
Dynamic Local Searchable Symmetric Encryption

Brice Minaud∗ and Michael Reichle∗

∗DIENS, École normale supérieure, PSL University, CNRS, INRIA, 75005 Paris,
France.

Abstract. In this article, we tackle for the first time the problem of
dynamic memory-efficient Searchable Symmetric Encryption (SSE). In
the term “memory-efficient” SSE, we encompass both the goals of lo-
cal SSE, and page-efficient SSE. The centerpiece of our approach is a
novel connection between those two goals. We introduce a map, called
the Generic Local Transform, which takes as input a page-efficient SSE
scheme with certain special features, and outputs an SSE scheme with
strong locality properties. We obtain several results. (1) First, for page-
efficient SSE with page size p, we build a dynamic scheme with storage
efficiency O(1) and page efficiency Õ (log log(N/p)), called LayeredSSE.
The main technical innovation behind LayeredSSE is a novel weighted
extension of the two-choice allocation process, of independent interest.
(2) Second, we introduce the Generic Local Transform, and combine it
with LayeredSSE to build a dynamic SSE scheme with storage efficiency
O(1), locality O(1), and read efficiency Õ (log logN), under the condi-
tion that the longest list is of size O

(
N1−1/ log log λ

)
. This matches, in

every respect, the purely static construction of Asharov et al. presented
at STOC 2016: dynamism comes at no extra cost. (3) Finally, by apply-
ing the Generic Local Transform to a variant of the Tethys scheme by
Bossuat et al. from Crypto 2021, we build an unconditional static SSE
with storage efficiency O(1), locality O(1), and read efficiency O(logεN),
for an arbitrarily small constant ε > 0. To our knowledge, this is the con-
struction that comes closest to the lower bound presented by Cash and
Tessaro at Eurocrypt 2014.

1 Introduction

Searchable Symmetric Encryption. In Searchable Symmetric Encryption
(SSE), a client outsources the storage of a set of documents to an untrusted
server. The client wishes to retain the ability to search the documents, by issuing
search queries to the server. In the setting of dynamic SSE, the client may also
issue update queries, in order to modify the contents of the database, for instance
by adding or removing entries. The server must be able to correctly process all
queries, while learning as little information as possible about the client’s data and
queries. SSE is relevant in many cloud storage scenarios: for example, in cases
such as outsourcing the storage of a sensitive database, or offering an encrypted
messaging service, some form of search functionality may be highly desirable.

2 Brice Minaud, Michael Reichle

In theory, SSE is a special case of computation on encrypted data, and could
be realized using generic solutions, such as Fully Homomorphic Encryption.
In practice, such approaches incur a large performance penalty. Instead, SSE
schemes typically aim for high-performance solutions, scalable to large real-world
databases. Towards that end, SSE trades off security for efficiency. The server
is allowed to learn some information about the client’s data. For example, SSE
schemes typically leak to the server the repetition of queries (search pattern),
and the identifiers of the documents that match a query (access pattern). The
security model of SSE is parametrized by a leakage function, which specifies the
nature of the information leaked to the server.

Locality. In the case of single-keyword SSE, search queries ask for all doc-
uments that contain a given keyword. To realize that functionality, the server
maintains an (encrypted) reverse index, where each keyword is mapped to the
list of identifiers of documents that match the keyword. When the client wishes
to search for the documents that match a given keyword, the client simply re-
trieves the corresponding list from the server. A subtle issue, however, is how
the lists should be stored and accessed by the server.

The naive approach of storing one list after the other is unsatisfactory: in-
deed, the position of a given list in memory becomes dependent on the lengths of
other lists, thereby leaking information about those lists. A common approach
to address that issue is to store each list element at a random location in mem-
ory. In that case, when retrieving a list, the server must visit as many random
memory locations as the number of elements in the list. This is also undesirable,
for a different reason: for virtually all modern storage media, accessing many
random memory locations is much more expensive than visiting one continuous
region. Because SSE relies on fast symmetric cryptographic primitives, the cost
of memory accesses becomes the performance bottleneck. To capture that cost,
[CT14] introduces the notion of locality : in short, the locality of an SSE scheme
is the number of discontinuous memory locations that the server must access to
answer a query.

The two extreme solutions outlined above suggest a conflict between security
and locality. At Eurocrypt 2014, Cash and Tessaro showed that this conflict
is inherent [CT14]: if a secure SSE scheme has constant storage efficiency (the
size of the encrypted database is linear in the size of the plaintext database),
and constant read efficiency (the amount of data read by the server to answer
a search query is linear in the size of the plaintext answer), then it cannot have
constant locality.

Local SSE constructions. Since then, many SSE schemes with constant
locality have been proposed, typically at the cost of superconstant read effi-
ciency. At STOC 2016, Asharov et al. presented a scheme with O(1) storage
efficiency, O(1) locality, and Õ (logN) read efficiency, where N is the size of
the database [ANSS16]. At Crypto 2018, Demertzis et al. improved the read effi-
ciency to O

(
log2/3+εN

)
[DPP18]. Several trade-offs with ω(1) storage efficiency

were also proposed in [DP17]. When the size of the longest list in the database is
bounded, stronger results are known. When such an upper bound is required, we

Dynamic Local Searchable Symmetric Encryption 3

will call the construction conditional. The first conditional SSE is due to Asharov
et al., and achieves Õ (log logN) read efficiency, on the condition that the size of
the longest list is O

(
N1−1/ log logN

)
. This was later improved to Õ (log log logN)

read efficiency, with a stronger condition of O
(
N1−1/ log log logN

)
on the size of

the longest list.
Locality was introduced as a performance measure for memory accesses, as-

suming an implementation on Hard Disk Drives (HDDs). In [BBF+21], Bossuat
et al. show that in the case of Solid State Drives (SSDs), such as flash disks,
locality is no longer the relevant target. Instead, performance is mainly deter-
mined by the number of memory pages accessed, regardless of whether they
are contiguous. In that setting the right performance metric is page efficiency.
Page efficiency is defined as the number of pages read by the server to answer
a query, divided by the number of pages needed to store the plaintext answer.
The main construction of [BBF+21] achieves O(1) storage efficiency and O(1)
page efficiency, assuming a client-side memory of ω(log λ) pages.

To this day, a common point among all existing constructions, both local and
page-efficient, is that they are purely static, as known techniques for subloga-
rithmic read efficiency and page efficiency do not apply to the dynamic setting.
That may be because of the difficulty inherent in building local SSE, even in the
static case (as evidenced, from the onset, by the impossibility result of Cash and
Tessaro [CT14]). Nevertheless, many, if not most, applications of SSE require
dynamism. This state of affairs significantly hinders the applicability of local
and page-efficient SSE.

While one work [MM17] targets local SSE in a dynamic setting, and has
constant storage efficiency and locality, it has read efficiency O(L logW), where
L is the maximum list size. Further, [MM17] employs an ORAM-variant which
incurs a heavy computational overhead, in addition to the large read efficiency.
When reinterpreting [MM17] in the context of page-efficiency, its guarantees
improve to O(logW) page efficiency and constant storage efficiency, but the
heavy computational cost of ORAM remains.

1.1 Our Contributions

In this article, we consider the problem of dynamic memory-efficient SSE, by
which we mean that we target both dynamic page-efficient SSE, and dynamic
local SSE.

The centerpiece of our approach is a novel connection between these two
goals. We introduce a map, called the Generic Local Transform, which takes as
input a page-efficient SSE scheme with certain special features, and outputs a
SSE scheme with strong locality properties. Our strategy will be to first build
page-efficient schemes, then apply the Generic Local Transform to obtain local
schemes. This approach turns out to be quite effective, and we present several
results.

(1) Dynamic page-efficient SSE. We start by building a dynamic page-
efficient SSE scheme, LayeredSSE. LayeredSSE achieves storage efficiency O(1),

4 Brice Minaud, Michael Reichle

and page efficiency Õ
(
log log N

p

)
, where p is the page size. In line with prior

work on memory-efficient SSE, the technical core of LayeredSSE is a new dynamic
allocation scheme, L2C. L2C is a weighted variant of the so-called “2-choice” al-
gorithm, notorious in the resource allocation literature. L2C is of independent
interest: the two-choice allocation process is ubiquitous in various areas of com-
puter science, such as load balancing, hashing, job allocation, or circuit routing
(a survey of applications may be found in [RMS01]). Weighted variants have
been considered in the past, but have so far required a distributional assump-
tion [TW07, TW14] or presorting [ANSS16]. What we show is that by slightly
tweaking the two-choice process, a dynamic and distribution-free result can be
obtained (Theorem 1). Such a distribution-free result is necessary for crypto-
graphic applications, where the adversary may influence the weights (as in our
case). Other uses beyond cryptography are discussed in the full version.

(2) Generic Local Transform. We introduce the Generic Local Trans-
form. On input any page-efficient scheme PE-SSE with certain special features,
called page-length-hiding SSE, the Generic Local Transform outputs a local SSE
scheme Local[PE-SSE]. Roughly speaking, if PE-SSE has client storage O(1), stor-
age efficiency O(1), and page efficiency O(P), then Local[PE-SSE] has storage
efficiency O(1), and read efficiency O(P). Regarding locality, the key feature is
that if PE-SSE has locality O(L) when querying lists of size at most one page,
then Local[PE-SSE] has locality O(L+ log logN) when querying lists of any size.
Thus, the Local construction may be viewed as bootstrapping a scheme with weak
locality properties into a scheme with much stronger locality properties.

The Generic Local Transform also highlights an interesting connection be-
tween the goals of page efficiency and locality. Originally, locality and page ef-
ficiency were introduced as distinct performance criterions, targeting the two
most widespread storage media, HDDs and SSDs respectively. It was already
observed in [BBF+21] that a scheme with locality L and read efficiency R must
have page efficiency at most R+ 2L. In that sense, page efficiency is an “easier”
goal. With the Generic Local Transform, surprisingly, we build a connection in
the reverse direction: we use page-efficient schemes as building blocks to obtain
local schemes. On a theoretical level, this shows a strong connection between
the two goals. On a practical level, it provides a strategy to target both goals at
once.

(3) Dynamic local SSE. By applying the Generic Local Transform to the
LayeredSSE page-efficient scheme, we immediately obtain a dynamic SSE scheme
Local[LayeredSSE], with storage efficiency O(1), locality O(1), and read efficiency
Õ (log logN). The construction is conditional: it requires that the longest list
is of size O

(
N1−1/ log logN

)
. The asymptotic performance of Local[LayeredSSE]

matches exactly the second static construction from [ANSS16], including the
condition on maximum list size: dynamism comes at no extra cost. In particular,
Local[LayeredSSE] matches the lower bound from [ASS21] for SSE schemes built
using what [ASS21] refers to as “allocation schemes”—showing that the bound
can be matched even in the dynamic setting.

Dynamic Local Searchable Symmetric Encryption 5

(4) Unconditional local SSE in the static setting. The original 1-
choice scheme from [ANSS16] achieves O(1) storage efficiency, O(1) locality,
and Õ (logN) read efficiency, unconditionally. The read efficiency was improved
to O

(
log2/3+εN

)
in [DPP18], for any constant ε > 0. This was, until now,

the only SSE construction to achieve sublogarithmic efficiency unconditionally.
By applying the Generic Local Transform to a variant of Tethys [BBF+21], in
combination with techniques inspired by [DPP18], we obtain an unconditional
static SSE scheme with storage efficiency O(1), locality O(1), and read efficiency
O(logεN), for any constant ε > 0. To our knowledge, this is the construction
that comes closest to the impossibility result of Cash and Tessaro, stating that
O(1) locality, storage efficiency, and read efficiency simultaneously is impossible.

Table 1 – Page-efficient SSE schemes. N denotes the total size of the database,
W denotes the number of keywords, p is the number elements per page, ε > 0
is an arbitrarily small constant, and λ is the security parameter.

Schemes Client st. Page eff. Storage eff. Dynamism

Πpack, Π2lev [CJJ+14] O(1) O(1) O(p) Static
TCA [ANSS16] O(1) Õ (log logN) O(1) Static
Tethys [BBF+21] O(p log λ) 3 3 + ε Static
IO-DSSE [MM17] O(W) O(logW) O(1) Dynamic

LayeredSSE O(1) Õ
(
log log N

p

)
O(1) Dynamic

Table 2 – SSE schemes with constant locality and storage efficiency. N denotes
the total size of the database, and ε > 0 is an arbitrarily small constant.

Schemes Locality Read eff. St. eff. Max list size Dynamism

TCA [ANSS16] O(1) Õ (log logN) O(1) O
(
N1−1/ log logN

)
Static

[ASS21] O(1) Õ (log log logN) O(1) O
(
N1−1/ log log logN

)
Static

OCA [ANSS16] O(1) Õ (logN) O(1) Unconditional Static
[DPP18] O(1) Õ

(
log2/3+εN

)
O(1) Unconditional Static

Local[LayeredSSE] O(1) Õ (log logN) O(1) O
(
N1−1/ log logN

)
Dynamic

UncondSSE O(1) Õ (logεN) O(1) Unconditional Static

Remark on Forward Security. The SSE schemes built in this work have a stan-
dard “minimal” leakage profile during Search: namely, searches leak the search
pattern, the access pattern and the length of the retrieved list of document
identifiers. For our dynamic schemes, Update operations importantly leak no

6 Brice Minaud, Michael Reichle

information about unqueried keywords, but leak an identifier of the list being
updated, as well as, in some cases, the length of the list. As a consequence,
our dynamic schemes are not forward-secure. The underlying issue is that the
goals of forward security and memory efficiency seem to be fundamentally at
odds. Indeed, locality asks that identifiers associated to the same keywords must
be stored close to each other; while forward-privacy requires that the location
where a new identifier is inserted should be independent of the keyword it is
associated with. That issue was already noted in [Bos16], who claims that “for
dynamic schemes, locality and forward-privacy are two irreconcilable notions”.
We refer the reader to [Bos16] for more discussion of the problem and leave
further analysis of this issue for future work.

Note that SSE has a very varied range of uses cases, for example private
database services, online messaging and encrypted text search. In practice, its
security requirements depend entirely on the use case. There are use cases where
forward secrecy is crucial. The argument for forward security that is often given
in the literature (e.g. [Bos16, BMO17, EKPE18, AKM19]) is to thwart file injec-
tion attacks in the style of [ZKP16]. Those attacks require injecting adversarially
crafted entries into the target database. In an online messaging scenario, those
attacks could be realistic, hence forward security is needed. In other cases, ad-
versarial file injection is much less of a threat, and forward security can be
reasonably dispensed with. For use cases where forward security is not required,
we show that dynamism and memory efficiency are achievable at the same time.

Remark on the Focus on the Reverse Index. As most SSE literature, this work fo-
cuses on the (inverse) document index. The simplest usage scenario is to retrieve
document indices from the index, then fetch those documents from a separate
database. In reality, there are many other ways to use the index, for example by
intersecting the document indices from several queries before fetching, fetching
only some of the documents (see [MPC+18]), or building graph databases via
several layers of inverse indices [CK10].

In most cases, the cost of fetching the actual documents is the same for the
encrypted database as it is for the equivalent plaintext database: the efficiency
overhead comes entirely from the inverse index. Schemes that hide access pattern
or volume leakage are a possible exceptions but are out of the scope of this work.

2 Technical Overview

This work contains several results, tied together by the Generic Local Transform.
As such, we believe it is beneficial to present them together within one paper.
This requires introducing a number of different allocation mechanisms. We have
endeavored to provide in this section a clear overview of those mechanisms. For-
mal specifications, theorems, and proofs will be presented in subsequent sections.

It is helpful to fist recall a few well-studied allocation mechanisms. In what
follows, “with overwhelming probability” is synonymous with “except with negli-
gible probability” (in the usual cryptographic sense), whereas “with high proba-

Dynamic Local Searchable Symmetric Encryption 7

bility” simply means with probability close to 1 in some sense, but not necessarily
overwhelming.

One-choice allocation. In one-choice allocation, n balls are thrown into n bins.
Each ball is inserted into a bin chosen independently and uniformly at random
(by hashing an identifier of the ball). A standard analysis using Chernoff bounds
shows that, at the outcome of the insertion process, the most loaded bin contains
O(log n) balls with high probability [JK77]. (And at most O(f(n) log n) balls
with overwhelming probability, for any f = ω(1).)

Two-choice allocation. Once again, n balls are thrown into n bins. For each ball,
two bins are chosen independently and uniformly at random (e.g. by hashing
an identifier of the ball). The ball is inserted into whichever of the two bins
contains the fewest balls at the time of insertion. A celebrated result by Azar
et al. shows that, at the outcome of the insertion process, the most loaded bin
contains O(log log n) balls with high probability [ABKU94]. (It was later shown
that the result holds with overwhelming probability [RMS01].)

2.1 Layered 2-Choice Allocation

Our first goal is to build a dynamic page-efficient scheme. Let us summarize
what this entails, starting with the static case. As explained in the introduction,
to realize single-keyword SSE, we want to store lists of arbitrary sizes on an
untrusted server. Hiding the contents of the lists can be achieved in a straight-
forward way using symmetric encryption. The main challenge is how to store the
lists in the server memory, in such a way that accessing one list does not reveal
information about the lengths of other lists.

In the case of page-efficient schemes, this challenge may be summarized as
follows. We are given a set of lists, containing N items in total. We are also
given a page size p, which represents the number of items that can fit within a
physical memory page. The memory of the server is viewed as an array of pages.
We want to store the lists in the server memory, with three goals in mind.

1. In order to store all lists, we use SdN/pe pages of server memory in total,
where S is called the storage efficiency of the allocation scheme. We want S
to be as small as possible.

2. Any list of length ` can be retrieved by visiting at most P d`/pe pages in server
memory, where P is called the page efficiency of the allocation scheme. We
want P to be as small as possible.

3. Finally, the pages visited by the server to retrieve a given list should not
depend on the lengths of other lists.

The first two goals are precisely the aim of bin packing algorithms. The third goal
is a security goal: it stipulates that the pattern of memory accesses performed
by the server should not leak certain information. As such, the goal relates to
oblivious or data-independent algorithms. In [BBF+21], a framework for realizing
the three goals was formalized as Data-Independent Packing (DIP).

8 Brice Minaud, Michael Reichle

To ease presentation, we will focus on the case where all lists are of size at
most one page. If a list is of length more than one page, the general idea is that
it will be split into chunks of one page, plus one final chunk of size at most one
page; each chunk will then be treated as a separate list by the allocation scheme.
We assume from now on that lists are of length less than one page.

In a nutshell, the idea proposed by [BBF+21] to instantiate a DIP scheme
is to use weighted variant of cuckoo hashing [PR04]. In more detail, for each
list, two pages are chosen uniformly at random, by hashing an identifier of the
list. Each element of the list will then be stored in one of the two designated
pages, or a stash. The stash is stored on the client side. In order to choose how
each list is split between its three possible destinations (the two chosen pages,
or the stash), [BBF+21] uses a maximum flow algorithm. The details of this
algorithm are not relevant for our purpose. The important point is that when
retrieving a list, the server accesses two uniformly random pages. Clearly, this
reveals no information to the server about the lengths of other lists. The resulting
algorithm, called Tethys, achieves storage efficiency O(1), page efficiency O(1),
with client storage ω(log λ) pages (used to store the stash).

In this paper, we wish to build a dynamic SSE. For that purpose, the under-
lying allocation scheme needs to allow for a new update operation. An update
operation allows the client to add a new item to a list, increasing its length
by one. The security goal remains essentially the same as in the static case: the
pages accessed by the algorithm in order to update a given list should not depend
on the lengths of other lists.

Tethys is not a suitable basis for a dynamic scheme, because it does not allow
for an efficient data-independent update procedure: when inserting an element
into a cell, the update procedure requires running a max flow algorithm. This
either requires accessing other cells, with an access pattern that is intrinsically
data-dependent, or performing a prohibitively expensive data-oblivious max flow
computation each update. Instead, a natural idea is to use a weighted variant of
the two-choice allocation scheme. With two-choice allocation, the access pattern
made during an update is simple: only the two destination buckets associated
to the list being updated need to be read. The new item is then inserted into
whichever of the two buckets currently contains less items.

Instantiating that approach would require a weighted dynamic variant of
two-choice allocation, along the following lines: given a multiset of list sizes
{`i : 1 ≤ i ≤ k} with `i ≤ p and

∑
`i = N , at the outcome of a two-

choice allocation process into O(N/p) buckets, the most loaded bucket con-
tains O(p log logN) items with overwhelming probability, even if the weight of
balls is updated during the process. However, a result of that form appears
to be a long-standing open problem (some related partial results are discussed
in [BFHM08]). The two-choice process with weighted items has been studied in
the literature [TW07, TW14, ANSS16], but to our knowledge, all existing re-
sults assume that (1) either the weight of the balls are sampled identically and
independently from a sufficiently smooth distribution or (2) the balls are sorted
initially and then allocated in decreasing order. Even disregarding constraints

Dynamic Local Searchable Symmetric Encryption 9

on the distribution, in our setting, we cannot even afford to assume that list
lengths are drawn independently: in the SSE security model, lists are chosen
and updated arbitrarily by the adversary. Also, presorting the lists according
to their length is not possible in a dynamic setting, as the list lengths can be
changed via updates.

For our purpose, we require a distribution-free statement: we only know a
bound p on the size of each list, and a bound N on the total size of all lists.
We want an O(p log logN) upper bound on the size of the most loaded bucket
that holds for any set of list sizes satisfying those constraints, even if list sizes
are updated during the process. A result of that form is known for one-choice
allocation processes [BFHM08] (with a O(p logN) upper bound), but the same
article shows that the same techniques cannot extend to the two-choice process.

To solve that problem, we introduce a layered weighted 2-choice allocation
algorithm, L2C. L2C has the same basic behavior as a (weighted) two-choice
algorithm: for each ball, two bins are chosen uniformly at random as possible
destinations. The only difference is how the bin where the ball is actually inserted
is selected among the two destination bins. The most natural choice would be
to store the ball in whichever bin currently has the least load, where the load
of a bin is a the sum of the weights of the balls it currently contains. Instead,
we use a slightly more complex decision process. In a nutshell, we partition the
possible weights of balls into O(log log λ) subintervals, and the decision process
is performed independently for balls in each subinterval. For the first subinterval
(holding the smallest weights), we use a weighted one-choice process, while for
the other subintervals, we use an unweighted two-choice process.

The point of this construction is that its analysis reduces to the analysis
of the weighted one-choice process, and the unweighted two-choice process, for
which powerful analytical techniques are known. We leverage those techniques
to show that L2C achieves the desired distribution-free guarantees on the load of
the most loaded bin. In practice, what this means is that we have an allocation
algorithm that, for most intents and purposes, behaves like a weighted variant
of two-choice allocation, and for which updates and distribution-free guarantees
can be obtained relatively painlessly.

The LayeredSSE scheme is obtained by adding a layer of encryption and key
management on top of L2C, using standard techniques from the SSE literature,
although some care is required for updates. We refer the reader to Section 5 for
more details.

2.2 Generic Local Transform

At Crypto 2018, Asharov et al. identified two main paradigms for building local
SSE [ASS18]. The first is the allocation paradigm, which typically uses variants of
multiple-choice allocation schemes, or cuckoo hashing. The second is the pad-and-
split approach. The main difficulty of memory-efficient SSE is to pack together
lists of different sizes. The idea of the pad-and-split approach is to store lists
separately according to their size, which circumvents the issue. The simplest
way to realize this is to pad all lists length to the next power of 2. This yields

10 Brice Minaud, Michael Reichle

logN possible values for list lengths. All lists of a given length can be stored
together using, for instance, a standard hash table. Since we do not want to
reveal the number of lists of each length, the hash table at each level needs to
be dimensioned to be able to receive the entire database. As a result, a basic
pad-and-split scheme has storage efficiency O(logN), but easily achieves O(1)
locality and read efficiency.

For the Generic Local Transform, we introduce the notion of Overflowing
SSE (OSSE). An OSSE behaves like an SSE scheme in all aspects, except that,
during its setup and during updates, it may refuse to store some list elements.
Such elements are called overflowing. An OSSE is intended to be used as a
subcomponent within an overarching SSE construction. The OSSE scheme is
used to store part of the database, while overflowing elements are stored using
a separate mechanism. The notion of OSSE was not formalized before, but in
hindsight, the use of OSSE may be viewed as implicit in several existing con-
structions [DPP18, ASS18, BBF+21]. We choose to introduce it explicitly here
for ease of exposition.

We are now in a position to explain the Generic Local Transform. The chief
limitation of the pad-and-split approach is that it creates a logN overhead in
storage. The high-level idea of the Generic Local Transform, then, is to use an
OSSE to store all but a fraction 1/ logN of the database. Then a pad-and-split
variant is used to store theN/ logN overflowing elements. The intent is to benefit
from the high efficiency of the pad-and-split approach, without having to pay
for the logN storage overhead.

There is, however, a subtle but important issue with that approach. A given
list may be either entirely stored within the OSSE scheme, or only partially
stored, or not stored at all. In the OSSE scheme that we will later use (as well
as OSSEs that were implicit in prior work), those three situations should be
indistinguishable to the server, or else security breaks down. To address that
issue, we proceed as follows.

Let us assume all lists have been padded to the next power of 2. For the
pad-and-split part of the construction, we create logN SSE instances, one for
each possible list size. We call each of these instances a layer. The overflowing
elements of a list of size ` will be stored in the layer that handles lists of size `,
regardless of how many elements did overflow from the OSSE for that list.

The OSSE guarantees that the total number of overflowing items is at most
n = O(N/ logN). Thus, if we focus on the layer that handles lists of size `, the
layer will receive at most n elements. These elements will be split into lists of
size at most ` (corresponding to the set of overflowing elements, for each list
of size ` in the original database). To achieve storage efficiency O(S) overall,
we want the layer to store those lists using O(Sn) storage. To achieve read
efficiency R, the layer should also be able to retrieve a given list by visiting at
most R` memory locations. This is where everything comes together: an SSE
scheme satisfying those conditions is precisely a page-efficient SSE scheme with
page size `, storage efficiency S, and page efficiency R.

Dynamic Local Searchable Symmetric Encryption 11

The page-efficient scheme used for each layer is also required satisfy a few
extra properties: first, when searching for a list of size at most one page, the
length of the list should not be leaked. We call this property page-length-hiding.
(We avoid the term length-hiding to avoid confusion with volume-hiding SSE,
which fully hides lengths.) All existing page-efficient constructions have that
property. Second, we require the page-efficient scheme to have O(1) client stor-
age. All constructions in this article satisfy that property, but the construction
from [BBF+21] does not. Finally, we require the scheme to have locality O(1)
when fetching a single page. All existing page-efficient constructions have this
property. (The last two properties could be relaxed, at the cost of more com-
plex formulas and statements.) We call an SSE scheme satisfying those three
properties suitable.

Putting everything together, the Generic Local Transform takes as input a
suitable page-efficient scheme, with storage efficiency S and page efficiency P .
It outputs a local scheme with storage efficiency S + S′, read efficiency P +R′,
and locality L′, where S′, R′, and L′ are the storage efficiency, read efficiency,
and locality of the underlying OSSE. It remains to explain how to build a local
OSSE scheme with O(N/ logN) overflowing items, discussed next.

2.3 ClipOSSE: an OSSE scheme with O(N/ logN) Overflowing
Items

At STOC 2016, Asharov et al. introduced so-called “2-dimensional” variants of
one-choice and two-choice allocation, for the purpose of building local SSE. The
one-choice variant works as follows. Consider an SSE database with N elements.
Allocate m = Õ (N/ logN) buckets, initially empty. For each list of length ` in
the database, choose one bucket uniformly at random. The first element of the
list is inserted into that bucket. The second element of the list is inserted into
the next bucket (assuming a fixed order of buckets, which wraps around when
reaching the last bucket), the third one into the bucket after that, and so on,
until all list elements have been inserted. Thus, assuming ` ≤ m, all list elements
have been placed into ` consecutive buckets, one element in each. An analysis
very similar to the usual analysis of the one-choice process shows that with
overwhelming probability, the most loaded bucket receives at most τ = Õ (logN)
elements. To build a static SSE scheme from this allocation scheme, each bucket
is padded to the maximal size τ and encrypted. Search queries proceed in the
natural way.

Such a scheme yields storage efficiency O(1), locality O(1) (since retrieving
a list amounts to reading consecutive buckets), and read efficiency Õ (logN)
(since retrieving a list of length ` requires reading ` buckets, each of size τ =

Õ (logN)). To build ClipOSSE, we start from the same premise, but “clip” buckets
at the threshold τ = Õ (log logN). That is, each bucket can only receive up to
τ elements. Elements that cannot fit are overflowing.

In the standard one-choice process, where n balls are thrown i.i.d. into n bins,
it is not difficult to show that clipping bins at height τ = O(log log n) results

12 Brice Minaud, Michael Reichle

in at most O(n/ log n) overflowing elements with overwhelming probability. In
fact, by adjusting the multiplicative constant in the choice of τ , the number of
overflowing elements can be made O

(
n/ logd n

)
for any given constant d. We

show that a result of that form still holds for (a close variant of) the 2-dimensional
one-choice process outlined earlier. The result is conditional: it requires that the
maximum list size is O(N/polylogN). (A condition of that form is necessary,
insofar as the result fails when the maximum list size gets close to N/ logN .)
The proof of the corresponding theorem is the most technically challenging part
of this work, and relies on the combination of a convexity argument with a
stochastic dominance argument. An overview of the proof is given in section 6.5,
so we omit more discussion here.

In the end, ClipOSSE achieves storage efficiency O(1), locality O(1), and read
efficiency O(log logN), with O

(
N/ logdN

)
overflowing elements (for any fixed

constant d of our choice), under the condition that the maximum list size is
O(N/polylogN). All applications of the Generic Local Transform in this article
use ClipOSSE as the underlying OSSE. (That is why we write Local[PE-SSE] for
the Generic Local Transform applied to the page-efficient scheme PE-SSE, and
do not put the underlying OSSE as an explicit parameter.)

2.4 Dynamic Local SSE with Õ (log logN) Overhead

By using the Generic Local Transform with ClipOSSE as the underlying OSSE,
and LayeredSSE as the page-efficient scheme, we obtain Local[LayeredSSE]. The
Local[LayeredSSE] scheme has storage efficiency O(1), locality O(1), and read
efficiency Õ (log logN). This result follows from the main theorem regarding the
Generic Local Transform, and does not require any new analysis.

Local[LayeredSSE] is a conditional scheme: it requires that the longest list
is of length O

(
N1−1/ log log λ

)
. The reason is subtle. ClipOSSE by itself has a

condition that the longest list is O(N/polylogN), which is less demanding.
The reason for the condition comes down to the fact that LayeredSSE only
achieves a negligible probability of failure as long as the number of pages in
the scheme is at least Ω(λ1/ log log λ). More generally, the same holds for the
number of bins in two-choice allocation processes in general, even the standard,
unweighted process. The condition is optimal: [ASS21] shows that any sublog-
arithmic “allocation-based” scheme must be conditional, and gives a bound on
the condition. Local[PE-SSE] matches that bound.

2.5 Unconditional Static Local SSE with O(logε N) Overhead

The (static) Tethys scheme from [BBF+21] achieves storage efficiency O(1) and
page efficiency O(1) simultaneously. It is also page-length-hiding. Since we have
the Generic Local Transform at our disposal, it is tempting to apply it to Tethys.
There is, however, one obstacle: Tethys uses ω(p log λ) client memory, in order
to store a stash on the client side. For the Generic Local Transform, we need

Dynamic Local Searchable Symmetric Encryption 13

O(1) client memory. To reduce the client memory of Tethys, a simple idea is to
store the stash on the server side. Naively, reading the stash for every search
would increase the page efficiency to ω(log λ). To avoid this, we store the stash
within an ORAM.

For that purpose, we need an ORAMwith a failure probability of zero: indeed,
since we may store as few as log λ elements in the ORAM, a correctness guarantee
of the form negl(n), where n = log λ is the number items in the ORAM, fails to
be sufficient (it is not negl(λ)). We also need the ORAM to have O(1) locality.
An ORAM with these characteristics was devised in [DPP18], motivated by the
same problem. The ORAM from [DPP18] achieves read efficiency O

(
n1/3+ε

)
, for

any arbitrary constant ε > 0. It was already conjectured in [DPP18] that it could
be improved to O(nε). We build that variant explicitly, and name it LocORAM.
Roughly speaking, LocORAM is a variant of the Goldreich-Ostrovsky hierarchical
ORAM, with a constant number of levels.

By putting the stash of Tethys within LocORAM on the server side, we nat-
urally obtain a page-efficient SSE scheme OramTethys, with O(logε λ) read effi-
ciency, suitable for use within the Generic Local Transform. This yields a static
local SSE for lists of size at most N/polylog N . To handle larger lists, borrow-
ing some ideas from [DPP18], we group lists by size, and use again OramTethys
to store them. In the end, we obtain an unconditional SSE with O(1) store
efficiency, O(1) locality, and O(logε λ) read efficiency.

Comparing with the O
(
log2/3+ε λ

)
construction from [DPP18], we note that

the bottleneck of their construction comes from the allocation schemes the au-
thors use for what they call “small” and “medium” lists. This is precisely the range
where we use Local[OramTethys]. Our construction essentially removes that bot-
tleneck, so that the O(logε λ) read efficiency bottlneck now comes entirely from
the ORAM component. A detailed description of the scheme is given in the full
version.

3 Preliminaries

Let λ ∈ N be the security parameter. For a probability distribution X, we denote
by x← X the process of sampling a value x from the distribution. Further, we
say that x is We denote by [a, b]R the interval {x ∈ R | a ≤ x ≤ b} and extend
this naturally to intervals of the form [a, b)R, (a, b]R, (a, b)R.

3.1 Symmetric Searchable Encryption

A database DB = {wi, (id1, ..., id`i)}Wi=1 is a set of keyword-identifier pairs with
W keywords. We assume that each keyword wi is represented by a machine word
of O(λ) bits. We write DB(wi) = (id1, ..., id`i) for the list of identifiers matching
wi. Throughout the article, we set N =

∑W
i=1 `i and define p as the page size

(which we treat as a variable, independent of the size of the database N).
A dynamic searchable symmetric encryption scheme Σ is a 4-tuple of PPT

algorithms (KeyGen,Setup,Search,Update) such that

14 Brice Minaud, Michael Reichle

– Σ.KeyGen(1λ): Takes as input the security parameter λ and outputs client
secret key K.

– Σ.Setup(K, N,DB): Takes as input the client secret key K, an upper bound
on the database size N and a database DB. Outputs encrypted database
EDB and client state st.

– Σ.Search(K, w, st;EDB): The client receives as input the secret key K, key-
word w and state st. The server receives as input the encrypted database
EDB. Outputs some data d and updated state st′ for the client. Outputs
updated encrypted database EDB′ for the server.

– Σ.Update(K, (w,L), op, st;EDB): The client receives as input the secret key
K, a pair (w,L) of keyword w and list L of identifiers, an operation op ∈
{del, add} and state st. The server receives as input the encrypted database
EDB. Outputs updated state st′ for the client. Outputs updated encrypted
database EDB′ for the server.

In the following, we omit the state st and assume that it is implicitly stored and
updated by the client. We say that Σ is static, if it does not provide an Update
algorithm. Further, we assume that the keyword w is preprocessed via a PRFby
the client, whenever the client sends w to the server in either Search or Update.
This ensures that the server never has access to w in plaintext and unqueried
keywords are distributed uniformly random in the view of the server.

Intuitively, the client uses Setup to encrypt and outsource a database DB to
the server. Then, the client can search keywords w using Search and receives
the list of matching identifiers DB(w) from the server. The list DB(w) can be
updated via Update, provided that the size of the database stays below N . Note
that we allow the client to add (or delete) multiple identifiers at once for a single
keyword (which is required for the Generic Local Transform section 6).

Security. We now define correctness and semantic security of SSE. Intuitively,
correctness guarantees that a search always retrieves all matching identifiers
and semantic security guarantees that the server only learns limited information
(quantified by a leakage function) from the client.

Definition 1 (Correctness). A SSE scheme Σ is correct if for all databases
DB and N ∈ N, keys K← Σ.KeyGen(1λ), EDB← Σ.Setup(K,DB) and sequences
of search, add or delete queries S, the search protocol returns the correct result
for all queries of the sequence, if the size of the database remains at most N .

We use the standard semantic security notion for SSE (see [CGKO06]). Se-
curity is parameterized by a leakage function L = (LStp,LSrch,LUpdt), composed
of the setup leakage LStp, the search leakage LSrch, and the update leakage
LUpdt. We define two games, SSEReal and SSEIdeal. First, the adversary
chooses a database DB. In SSEReal, the encrypted database EDB is generated
by Setup(K, N,DB), whereas in SSEIdeal the encrypted database is simulated
by a (stateful) simulator Sim on input LStp(DB, N). After receiving EDB, the
adversary issues search and update queries. All queries are answered honestly in

Dynamic Local Searchable Symmetric Encryption 15

SSEReal. In SSEIdeal, the search queries on keyword w are simulated by Sim
on input LSrch(w), and update queries for operation op, keyword w and identi-
fier list L are simulated by Sim on input LUpdt(op, w, L). Finally, the adversary
outputs a bit b.

We write SSERealadp and SSEIdealadp if the queries of the adversary
were chosen adaptively, i.e. dependant on previous queries. Similarly, we write
SSERealsel and SSEIdealsel if the queries are chosen selectively by the adver-
sary, i.e. sent initially in conjunction with the database before receiving EDB.

Definition 2 (Semantic Security). Let Σ be a SSE scheme and L = (LStp,
LSrch,LUpdt) a leakage function. Scheme Σ is L-adaptively secure if for all PPT
adversaries A, there exists a PPT simulator Sim such that

|Pr[SSERealadpΣ,A(λ) = 1]− Pr[SSEIdealadpΣ,Sim,L,A(λ) = 1]| = negl(λ).

Similarly, scheme Σ is L-selectively secure if for all PPT adversaries A, there
exists a PPT simulator Sim such that

|Pr[SSERealselΣ,A(λ) = 1]− Pr[SSEIdealselΣ,Sim,L,A(λ) = 1]| = negl(λ).

Intuitively, semantic security guarantees that the interaction between client
and server reveals no information to the server, except the leakage of the given
query. The schemes from this article have common leakage patterns. We use the
standard notions of query pattern qp and history Hist from [Bos16] to formalize
this leakage: (1) The query pattern qp(w) for a keyword w are the indices of
previous search or update queries for keyword w. (3) The history Hist(w) is
comprised of the list of identifiers matching keyword w that were inserted during
setup and the history of updates on keyword w, that is each deleted and inserted
identifier. We can retrieve the number `i of inserted identifiers and the number
di of deleted identifiers from Hist(w) for each keyword.

We define two leakage patterns we use throughout the article. (1) We de-
fine page-length hiding leakage Llen-hid. We set Llen-hid = (Llen-hid

Stp ,Llen-hid
Srch ,Llen-hid

Updt),
where the setup leakage is Llen-hid

Stp (DB, N) = N is the maximal size N of the
database, the search leakage Llen-hid

Srch (w) = (qp, d`i/pe , ddi/pe) is the query pat-
tern and the number of pages required to store the inserted and deleted items,
and the update leakage Llen-hid

Updt (op, w, L) = (op, qp, d(`i + |L|)/pe , d(di + |L|)/pe ,
d`i/pe , ddi/pe) is the operation, the query pattern and the number of pages re-
quired to store the inserted and deleted items (before and after the update)1.
(2) Similarly, we define length reveiling leakage Llen-rev. We set Llen-rev = (Llen-rev

Stp ,

Llen-rev
Srch ,Llen-rev

Updt) with Llen-rev
Stp (DB, N) = N , Llen-rev

Srch (w) = (qp, |L′|, `i, di) and lastly
Llen-rev
Updt (op, w, L′) = (op, qp, |L′|, `i, di).
We will use Llen-hid and Llen-rev for both dynamic and static schemes. When we

say that a static scheme is L-semantically secure, for L ∈ {Llen-hid,Llen-rev}, we
1 Note that we allow for inserting more than one identifier per keyword in a single
update operation in this work. Thus, the server will also learn (limited) information
about the number |L| of added or deleted identifiers.

16 Brice Minaud, Michael Reichle

simply ignore the update leakage. Note that both leakage patterns, Llen-hid and
Llen-rev, have standard setup and search leakage, common in most SSE schemes.
The update leakage of Llen-hid and Llen-rev is similar to their search leakage, and
reveals nothing about unqueried keywords. While the update leakage is not for-
ward secure, similar leakage patterns are commonly considered in literature, for
example [CJJ+14]. We hope our techniques pave the way for future work on
dynamic schemes with forward security and memory efficiency.

Efficiency Measures. We recall the notions of locality, storage efficiency and
read efficiency [CT14], and page efficiency [BBF+21] (and extend them to the
dynamic SSE setting in a natural manner). In the following definitions, we set
K ← KeyGen(1λ) and EDB ← Setup(K, N,DB) given database DB and upper
bound N on the number of document identifiers. Also, S = (opi, ini)

s
i=1 is a

sequence of search and update queries, where opi ∈ {add, del,⊥} is a operation
and ini = (opi, wi, Li, sti,EDBi) its input. Here, wi is a keyword and Li is a
(added or deleted) list of identifiers, and after executing all previous operations
opj for j ≤ i, sti is the client state and EDBi the encrypted database. We denote
by DBi the database after i operations. We assume that the total number of
identifiers never exceeds N . (If opi = ⊥, the query is a search query and Li is
empty.)

Definition 3 (Read Pattern). Regard server-side storage as an array of mem-
ory locations, containing the encrypted database EDB. When processing search
query Search(K, wi, sti;EDBi) or update query Update(K, (wi, Li), opi, sti;EDBi),
the server accesses memory locations m1, ...,mh. We call these locations the read
pattern and denote it with RdPat(opi, ini).

Definition 4 (Locality). A SSE scheme has locality L if for any λ, DB, N ,
sequence S, and any i, RdPat(opi, ini) consists of at most L disjoint intervals.

Definition 5 (Read Efficiency). A SSE scheme has read efficiency R if for
any λ, DB, N , sequence S, and any i, |RdPat(opi, ini)| ≤ R · P , where P is the
number of memory locations needed to store all (added and deleted) document
indices matching keyword wi in plaintext (by concatenating indices).

Definition 6 (Storage Efficiency). A SSE scheme has storage efficiency E
if for any λ, DB, N , sequence S, and any i, |EDBi| ≤ E · |DBi|.

Definition 7 (Page Pattern). Regard server-side storage as an array of pages,
containing the encrypted database EDB. When processing search query Search(K,
wi, sti;EDBi) or update query Update(K, (wi, Li), opi, sti;EDBi), the read pattern
RdPat(opi, ini) induces a number of page accesses p1, ..., ph′ . We call these pages
the page pattern, denoted by PgPat(opi, ini).

Definition 8 (Page Cost). A SSE scheme has page cost aX + b, where a, b
are real numbers, and X is a fixed symbol, if for any λ, DB, N , sequence S, and
any i, |PgPat(opi, ini)| ≤ aX+b, where X is the number of pages needed to store
document indices matching keyword wi in plaintext.

Dynamic Local Searchable Symmetric Encryption 17

Definition 9 (Page Efficiency). A SSE scheme has page efficiency P if for
any λ, DB, N , sequence S, and any i, |PgPat(opi, ini)| ≤ P · X, where X is
the number of pages needed to store document indices matching keyword wi in
plaintext.

4 Layered Two-Choice Allocation

In this section, we describe layered two-choice allocation (L2C), a variant of two-
choice allocation that allows to allocate n weighted balls (bi, wi) into m bins,
where bi is a unique identifier and wi ∈ [0, 1]R is the weight of the ball. (We often
write ball bi for short.) First, let 1 ≤ δ(λ) ≤ log(λ) be a function. We denote
by w =

∑n
i=1 wi the sum of all weights and set m = w/(δ(λ) log logw). We

will later choose δ(λ) = o(log log λ) such that allocation has negligible failure
probability. In the overview, we set δ(λ) = 1 and assume that m = Ω(λ) for
simplicity (which suffices for negligible failure probability).

Overview of L2C. L2C is based on both weighted one-choice allocation (1C)
and unweighted two-choice allocation (2C). On a high level, we split the set of
possible weights [0, 1]R into log logm subintervals

[0, 1/ logm]R, (1/ logm, 2/ logm]R, ..., (2log logm−1/ logm, 1]R.

In words, the first interval is of size 1/ logm and the boundaries between intervals
grow by a factor 2 every time. We will allocate balls with weights in a given
subinterval independently from the others.

Balls in the first subinterval have weights wi ≤ logm and are thus small
enough to apply weighted 1C. Intuitively, this suffices because one-choice (prov-
ably) performs worst for uniform weights of maximal size 1/ logm. In that
case, there are at most n′ = w logm balls and we expect a bin to contain
n′/m = logm · log logw balls of uniform weight, since m = w/(log logw). As
each ball has weight 1/ logm, the expected load per bin is log logw. This trans-
lates to a O(log logw) bound with overwhelming probability after applying a
Chernoff’s bound.

For the other intervals, applying unweighted and independent 2C per interval
suffices, as the weights of balls differ at most by a factor 2 and there are only
log logm intervals. More concretely, let ni be the number of balls in the i-th
subinterval Ai = (2i−1/ logm, 2i/ logm]R for i ∈ {1, ..., log logm}. Balls with
weights in subinterval Ai fill the bins with at most O(ni/m+ log logm) balls,
independent of other subintervals. Note that we are working with small weights,
and thus potentially have ω(m) balls. Thus, we need to extend existing 2C results
to negligible failure probability in m for the heavily-loaded case. As there are
only log logm subintervals, and balls in interval Ai have weight at most 2i/ logm,
we can just sum the load of each subinterval and receive a bound

log logm∑
i=1

2i

logm
O(ni/m+ log logm) = O(w/m+ log logm).

18 Brice Minaud, Michael Reichle

In total, we have O(w/m+ log logm) = O(log logw) bounds for the first and
the remaining intervals. Together, this shows that all bins have load at most
O(log logw) after allocating all n items. This matches the bound of standard 2C
with unweighted balls if m = Ω(λ). For our SSE application, we want to allow
for negligible failure probability with the least number of bins possible. We can
set δ(λ) = log log log(λ) and obtain a bin size of Õ (log logw) with overwhelming
probability, if m = w

δ(λ) log logw . The analysis is identical in this case.

Handling Updates. The described variant of L2C is static. That is, we
have not shown a bound on the load of the most loaded bin if we add balls or
update the weight of balls. Fortunately, inserts of new balls are trivially covered
by the analysis sketched above, if m was chosen large enough initially in order to
compensate for the added weight. Thus, we assume there is some upper bound
wmax on the total weights of added balls which is used to initially set up the
bins. We can also update weights if we proceed with care.

For this, let bi be some ball with weight wold. We want to update its weight to
wnew > wold. If wold and wnew reside in the subinterval, we can directly update the
weight of bi, as L2C ignores the concrete weight of balls inside a given subinterval
for the allocation. Indeed, in the first interval, the bin in which bi is inserted is
determined by a single random choice, and for the remaining subintervals, the 2C
process only considers the number of balls inside the same subinterval, ignoring
concrete weights.

When wnew is larger than the bounds of the current subinterval, we need to
make sure that the ball is inserted into the correct bin of its two choices. For
this, the ball bi is inserted into the bin with the lowest number of balls with
weights inside the new subinterval. Even though the bin of bi might change in
this process, we still need to consider bi as a ball of weight wold in the old bin
for subsequent ball insertions in the old subinterval. Thus, we mark the ball
as residual ball but do not remove it from its old bin. That is, we consider it
as ball of weight wold for the 2C process but assume it is not identified by bi
anymore. As there are only log logm different subintervals, storing the residual
balls has a constant overhead. The full algorithm L2C is given in Algorithm 1.
We parameterize it by a hash function H mapping uniformly into {1, ...,m}2.
The random bin choices of a ball bi are given by α1, α2 ← H(bi).

Load Analysis of L2C. Let either δ(λ) = 1 or δ(λ) = log log log λ and m
sufficiently large such that m−Ω(δ(λ) log logw) = negl(λ). (Note that this is the
probability that allocation of 1C and 2C fails.)

We need to show that after setup and during a (selective) sequence of op-
erations, the most loaded bin has a load of at most O(δ(λ) log logwmax), where
wmax is an upper bound on the total weight of the inserted balls. We sketch
the proof here and refer to the full version for further details. First, we mod-
ify the sequence S such that we can reduce the analysis to only (sufficiently
independent) L2C.InsertBall operations, while only increasing the final bin load
by a constant factor. This is constant factor of the load is due to the additional
weight of residual balls. Then, we analyze the load of the most loaded bin for the

Dynamic Local Searchable Symmetric Encryption 19

each subinterval independently. This boils down to an analysis of a 1C process
in the first subinterval and a 2C process in the remaining subintervals as in the
overview of L2C (see Section 4). Summing up the independent bounds yields the
desired result.

Theorem 1. Let either δ(λ) = 1 or δ(λ) = log log log λ. Let wmax = poly(λ)

and m = wmax/(δ(λ) log logwmax). We require that m = Ω(λ
1

log log λ) if δ(λ) =
log log log λ or m = Ω(λ) otherwise. Let {(bi, wi)ni=1} be balls with (pair-wise
unique) identifier bi and weight wi ∈ [0, 1]. Further, let S = (opi, ini)

s+n
i=n+1 be a

sequence of s insert or update operations opi ∈ {L2C.InsertBall, L2C.UpdateBall}
with input ini = (bi, wi, Bαi,1 , Bαi,2) for inserts and ini = (bi, oi, wi, Bαi,1 , Bαi,2)
for updates. Here, bi denotes the identifier of a ball with weight wi and old weight
oi ≤ wi before the execution of opi. Also, the bins are chosen via αi,1, αi,2 ←
H(bi).

Execute (Bi)
m
i=1 ← L2C.Setup({(bi, wi)ni=1}) and the operations opi(ini) for

all i ∈ [n+ 1, n+ s]. We require that
∑n+s
i=1 wi − oi ≤ wmax, i.e. the total weight

after all operations is at most wmax.
Then it holds that throughout the process, the most loaded bin of B1, ..., Bm

has at most load O(δ(λ) log logwmax) except with negligible probability, if H is
modeled as a random oracle.

5 Dynamic Page Efficient SSE

We introduce the SSE scheme LayeredSSE based on L2C. Essentially, we interpret
lists Li of identifiers matching keyword wi as balls of a certain weight. Then, we
use L2C to manage the balls in m encrypted bins, where each bin corresponds
to a memory page, yielding page efficiency Õ (log logN/p) and constant storage
efficiency. Let N be the maximal size of the database, p ≤ N1−1/ log log λ be
the page size2 and H be a hash function mapping into {1, ...,m}2 for m =
dwmax/(log log log λ · log logwmax)e and wmax = N/p. Due to space limitations,
we assume that each keyword has at most p associated keywords, and outline
the scheme and its security analysis. We refer to the full version for details
(without restrictions on the database3).

For convenience, we adapt the notation of L2C to lists of identifiers. A ball
(w,L) of weight |L|/p ∈ [0, 1]R is a list of (at most p) identifiers matching
keyword w. The 2 bin choices α1, α2 for ball (w,L) are given via (α1, α2)← H(w).
Now, L2C.Setup takes input balls {(wi, Li)}Wi=1 and maximal weight wmax, and
allocates them as before into m bins. L2C.InsertBall receives ball (w,L) and two
bins (Bα1 , Bα2), and inserts (w,L) into either bin Bα1 or bin Bα2 as before.

2 This condition is needed for the requirementm ≥ λ1/ log log λ of L2C which guarantees
negligible failure probability (see Theorem 1). In practice, we have p� N .

3 For arbitrary lists sizes, we can split lists into sublists of size at most p and deal
with each sublist separately as before. Some care has to be taken, for example with
the random choices of the bins, but details are mostly straightforward.

20 Brice Minaud, Michael Reichle

Algorithm 1 Layered 2-Choice Allocation (L2C)
L2C.Setup({(bi, wi)}ni=1, wmax)

1: Receive n balls (bi, wi), and maximal total weight wmax

2: Initialize m = dwmax/(δ(λ) log logwmax)e empty bins B1, ..., Bm
3: for all i ∈ {1, ..., n} do
4: Set α1, α2 ← H(bi)
5: InsertBall(bi, wi, Bα1 , Bα2)

6: Return B1, ..., Bm
L2C.InsertBall(bnew, wnew, Bα1 , Bα2)

1: Receive bins Bα1 , Bα2 , and ball (bnew, wnew)
2: Assert that α1, α2 are the choices given by H(bnew)
3: Split the set of possible weights [0, 1]R into log logm sub-intervals

[0, 1/ logm]R, (1/ logm, 2/ logm]R, ..., (2log logm−1/ logm, 1]R

4: Choose k ∈ N minimal such that wnew ≤ 2k/ logm
5: if k = 1 then
6: Set α← α1

7: else
8: Let Bα be the bin with the least number of balls of weight in

(
2k−1

logm
, 2k

logm

]
R

among Bα1 and Bα2

9: Insert ball bnew into bin Bα
L2C.UpdateBall(bold, wold, wnew, Bα1 , Bα2)

1: Receive bins Bα1 , Bα2 that contain ball (bold, wold), and new weight wnew ≥ wold

2: Assert that α1, α2 are the choices given by H(bold)

3: if wold, wnew ∈
(

2k−1

logm
, 2k

logm

]
R
for some k then

4: Update the weight of bold to wnew directly
5: else
6: Mark bold as residual ball (it is still considered as a ball of weight wold)
7: InsertBall(bold, wnew, Bα1 , Bα2)

L2C.UpdateBall receives old ball (w,L), identifiers L′ and bins (Bα1
, Bα2

), and
updates ball (w,L) to ball (w,L ∪ L′) as before, while merging both identifier
lists L and L′. (The weight of the updated ball is |L ∪ L′|/p ∈ [0, 1]R.)

5.1 LayeredSSE

We describe LayeredSSE, focusing on insert operations. In the full version, we
describe LayeredSSE in more detail, and show how to treat arbitrary list sizes,
introduce delete operations and show how to obtain updates in 1 RTT. A detailed
description of LayeredSSE is given in algorithm 2.

Setup. To setup the initial database DB = (w,Li)
W
i=1, given upperbound N

on the number of keyword-identifiers, allocate the balls (w,Li) into m bins via
L2C. Next, each bin is filled up to maximal size p · c log log log(λ) log log(N/p),
for some constant c. Finally, the encrypted bins are output.

Dynamic Local Searchable Symmetric Encryption 21

Search. During a search operation on keyword w, the client retrieves en-
crypted bins Bα1

, Bα2
for (α1, α2)← H(w) from the server.

Update. During an update operation to add identifier list L′ to keyword w,
the client retrieves Bα1

, Bα2
, decrypts both bins and retrieves ball (w,L) from

the corresponding bin Bα ∈ {Bα1
, Bα2

}. Then, she calls L2C.UpdateBall with
old ball (w,L), new identifiers L′ and bins Bα1

, Bα2
to insert the new identifiers

L′ into one of the bins. Finally, she reencrypts the bins and sends them to the
server. The server then replaces the old bins with the updated bins.

Algorithm 2 LayeredSSE
Global parameters: constant c ∈ N, page size p

LayeredSSE.KeyGen(1λ)

1: Sample KEnc for Enc with input 1λ

2: return K = KEnc

LayeredSSE.Setup(K, N,DB)

1: Set τ ← p · c log log log(λ) log log(N/p)
2: Sample bins B1, ..., Bm via L2C.Setup

with input ({(wi,DB(wi))}Wi=1, N/p)
3: Fill B1, ..., Bm up to size τ with zeros
4: Set Benc

i ← EncKEnc(Bi) for i ∈ [1,m]
5: return EDB = (Benc

1 , ..., Benc
m)

LayeredSSE.Search(K, w;EDB)
Client:
1: return w

Server:
1: Set α1, α2 ← H(w)
2: return Benc

α1
, Benc

α2

LayeredSSE.Update(K, (w,L′), add;EDB)
Client:
1: return w

Server:
1: Set α1, α2 ← H(w)
2: return Benc

α1
, Benc

α2

Client:
1: Set Bαi ← DecKEnc(B

enc
αi) for i ∈ {1, 2}

2: Retrieve ball (w,L) from Bα for appro-
priate α ∈ {α1, α2}

3: Run L2C.UpdateBall((w,L), L′, Bα1 , Bα2)
4: Set Bnew

αi ← EncKEnc(Bαi) for i ∈ {1, 2}
5: return Bnew

α2
, Bnew

α2

Server:
1: Replace Benc

αi with Bnew
αi for i ∈ {1, 2}

5.2 Security and Efficiency

Correctness. LayeredSSE is correct as each keyword has two bins that contain its
identifiers associated to it (and these bins are consistently retrieved and updated
with L2C). If the hash function is modeled as a random oracle, the bin choices
are uniformly random and Theorem 1 guarantees that bins do not overflow.

Selective Security. LayeredSSE is selectively secure and has standard setup leak-
age N , such as search and update leakage qp, where qp is the query pat-
tern4. This can be shown with a simple hybrid argument, sketched here. For
setup, the simulator Sim receives N , recomputes m and initializes m empty
bins B1, ..., Bm of size p · c log log log(λ) log log(N/p) each. Sim then outputs
EDB′ = (EncK′Enc(Bi)

m
i=1) for some sampled key K′Enc. As Enc is IND-CPA secure

(and bins do not overflow in the real experiment except with negligible proba-
bility), the output EDB′ is indistinguishable from the output of Setup in the real
4 This is equivalent to page length hiding leakage Llen-hid, as we only restrict ourselves
to lists of size at most p.

22 Brice Minaud, Michael Reichle

experiment. For a search query on keyword w, Sim checks the query pattern qp
whether w was already queried. If w was not queried before, Sim a new uniformly
random keyword w′. Otherwise, Sim responds with the same keyword w′ from
the previous query. As we assume that keywords are preprocessed by the client
via a PRF, the keywords w and w′ are indistinguishable. For an update query
on keyword w, the client output in the first flow is the same as in a search query
and thus, Sim can proceed as in search. For the second flow, Sim receives two
bins Bα1

, Bα2
from the adversary, directly reencrypts them and sends them back

to the adversary. This behaviour is indistinguishable, as the bins are encrypted
and again, bins do not overflow except with negligible probability.

Adaptive Security. For adaptive security, the adversary can issue search and up-
date queries that depend on previous queries. As Theorem 1 assumes selectively
chosen InsertBall and UpdateBall operations, there is no guarantee that bins do
not overflow anymore in the real game. Thus, the adversary can potentially dis-
tinguish update queries of the simulated game from real update queries if she
manages to overflow a bin in the real game, as she would receive bins with in-
creased size only in latter case. Fortunately, we can just add a check in Update
whether one of the bins overflows after the L2C.UpdateBall operation. In that
case, the client reverts the update and send back the (reencrypted) original bins.
Now, Theorem 1 still guarantees that bins overflow only with negligible proba-
bility after Setup and we can show that the simulated game is indistinguishable
from the real game as before. Note that LayeredSSE is still correct after this
modification, since updates that lead to overflows cannot occur by accident, but
only if the client systemically adapts the choice of updates to the random coins
used during previous update operations (see Theorem 1).

Note that when the client remarks that a bin overflowed in an Update in a
real world environment, this is due malicious Update operations. The client can
adapt his reaction accordingly, whereas the server learns no information about
the attack without being notified by the client. We can show that LayeredSSE
with the adjustment of Update is correct and Llen-hid-adaptively secure. The same
simulator Sim suffices and we omit the details.

Efficiency. LayeredSSE has constant storage efficiency, as the server stores m =⌈
(N/p)/(log log log λ · log log N

p)
⌉
bins of O

(
p log log log λ · log log N

p

)
identifiers

each. There is no client stash required. Each search and update query, the server
looks up 2 bins, and thus LayeredSSE has Õ (log log(N/p)) page efficiency. Note
that LayeredSSE has O(1) locality if only lists up to size p are inserted.

Extensions. With some care, LayeredSSE can handle deletes and arbitrary lists
(without sacrificing security and efficiency). We refer to the full version for more
details. The results are formalized in Theorem 2.

Theorem 2 (LayeredSSE). Let N be an upper bound on the size of database DB
and p ≤ N1−1/ log log λ be the page size. The scheme LayeredSSE is correct and
Llen-hid-adaptively semantically secure if Enc is IND-CPA secure and H is modeled

Dynamic Local Searchable Symmetric Encryption 23

as a random oracle. It has constant storage efficiency and Õ (log logN/p) page
efficiency. If only lists up to size p are inserted, LayeredSSE has constant locality.

6 The Generic Local Transform

In this section, we define the Generic Local Transform (GLT), creating a link
between the two IO-efficiency goals of locality and page efficiency. Namely, the
GLT builds an SSE scheme with good locality properties from an SSE scheme
with good page efficiency. For a page-efficient scheme to be used within the GLT,
it needs to have certain extra properties. We define such schemes as suitable
page-efficient schemes in Section 6.1. Next, we introduce the useful notion of
overflowing SSE. The GLT is then obtained by combining an overflowing SSE
with a suitable page-efficient scheme. The OSSE we will use for that purpose,
ClipOSSE, is presented in Section 6.2. Finally, the GLT is built from the previous
components in Section 6.4. An overview of the correctness and security proofs is
provided in section 6.5. Full proofs are available in the full version.

6.1 Preliminaries

Suitable page-efficient SSE.
The GLT will create many instances of the underlying page-efficient scheme,

each with a different page size. For that reason, for the purpose of the GLT,
we slightly extend the standard SSE interface defined in Section 3: namely,
Setup(K, N,DB, p) takes as an additional parameter the page size p. In addi-
tion, recall that, in Section 3, we have allowed the Update(K, (w,L), op, st;EDB)
procedure to add a set of matching documents K to a given keyword w in a
single call. Note that S is allowed to be empty, in which case nothing is added.

If a scheme instantiates that interface, and, in addition, satisfies the following
three conditions, we will call such as scheme a suitable page-efficient SSE.

– The scheme has client storage O(1).
– The scheme has locality O(1) during searches and updates when accessing a

list of length at most one page.
– The leakage of the scheme is page-length-hiding.

Overflowing SSE. We introduce the notion of Overflowing SSE. An Overflow-
ing SSE (OSSE) has the same interface and functionality as a standard SSE
scheme, except that during a Setup or Update operation, it may refuse to store
some document identifiers. Those identifiers are called overflowing. At the out-
put of the Setup and Update operations, the client returns the set of overflowing
elements. Compared to standard SSE, the correctness definition is relaxed in the
following way: during a Search, only matching identifiers that were not overflow-
ing need to be retrieved.

The intention of an Overflowing SSE is that it may be used as a component
within a larger SSE scheme, which will store the overflowing identifiers using

24 Brice Minaud, Michael Reichle

a separate mechanism. The use of an OSSE may be regarded as implicit in
some prior SSE constructions. We have chosen to introduce the notion explicitly
because it allows to cleanly split the presentation of the Generic Local Transform
into two parts: an OSSE scheme that stores most of the database, and an array
of page-efficient schemes that store the overflowing identifiers.

6.2 Dynamic Two-Dimensional One-Choice Allocation

The first component of the Generic Local Transform is an OSSE scheme, ClipOSSE.
In line with prior work, we split the presentation of ClipOSSE into two parts: an
allocation scheme, which specifies where elements should be stored; and the SSE
scheme built on top of it, which adds a layer of encryption, key management,
and other mechanisms needed to convert the allocation scheme into a full SSE.

The allocation scheme within ClipOSSE is called 1C-Alloc. Similar to [ANSS16],
the allocation scheme is an abstract construct that defines the memory locations
where items should be stored, but does not store anything itself. In the case of
1C-Alloc, items are stored within buckets, and the procedures return as output
the indices of buckets where items should be stored. From the point of view of
1C-Alloc, each bucket has unlimited storage. In more detail, 1C-Alloc contains
two procedures, Fetch and Add.

– Fetch(m,w, `): given a number of bucketsm, a keyword w, and a list length `,
Fetch returns (a superset of) the indices of buckets where elements matching
keyword w may be stored, assuming there are ` such elements.

– Add(m,w, `): given the same input, Add returns the index of the bucket
where the next element matching keyword w should be inserted, assuming
there are currently ` matching elements.

The intention is that Add is used during an SSE Update operation, in order
to choose the bucket where the next list element is stored; while Fetch is used
during a Search operation, in order to determine the buckets that need to be
read to retrieve all list elements. 1C-Alloc will satisfy the correctness property
given in Definition 10. Note that the number of buckets m is always assumed to
be a power of 2.

Definition 10 (Correctness). For all m, w, `, if m is a power of 2, then⋃
0≤i≤`−1

Add(m,w, i) ⊆ Fetch(m,w, `).

To describe 1C-Alloc, it is convenient to conceptually group buckets into
superbuckets. For ` = 2i ≤ m, an `-superbucket is a collection of ` consecutive
buckets, with indices of the form k · `, k · ` + 1, ..., (k + 1) · ` − 1, for some
k ≤ m/`. A 1-superbucket is the same as a bucket. Notice that for a given `, the
`-superbuckets do not overlap. They form a partition of the set of buckets. For
` > 1, each `-superbucket contains exactly two `/2-superbuckets.

Let H be a hash function, whose output is assumed to be uniformly random
in {1, ...,m}. 1C-Alloc works as follows. Fix a keyword w and length ` ≤ m

Dynamic Local Searchable Symmetric Encryption 25

(the case ` > m will be discussed later). Let `′ = 2dlog `e be the smallest power
of 2 larger than `. On input w and `, 1C-Alloc.Fetch returns the (unique) `′-
superbucket that contains H(w).

Algorithm 3 Dynamic Two-Dimensional One-Choice Allocation (1C-Alloc)
1C-Alloc.Fetch(m,w, `)

1: `′ ← 2dlog `e

2: if `′ ≥ m then
3: return {0, ...,m− 1}
4: else
5: i← bH(w)/`′c
6: return {`′ · i, ..., `′ · i+ `′ − 1}

1C-Alloc.Add(m,w, `)

1: `← ` mod m
2: `′ ← 2dlog(`+1)e

3: i← bH(w)/`′c
4: if b2H(w)/`′c mod 2 = 0 then
5: return `′ · i+ `
6: else
7: return `′ · i+ `− `′/2

Meanwhile, 1C-Alloc.Add is designed in order to ensure that the first ` suc-
cessive locations returned by Add for keyword w are in fact included within the
`′-superbucket above H(w) (that is, in order to ensure correctness). For the first
list element (when ` = 0), Add returns the bucket H(w); for the second element,
it returns the other bucket contained inside the 2-superbucket above H(w). More
generally, if S is the smallest superbucket above H(w) that contains at least `+1
buckets, Add returns the leftmost bucket within S that has not yet received an
element. In practice, the index of that bucket can be computed easily based on
` and the binary decomposition of H(w), as done in Algorithm 3. (In fact, the
exact order in which buckets are selected by Add is irrelevant, as long as it selects
distinct buckets, and correctness holds.)

When the size of the list ` grows above the number of buckets m, Fetch
returns all buckets, while Add selects the same buckets as it did for ` mod m.

6.3 Clipped One-Choice OSSE

ClipOSSE is the OSSE scheme obtained by storing lists according to 1C-Alloc,
using m = O(N/ log logN) buckets, with each bucket containing up to τ =
dα log logNe items, for some constant α. Buckets are always padded to the
threshold τ and encrypted before being stored on the server. Thus, from the
server’s point of view, they are completely opaque. A table T containing (in
encrypted form) the length of the list matching each keyword w is also stored
on the server.

Given 1C-Alloc, the details of ClipOSSE are straightforward. A short overview
is given in text below. The encrypted database generated by Setup is essentially
equivalent to starting from an empty database, and populating it by making
repeated calls to Update, one for each keyword–document pair in the database.
For that reason, we focus on Search and Update. The full specification for Setup,
Search, and Update is given as pseudo-code in Algorithm 4.

Search. To retrieve the list of identifiers matching keyword w, ClipOSSE calls
1C-Alloc(m,w, `) to get the set of bucket indices where the elements matching
keyword w have been stored. The client retrieves those buckets from the server,
and decrypts them to obtain the desired information.

26 Brice Minaud, Michael Reichle

Update. For simplicity, we focus on a the case where a single identifier is
added. The case of a set of identifiers can be obtained by repeating the process
for each identifier in the set. To add the new item to the list matching keyword w,
ClipOSSE calls 1C-Alloc(m,w, `) to determine the bucket where the new list item
should be inserted. The client retrieves that bucket from the server, decrypts it,
adds the new item, reencrypts the bucket, and sends it back to the server. If
that bucket was already full, the item is overflowing, in the sense of Section 6.1.

Algorithm 4 Clipped One-Choice OSSE (ClipOSSE)

Global parameters: constants d, α ∈ N∗
ClipOSSE.KeyGen(1λ)

1: Generate keys K, KPRF for Enc, PRF
2: return K = (K,KPRF)

ClipOSSE.Setup(K, N,DB)

1: m← 2dlog(N/ log logN)e

2: τ ← dα log logNe
3: B0, ..., Bm−1, T,EDB, clip← ∅
4: for all each (w, {e1, ..., e`}) in DB do
5: Kw ← PRFKPRF(w)
6: T [w]← EncKw (`)
7: for all t from 1 to ` do
8: C ← ∅
9: i← 1C-Alloc.Add(m,w, t− 1)

10: if then|B[i]| < τ
11: B[i]← B[i] ∪ {ei}
12: else
13: C ← C ∪ {ei}
14: if |S| > 0 then
15: clip← clip ∪ (w, `, C)

16: Let BEnc[i] = EncK(Bi) for each i
17: return EDB = (T, (BEnc[i])), clip

ClipOSSE.Search(K, w, st;EDB)
Client: (search token)

1: send (w,Kw) = PRFKPRF(w)

Server:
1: `← DecKw (T [w])
2: S ← 1C-Alloc.Fetch(m,w, `)
3: return {BEnc[i] : i ∈ S}

ClipOSSE.Update(K, (w, {e}), op, st;EDB)
Client: (update token)

1: send (w,Kw = PRFKPRF(w))

Server:
1: `← DecKw (T [w])
2: i← 1C-Alloc.Add(m,w, `)
3: send BEnc[i]

Client:
1: B ← DecK(BEnc[i])
2: if |B| < τ then
3: clip← ∅
4: B ← B ∪ {e}
5: else
6: clip← {e}
7: send B′ = EncK(B)

Server:
1: BEnc[i]← B′

Client:
2: return clip

6.4 The Generic Local Transform

The Generic Local Transform takes as input a page-length-hiding page-efficient
SSE scheme PE-SSE. It outputs a local SSE scheme Local[PE-SSE].

To realize Local[PE-SSE], we use two structures. The first structure is an
instance of ClipOSSE, which stores most of the database. The second structure
is an array of nlevel instances of PE-SSE. The i-th instance, denoted PE-SSEi,
has page size 2i. The PE-SSEi instances are used to store elements that overflow

Dynamic Local Searchable Symmetric Encryption 27

from ClipOSSE. In addition, a table T stores (in encrypted form) the length of
the list matching keyword w, for each keyword5.

Fix a keyword w, matching ` elements. Let `′ = 2dlog `e be the smallest power
of 2 larger than `. Let i = log `′. At any point in time, the elements matching w
are stored in two locations: ClipOSSE, and PE-SSEi. Each of these two locations
stores part of the elements: ClipOSSE stores the elements that did not overflow,
and PE-SSEi stores the overflowing elements. Each element exists in only one
of the two locations. Again, for simplicity, we define updates for adding a single
identifier per keyword. The case of adding a set of identifiers at once can be
deduced by repeating the same process for each identifier in the set.

Algorithm 5 Generic Local Transform (Local[PE-SSE])
Global parameters: constant d ∈ N∗

Local[PE-SSE].KeyGen(1λ)

1: Generate key KPRF for PRF
2: return K = (K,KPRF)

Local[PE-SSE].Update(K, (w,L);EDB)
Client: (update token)

1: send (w,L,Kw = PRFKPRF(w))

Server:
1: C ← ClipOSSE.Update(w,L)
2: `← DecKw (T [w])
3: T [w]← EncKw (`+ 1)
4: send `

Client:
1: i← dlog `e
2: if dlog `e = dlog(`+ 1)e then
3: PE-SSEi.Update(w,C)
4: else
5: S ← set of matches in

PE-SSEi.Search(w)
6: PE-SSEi+1.Update(w, S ∪ C)

Local[PE-SSE].Setup(K, N,DB)

1: nlevel ← dN/ logdNe
2: for all (w, S) ∈ DB do
3: Kw ← PRFKPRF(w)
4: T [w]← EncKw (|S|)
5: EDB, clip← ClipOSSE.Setup(DB)
6: for all i from 0 to nlevel do
7: DBi ← {(w,C) : (w, `, C) ∈ clip

and 2i−1 < ` ≤ 2i}
8: PE-SSEi ← PE-SSE.Setup(

dN/ logNe, 2i,DBi)
Local[PE-SSE].Search(K, w, st;EDB)
Client: (search token)

1: send (w,Kw = PRFKPRF(w))

Server:
1: i← dlog(DecKw (T [w]))e
2: return ClipOSSE.Search(w)

∪ PE-SSEi.Search(w)

Search. During a search operation, Local[PE-SSE] queries both structures,
and combines their output to retrieve all matching elements.

Update. During an update operation to add element e, Local[PE-SSE] for-
wards the update query to ClipOSSE, and gets as output C = ∅ if the element
did not overflow, or C = {e} if the element did overflow. For now, assume that
dlog `e = dlog(` + 1)e, that is, the PE-SSEi instance associated with the list re-
mains the same during the update operation. In that case, PE-SSEi is updated
for the set C. (Recall from Section 6.1 that a length-hiding SSE such as PE-SSE
accepts sets of elements as input in Update.) The length-hiding property is de-
signed to guarantee that the content of C (including whether it is empty) is not

5 The same table exists in ClipOSSE. In an actual implementation, they would be the
same table, but using ClipOSSE in black box eases the presentation.

28 Brice Minaud, Michael Reichle

leaked to the server. Now assume dlog `e < dlog(`+1)e. In that case, the PE-SSE
instance associated with the list becomes PE-SSEi+1 instead of PE-SSEi. The
client retrieves all current overflowing elements from PE-SSEi, adds the content
of C, and stores the result in PE-SSEi+1.

6.5 Overflow of ClipOSSE

The main technical result in this section regards the number of overflowing items
in ClipOSSE.

Theorem 3. Suppose that ClipOSSE receives as input a database of size N , such
that the size of the longest list is O

(
N/ logdN

)
for some d ≥ 2.Then for any

constant c, there exists a choice of parameters of ClipOSSE such that the number
of overflowing items is O(N/ logcN).

The proof of Theorem 3 is intricate. For space reasons, we only give a brief
overview here. A detailed overview and the full proof is given in the full version..
First, we show that the result holds in the special case where all lists have length
N/ logdN . This uses a negative association argument, similar to the proof of
[DPP18, Theorem 1]. The core of the proof is to then show that this special
case implies the general case. This is done by iteratively merging short lists,
while showing that this merging process can only have a limited effect on the
number of overflowing elements. At the outcome of the merging process, all lists
have length N/ logdN , which reduces the problem to the special case. The main
technique for the reduction is a stochastic dominance argument, combined with
a convexity argument (similar to the proof of [BBF+21, Theorem 5]).

The Generic Local Transform itself uses standard SSE techniques, and its
properties follow from previous discussions. We provide a formal statement be-
low.

Theorem 4 (Generic Local Transform). Let N be an upper bound on the
size of database DB. Suppose that PE-SSE is a suitable page-efficient scheme
with page efficiency P and storage efficiency S. Then Local[PE-SSE] is a correct
and secure SSE scheme with storage efficiency O(S), locality O(1), and read
efficiency P + Õ (log logN).

References

ABKU94. Azar, Y., Broder, A.Z., Karlin, A.R., and Upfal, E. Balanced allocations.
In: Proceedings of the twenty-sixth annual ACM symposium on theory of
computing, pp. 593–602 (1994).

AKM19. Amjad, G., Kamara, S., and Moataz, T. Breach-resistant structured encryp-
tion. Proceedings on Privacy Enhancing Technologies, vol. 2019(1):(2019),
pp. 245–265.

Dynamic Local Searchable Symmetric Encryption 29

ANSS16. Asharov, G., Naor, M., Segev, G., and Shahaf, I. Searchable symmetric
encryption: optimal locality in linear space via two-dimensional balanced
allocations. In: D. Wichs and Y. Mansour (eds.), 48th Annual ACM Sym-
posium on Theory of Computing, pp. 1101–1114. ACM Press, Cambridge,
MA, USA (Jun. 18–21, 2016).

ASS18. Asharov, G., Segev, G., and Shahaf, I. Tight tradeoffs in searchable sym-
metric encryption. In: H. Shacham and A. Boldyreva (eds.), Advances in
Cryptology – CRYPTO 2018, Part I, Lecture Notes in Computer Science,
vol. 10991, pp. 407–436. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug. 19–23, 2018).

ASS21. Asharov, G., Segev, G., and Shahaf, I. Tight tradeoffs in searchable sym-
metric encryption. Journal of Cryptology, vol. 34(2):(2021), pp. 1–37.

BBF+21. Bossuat, A., Bost, R., Fouque, P.A., Minaud, B., and Reichle, M. SSE and
SSD: Page-efficient searchable symmetric encryption. In: T. Malkin and
C. Peikert (eds.), Advances in Cryptology – CRYPTO 2021, Part III, Lecture
Notes in Computer Science, vol. 12827, pp. 157–184. Springer, Heidelberg,
Germany, Virtual Event (Aug. 16–20, 2021).

BFHM08. Berenbrink, P., Friedetzky, T., Hu, Z., and Martin, R. On weighted balls-
into-bins games. Theoretical Computer Science, vol. 409(3):(2008), pp. 511–
520.

BMO17. Bost, R., Minaud, B., and Ohrimenko, O. Forward and backward private
searchable encryption from constrained cryptographic primitives. In: B.M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu (eds.), ACM CCS 2017:
24th Conference on Computer and Communications Security, pp. 1465–
1482. ACM Press, Dallas, TX, USA (Oct. 31 – Nov. 2, 2017).

Bos16. Bost, R. Σoφoς: Forward secure searchable encryption. In: E.R. Weippl,
S. Katzenbeisser, C. Kruegel, A.C. Myers, and S. Halevi (eds.), ACM CCS
2016: 23rd Conference on Computer and Communications Security, pp.
1143–1154. ACM Press, Vienna, Austria (Oct. 24–28, 2016).

CGKO06. Curtmola, R., Garay, J.A., Kamara, S., and Ostrovsky, R. Searchable
symmetric encryption: improved definitions and efficient constructions. In:
A. Juels, R.N. Wright, and S. De Capitani di Vimercati (eds.), ACM CCS
2006: 13th Conference on Computer and Communications Security, pp. 79–
88. ACM Press, Alexandria, Virginia, USA (Oct. 30 – Nov. 3, 2006).

CJJ+14. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., and
Steiner, M. Dynamic searchable encryption in very-large databases: Data
structures and implementation. In: ISOC Network and Distributed System
Security Symposium – NDSS 2014. The Internet Society, San Diego, CA,
USA (Feb. 23–26, 2014).

CK10. Chase, M. and Kamara, S. Structured encryption and controlled disclosure.
In: M. Abe (ed.), Advances in Cryptology – ASIACRYPT 2010, Lecture
Notes in Computer Science, vol. 6477, pp. 577–594. Springer, Heidelberg,
Germany, Singapore (Dec. 5–9, 2010).

CT14. Cash, D. and Tessaro, S. The locality of searchable symmetric encryption.
In: P.Q. Nguyen and E. Oswald (eds.), Advances in Cryptology – EURO-
CRYPT 2014, Lecture Notes in Computer Science, vol. 8441, pp. 351–368.
Springer, Heidelberg, Germany, Copenhagen, Denmark (May 11–15, 2014).

DP17. Demertzis, I. and Papamanthou, C. Fast searchable encryption with tunable
locality. In: Proceedings of the 2017 ACM International Conference on
Management of Data, pp. 1053–1067 (2017).

30 Brice Minaud, Michael Reichle

DPP18. Demertzis, I., Papadopoulos, D., and Papamanthou, C. Searchable en-
cryption with optimal locality: Achieving sublogarithmic read efficiency.
In: H. Shacham and A. Boldyreva (eds.), Advances in Cryptology –
CRYPTO 2018, Part I, Lecture Notes in Computer Science, vol. 10991,
pp. 371–406. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug. 19–23, 2018).

EKPE18. Etemad, M., Küpçü, A., Papamanthou, C., and Evans, D. Efficient dy-
namic searchable encryption with forward privacy. Proceedings on Privacy
Enhancing Technologies, vol. 2018(1):(2018), pp. 5–20.

JK77. Johnson, N.L. and Kotz, S. Urn models and their application; an approach
to modern discrete probability theory. New York, NY (USA) Wiley (1977).

MM17. Miers, I. and Mohassel, P. IO-DSSE: Scaling dynamic searchable encryp-
tion to millions of indexes by improving locality. In: ISOC Network and
Distributed System Security Symposium – NDSS 2017. The Internet Soci-
ety, San Diego, CA, USA (Feb. 26 – Mar. 1, 2017).

MPC+18. Mishra, P., Poddar, R., Chen, J., Chiesa, A., and Popa, R.A. Oblix: An
efficient oblivious search index. In: 2018 IEEE Symposium on Security and
Privacy, pp. 279–296. IEEE Computer Society Press, San Francisco, CA,
USA (May 21–23, 2018).

PR04. Pagh, R. and Rodler, F.F. Cuckoo hashing. Journal of Algorithms,
vol. 51(2):(2004), pp. 122–144.

RMS01. Richa, A.W., Mitzenmacher, M., and Sitaraman, R. The power of two
random choices: A survey of techniques and results. Combinatorial Opti-
mization, vol. 9:(2001), pp. 255–304.

TW07. Talwar, K. and Wieder, U. Balanced allocations: the weighted case. In:
Proceedings of the thirty-ninth annual ACM symposium on Theory of com-
puting, pp. 256–265 (2007).

TW14. Talwar, K. and Wieder, U. Balanced allocations: A simple proof for the
heavily loaded case. In: International Colloquium on Automata, Languages,
and Programming, pp. 979–990. Springer (2014).

ZKP16. Zhang, Y., Katz, J., and Papamanthou, C. All your queries are belong
to us: The power of file-injection attacks on searchable encryption. In:
T. Holz and S. Savage (eds.), USENIX Security 2016: 25th USENIX Security
Symposium, pp. 707–720. USENIX Association, Austin, TX, USA (Aug. 10–
12, 2016).

	Dynamic Local Searchable Symmetric Encryption
	Introduction
	Our Contributions

	Technical Overview
	Layered 2-Choice Allocation
	Generic Local Transform
	ClipOSSE: an OSSE scheme with O*N/logN Overflowing Items
	Dynamic Local SSE with O"0365O(loglogN) Overhead
	Unconditional Static Local SSE with O*logN Overhead

	Preliminaries
	Symmetric Searchable Encryption
	Security.
	Efficiency Measures.

	Layered Two-Choice Allocation
	Overview of L2C.
	Load Analysis of L2C.

	Dynamic Page Efficient SSE
	LayeredSSE
	Security and Efficiency

	The Generic Local Transform
	Preliminaries
	Dynamic Two-Dimensional One-Choice Allocation
	Clipped One-Choice OSSE
	The Generic Local Transform
	Overflow of ClipOSSE

