores the secret key. Fks

works as follows:

– A party id can request a key package for another party id′. Fks sends to id a
kp chosen by the adversary in an arbitrary way, i.e. the KS is fully untrusted.

– id can register a new key package. To this end, id specifies a long-term key
pair (spk, ssk) (reflecting that a key package may be signed), Fks generates a
fresh package (kp, sk) for id (using a package-generation algorithm that takes
as input (spk, ssk)), sends kp to id and registers (id, kp) with spk.

– id can retrieve all its secret keys (this accounts for the protocol not a priori
knowing which key package has been used to add it to the group).

– id can delete one of its secret keys. When its state is exposed, all secret keys
it generated but not deleted are leaked to the adversary.

Note that the adversary does not need to register its own packages, since it
already determines all retrieved packages.

Ideal-world variants. The ideal-world variant of AS, F iw
as , marks leaked and

adversarially registered long-term keys as exposed. The ideal-world variant of
KS, F iw

ks , stores the same mapping between key package and long-term key as
Fks. Intuitively, each key package for which the long-term key spk is exposed
(according to AS) is considered exposed. (For simplicity, our ideal world abstracts
away key packages. We believe this to be a good trade-off between abstraction
and fine-grained guarantees.) Both F iw

as and F iw
ks are not parameterized by key-

generation algorithms. Instead, on key registration, the adversary is asked to
provide a key pair.

9 The secret key must be fetched separately, because the key is registered by the
environment before the secret key is fetched by the protocol.



12 Joël Alwen, Daniel Jost, and Marta Mularczyk

3.3 Interfaces of the CGKA Functionality

This section explains the inputs to Fcgka, which defines the syntax of CGKA.

Proposals and commits. ITK is a so-called propose-and-commit variant of a
CGKA, where current group members can propose to add new members, re-
move existing ones, or update their own key material (for PCS) by sending out a
corresponding proposal message. The proposals do not affect the group state im-
mediately. Rather, they (potentially) take effect upon transitioning to the next
epoch: The party initiating the transition collects a list of proposals in a com-
mit message broadcast to the group. Upon receiving such a message, each party
applies the indicated proposals and transitions to the new epoch. For simplicity,
we delegate the buffering of proposals to the higher-level protocol.

Identity keys. In a real-world deployment, long-term identity keys maintained by
the Authentication Service (AS) are likely to be shared across groups. Hence, we
also delegate their handling to the higher-level messaging application invoking
CGKA. In general, in each group a party uses one signing key at a time. Upon
issuing an operation updating the CGKA secrets — i.e., proposing an update
or committing — the higher-level may decide to update the signing key as well.
Those operations, thus, explicitly take a signing public key spk as input.

Formal syntax. The functionality accepts the following inputs (for simplicity, we
treat the party’s identity id as implicitly known to the protocol):

– Group Creation: (Create, spk) creates a new group with id being the single
member, using the signing public key spk. (This input is only allowed once.)

– Add, Remove Proposals: p ← (Propose, add-idt) (resp., p ← (Propose,
rem-idt)) proposes to add (resp., remove) the party idt. It outputs a proposal
p, or ⊥ if either id is not in or idt already in (resp., not in) the group.

– Update Proposal: p← (Propose, up-spk) proposes to update the member’s
key material, and optionally the long-term signature verification key spk. It
outputs an update proposal message p (or ⊥ if id is not in the group).

– Commit: (c, w) ← (Commit, p⃗, spk) commits the vector of proposals p⃗ and
outputs the commit message c and the (optional) welcome message w. The
operation optionally updates the signing public key of the committer.

– Process: (idc, propSem)← (Process, c, p⃗) processes the message c commit-
ting proposals p⃗ and advances id to the next epoch.10 It outputs the com-
mitter idc and a vector conveying the semantics of the applied proposals.

– Join: (roster, idc)← (Join, w) allows id (who is not yet a group member) to
join the group using the welcome message w. It outputs the roster, i.e. the
set of identities and long-term keys of all group members, and the identity
idc of the member who committed the add proposal.

– Key: K ← Key queries the current application secret. This can only be
queried once per epoch by each group member (otherwise returning ⊥).

10 For simplicity, we require that the higher-level protocol that buffers proposals also
finds the list p matching c. This is without loss of generality, since ITK uses ML-
SPlaintext for sending proposals, and c includes hashes of proposals in p⃗.



On The Insider Security of MLS 13

root0 c1

c2

Alice

c3

(a) The passive case. Alice processes c1
and c2.

root0 c1

c2

Alice

c3

root1

Bob

(b) Bob joins using injected w′. We don’t
know where to connect the detached root.

root0 c1

c2

Alice

c3

root1 c4

Bob

(c) Bob (honestly) commits, creating c4
in detached tree.

root0 c1

c2

c3

c′
Alice

c4

Bob

(d) Alice commits with bad randomness
and re-computes c′ corresponding to w′.
We attach the root.

Fig. 1: An example execution with injections and bad randomness, and the cor-
responding history graph. For simplicity, proposal nodes are excluded.

3.4 History Graph

The functionality Fcgka uses history graphs to symbolically represent a group’s
evolution. A history graph is a labeled directed graph. It has two types of nodes:
commit and proposal nodes, representing all executed commit and propose op-
erations, respectively. Note that each commit node represents an epoch. The
nodes’ labels, furthermore, keep track of all the additional information relevant
for defining security. In particular, all nodes store the following values:

– orig: the party whose action created the node, i.e., the message sender;
– par: the parent commit node, representing the sender’s current epoch;
– stat ∈ {good, bad, adv}: a status flag indicating whether secret information

corresponding to the node is known to the adversary. Concretely, adv means
that the adversary created this node by injecting the message, bad means
that it was created using adversarial randomness (hence it is well-formed
but the adversary knows the secrets), and good means that it is secure.

Proposal nodes further store the following value:

– act ∈ {up-spk, add-idt-spkt, rem-idt}: the proposed action. The also keeps
track of the signature keys: add-idt-spkt means that idt is added with the
public key spkt, and up-spk reflects the respective input to the update pro-
posal.

Commit nodes further store the following values:

– pro: the ordered list of committed proposals;
– mem: the list of group members and their signature public keys;
– key: the group key;



14 Joël Alwen, Daniel Jost, and Marta Mularczyk

– chall: a flag indicating whether the application secret has been challenged,
i.e., chall is true if a random group key has been generated for this node,
and false if the key was set by the adversary (or not generated);

– exp: a set keeping track of parties corrupted in this node, including whether
only their secret state used to process the next commit message or also the
current application secret leaked.

3.5 Details of the CGKA Functionality

This section presents a simplified version of Fcgka. Compared to the precise
definition in the full version [11], we skip some less relevant border cases and
details. A pseudo-code description is in Figs. 2 to 4 and an example history
graph built by Fcgka is in Fig. 1. We next build some intuition about how Fcgka

works.

The passive case. For the start, consider environments that do not inject or
corrupt randomness (this relates to parts of the functionality not marked by
[Inj] or [RndCor]). Here, Fcgka simply builds a history graph, where nodes are
identified by messages, and the root is identified by the label root0 (see Fig. 1a).
Moreover, Fcgka stores for each party id a pointer Ptr[id] to its current history-
graph node. If, for example, id proposes to add idt, Fcgka creates a new proposal
node identified by a message p chosen by the adversary, and hands p to id. Some
other party can now commit p (having received it from the environment), which,
analogously, creates a commit node identified by c. Then, if a party processes c,
Fcgka simply moves its pointer. The graph is initialized by a designated party
idcreator, who creates the group with itself as a single member and can then invite
additional members.

If a party id is exposed, Fcgka records in the history graph which information
inherently leaks from its state. This will be used by the predicate safe (recall
that it determines if the epoch’s key is random or arbitrary). In particular, two
points are worth mentioning. First, we require that after outputting the group
key, id removes it from its state (this is important for forward secrecy of the
higher-level messaging protocol). Fcgka uses the flag HasKey[id] to keep track of
whether id outputted the key. Second, id has to store in its state key material
for updates and commits it created in the current epoch. Accordingly, upon id’s
exposure Fcgka sets the status stat of all such nodes to bad (note that leaking
secrets has the same effect as choosing them with bad randomness).

Injections. The parts of Fcgka related to injections are marked by comments
containing [Inj]. As an example, say the environment makes id process a commit
message c′ not obtained from Fcgka, and hence not identifying any node. Fcgka

first asks the adversary if c′ is simply malformed and, if this is the case, output
⊥ to id. If the message is not malformed, the functionality creates the new
commit node, allowing the adversary to interpret the sender orig′. We guarantee
agreement — if any other party transitions to this node, it will output the same
committer orig′, member set mem′, group key etc. (recall that it is contained in



On The Insider Security of MLS 15

Functionality Fcgka : Initialization

Parameters: predicate safe(c) (are group secrets in c secure), predicate inj-allowed(c, id)
(is injecting allegedly from id in c allowed), group creator’s identity idcreator.

Initialization

// Pointers, commit nodes, proposal nodes
Ptr[∗],Node[∗],Prop[∗]← ⊥
// Welcome message to commit message mapping
Wel[∗]← ⊥
RndCor[∗]← good; HasKey[∗]← false

rootCtr← 0

Input (Create, spk) from idcreator

// The group can be created only once.
req Node[root0] = ⊥ ∧ *usable-spk(idcreator, spk)
// Create the root node and transition idcreator there.
Node[root0]← commit node with orig = idcreator,

mem = {(idcreator, spk)} and stat = RndCor[idcreator].
Ptr[idcreator]← root0
HasKey[idcreator]← true

Functionality Fcgka : Propose and Commit

Input (Propose, act), act ∈ {up-spk, add-idt, rem-idt}
from id

Send id and all inputs to the adv. and receive ack.
// Adv. can reject invalid inputs.
if ¬*require-correctness(‘prop′, id, act) then

req ack
// Compute the proposal node this action creates.
P ← proposal node with par = Ptr[id], orig = id,

act = act, stat = RndCor[id].
if act = add then

// Adv. can choose the key package for adds.
Receive spkt from the adversary
P.act← add-spkt

// Insert P into HG.
Receive p from the adversary.
if Prop[p] = ⊥ then

// Passive case: created a new node.
Prop[p]← P

else
// [Inj] [RndCor] Re-computing existing p.
assert *consistent-nodes(Prop[p], P )

if RndCor[id] then
// [RndCor] Signed with bad randomness.
Notify F iw

as that id’s spk is compromised.
return p

Input (Commit, p⃗, spk) from id

Send id and all inputs to the adv. and receive ack.
// Adv. can reject invalid inputs.
if ¬*require-correctness(‘comm′, id, p⃗, spk) then

req ack
// [Inj] Adv. interprets injected proposals.
for p ∈ p⃗ s.t. Prop[p] = ⊥ do

Prop[p]← proposal node with par = Ptr[id],
stat = adv, and orig and act chosen
by the adversary.

// Compute the commit node this action creates.
C ← commit node with par = Ptr[id], orig = id,

stat = RndCor[id] pro = p⃗, and
mem = *members(Ptr[id], id, p⃗, spk)

// Insert C into HG.
Receive (c, rt) from the adversary.
if Node[c] = ⊥ ∧ rt = ⊥ then

// Passive case: create new node.
Node[c]← C

else if Node[c] ̸= ⊥ then
// [Inj] [RndCor] Re-computing injected c.
assert *consistent-nodes(Node[c], C)

else
// [Inj] [RndCor] c explains a detached root.
Set Node[rootrt].par← Ptr[id] and then replace

each occurrence of rootrt in the HG by c.
assert *consistent-nodes(Node[c], C)

// [Inj] Check that inserting C does not violate au-
thenticity and HG-consistency.
assert *cons-invariant ∧ *auth-invariant
if RndCor[id] then

// [RndCor] Commit signed with bad rand.
Notify F iw

as that id’s current spk is compromised.
Receive w from the adversary.
if Wel[w] ̸= ⊥ then

req *consistent-nodes(Wel[w], C)
Wel[w]← c.
return (c, w)

Fig. 2: Fcgka: initialization, propose and commit. Parts related to injections and
randomness corruptions are marked by comments containing [Inj] and [RndCor],
respectively.



16 Joël Alwen, Daniel Jost, and Marta Mularczyk

Functionality Fcgka : Process and Join

Input (Process, c, p⃗) from id

Send id and all inputs to the adv. and receive ack.
// Adv. can reject invalid inputs.
if ¬*require-correctness(‘proc′, id, c, p⃗) then

req ack
// [Inj] Adv. interprets injected proposals.
for p ∈ p⃗ s.t. Prop[p] = ⊥ do

Prop[p]← proposal node with par = Ptr[id],
stat = adv, and orig and act chosen
by the adversary.

// Commit node id expects to transition to.
Receive from the adversary (orig′, spk′).
C ← commit node with par = Ptr[id], orig = orig′,

pro = p⃗ , mem = *members(Ptr[id], id, p⃗, spk′)
// [Inj] If c is injected, then assign a node to it.
if Node[c] = ⊥ then

// If c explains detached root, let adv. specify it.
Receive rt from the adversary.
if rt ̸= ⊥ then

Set Node[rootrt].par← Ptr[id] and replace
each occurrence of rootrt in the HG by c.

else
Node[c]← C
Node[c].stat← adv

// Check that id transitions to expected node.
assert consistent-nodes(Node[c], C)
// Transition id.
if ∃p ∈ p⃗ : Prop[p].act = rem-id then

Ptr[id]← ⊥
else

Ptr[id]← c
HasKey[id]← true

// Check that invariants are not violated.
assert *cons-invariant ∧ *auth-invariant
return *output-process(C)

Input (Join, w) from id

Send id and all inputs to the adv. and receive ack.
req ack
// [Inj] If w is injected, then assign a commit
node to it.
if Wel[w] = ⊥ then

// If w leads to existing node, the adversary
can specify it.
Receive c from the adversary.
if c ̸= ⊥ then

Wel[w]← c
else

// Create detached root.
rootCtr++
Wel[w]← rootrootCtr
Node[rootrootCtr]← commit node with

par = ⊥, pro = ⊥, stat = adv, and
orig and mem chosen by the adv.

// Transition id.
Ptr[id]←Wel[w]
HasKey[id]← true

// Check that joining id does not violate authen-
ticity and HG-consistency.
assert *cons-invariant ∧ *auth-invariant
return *output-join(Node[Wel[w]])

Functionality Fcgka : Corruptions and Group Key

Input (Expose, id) from the adversary

// Record leaked information: if id is in the group, its
state contains:
if Ptr[id] = ⊥ then

// 1) secrets needed to process other parties’ mes-
sages and potentially the group key
Node[Ptr[id]].exp +← (id,HasKey[id])
// 2) secrets needed to process id’s own messages
For each commit or update-proposal node with
orig = id and par = Ptr[id], set stat← bad.
// 3) the signing key
Notify F iw

as that id’s current spk is compromised.
// Whether id is in the group or not, its state contains
secrets needed to process welcome messages.
for c s.t. *can-join(Node[c], id) do

Node[c].exp +← (id, true)
// Disallow adaptive corruptions in some cases.
This input is not allowed if ∃c s.t Node[c].chall = true

and ¬safe(c)

Input (CorrRand, id, b), b∈{good, bad} from adv.

RndCor[id]← b

Input Key from id

// Only possible if id has the key.
req Ptr[id] ̸= ⊥ ∧ HasKey[id]
// Set the key if id is the first party fetching it in
its node. (Guarantees consistency across parties.)
if Node[Ptr[id]].key = ⊥ then

if safe(Ptr[id]) then
Set key to a fresh random key and chall to
true.

else
Let the adversary choose key and set chall
to false.

// id should remove the key from his state
HasKey[id]← false

return Node[Ptr[id]].key

Fig. 3: Fcgka: inputs process, join, key and corruptions. Parts related to injections
are marked by comments containing [Inj].



On The Insider Security of MLS 17

Functionality Fcgka : Helpers

helper *require-correctness(‘comm′, id, c, p⃗)

Returns true if a) c and each p ∈ p⃗ identifies a node
with stat ̸= adv, and b) Ptr[id] = Node[c].par, and c)
p⃗ = Node[c].pro.

helper *require-correctness(‘proc′, id, p⃗, spk)

Returns true if *usable-spk(id, spk) and ∀p ∈ p⃗ :
Prop[p] ̸= ⊥ and the vector can be committed by id
(in its current node) according to MLS spec.

helper *require-correctness(‘prop′, id, act)

Returns true if act=up-spk and *usable-spk(id, spk)
or if act = rem-idt and removing idt is allowed accord-
ing to MLS spec.

helper *usable-spk(id, spk)

Returns true if if either spk is id’s current spk, or id
has the secret key according to F iw

as .

helper *members(C, id, p⃗, spk)

Computes the member set after id, currently in C,
calls commits with inputs p⃗ and spk, according to
MLS spec. For each member, the set contains a tuples
(id′, spk′), indicating the member’s identity and his
identity key.

helper *can-join(C, id)

Returns true if C.pro adds id with spk and, ac-
cording to F iw

ks , id has a secret key for some key-
package registered together with spk.

helper *output-process(C)

Computes committer idc and proposal semantics
propSem, returned by Process when transitioning
into C.

helper *output-join(C)

Computes roster and committer idc, returned
when joining into C.

helper *consistent-nodes(N,N ′)

Returns true if all values in proposal or commit
nodes N and N ′ except status match.

helper *auth-invariant

Returns true if there is no proposal or commit
node s.t. stat = adv and inj-allowed(par, id) is
false, where par is the node’s parent.s

helper *cons-invariant

Returns true if HG has no cycles, each id is in
the member set of Ptr[id] and for each non-root c,
the parent of each p in c’s pro vector is c’s parent.

Fig. 4: Additional helpers for Fcgka.

the output of process). Note that we also guarantee correctness — if the input
of process is an honest message c generated by Fcgka, then the adversary cannot
make the commit fail.

A more challenging scenario is when the environment injects a welcome mes-
sage w′. Now there are two possibilities. First, w′ could lead to an existing node.
In this case, Fcgka asks the adversary to provide the node c and records that
w′ leads to it. We require agreement — any party subsequently joining using
w′ transitions to c. However, in general, we cannot expect that the adversary
(i.e., simulator), given an arbitrary w′ computed by the environment, can come
up with the whole commit message c′ and its position in the history graph.11

Therefore, in this case Fcgka creates a detached root, identified by a unique la-
bel rootrootCtr, where rootCtr is a counter. If at some later point, e.g. after an
additional commit by the newly joined party, the environment injects c′ corre-
sponding to w′, then the root is attached and re-labeled as c′. This scenario is
depicted in Figs. 1b to 1d. We require consistency — when creating a detached
root, the adversary chooses the member set, but when it is attached, we check
that it matches the new parent.

11 For instance, say the environment computes a long chain of commits in its head and
injects the last one. It is not clear how to construct a protocol for which it is possible
to identify all ancestors, without including all their hashes in w.



18 Joël Alwen, Daniel Jost, and Marta Mularczyk

Corrupted randomness. The relevant parts of Fcgka are marked by [RndCor].
Corrupted randomness leads to two adverse effects. First, the adversary can
make parties re-compute existing messages, leading to the following scenarios:

– A party re-computes a message it already computed. In this case, Fcgka only
checks that the previous message was computed with the same inputs.

– A party re-computes a message previously injected by the environment. Here,
Fcgka verifies that the semantics of the existing node chosen by the adversary
upon injection are consistent with the correct semantics computed using the
party’s inputs. (Technically, instead of creating a new node, Fcgka checks
that the node it would have created is consistent with the existing one.)

– A party re-computes a commit c′ corresponding to an injected welcome mes-
sage (see Fig. 1d). In this case, Fcgka attaches the detached root, just like
in case c′ was injected into process.

Second, we note that each protocol message in MLS is signed, potentially
using ECDSA, which reveals the secret key in case bad randomness is used.
Therefore, every time a party id generates a message with bad randomness,
Fcgka notifies Fas, which marks all long-term keys of id as exposed.

Adaptive corruptions. Adaptive corruptions become a problem if an exposure
reveals secret keys that can be used to compute a key that has already been
outputted by Fcgka at random, i.e. a “challenge” key. Since fully adaptive secu-
rity is not achieved by TreeKEM (without resorting to programmable random
oracles), we restrict the environment not to corrupt if for some nodes with the
flag chall set to true this would cause safe to switch to false.12

4 The Insider-secure TreeKEM Protocol

This section provides a (high-level) description of the Insider-Secure TreeKEM
(ITK) protocol. A formal description of the protocol can be found in the full
version [11].

Distributed state. The primary object constituting the distributed state of the
ITK protocol is the ratchet tree τ . The ratchet tree is a labeled binary tree (i.e., a
binary tree where nodes have a number of named properties), where each group
member is assigned to a leaf and each internal node represents the sub-group of
parties whose leaves are part of the node’s sub-tree.

To give a brief overview, each node has two (potentially empty) labels pk
and sk, storing a key pair of a PKE scheme. Leaves have an additional label
spk, storing a long-term signature public key of the leaf’s owner. The root has
a number of additional shared symmetric secret keys as labels (see below). See
Fig. 5 for an example of a ratchet tree with the labels. The public part of τ

12 In game based definitions, such corruptions are usually disallowed, as they allow to
trivially distinguish. Our notion achieves the same level of adaptivity.



On The Insider Security of MLS 19

symmetric keys
(pkABC∗, skABC∗)

(pkAB , skAB )

(pkA, skA)
spkA

Alice

(pkB , skB )
spkB

Bob

(pkC∗, skC∗)

(pkC , skC )
spkC

Charlie

symmetric keys
(pk′ABC∗, sk

′
ABC∗)

(pkA, skA)
spkA

Alice

(pkD , skD )
spkD

Dave

(pk′C∗, sk
′
C∗)

(pk′C , sk′C )
spkC

Charlie

Fig. 5: (Left) An example ratchet tree τ for a group with three members. For
Invariant (1), the public labels (green) are known to all parties. For Invariant
(2), the secret labels (red) in a node v are only known to parties in v’s subtree,
e.g. Bob knows skB , skAB and skABC∗. (Right) the tree after Charlie commits
removing Bob and adding Dave. The empty node is blank. Messages to Alice
and Dave are encrypted under its resolution (pkA, pkD).

consists of the tree structure, the leaf assignment, as well as all public labels,
i.e., those storing public keys. The secret part consists of the labels storing secret
keys and the symmetric keys. The ITK protocol maintains two invariants:

Invariant (1): The public part of τ is known to all parties.
Invariant (2): The secret labels in a node v are known only to the owners
of leaves in the sub-tree rooted at v.

Evolving the tree. Each epoch has one fixed ratchet tree τ . Proposals represent
changes to τ , and a commit chooses which changes should be applied when
advancing to the next epoch.

A remove proposal represents removing from τ all keys known to the removed
party (see Fig. 5). That is, its leaf is cleared, and all keys in its direct path — i.e.,
the path from the party’s leaf to the root — are blanked, meaning that all their
labels are cleared. This is followed by shrinking the tree by removing unneeded
leaves from the right side of the tree. Note that until a blanked node gets a new
key pair assigned (as explained shortly), in order to encrypt to the respective
subgroup one has to encrypt to the node’s children instead (and recursing if
either child is blanked as well). The minimal set of non-blanked nodes covering
a given subgroup is called the subgroup’s resolution.

An update proposes removing all keys currently known to the party (and
hence possibly affected by state leakage), and replacing the public key in their
leaf (and possibly the long-term verification key) by a fresh one, specified in the
proposal. Hence, τ is modified as in a remove proposal, but instead of clearing
the leaf, its key is replaced.

Finally, an add proposal indicates the new member’s identity (defined on a
higher application level), its long-term public key from the AS, and an ephemeral
public key from KS. It represents the following modification: First, a leaf has to
be assigned, with the public label set according to the public key from the pro-
posal. If there exists a currently unused leaf, then this can be reused, otherwise



20 Joël Alwen, Daniel Jost, and Marta Mularczyk

a new leaf is added to the tree. In order to satisfy invariant (2), the party com-
mitting the add proposal would then have to communicate to the new member
all secret keys on its direct path. Unfortunately, it can only communicate the
keys for nodes above the least common ancestor of its and the new member’s
leaves. For all other nodes, the new member is added to a so-called unmerged
leaf set, which can be accounted for when determining the node’s resolution.

Re-keying. Whenever a party commits a sequence of proposals, they additionally
replace their leaf key (providing an implicit update) and re-key their direct path.
In order to maintain invariant (1) on the group state, the committer includes all
new public keys in the commit message.

To minimize the number of secret keys needed to be communicated as part
of the commit message, the committer samples the fresh key pairs along the
path by “hashing up the tree”. That is, the committer derives a sequence of path
secrets si, one for each node on the path, where s0 for the leaf is random and si+1

is derived from si using the HKDF.Expand function. Then, each si is expanded
again (with a different label) to derive random coins for the key generation. The
secret sn for the root, called the commit secret, is not used to generate a key
pair, but instead used to derive the epoch’s symmetric keys (see below). This
implies that each other party only needs to be able to retrieve the path secret of
the least common ancestor of their and the committer’s leaves. Hence, invariant
(2) can be maintained by including in the commit each path secret encrypted to
(the resolution of) the node’s child not on the direct path.

Note that for PCS, the new secret keys must not be computable using the
committer’s state from before sending the commit (we want that a commit heals
the committer from a state). Hence, the committer simply stores all new secrets
explicitly until the commit is confirmed.

Key schedule. Each epoch has several associated symmetric keys, four of which
are relevant for this paper: The application secret is the key exported to the
higher-level protocol, the membership key is used for protecting message au-
thenticity, the init secret is mixed into the next epoch’s key schedule, and the
confirmation key ensures agreement on the cryptographic material.

The epoch’s keys are derived from the commit secret computed in the re-
keying process, mixed with (some additional context and) the previous epoch’s
init secret. This ensures that only parties who knew the prior epoch’s secrets
can derive the new keys. One purpose of this is improving FS: corrupting a
party in an epoch, say, 5 must not allow to derive the application secret for a
prior epoch, say, 3. As, however, some internal nodes of the ratchet tree remain
unchanged between epochs 3 and 5, it might be possible for the adversary to
decrypt the commit secret of epoch 3, given the leakage from epoch 5. Mixing
in the init secret of epoch 2 thus ensures that this is information is of no value
per se (unless some party in epoch 2 was already corrupted.)

Welcoming members. Whenever a commit adds new members to the group,
the committer must send a welcome message to the new members, providing



On The Insider Security of MLS 21

them with the necessary state. First, the welcome message contains the public
group information, such as the public part of the ratchet tree. Second, it includes
(encrypted) joiner secret, which combines current commit secret and previous
init secret and allows the new members to execute the key schedule. Finally, it
contains the seed to derive the secrets on the joint path, which the committer
just re-keyed. (Recall that for the other nodes on the new party’s direct path
they are simply added to the unmerged leaves set, indicating that they do not
know the corresponding secrets.) The above seeds, as well as the joiner secret,
are encrypted under the public key (obtained from KS), specified in the add
proposal (which thus serves dual purposes).

Security mechanisms. All messages intended for existing group members — com-
mit messages and proposals — are subject to message framing, which binds them
to the group and epoch, indicates the sender, and protects the message’s authen-
ticity. The sender first signs the group identifier, the epoch, his leaf index, and the
message using his private signing key. This in particular prevents impersonation
by another (malicious) group member.

Since the signing key, however, is shared across groups and its replacement
is also not tied to the PCS guarantees of the group, each package is additionally
authenticated using shared key material. Proposals are MACed using the mem-
bership key, while commit messages are protected using the confirmation tag
(see below). Further, commit messages that include remove proposals are addi-
tionally MACed using the membership key, since the confirmation tag cannot
be verified by the removed members. In summary, to tamper or inject messages
an adversary must both know at least the sender’s signing key as well as the
epoch’s symmetric keys.

The protocol makes use of two (running) hashes on the communication tran-
script to authenticate the group’s history. For authentication purposes, it uses
the confirmed transcript hash, which is computed by hashing the previous epoch’s
interim transcript hash, the content of the commit message, and its signature.
The interim transcript hash is then computed by hashing the confirmed tran-
script hash with the confirmation tag. Each commit message moreover contains
a so-called confirmation tag that allows the receiving members to immediately
verify whether they agree on the new epoch’s key-schedule. To this end, the
committer computes a MAC on the confirmed transcript hash under the new
epoch’s confirmation key.

Finally, ITK uses a mechanism called tree signing to achieve a certain level
of insider security. We discuss this aspect in detail in Sec. 6.3.

Remark 1 (Simplifications and Deviations). While ITK closely follows the IETF
MLS protocol draft, there are some small deviations as well as some omissions. In
particular, our model assumes a fixed protocol version and ciphersuite, and omits
features such as advanced meta-data protection, external proposals and commits,
exporters, preshared keys, as well as extensions. We discuss those deviations and
their implications on our results in more detail in the full version [11].



22 Joël Alwen, Daniel Jost, and Marta Mularczyk

5 Security of ITK

Security of ITK is expressed by the predicates safe(c, id) and inj-allowed(c, id),
where c is a commit message identifying a history graph node and id is a party.
The predicates are formally stated in Fig. 6. They are defined using recursive
deduction rules know(c, id) and know(c, ‘epoch’), indicating that the adversary
knows id’s secrets (such as the leaf secret), and that it knows the epoch secrets
(such as the init secret), respectively. In more detail:

– know(c, id) consists of three conditions, the last two being recursive. Condi-
tion a) is true if id’s secrets in c are known to the adversary because they
leaked as part of an exposure or were injected by the adversary in id’s name
(due to many attack vectors, this can happen in many ways, see Fig. 6). The
conditions b) and c) reflect that in ITK only commits sent by or affect id
(id updates, is added, or removed) are guaranteed to modify all id’s secrets.
If c is not of this type, then know(c, id) is implied by know(Node[c].par, id)
(condition b)). If a child c′ of c is not of this type, then it is implied by
know(c′, id) (condition c)).

– know(c, ‘epoch’) takes into account the fact that ITK derives epoch secrets
using the initSecret from the previous epoch, and hence achieves slightly
better FS compared to parties’ individual secrets.
In particular, the adversary knows the epoch secrets in c only if it corrupted
a party in c, or knows the epoch secrets in c’s parent and knows individual
secret of some party id in c. The latter condition allows the adversary to
process c using id’s protocol and is formalized by the *can-traverse predicate.

– The only difference between ¬safe(c) and know(c, ‘epoch’) is that the appli-
cation secret is not leaked if id is exposed in c after outputting it.

With the predicates safe and inj-allowed, we can now state the following
security statement for ITK.

Theorem 1. Assuming that PKE is IND-CCA secure, and that Sig is EUF-
CMA secure, then the ITK protocol securely realizes (F iw

as ,F iw
ks ,Fcgka) in the

(Fas,Fks,Gro)-hybrid model, where Fcgka uses the predicates safe and inj-
allowed from Fig. 6 and calls to HKDF.Expand, HKDF.Extract and MAC func-
tions are replaced by calls to the global random oracle Gro.

Proof (Sketch). We here provide the high level proof idea; the complete proof
is presented in the full version [11]. The proof proceeds in three steps. The first
step is to show that various consistency mechanisms, such as MACing the group
context, guarantee consistency of the distributed group state. More precisely,
the real world (Hybrid 1) is indistinguishable from the following Hybrid 2: The
experiment includes a modified CGKA functionality, Freal

cgka, which differs from
Fcgka in that it uses safe = false and inj-allowed = true. The functionality
interacts with the trivial simulator who sets all keys and messages according to
the protocol. The second step is to show that IND-CCA of the PKE scheme
guarantees confidentiality: Hybrid 2 is indistinguishable from Hybrid 3 where



On The Insider Security of MLS 23

Predicate safe

Knowledge of parties’ secrets.

know(c, id) ⇐⇒
a) // id’s state leaks directly e.g. via corruption (see below):

*state-directly-leaks(c, id) ∨
b) // know state in the parent:

(Node[c].par ̸= ⊥ ∧ ¬*secrets-replaced(c, id) ∧ know(Node[c].par, id)) ∨
c) // know state in a child:

∃c′ : (Node[c′].par = c ∧ ¬*secrets-replaced(c′, id) ∧ know(c′, id))

*state-directly-leaks(c, id) ⇐⇒
a) // id has been exposed in c:

(id, ∗) ∈ Node[c].exp ∨
b) // c is in a detached tree and id’s spk is exposed

∃rt : *ancestor(rootrt, c) ∧ ∃spk : (id, spk) ∈ Node[c].mem ∧ spk ∈ Exposed ∨
c) // id’s secrets in c are injected by the adversary:

((id, spk) ∈ Node[c].mem ∧ *secrets-injected(c, id))

*secrets-injected(c, id) ⇐⇒
a) // id is the sender of c and c was injected or generated with bad randomness

(Node[c].orig = id ∧ Node[c].stat ̸= good) ∨
b) // c commits an update of id that is injected or generated with bad randomness

∃p ∈ Node[c].pro : (Prop[p].act = up-∗ ∧ Prop[p].orig = id ∧ Prop[p].stat ̸= good) ∨
c) // c adds id with corrupted spk

∃p ∈ Node[c].pro : (Prop[p].act = add-id-spk ∧ spk ∈ Exposed)

*secrets-replaced(c, id) ⇐⇒ Node[c].orig = id ∨ ∃p ∈ Node[c].pro :
Prop[p].act ∈ {add-id-∗, rem-id} ∨ (Prop[p].act = up- ∗ ∧ Prop[p].orig = id)

Knowledge of epoch secrets.

know(c, ‘epoch’) ⇐⇒ Node[c].exp ̸= ∅ ∨ *can-traverse(c)

// Can the adversary process c using exposed individual secrets and parent’s init secret?
*can-traverse(c) ⇐⇒
a) // orphan root with a corrupted signature public key:

(Node[c].par = ⊥ ∧ (∗, spk) ∈ Node[c].mem ∧ spk ∈ Exposed) ∨
b) // commit to an add proposal that uses an exposed key package:

(∃p ∈ Node[c].pro : Prop[p].act = add-id-spk ∧ spk ∈ Exposed) ∨
c) // secrets encrypted in the welcome message under an exposed leaf key

*leaf-welcome-key-reuse(c) ∨
d) // know necessary info to traverse the edge:

(know(c, ∗) ∧ (c = root∗ ∨ know(Node[c].par, ‘epoch’)))

*leaf-welcome-key-reuse(c) ⇐⇒ ∃id, p ∈ Node[c].pro : Prop[p].act = add-id-∗
∧ ∃cd : *ancestor(c, cd) ∧ (id, ∗) ∈ Node[cd].exp
∧ no node ch with *secrets-replaced(ch, id) on c-cd path

Safe and can-inject.

safe(c) ⇐⇒ ¬
(
(∗, true) ∈ Node[c].exp ∨ *can-traverse(c)

)
inj-allowed(c, id) ⇐⇒ Node[c].mem[id] ∈ Exposed ∧ know(c, ‘epoch’)

Fig. 6: The safety and injectability predicates for the CGKA functionality re-
flecting the sub-optimal security of the ITK protocol.



24 Joël Alwen, Daniel Jost, and Marta Mularczyk

application and membership secrets in safe epochs are random, i.e. the original
safe is restored. The final step is to show that unforgeability of the MAC and
signature schemes implies that Hybrid 3 is indistinguishable from the ideal world,
where the original inj-allowed is restored as well. (Considering confidentiality
before integrity, while somewhat unusual, is necessary, because we must first
argue secrecy of MAC keys. We note that IND-CPA would be anyway insufficient,
because some injections are inherently possible.)

In this overview, we sketch the core of our proof, which is the second step
concerning confidentiality. For simplicity, we do not consider randomness corrup-
tions. We now proceed in two parts: first, we consider only passive environments,
which do not inject messages. In the second part, we show how to modify the
passive strategy to deal with active environments.

Part 1: Passive security. For simplicity, consider Frand
cgka, which uses the original

safe only for the first (safe) key it sets (think of the first step in the hybrid argu-
ment). The goal is to show that IND-CPA security of the PKE scheme implies
that Freal

cgka and Frand
cgka, both with the trivial simulator, are indistinguishable for

passive environments.
Unfortunately, already the passive setting turns out challenging for the fol-

lowing reason: The path secrets in a (safe) commit c are encrypted under public
keys created in another commit c′, which contains encryptions of the corre-
sponding secret keys under public keys created in another commit c′′, and so on.
Moreover, the keys are related by hash chains (of path secrets). Even worse, the
environment can adaptively choose who to corrupt, revealing some subset of the
secret keys, which mean that we cannot simply apply the hybrid argument to
replace encryptions of secret keys by encryptions of zeros.13

To tackle adaptivity and related keys, we adapt the techniques of [33,10].
Namely, we define a new security notion for PKE, called (modified) Generalized
Selective Decryption (GSD),14 which generalizes the way ITK uses PKE together
with the hash function to derive its secrets. Roughly speaking, the GSD game
creates a graph, where each node stores a secret seed. The adversary can instruct
the game to 1) create a node with a random seed, 2) create a node v where the
seed is a hash of the seed of another node u, 3) use a (different) hash of the seed
in a node u to derive a key pair, use the public key to encrypt the seed in a node
v and send the public key and ciphertext to the adversary. Each of the actions 2)
and 3) creates an edge (u, v) to indicate their relation. Moreover, the adversary
can adaptively corrupt nodes and receive their seeds. For the challenge of the
game, she receives either a seed from a sink node or a random value. (See the
full proof for a precise definition.)15 It remains to be shown that 1) GSD security

13 Observe that at the time a ciphertext is created we do not know if the key it contains
will be used to create a safe epoch, or if some receiver will be corrupted.

14 GSD was first defined for symmetric encryption [33] and then extended to prove
security of TreeKEM [10]. Our notion is an extension of [10].

15 The GSD game in the full proof is inherently more complex. For example, recall
that joiner secret is a hash of init and commit secrets. Accordingly, the adversary is
allowed to create nodes whose seeds are hashes of two other seeds.



On The Insider Security of MLS 25

implies secrecy of ITK keys, and 2) IND-CPA security implies GSD security. The
latter proof is adapted from [10], so we now focus on 1).

To be a bit more concrete, assume an environment Z distinguighes between
Freal

cgka and Frand
cgka (each with the trivial simulator). We construct an adversary

A against GSD security of the PKE scheme in the standard way: A executes
the code of Freal

cgka and the trivial simulator, except for all honest commits and
updates, public keys and epoch keys are created using the GSD game. If a party
is corrupted, A corrupts all GSD nodes needed to compute its state. Finally, A
replaces the first key outputted by Freal

cgka by its challenge.

Part 2: Injections. We sketch the main points of how the strategy from the
passive setting can be adapted to show that IND-CCA security of PKE implies
secrecy of keys in the presence of active environments. There are three types of
messages Z can inject: proposals, commits and welcome messages. Proposals are
the least problematic. Say Z injects an update proposal p′ with public key pk′ on
behalf of Alice. Since Alice will never process a commit containing p′, allegedly
from her, that she did not send, all epochs created by such commits and their
descendants are not safe until Alice is removed. This also removes pk′ and any
secrets encrypted to it. So, A can generate all secrets sent to pk′ itself, as they
don’t matter for any safe epoch.

Now say Z makes Bob process an injected commit c′ and assume Bob uses
an honest key, i.e., one created in the GSD game for an uncorrupted node. Say
Bob’s ciphertext in c′ is ctxt. There are a few possible scenarios:

– A has never seen ctxt (e.g. because Z computed a commit in his head).
Clearly, IND-CPA is not sufficient here. Hence, we extend the GSD game by
a decrypt oracle (which does not work on ciphertexts that allow to trivially
compute the challenge) and prove that the new notion is implied by IND-
CCA.

– A generated ctxt using the GSD game, as part of a commit message c creating
a safe epoch (note that c and c′ may differ in places other than ctxt). Now the
decrypt oracle cannot be used, but fortunately the confirmation tag comes to
the rescue. Indeed, any tag accepted by Bob allows A to extract the joiner in
c from Z’s RO queries (we soon explain how) and compute the application
secret in c. Hence, A can request GSD challenge for this secret and win.
For simplicity, assume c and c′ are siblings, i.e., Bob is currently in c’s parent
(see the full proof for other cases). Recall that the tag is a MAC under
the new epoch’s confirmation key over the transcript hash, and that the
transcript hash contains the whole commit message c or c′ (except the tag).
The MAC is modeled as an RO call on input (confirmation key, transcript
hash), so the only way for Z to compute a valid tag for c′ is to query the RO
on input (confirmation key in c′, transcript hash updated with c′). Moreover,
the confirmation key is a hash of the joiner secret, so A can extract the
joiner secret in c′ as well (note that the joiner secret is never encrypted).
Now observe that the joiner secret is a hash of the init and commit secrets.
Moreover, the init secret is the same in c and c′, since they are siblings, as



26 Joël Alwen, Daniel Jost, and Marta Mularczyk

is the commit secret due to ctxt being the same. Hence, the joiner secret of
c is the same as the one extracted from c′. ⊓⊔

6 Insider Attacks

We first discuss three insider attacks on the design of MLS Draft 10 (as it stood
prior to applying the fixes proposed as part of this work). Each is practical,
yet violates the design goals of MLS. Next, we present an insider attack on
MLS made possible when its ciphersuite is replaced by a weaker one that still
meets assumptions deemed sufficient in previous analyses. Together these attacks
highlight the limitations of prior security notions.

6.1 An Attack on Authenticity in Certain Modes

MLS supports two wire formats for packets: MLSCiphertext, meant to provide
extra metadata protection by applying an extra layer of authenticated symmetric
encryption, and MLSPlaintext, allowing for additional server-assisted efficiency
improvements. As part of our analysis, we realized that an MLSCiphertext (unin-
tentionally) provides stronger authentication guarantees than an MLSPlaintext:
Forging the latter requires only signature keys of a group member while the for-
mer also requires knowing the current epoch’s key. This results in weaker than
expected PCS since signature keys will be rotated much less frequently than
epoch keys: Despite a party having issued an update proposal or a commit the
adversary may, thus, still be able to forge certain types of messages, such as
proposals.

Theorem 2. The ITKAtk-1 protocol, which behaves like the ITK protocol but
does not include membership tags, does not securely realize (F iw

as ,F iw
ks ,Fcgka) in

the (Fas,Fks,Gro)-hybrid model when Fcgka uses the predicates safe and inj-
allowed from Fig. 6.

Proof (Sketch). Let S be an arbitrary simulator and consider the following
environment Z that initially sets up a group consisting of three parties A, B,
and C in the same group state. In this state, Z then corrupts party A, hence
learns its signing key sskA. Then, Z instructs A to issue a commit message c
with an empty list of proposals and the old spkA. (This causes A to update its
ephemeral key and resample the compromised path in the ratchet tree, but keep
its long-term signing key.) Now, Z crafts a proposal message p∗ that removes
C on behalf of A, according to the (modified) protocol ITKAtk-1. Note that all
the included values are public and thus known to the environment, and Z can
sign the proposal using the leaked sskA. (Important: note that the environment
does not instruct A do create such a proposal command, but forges it!) Finally,
Z instructs B to commit to this proposal p∗ and lets B process the respective
commit message c∗. If B accepts and outputs the correct semantics for p∗, then
Z returns 1, otherwise it returns 0.



On The Insider Security of MLS 27

It is easy to see that Z outputs 1 when interacting with the hybrid world
as p∗ is a valid proposal created identically to how the honest party A would.
Now consider the ideal world functionality and observe that after A issues the
commit c2 all parties are in the same state, which is further marked as good,
i.e., with stat = good for it is created by an honest party with good random-
ness. We now observe that functionality’s authenticity invariant will fail at the
end of B committing p∗, as inj-allowed(c, A) (whether the adversary can inject
on behalf of A) in the parent state (the one created by A’s second commit) as
know(c, ‘epoch′) will return false indicating that the adversary does not know
the symmetric key of said state. Hence, when interacting with the ideal func-
tionality the authenticity invariant prevents B from successfully committing to
the proposal p∗, causing Z to return 0. ⊓⊔

To bring the authenticity guarantees in line, we proposed adding a MAC to
MLSPlaintexts [15].

6.2 Breaking Agreement

The way the transcript hash was computed and included in the confirmation tag
in the original proposal of MLS lead to counter-intuitive behavior, where parties
think they are in-sync and agree on all relevant state when they are not.

More concretely, the package’s signature was not included into the confirmed
transcript hash, but it was included into the interim transcript hash. Suppose
that a malicious insider creates two valid commit messages c and c′, which only
differ in the signatures, and sends them to Alice and Bob respectively. If both
signatures check out (which for most signatures an insider can achieve) then Alice
and Bob both end up with the same confirmed transcript hash and, thus, with
the same confirmation tag. Therefore, they both transition to the new epoch,
agree on all epoch secrets and can exchange application messages. However,
MLS messages Alice sends now include confirmation tags computed using the
mismatching interim transcript hash, and hence are not accepted by Bob.

In our security model this shows up as a break on the notion of a group state,
as formalized by the history graph nodes. That is, in our model each history
graph node is supposed to correspond to a well-defined and consistent group
state. The way the transcript hash used to be computed violated this property,
as on the one hand parties had the same key and could exchange messages (same
state) while on the other hand parties would no longer be able to process each
other’s commit messages (different states). In particular, when processing two
such related commit messages c and c′ that only differ in the signature, in the
ideal functionality Fcgka the parties end up in two distinct states. Yet, in the
real world execution the parties would still accept each other’s proposals, which
in Fcgka is ruled out by the consistency invariant.

Theorem 3. Assume the signature scheme Sig does not have unique signatures
(this strong property is not achieved by the schemes used by MLS). Then, the
ITKAtk-2 protocol, which behaves like ITK using Sig but does not include the



28 Joël Alwen, Daniel Jost, and Marta Mularczyk

package’s signature into the confirmed transcript hash, does not securely real-
ize (F iw

as ,F iw
ks ,Fcgka) in the (Fas,Fks,Gro)-hybrid model when Fcgka uses the

predicates safe and inj-allowed from Fig. 6.

Proof (Sketch). Let S be an arbitrary simulator and consider the following
environment Z that initially sets up a group consisting of parties A, B, and
C that are in the same consistent state, as in the previous proof. Then, the
environment acts as a malicious insider A sending semi-inconsistent commit
messages to B and C. To this end, it corrupts party A and learns sskA. Afterwards
it computes a commit message c1 (to an empty proposal list) and another one
c′1 by first copying c1 and then replacing the signature by a different valid one.
It delivers c1 to B and c′1 to C. Finally, Z instructs B to create a proposal p that
removes A from the group. Moreover, instruct both B and C to first commit to
this proposal (creating commit messages c2 and c′2, respectively) and have each
of the parties process their own commit message. If both parties successfully
process their commit messages, Z outputs 1, and 0 otherwise.

It is easy to see that when interacting with the hybrid world both B and
C successfully process their own commits, as the interim transcript hash does
not affect the proposal p, making it valid for both B and C whose views agree
in everything but the interim transcript hash. In the ideal world, however, p
is associated with B’s node and as a result cannot be committed to by C, as
enforced by the consistency invariant. (In our model two different ciphertexts c1
and c′1 cannot point to the same node.) As a result, Z outputs 0 when interacting
with the ideal world. ⊓⊔

Our fix that moves the signature into the confirmed transcript hash has been
incorporated into MLS [16].

6.3 Inadequate Joiner Security (Tree-Signing)

The role of the tree-signing mechanism of MLS is to provide additional guar-
antees for joiners by leveraging the long-term signature keys distributed by the
PKI. Intuitively, we may hope for the following guarantee: A joiner (potentially
invited by a malicious insider to a non-existing group) ends up in a secure epoch
once all malicious parties have been removed. A bit more precisely, a key is
corrupt if the secret key is registered by or leaked to a malicious actor.

Surprisingly, we can show that the initial tree signing mechanism introduced
in MLS Draft 9 does not achieve this guarantee. Rather, it achieves something
much weaker: A joiner ends up in a secure epoch once all members with the
following types of long-term signature keys have been removed: (a) corrupt keys
and (b) keys used in a different epoch that includes a key of type (a). We believe
this to be an unexpectedly weak guarantee. In particular, it means that malicious
insiders can read messages after being removed.16

16 It also seems to contradict the (informal) notion of the “tree-invariant” often cited
on the MLS mailing list.



On The Insider Security of MLS 29

A B

C

known
to B

(a) The ratchet tree in a real
group.

A C B D

known
to B

(b) The tree created by mali-
cious B inviting D.

A C D

known
to B

(c) The tree after D commits
removing B.

Fig. 7: The attack on the tree signing of ITKAtk-3.

The attack on tree-signing. We call ITK using the tree-signing mechanism from
MLS Draft 9 ITKAtk-3. We next present a simple and highly practical attack
against ITKAtk-3. It results in groups with epochs containing no keys of type A)
yet for which the epoch key is easy to compute by the malicious insiders.

We first recall the tree signing of ITKAtk-3. It works by storing in each ratchet-
tree node v a value v.parentHash computed as follows.

if v.isroot then v.parentHash← ϵ
else v.parentHash← Hash(v.parent.pk, v.parent.parentHash)

Further, each leaf contains a signature over its content, including its parentHash,
under the long-term key of its owner. This means that during each commit the
committer signs the new parentHash of their leaf, which binds all new PKE
public keys they generated. We say that the committer’s signature attests to the
new PKE keys. Now joiners can verify that each public key in the ratchet tree
they receive in the welcome message is attested to by some group member who
generated it. (The joiners check the validity of the long-term keys in the PKI.)

Intuitively, the issue is, however, that committers only attest to the key pairs
they (honestly) generated, but not to which parties they informed of the secret
keys. This allows a malicious insider to create his own ratchet tree, where they
knows secrets of nodes that are not on his direct path. Therefore, removing them
from the fake group doesn’t cause removal of every key they knows, breaking
Invariant (2) of the protocol.

Theorem 4. The ITKAtk-3 protocol, that behaves like ITK but with the MLS
Draft 9 tree-signing mechanism, does not securely realize (F iw

as ,F iw
ks ,Fcgka) in

the (Fas,Fks,Gro)-hybrid model when Fcgka uses the predicates safe and inj-
allowed from Fig. 6.

Proof (Sketch). The attack is illustrated in Fig. 7. Assume that the environment
Z sets up a group with a group creator A adding parties B and C (in this order),
leading in the hybrid world to ratchet tree depicted in Fig. 7a. In this state, the
adversary corrupts party B, which henceforth is assumed to be malicious, while A
and C are never corrupted and, thus, honest. In the following Z acts on behalf
of the corrupted B and builds the fake ratchet tree from Fig. 7b, meaning Z
swaps parties B and C (their public keys), then adds party D on behalf of B to
the group, outputting a respective welcome message w using B’s leaked signing



30 Joël Alwen, Daniel Jost, and Marta Mularczyk

key. Crucially, we observe that the ratchet tree from Fig. 7b represents a valid
one that D will accept: In Fig. 7a C’s leaf signature only attested to C’s leaf
key (the green one) as the parent hash field is empty. Second, A’s leaf signature
does not attests to B’s leaf key (but only the blue ones) as the parent hash only
includes the nodes on A’s direct path to the root. Third, Z can re-key B’s new
path and attest to the fresh keys (the red ones) using the leaked signing key.

The environment then delivers w to D, joining them to the fake group, and
afterwards Z instructs D remove B, i.e., to propose, commit, and then process
the respective commit message c′. Finally, Z queries D’s group key key and also
computes the expected group key key′ by taking D’s commit message and using
the secret key known to Z marked in Fig. 7c and perform the same computation
C would in the ITKAtk-3 protocol. If key = key′, then Z outputs 1 and 0 otherwise.

It remains to convince ourselves that Z distinguishes with non-negligible
probability for any simulator S. It is easy to see that when interacting with
the hybrid world Z outputs 1. Finally, consider the ideal-world. We argue that
safe(c′) = true meaning that the functionality outputs an independent and
u.a.r. key and, thus, Z outputs 0 with overwhelming probability. First, it is easy
to see that S has to join D to a detached root as no other group state matches,
e.g,. none has D as a member. Next, observe that D has not been corrupted
implying that the node created by D’s commit is marked with Node[c′].stat =
good and has no direct exposures, i.e., Node[c′].exp = ∅. As a result, we have
safe(c′) = ¬*can-traverse(c′) while *can-traverse(c′) = false as clearly only
case (d) might apply but know(c′, id) = false for all id ∈ {A,B,C,D} for the
following reasons: First, A, C, and D have never been corrupted, in particular im-
plying *state-directly-leaks(c′, id) = false and know(root1, id) = false, where
root1 denotes the detached root to which D joined. Second, for B, observe that
*state-directly-leaks(c′, B) = false as B /∈ Node[c′].mem and B /∈ Node[c′].exp
while *secrets-replaced(c′, B) = true as B has been removed from that state.
Thus, we can deduce that safe(c′) = true, concluding the proof. ⊓⊔

Fixing tree signing. In essence, we can prevent the attack by modifying the par-
ent hash such that committers attest to the key pairs they generated and to
which parties were informed about the secret keys. We can achieve this by com-
puting the parent hash v.parentHash as Hash(w.pk, w.parentHash, w.memberCert)
where w is v’s parent and memberCert attests to the set of parties informed about
the w.sk. It is left to find a good candidate for memberCert; one that is secure
and easy to compute. We next discuss 3 candidates for memberCert.

The first candidate is called the leaf parent hash. This is the most direct
solution which simply sets w.memberCert to the list of all leaves in the subtree
of v.sibling that are not unmerged at w. Observe that, by Invariant (2) of ITK, the
owners of these leaves, and only they, were informed about w.sk (recall that the
unmerged leaves are defined as those that do not know w.sk). One disadvantage
of the leaf hash is that it is not very implementation-friendly.

The second candidate, called the tree parent hash, has been initially consid-
ered for MLS [35]. It basically sets w.memberCert to the tree hash of v.sibling
with the unmerged leaves omitted (recall that ITK computes the tree hash as the



On The Insider Security of MLS 31

Merkle hash of the ratchet tree). Observe that the tree hash binds strictly more
than the leaf hash. The tree hash would be more straightforward to compute.
Unfortunately, it is not workable due to other mechanisms of MLS.17

Therefore, we propose a new candidate called the resolution parent hash.
It improves upon the leaf hash in 2 ways: it is more implementation-friendly
and it has slightly better deniability properties.18 The resolution hash sets
memberCert to the PKE public keys of nodes in u.origChildResolution where
u.origChildResolution is the resolution of u with the unmerged leaves of u.parent
omitted. Observe that u.origChildResolution is the resolution of u at the time the
last committer in the subtree of v generated the key pair of w.

The reason this works is less direct than in the case of leaf and tree hashes.
Intuitively, assume all long-term keys in the subtree of w are uncorrupted. The
honest committer who generated w’s key pair attests to w.pk and all PKE keys
in u.origChildResolution, i.e. those they encrypted w.sk to. These PKE keys are
in turn attested to by the honest members in their subtrees who generated them.
Applying this argument recursively and relying on the security of the encryption
scheme, we can conclude that all key pairs in the ratchet tree remain secure.

6.4 IND-CPA Security Is Insufficient

Many prior analysis of MLS only assume IND-CPA security of the PKE scheme
it uses. However, there are PKE schemes that are IND-CPA secure but that
make MLS clearly insecure against active attackers — despite MLS employing
signatures and MACs to protect authenticity — highlighting the inadequacies
of those works’ simplified security models to account for all relevant aspects
(and the danger of analyzing too piecemeal protocols without considering their
composition in general).

Consider the protocol ITKcpa which behaves like ITK but replaces its PKE
scheme with PKE∗. PKE∗ is IND-CPA secure and has the following property: a
ciphertext ctx containing a message m can be modified into ctxi, s.t. decrypting
ctxi outputs ⊥ if and only if the i-th bit of m is 0, and otherwise decrypting
ctxi outputs m.19 The following attack shows that ITKcpa is clearly insecure in
the setting with active attackers. In particular, a malicious insider can decrypt
messages after being removed from the group. Let κ denote the length of a path
secret used by MLS. The attack proceeds as follows:

1. An honest execution leads to an epoch E1 where the group has N = 4κ
members P1, . . . , PN , ordered according to their leaves from left to right.
Further, the ratchet tree has no blanks.

17 With adds and removes, the subtree of v can grow or shrink since the last commit,
changing the tree hash. It is not clear how to revert these changes.

18 With the leaf hash, members sign each other’s credentials, thus attesting to being
in a group together. The resolution hash gets rid of this side effect.

19 PKE∗ can be easily obtained as a straightforward adaptation of the artificial sym-
metric encryption scheme by Krawczyk [31] (used to show that the authenticate-
then-encrypt paradigm is not secure in general) to the public key setting.



32 Joël Alwen, Daniel Jost, and Marta Mularczyk

2. The adversary corrupts P1 and PN .
3. P1 (honestly) sends a commit c1, creating an epoch E2. PN−1 transitions to

E2, and sends a commit c2 that removes PN , creating epoch E3.
The expectation is that E3 is secure due to PCS and removing all corrupted
members. The adversary will next compute group key in E3.

4. The adversary has the following information: P1’s signing key ssk1 (the same
in all epochs), the secret key sk of the right child of the root in E1 (cor-
rupted PN knows sk), the init secret in E1 and the ciphertexts ctxRoot and
ctxLchild encrypting P1’s two last path secrets in c1.
The adversary shouldn’t know the path secret s encrypted in ctxLchild, since
this breaks the tree invariant. He will next learn s it bit by bit.

5. The members who will decrypt ctxLchild are Pκ+1 to P2κ. For i = 1 to κ,
the adversary injects to Pκ+i the packet c1 modified as follows:
(a) Replace ctxLchild by ctxLchildi obtained using the PKE∗ property.
(b) Update the confirmation tag accordingly: 1) Decrypt ctxRoot using sk.

The result is the next path secret s′ after s. 2) Use s′ to compute the
commit secret. 3) Compute the new key schedule using the init secret in
E1 and the commit secret from 2). 4) Compute the tag.

(c) Update the signature using ssk1.
6. Clearly, if Pκ+i accepts, then the i-th bit of s is 0, else 1.

Now the adversary uses s to compute the key in E3.
7. Using s, the adversary derives the secret key for the left child of the root

in E2. Since this node is in the copath of PN−1, the adversary can use it to
decrypt the commit secret from c2. The adversary then computes the init
secret in E2 by honestly running PN ’s protocol and mixes it with the commit
to derive the key schedule in E3.

Clearly, however, the safe predicate of our Fcgka functionality considers the
resulting key from epoch E3 as secure. Hence, we get the following result.

Theorem 5. The ITKcpa protocol that behaves like ITK does not securely re-
alize (F iw

as ,F iw
ks ,Fcgka) in the (Fas,Fks,Gro)-hybrid model when Fcgka uses the

predicates safe and inj-allowed from Fig. 6.

Proof. We show that for every simulator S, there exists an environment Z that
has non-negligible advantage in distinguishing the ideal world from the real world
with ITKcpa. Let S be any simulator. The environment Z executes the attack
described above, i.e., it gives appropriate instructions to honest parties and per-
forms the adversary’s attacks. Let key′ denote the group key computed at the
end by the adversary. Z fetches the group key key in E3 (via the Key query to
say P5). If key = key′, it outputs 1 else 0.

We will show that safe is true in E3. Given this, we can conclude the proof
with the following observations: Clearly, in the real world, Z always outputs 1
(for simplicity we assume perfect correctness). In the ideal world, since safe is
true, key is chosen by Fcgka random and independent of S. Since key′ is computed
by Z only from information given to S, this means that with overwhelming
probability key ̸= key′, and hence Z outputs 0.



On The Insider Security of MLS 33

It remains to show that safe is true. Informally, the only corruptions are
of P1 and PN in E1. Transitioning to E1 “heals” from P1’s corruption, since
this is an honest commit from them, and transitioning to E3 heals from PN ’s
corruption, since they are removed.

Formally, we will show that know is false for all parties in E3. This will mean
that *can-traverse(c2) = false (by inspection, all other conditions that can
make it true do not occur). Hence, safe is true in E3.

Observe that know can only be true for P1 and PN , as *state-directly-leaks
is only true for these parties in E1. First, *secrets-replaced(c1, P1) is true,
since None[c1].orig = P1. Therefore, know(c1, P1) = false and by recursion
know(c2, P1) = false. Second, *secrets-replaced(c2, P2) is true, since it in-
cludes a proposal with act = rem-PN . Therefore, know(c1, P1) = false. ⊓⊔

References

1. Messagying layer security (mls) wg - meeting minutes for interim 2020-1 (Jan-
uary 2020), https://datatracker.ietf.org/doc/minutes-interim-2020-mls-

01-202001110900/

2. Alwen, J., Auerbach, B., Baig, M.A., Noval, M.C., Klein, K., Pascual-Perez, G.,
Pietrzak, K., Walter, M.: Grafting key trees: Efficient key management for over-
lapping groups. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol.
13044, pp. 222–253. Springer, Heidelberg (Nov 2021). https://doi.org/10.1007/
978-3-030-90456-2_8

3. Alwen, J., Auerbach, B., Noval, M.C., Klein, K., Pascual-Perez, G., Pietrzak, K.:
DeCAF: Decentralizable continuous group key agreement with fast healing. Cryp-
tology ePrint Archive, Report 2022/559 (2022), https://eprint.iacr.org/2022/
559

4. Alwen, J., Auerbach, B., Noval, M.C., Klein, K., Pascual-Perez, G., Pietrzak, K.,
Walter, M.: CoCoA: Concurrent continuous group key agreement. In: Dunkelman,
O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 815–
844. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-
031-07085-3_28

5. Alwen, J., Blanchet, B., Hauck, E., Kiltz, E., Lipp, B., Riepel, D.: Analysing the
HPKE standard. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part I. LNCS, vol. 12696, pp. 87–116. Springer, Heidelberg (Oct 2021). https:
//doi.org/10.1007/978-3-030-77870-5_4

6. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer,
Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-030-56784-2_9

7. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Modular design of secure group
messaging protocols and the security of MLS. In: Vigna, G., Shi, E. (eds.) ACM
CCS 2021. pp. 1463–1483. ACM Press (Nov 2021). https://doi.org/10.1145/
3460120.3484820

8. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement
with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 261–290. Springer, Heidelberg (Nov 2020). https://doi.org/10.
1007/978-3-030-64378-2_10

https://datatracker.ietf.org/doc/minutes-interim-2020-mls-01-202001110900/
https://datatracker.ietf.org/doc/minutes-interim-2020-mls-01-202001110900/
https://doi.org/10.1007/978-3-030-90456-2_8
https://doi.org/10.1007/978-3-030-90456-2_8
https://doi.org/10.1007/978-3-030-90456-2_8
https://doi.org/10.1007/978-3-030-90456-2_8
https://eprint.iacr.org/2022/559
https://eprint.iacr.org/2022/559
https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-030-77870-5_4
https://doi.org/10.1007/978-3-030-77870-5_4
https://doi.org/10.1007/978-3-030-77870-5_4
https://doi.org/10.1007/978-3-030-77870-5_4
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10


34 Joël Alwen, Daniel Jost, and Marta Mularczyk

9. Alwen, J., Hartmann, D., Kiltz, E., Mularczyk, M.: Server-aided continuous group
key agreement. Cryptology ePrint Archive, Report 2021/1456 (2021), https://
eprint.iacr.org/2021/1456

10. Alwen, J., Capretto, M., Cueto, M., Kamath, C., Klein, K., Pascual-Perez, G.,
Pietrzak, K., Walter, M.: Keep the dirt: Tainted treekem, adaptively and actively
secure continuous group key agreement. In: 2021 IEEE Symposium on Security
and Privacy, S&P. pp. 268–284 (2021). https://doi.org/10.1109/SP40001.2021.
00035, full version: https://eprint.iacr.org/2019/1489

11. Alwen, J., Jost, D., Mularczyk, M.: On the insider security of mls. Cryptology
ePrint Archive, Paper 2020/1327 (2020), https://eprint.iacr.org/2020/1327,
full version of this paper.

12. Backes, M., Dürmuth, M., Hofheinz, D., Küsters, R.: Conditional reactive simu-
latability. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 424–443. Springer, Heidelberg (Sep 2006). https://doi.org/10.
1007/11863908_26

13. Barnes, R., Beurdouche, B., , Millican, J., Omara, E., Cohn-Gordon, K., Robert,
R.: The messaging layer security (mls) protocol (draft-ietf-mls-protocol-12). Tech.
rep., IETF (Mar 2020), https://datatracker.ietf.org/doc/draft-ietf-mls-
protocol/12/

14. Barnes, R.: Subject: [MLS] Remove without double-join (in TreeKEM). MLS Mail-
ing List (06 August2018 13:01UTC), https://mailarchive.ietf.org/arch/msg/
mls/Zzw2tqZC1FCbVZA9LKERsMIQXik

15. Barnes, R.: MLS Protocol Pull Requests #396: Authenticate group membership
in MLSPlaintext (18 August 2020), https://github.com/mlswg/mls-protocol/
pull/396

16. Barnes, R.: MLS Protocol Pull Requests #416: Inlclude the signature in the confir-
mation tag (18 August 2020), https://github.com/mlswg/mls-protocol/pull/
416

17. Barnes, R.: Subject: [MLS] Proposal: Proposals (was: Laziness). MLS Mailing
List (22 August 2019 22:17UTC), https://mailarchive.ietf.org/arch/msg/

mls/5dmrkULQeyvNu5k3MV_sXreybj0/

18. Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: Asynchronous Decen-
tralized Key Management for Large Dynamic Groups (May 2018), http://

prosecco.inria.fr/personal/karthik/pubs/treekem.pdf, published at https:

//mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8

19. Bhargavan, K., Beurdouche, B., Naldurg, P.: Formal Models and Verified Protocols
for Group Messaging: Attacks and Proofs for IETF MLS. Research report, Inria
Paris (Dec 2019), https://hal.inria.fr/hal-02425229

20. Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group ratcheting
protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551,
pp. 198–228. Springer, Heidelberg (Nov 2020). https://doi.org/10.1007/978-3-
030-64378-2_8

21. Brzuska, C., Cornelissen, E., Kohbrok, K.: Security analysis of the mls key
derivation. In: 2022 IEEE Symposium on Security and Privacy, S&P. pp. 595–
613. IEEE Computer Society, Los Alamitos, CA, USA (may 2022). https:

//doi.org/10.1109/SP46214.2022.00035, https://doi.ieeecomputersociety.

org/10.1109/SP46214.2022.00035

22. Bushing, Marcan, Segher, Sven: Console hacking 2010 — PS3 epic fail. In: 27th
Chaos Communication Congress — 27C3 (2010), https://fahrplan.events.ccc.
de/congress/2010/Fahrplan/events/4087.en.html

https://eprint.iacr.org/2021/1456
https://eprint.iacr.org/2021/1456
https://doi.org/10.1109/SP40001.2021.00035
https://doi.org/10.1109/SP40001.2021.00035
https://doi.org/10.1109/SP40001.2021.00035
https://doi.org/10.1109/SP40001.2021.00035
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2020/1327
https://doi.org/10.1007/11863908_26
https://doi.org/10.1007/11863908_26
https://doi.org/10.1007/11863908_26
https://doi.org/10.1007/11863908_26
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/12/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/12/
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik
https://github.com/mlswg/mls-protocol/pull/396
https://github.com/mlswg/mls-protocol/pull/396
https://github.com/mlswg/mls-protocol/pull/416
https://github.com/mlswg/mls-protocol/pull/416
https://mailarchive.ietf.org/arch/msg/mls/5dmrkULQeyvNu5k3MV_sXreybj0/
https://mailarchive.ietf.org/arch/msg/mls/5dmrkULQeyvNu5k3MV_sXreybj0/
http://prosecco.inria.fr/personal/karthik/pubs/treekem.pdf
http://prosecco.inria.fr/personal/karthik/pubs/treekem.pdf
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://hal.inria.fr/hal-02425229
https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1109/SP46214.2022.00035
https://doi.org/10.1109/SP46214.2022.00035
https://doi.org/10.1109/SP46214.2022.00035
https://doi.org/10.1109/SP46214.2022.00035
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00035
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00035
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4087.en.html


On The Insider Security of MLS 35

23. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

24. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: Asynchronous group messaging with strong security guarantees.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 1802–
1819. ACM Press (Oct 2018). https://doi.org/10.1145/3243734.3243747

25. Cremers, C., Hale, B., Kohbrok, K.: The complexities of healing in secure group
messaging: Why cross-group effects matter. In: Bailey, M., Greenstadt, R. (eds.)
USENIX Security 2021. pp. 1847–1864. USENIX Association (Aug 2021)

26. Devigne, J., Duguey, C., Fouque, P.A.: MLS group messaging: How zero-knowledge
can secure updates. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ES-
ORICS 2021, Part II. LNCS, vol. 12973, pp. 587–607. Springer, Heidelberg (Oct
2021). https://doi.org/10.1007/978-3-030-88428-4_29

27. Emura, K., Kajita, K., Nojima, R., Ogawa, K., Ohtake, G.: Membership privacy
for asynchronous group messaging. Cryptology ePrint Archive, Report 2022/046
(2022), https://eprint.iacr.org/2022/046

28. Hashimoto, K., Katsumata, S., Postlethwaite, E., Prest, T., Westerbaan, B.: A
concrete treatment of efficient continuous group key agreement via multi-recipient
pkes. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1441–1462 (2021)

29. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part I. LNCS, vol. 11476, pp. 159–188. Springer, Heidelberg (May 2019). https:
//doi.org/10.1007/978-3-030-17653-2_6

30. Jost, D., Maurer, U., Mularczyk, M.: A unified and composable take on ratch-
eting. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892,
pp. 180–210. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-
030-36033-7_7

31. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (Aug 2001). https://doi.org/10.
1007/3-540-44647-8_19

32. Miller, M.A.: Messaging layer security (mls) wg - meeting minutes for ietf105 (Au-
gust 2019), https://datatracker.ietf.org/doc/minutes-105-mls/

33. Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21–40. Springer, Heidelberg
(Feb 2007). https://doi.org/10.1007/978-3-540-70936-7_2

34. Rescorla, E.: Subject: [MLS] TreeKEM: An alternative to ART. MLS Mailing
List (03 May 2018 14:27UTC), https://mailarchive.ietf.org/arch/msg/mls/
WRdXVr8iUwibaQu0tH6sDnqU1no

35. Sullivan, N.: Subject: [MLS] Virtual interim minutes. MLS Mailing List
(29 January 2020 21:39UTC), https://mailarchive.ietf.org/arch/msg/mls/

ZZAz6tXj-jQ8nccf7SyIwSnhivQ/

36. Weidner, M.: Group messaging for secure asynchronous collaboration. MPhil
Dissertation, 2019. Advisors: A. Beresford and M. Kleppmann (2019), https:

//mattweidner.com/acs-dissertation.pdf

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1007/978-3-030-88428-4_29
https://doi.org/10.1007/978-3-030-88428-4_29
https://eprint.iacr.org/2022/046
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/3-540-44647-8_19
https://datatracker.ietf.org/doc/minutes-105-mls/
https://doi.org/10.1007/978-3-540-70936-7_2
https://doi.org/10.1007/978-3-540-70936-7_2
https://mailarchive.ietf.org/arch/msg/mls/WRdXVr8iUwibaQu0tH6sDnqU1no
https://mailarchive.ietf.org/arch/msg/mls/WRdXVr8iUwibaQu0tH6sDnqU1no
https://mailarchive.ietf.org/arch/msg/mls/ZZAz6tXj-jQ8nccf7SyIwSnhivQ/
https://mailarchive.ietf.org/arch/msg/mls/ZZAz6tXj-jQ8nccf7SyIwSnhivQ/
https://mattweidner.com/acs-dissertation.pdf
https://mattweidner.com/acs-dissertation.pdf

	On The Insider Security of MLS

