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Abstract. Known practical blind signature schemes whose security agai-
nst adaptive and parallel attacks can be proven in the random oracle
model either need five data exchanges between the signer and the user
or are limited to issue only logarithmically many signatures in terms of
a security parameter. This paper presents an efficient blind signature
scheme that allows a polynomial number of signatures to be securely is-
sued while only three data exchanges are needed. Its security is proven in
the random oracle model. As an application, a provably secure solution
for double-spender-traceable e-cash is presented.

1 Introduction

Blind signatures are a key part of some information systems that offer both user
privacy and data authenticity. Such systems include anonymous electronic cash
and electronic voting as typical examples. The notion of blind signatures was first
introduced by Chaum in [12] with the first scheme based on RSA. Later, some
discrete-log based signature schemes were turned into blind signatures [24, 10,
21]. For some applications, extra functionalities, such as partial blindness [2, 1,
3] and revocability [6, 11, 9], were added. A secure blind signature scheme should
be one-more unforgeable against adaptive and parallel attacks. Namely, users
should not be able to produce more signatures than legitimately issued.
There are some theoretical results on the security of blind signatures [14,

25, 22]. In [22], a formal security definition and a secure scheme were intro-
duced, though the scheme was rather impractical compared to ordinary signa-
ture schemes in real use. In [27, 29], Pointcheval and Stern proved that one type
of efficient blind signature schemes, which includes Okamoto-Schnorr [23] and
Okamoto-Guillou-Quisquater [20] signatures, to be secure in the random ora-
cle model [4] as long as a logarithmic number of signatures were issued. Later,
[26] introduced a generic adaptation that renders logarithmically secure blind
signature schemes into secure ones with polynomially many signatures. Its cost
is two additional data transfers. As the underlying schemes require three data
transfers, the resulting schemes need five moves of data between the signer and
a user. In [30], Schnorr and Jakobsson argued the security of the Schnorr blind
signature in the random oracle model with a strong assumption; the attacker is
generic, i.e., restricted to use the group operation only. In [17], Fischlin pointed
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out some pitfalls that could be found between the generic adversary plus random
oracle model and the reality.
This paper presents a blind signature scheme that needs only three data

moves and provides polynomial security, i.e., one-more unforgeable even if poly-
nomially many signatures are issued in an adaptive and concurrent manner. The
security is proven in the random oracle model. The scheme remains practical as
it requires only three to four times more computation than the original Schnorr
signatures [31].
Another advantage of our scheme is its potential support of protocols that

need additional functionality. By following the idea of [3], one can easily extend
our scheme to be partially blind schemes. Furthermore, it is shown that a vari-
ant of our scheme gives a provably secure solution for double-spender-traceable
electronic cash systems. Note that such e-cash schemes in the literature, e.g. [6,
7, 18], rely on a variant of blind signatures called restrictive blind signatures [7],
whose security has been proved only under non-standard and strong assumptions
and only against certain restricted attacks [8] while our solution withstands the
most general attacks.

2 Security Definitions

Blind signature schemes have two aspects of security; blindness and one-more
unforgeability. Let (G,S,U ,V) be a blind signature scheme where G is the key
generation algorithm, S and U are a signer and a user, respectively, and V is
a verification algorithm (refer to [22] for a formal definition of blind signature
schemes).

Definition 1. (Blindness) Let S∗ and D∗ be a signer and a distinguisher. Let
view0 and view1 be views of S

∗ during executions of the signature issuing pro-
tocol where honest user U obtains valid signature-message pairs (Σ0,msg0) and
(Σ1,msg1), respectively. Given (view0, view1, Σb,msgb) for b ∈U {0, 1}, D

∗ out-
puts b′ ∈ {0, 1}. A signature scheme is blind if, for all polynomial-time S∗ and
D∗, b′ = b happens with probability at most 1/2 + 1/nc for sufficiently large n
and some constant c. The probability is taken over the coin flips of G, S∗, D∗

and U .

Note that our scheme provides computational blindness defined as above while
some of the previously known schemes achieve perfect blindness where the success
probability of unbound D∗ is exactly 1/2.

Definition 2. (One-more unforgeability) A blind signature scheme is (`, `+ 1)
unforgeable if, for any probabilistic polynomial-time algorithm U ∗, U∗ outputs
` + 1 valid signatures with probability at most 1/nc for sufficiently large n and
some constant c after interacting with legitimate signer S at most ` times in an
adaptive and concurrent manner. The probability is taken over the coin flips of
G, S, and U∗.

In the random oracle model, these success probabilities also depend on the choice
of random oracles.
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3 The Proposed Scheme

3.1 Underlying Idea

The proposed scheme is based on the partially blind signature scheme of [3].
Roughly, their scheme is a witness indistinguishable variant of the Schnorr sig-
nature scheme where the signer uses two public keys y(= gx) and z(= gw), which
we call the real public key and the tag public key, respectively, in such a way that
the signature can be issued only with real secret key x but no one can distinguish
which secret key, i.e., x or w, was used. Their scheme then allows the signer to
sign with several different tag public keys to achieve partial blindness. It was
proven that the same tag key could be used only for logarithmically many signa-
tures but the signer could use polynomially many tag keys. Accordingly, if the
signer generates a one-time tag key each time he signs, it achieves polynomial
security, though the blindness is lost.

Our scheme follows the above approach with additional ideas to retain blind-
ness. It allows the user to blind the tag public key so that the resulting signature
can be verified with the real public key provided by the signer and the blinded
tag public key provided by the user. However, if the blinding is perfectly done and
the resulting tag public key just looks like a random public key, the user could
himself generate such a signature by arbitrarily creating the tag key and exploit-
ing witness indistinguishability. Accordingly, we restrict the blinding so that the
resulting blinded tag key maintains a link to the original one but the link is com-
putationally hidden. Namely, our scheme provides computational blindness. The
main idea to realize this property is to use a pair of tag public-keys, say (z, z1), in
such a way that z is fixed and z1 is changed for every signature. The user blinds
them into (ζ, ζ1) = (z

γ , zγ1 ) with random factor γ so that logz z1 = logζ ζ1 holds.
Accordingly, (ζ, ζ1) preserves the relation that underlies (z, z1). The blindness
is now provided if the signer cannot decide whether (z, z1, ζ, ζ1) is in such re-
lation or not. Some more tricks are added to force the user follow the blinding
procedure to get valid signatures.

This restrictive blinding stealthily preserves the link between each valid sig-
nature to a particular execution of the issuing protocol. Thus, if `+1 signatures
are generated after ` executions of the signing protocol, there exists an execu-
tion that yields at least two signatures. Accordingly, we only need to consider
the possibility of yielding two signatures from one issuing, which results in more
efficient reduction than the previous results.

3.2 Construction

Let G be a probabilistic polynomial-time algorithm that takes security parameter
n and outputs (p, q, g) where p, q are large primes that satisfy q|p − 1, and g is
an element of ZZ∗

p whose order is q. By 〈g〉, we denote a prime subgroup in ZZ
∗
p

generated by g. Let H1 : {0, 1}
∗ → 〈g〉, H2 : {0, 1}

∗ → 〈g〉, and H3 : {0, 1}
∗ →

ZZq be hash functions. We assume that it is hard to compute the discrete log of
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Signer User

x, z, g, h y, z, g, h,m

rnd ∈U {0, 1}
∗

z1 = H2(rnd), z2 = z/z1

u, s1, s2, d ∈U Zq

a = gu

b1 = gs1zd1 , b2 = hs2zd2 -rnd, a, b1, b2 b1, b2
?

∈ 〈g〉
z1 = H2(rnd)
γ ∈U Z∗

q

ζ = zγ , ζ1 = z1
γ , ζ2 = ζ/ζ1

t1, t2, t3, t4, t5 ∈U Zq

α = agt1yt2

β1 = b1
γgt3ζ1

t4 , β2 = b2
γht5ζ2

t4

τ ∈U Zq

η = zτ

ε = H3(ζ‖ζ1‖α‖β1‖β2‖η‖m)
¾ e

e = ε− t2 − t4 mod q
c = e− d mod q
r = u− cx mod q

-r, c, s1, s2, d ρ = r + t1 mod q
$ = c+ t2 mod q
σ1 = γs1 + t3 mod q
σ2 = γs2 + t5 mod q
δ = d+ t4 mod q
µ = τ − δγ mod q

$ + δ
?

≡ H3(ζ‖ζ1‖g
ρy$‖gσ1ζ1

δ‖hσ2ζ2
δ‖zµζδ‖m) mod q
↓

(ζ, ζ1, ρ,$, σ1, σ2, δ, µ)

Fig. 1. The signature issuing protocol. The user aborts if any of the checks (
?

≡,
?

∈) fails.

the outputs of H1 and H2. Such hash functions may be constructed in practice
as SHA(str)(p−1)/q mod p allowing negligibly small error probability [3].

[Key Generation]
The signer executes (p, q, g) ← G(1n), and selects h ∈U 〈g〉, x ∈U ZZq. It
then computes real public-key y and fixed tag key z as y = gx mod p and
z = H1(p‖q‖g‖h‖y), respectively. If z = 1, abandon the key and retry. The
public key is (p, q, g, h, y, z), and the private key is x.

[Signature Issuing]
Here we overview the signature issuing protocol at a higher level. The details
are illustrated in Figure 1. Hereafter, all arithmetic operations are done in ZZp

unless otherwise noted.
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Signer S: S generates a random string rnd and a one-time tag key z1 = H2(rnd).
Sending rnd convinces U that logg z1 is not known to S. Then z2 is computed so
that z = z1 · z2 holds. The rest of the issuing protocol consists of two parts:

– y-side: Proof of knowledge x of y = gx, and
– z-side: Proof of knowledge (w1, w2) of z1 = gw1 , z2 = hw2 .

Since z-side witness is not known to S, the z-side proof is done by simulation as
illustrated in Figure 1 by using the OR-proof technique of [13]. Accordingly, S
can complete the protocol only with y-side witness x.

User U : U blinds and converts the y-side proof into a signature in the same way
as done in Schnorr blind signatures [24, 10]. For z-side, U blinds z, z1, z2 into
ζ, ζ1, ζ2 by raising them with random factor γ. The proofs for z1, z2 given from
S are also blinded, and then converted into signatures in the standard way with
adjustment for the effect of γ. U then creates an additional Schnorr signature
that proves ζ = zγ .
The resulting signature Σ is 8-tuple Σ = (ζ, ζ1, ρ,$, σ1, σ2, δ, µ) that proves

the knowledge of logg y ∨ (logg ζ1 ∧ logh(ζ/ζ1) ∧ logz ζ).

[Signature Verification]
A signature message pair (Σ,m) is valid if it satisfies ζ 6≡ 1 and

$ + δ ≡ H3(ζ‖ζ1‖g
ρy$‖gσ1ζ1

δ‖hσ2(ζ/ζ1)
δ
‖zµζδ‖m) mod q.

4 Security Proofs

4.1 Correctness

Theorem 1. If the signer and the user follow the issuing protocol, the resulting
signature satisfies the verification predicates with provability 1.

Proof. Observe that the following holds.

$ + δ = c+ t2 + d+ t4 = e+ t2 + t4 = ε (mod q)

gρy$ = gr+t1yc+t2 = gr+cxgt1yt2 = agt1yt2 = α

gσ1ζδ1 = gγs1+t3ζd+t4
1 = (b1z

−d
1 )γgt3ζd+t4

1 = bγ1g
t3ζt41 = β1

hσ2(ζ/ζ1)
δ = hγs2+t5ζd+t4

2 = (b2z
−d
2 )γht5ζd+t4

2 = bγ2h
t5ζt42 = β2

zµζδ = zτ−δγζδ = zτ = η

Furthermore, ζ 6≡ 1 holds as γ 6= 0 when the user is honest. ut

4.2 Blindness

Theorem 2. The proposed scheme is blind if the decision Diffie-Hellman prob-
lem is intractable and H1, H2, H3 are random oracles.
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Proof. (sketch) Suppose that (S∗,D∗) is successful in breaking blindness with
probability 1/2 + ε where ε is not negligible. Let ts be the maximum running
time of D∗, which is also polynomially bound. We show that S∗ can be used
to solve the DDH problem. Define DH = {(X1, X2, X3, X4) ∈ 〈g〉

4
| logX1

X2 =

logX3
X4} and R = {(X1, X2, X3, X4) ∈ 〈g〉

4
}. Let (A,B,C,D) ∈ 〈g〉

4
be a

DDH instance, which is taken from DH or R with equal probability. Given such
an instance, first define H1 so that z = A. Select b ∈U {0, 1} and engage in
the issuing protocol with S∗ twice. Label the executions run0 and run1. Define
H2 so that z1 = B in runb, and z1 ∈U 〈g〉 in run1−b. Follow the protocol in
both run. Then, generate a signature-message pair (Σ,m) that includes (ζ, ζ1) =
(C,D). Other variables in Σ are generated by using the standard zero knowledge
simulation technique; randomly choose ρ,$, σ1, σ2, δ, µ, and then define H3 so
that it looks consistent. Given (Σ,m) and views from S, distinguisher D∗ outputs
b′. If b′ = b, we conclude that the instance is in DH. It is in R, otherwise.
Observe that if (A,B,C,D) ∈ DH, Σ is a valid signature that can be pro-

duced in runb, since logz z1 = logAB = logC D = logζ ζ1 and there exist blinding
factors t1, t2, t3, t4, t5 that convert the view of runb into Σ

1. On the other hand,
Σ cannot be produced from run1−b since logz z1 6= logζ ζ1 except for negligible
probability. Therefore, given Σ, D∗ outputs correct b with probability 1/2 + ε.
Next, observe that if (A,B,C,D) ∈ R, Σ cannot be produced in either run0

and run1 since logz z1 6= logζ ζ1 for both runs except for negligible probability.
Hence, b is independent of Σ, and b′ = b happens with probability 1/2. Thus,
the success probability in DDH problem is 1/2(1/2+ ε) + 1/2(1/2) = 1/2+ ε/2,
which contradicts to the DDH assumption when ε is not negligible. Note that
D∗ may not terminate in time ts if the instance is in R. However, this is also
to our advantage since we can see that Σ is not a proper input to D∗ and the
instance is in R.
Finally, note that if S∗ chooses the same rnd in both executions, the result-

ing signatures are perfectly indistinguishable as there exist consistent blinding
factors for any combination of the views and signatures. ut

Note that the blindness relies on the decision Diffie-Hellman assumption over
the public key of the signer. This suggests that an adversarial signer could choose
p, q, g so that the DDH problem could be solved with those parameters. How-
ever, as we shall show in the next section, one-more unforgeability is based on
the discrete logarithm assumption. Therefore, choosing weak parameters to vi-
olate blindness could result in the loss of one-more unforgeability unless DL is
strictly harder than DDH. Nevertheless, it is beneficial for the users to verify
that the public keys are generated and the hash functions are chosen so that
those assumptions are likely to hold. There are several practical solutions for
this matter. An inexpensive solution would be to use a widely believed secure

1 This is why b1, b2
?

∈ 〈g〉 has to be checked. Without this check, wrong b1, b2 could
produce a valid signature if γ is a lucky choice. This results in a nonuniform distri-
bution of γ while the one that underlies the simulated signature follows the uniform
distribution.
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hash function like SHA-1, and plug it into the source of randomness of G so
that the users can believe that there is no room for the adversarial signer to
control the resulting parameters. It is also needed to check if y is in 〈g〉 and z
is correctly made. In practice these could be examined by a certificate authority
at registration on behalf of the users.

4.3 One-more Unforgeability

Theorem 3. The proposed scheme is (`, ` + 1)-unforgeable for polynomially
bound ` if the discrete logarithm problem is intractable and H1, H2, H3 are ran-
dom oracles.

The proof is structured as follows. We first observe that the scheme is witness
indistinguishable [15] (Lemma 1), which helps us to simulate the signer with
either y-side or z-side witness(es) to extract the witness of the other side. It
is then proven that the user can blind (z, z1) into (ζ, ζ1) only in such a way
that logz ζ = logz1 ζ1 to obtain a valid signature (Lemma 2). We then show
that creating a valid signature without engaging in the issuing protocol with the
legitimate signer is infeasible (Lemma 3). From Lemma 2 and 3, one can see that
if the user engages in the signature issuing protocol ` times and outputs ` + 1
signatures, there exist at least two valid signatures linked to a particular run of
the issuing protocol. So the rest is to prove that such a forger who is successful
in producing two signatures from a single protocol run can be used to solve the
discrete logarithm problem.

Lemma 1. The signature issuing protocol is witness indistinguishable.

The above lemma holds immediately according to [13]. Indeed, it is not hard
to see that the issuing protocol can be completed if the signer knows either y-side
witness x, or z-side witness (w1, w2) = (logg z1, logh z2).
Hereafter, let runi denote the label of i-th execution of the issuing protocol.

We define z-side witness in runi as (w1i, w2i).

Lemma 2. (Restrictive Blinding) Let U∗0 be a user that engages in the sig-
nature issuing protocol ` times, and outputs a valid message-signature pair,
(m, ζ, ζ1, ρ,$, σ1, σ2, δ, µ). Let z1i denote z1 used by S in runi. For polynomially
bound ` and for all polynomial-time U∗0 , the probability that logz ζ 6= logz1i

ζ1
holds for all i is negligible if the discrete logarithm problem is intractable and
H1, H2, H3 are random oracles.

Proof idea: Suppose that logg h is not known. We assign z = gw1hw2 and
(z1J , z2J ) = (g

w1 , hw2) for J ∈U {1, . . . , `} by defining H1 and H2 so. Since the
signature contains proofs of ζ = zγ , ζ1 = gw

′

1 , ζ2 = hw
′

2 , we may be capable
of extracting (γ,w′

1, w
′
2) by rewinding the user in the random oracle model.

Once it is done, the condition logz ζ 6= logz1J
ζ1 guarantees that we obtain two

different representations of z, i.e., z = gw1hw2 = gw
′

1/γhw
′

2/γ , which allows us to
compute logg h. For this to be done, we need to simulate S that issues ` signatures
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S U∗

1 H3

-rnd1, a1, b11, b21
...

-rnd`, a`, b1`, b2`

¾ ei1

-ri1 , ci1 , s1i1 , s2i1 , di1

...

¾ eik

-rik , cik , s1ik , s2ik , dik

...

¾ ei`

-ri` , ci` , s1i` , s2i` , di`

-ζ, ζ1, α, β1, β2, η,m

¾ ε

-ρ,$, σ1, σ2, δ, µ(output)

(Before)

(After)

Fig. 2. The interaction among signer S, adversary U∗

1 , and random oracle H3.

without knowing logg h. We do this with y-side witness x by exploiting witness
indistinguishability. The problem is that, due to witness indistinguishability, the
rewinding may result in extracting y-side witness x, which is already known. So
we first flip a coin to decide with which witness, y-side or z-side, the simulation
is performed, and expect that one of the following happens.

– Simulation is done with y-side witness (and z-side witness in runJ). Then
another z-side witness is extracted by rewinding. This solves logg h.

– Simulation is done with z-side witnesses. Then y-side witness is extracted by
rewinding. This solves logg y.

Proof. Assume that, having at most qh accesses to H3 and asking at most
` signatures to S, U∗0 outputs signature (ζ, ζ1, ρ,$, σ1, σ2, δ, µ) that satisfies
logz ζ1 6= logz1i

ζ1 for all i with probability ε0 which is not negligible in n. Here,
qh and ` are bound by a polynomial of security parameter n. We randomly fix an
index Q ∈ {1, . . . , qh} and regard U

∗
0 as successful only if the resulting signature

corresponds to the Q-th query to H3. (If it does not correspond to any query,
U∗0 is successful only with negligible probability due to the randomness of H3.)
Accordingly, it is equivalent to assuming an adversary, say U ∗1 , that asks H3 only
once and succeeds with probability ε1 ≥ ε0/qh. Figure 2 illustrates the interac-
tion among the signer S, adversarial user U∗1 , and random oracle H3. Given U

∗
1 ,

we construct machineM1 that solves the discrete-log problem by simulating the
interaction. Let (p,q,g,Y) be an instance to solve loggY in ZZq.



Three-move Blind Signature Scheme for Polynomially Many Signatures 143

Reduction Algorithm: M1 first sets (p, q, g) := (p,q,g). It then flips a coin
χ ∈U {0, 1} to select either y := Y (case χ = 0) , or h := Y (case χ = 1).

Case y = Y: (Extracting y-side witness)

1. M1 selects w,w0 ∈U ZZq and sets h := gw and z := H1(p‖q‖g‖y) = gw0 .

2. M1 runs U
∗
1 simulating S with z-side witnesses as follows.

(a) Select ci, ri ∈U ZZq and compute ai := griyci .

(b) Select rndi ∈U {0, 1}
∗ and w1i ∈U ZZq and define H2(rndi) as g

w1i .
Then compute w2i := (w0−w1i)/w mod q. (Accordingly, z1i = gw1i and
z2i = hw2i .)

(c) Compute b1i := gu1i and b2i := hu2i with u1i, u2i ∈U ZZq.

(d) Send rndi, ai, b1i, b2i to U
∗
1 .

(e) Given ei from U
∗
1 , compute di := ei− ci mod q, s1i := u1i−diw1i mod q,

and s2i := u2i − diw2i mod q.

(f) Send ri, ci, s1i, s2i, di to U
∗
1 .

M1 simulates H3 by returning ε ∈U ZZq.

3. U∗1 outputs a signature, say (ζ, ζ1, ρ,$, σ1, σ2, δ, µ), that corresponds to ε.

4. Reset and restart U∗1 with the same setting.M1 simulatesH3 with ε
′ ∈U ZZq.

5. U∗1 outputs a signature, say (ζ, ζ1, ρ
′, $′, σ′1, σ

′
2, δ

′, µ′), that corresponds to
ε′.

6. If $ 6= $′,M1 outputs x := (ρ− ρ
′)/($′ −$) mod q. The simulation fails,

otherwise.

Case h = Y: (Extracting z-side witness)

1. M1 selects x ∈U ZZq and sets y := gx. It also selects w1, w2 ∈U ZZq and sets
z := H1(p‖q‖g‖y) = gw1hw2 .

2. M1 selects I ∈U {0, . . . , `} and J ∈U {1, . . . , `}.

3. M1 runs U
∗
1 simulating as follows.

(a) For i 6= J ,M1 follows the protocol with y-side witness, x.H2 is simulated
by returning random choices from 〈g〉.

(b) For i = J ,M1 engages in the issuing protocol using both y-side witness
x and z-side witness (w1, w2) as follows.

i. Define H2(rndJ) so that z1J = gw1 and z2J = hw2 .
ii. Compute aJ = guJ , b1J = gu1J , b2J = hu2J with uJ , u1J , u2J ∈U ZZq.
iii. Send (rndJ , aJ , b1J , b2J ) to U

∗
1 .

iv. Given eJ from U
∗
1 , choose dJ ∈U ZZq and compute cJ := eJ −

dJ mod q, rJ := uJ − cJx mod q, s1J := u1J − dJw1 mod q, and
s2J := u2J − dJw2 mod q.

v. Send (rJ , cJ , s1J , s2J , dJ ) to U
∗
1 .

M1 simulates H3 by returning ε ∈U ZZq.

4. U∗1 outputs a signature, say (ζ, ζ1, ρ,$, σ1, σ2, δ, µ), that corresponds to ε.

5. Rewind and restart U∗1 with the same setting.

– If I = 0,M1 simulates H3 by returning ε
′ ∈U ZZq. Otherwise, set ε

′ = ε.
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– If I 6= 0 and runJ has not yet been completed before the query to H3

is sent, M1 simulates the execution by using both y-side and z-side
witnesses as above choosing d′J ∈U ZZq. Otherwise, M1 simulates only
with y-side witness choosing d′J = dJ .

6. U∗1 outputs a signature, say (ζ, ζ1, ρ
′, $′, σ′1, σ

′
2, δ

′, µ′), that corresponds to
ε′.

7. If δ 6= δ′,M1 computes w
′
1 = (σ1−σ

′
1)/(µ−µ

′) mod q, w′
2 = (σ2−σ

′
2)/(µ−

µ′) mod q, and outputs w = (w1 − w
′
1)/(w

′
2 − w2) mod q. Simulation fails,

otherwise.

Evaluation of success probability:
In Figure 2, observe that independent variables given to U∗1 are p, q, g, h, y,
H1, H2, rndi, ai, b1i, b2i, di for all i, and ε and the random tape of U

∗
1 . All other

variables are uniquely determined by these independent variables. Note that ei’s
are also determined by the random tape of U∗1 and the variables that appeared so
far. We wrap all these independent variables into Λ, except for {ε, dik+1

, . . . , di`},
which is defined as Dε. Let D denote Dε \ {ε}.

Let S be the set of all (Λ,Dε) that leads U
∗
1 to a success, i.e., PrΛ,Dε

[(Λ,Dε) ∈
S] ≥ ε1. According to Lemma 4, with probability at least ε1/2, randomly selected
Λ satisfies PrDε

[(Λ,Dε) ∈ S] ≥ ε1/2. Once Λ is fixed, δ is uniquely determined
by Dε. By δ ← Dε, we denote the map from (Λ,Dε) in S to δ. If (Λ,Dε) 6∈ S,
we denote ⊥ ← Dε.

We consider how sensitive δ is to Dε. Define function ψ as

ψ(δ) = Pr
Dε

[δ ← Dε].

Let δmax be the value of δ that maximizes ψ(δ). That is, δmax is the value of δ
that is most likely to appear in a successful output of U∗. Let ψmax = ψ(δmax).
We consider two cases.

Case 1 (ψmax is not negligible) :
In this case, δ is not likely to change even if Dε changes, so we perform the
rewinding simulation with z-side witnesses choosing Dε and D

′
ε uniformly. By

the definition of ψmax, uniformly chosen Dε and D
′
ε yield δmax with probability

greater than ψ2
max, which is not negligible. Since ε differs in Dε and D

′
ε with

overwhelming probability, we have $ + δmax = ε 6= ε′ = $′ + δmax (mod q).
Thus, we obtain $ 6= $′ with which y-side witness can be extracted as written
in Step-6 of Case y = Y.

Case 2 (ψmax is negligible) :
In this case, δ tends to change if Dε changes. We first observe that there exists at
least one element inDε whose change impacts δ. Hereafter, we treat ε inDε as d0,
so the elements inDε are suffixed as (0, ik+1, . . . , i`). Define Id = (0, ik+1, . . . , i`).
Let D−i

ε for i ∈ Id denote a sequence obtained by removing di from Dε. Observe
that PrDε

[δ ← Dε] ≤ ψmax holds for any δ by the definition of ψmax. Suppose
that Dε is uniformly chosen and δ is produced as δ ← Dε. Then, according to
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Corollary 1, there exists J ∈ Id such that randomly chosen D−J
ε satisfies

Pr
dJ

[δ ← D−J
ε ∪ {dJ}] > 1− ψmax

with probability < ψmax. We can correctly guess such index J with probability
at least 1/(`+1) by randomly taking it from {0, . . . , `}. Taking the complement
of the above, we see that randomly chosen D−J

ε satisfies

Pr
dJ

[δ 6← D−J
ε ∪ {dJ}] ≥ ψmax

with probability ≥ 1−ψmax. Now suppose that D
′
ε is made from Dε by choosing

dJ ∈U ZZq, and δ
′ is produced as δ′ ← D′

ε. From the above observation, {δ
′ 6= δ}

∨ {(Λ,D′
ε) 6∈ S} happens with probability not negligible in n. According to

Lemma 4, with probability ε1/4, uniformly chosen D
−J
ε satisfies

Pr
dJ

[(Λ,D−J
ε ∪ {dJ}) ∈ S] ≥ ε1/4.

Thus, with probability not negligible in n, such Dε and D
′
ε are in S and result

in δ′ 6= δ. From this collision, z-side witness logg h can be extracted as shown in
Step-7 of Case h = Y. The simulation with such Dε and D

′
ε can be done if the

simulator has y-side witness and z-side witness of runJ since they differ at only
one index J .

The probability distribution over these cases depends on Λ and the strategy
of U∗1 . Note that the distribution of Λ does not depend on the choice of χ as the
protocol is witness indistinguishable and the public key are generated so that it
distributes uniformly. Accordingly, the coin flip of χ turns the simulation to the
proper case with probability 1/2. ut

Lemma 3. Any poly-time adversary U∗3 outputs a valid signature without inter-
acting with S only with negligible probability if the discrete logarithm problem is
intractable and H1, H2, H3 are random oracles.

Proof. (sketch) This is equivalent to proving the security of the ordinary (i.e.,
non-blind) version of the signature scheme against key-only attack [19]. Thus it
can be done by the rewinding simulation in the random oracle model in a similar
way as done in [28]. Given Y ∈U 〈g〉, we construct a machine, M2, that finds
loggY in ZZq.M2 first selects w, ξ randomly and sets y = Y, h = gw, z = Ygξ.
(Since M2 does not need to simulate signer S, it can put Y into both y and
z.)M2 then invokes U

∗
3 twice with the same initial settings and different ε and

ε′ as answers of H3. Let the resulting signatures be (ζ, ζ1, ρ,$, σ1, σ2, δ, µ) and
(ζ, ζ1, ρ

′, $′, σ′1, σ
′
2, δ

′, µ′). Since $+δ = ε 6= ε′ = $′+δ′, at least either $ 6= $′

or δ 6= δ′ happens. If $ 6= $′, M2 computes loggY = logg y = (ρ − ρ
′)/($′ −

$) mod q. For the case δ 6= δ′,M2 computes γ = logz ζ = (µ−µ
′)/(δ′−δ) mod q,

w1 = logg ζ1 = (σ1−σ
′
1)/(δ

′−δ) mod q, w2 = logg ζ2 = (σ2−σ
′
2)/(δ

′−δ) mod q,
and loggY = logg z − ξ = (w1 + w2/w)/γ − ξ mod q. ut
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Proof of Theorem 3. Suppose that there exists an adversary U ∗4 that outputs
` + 1 valid signatures with probability ε4 not negligible in n after interacting
with S at most ` times. The case of ` = 0 has been proven by Lemma 3. We
consider ` ≥ 1.
Due to Lemma 2 and 3, among the `+ 1 signatures, there exist at least two

signature-message pairs which contains (ζ, ζ1) and (ζ̃, ζ̃1) such that logζ ζ1 =

logζ̃ ζ̃1 = logz z1I holds for z1I used in runI for some I in {1, . . . , `}. Now, there
exist two queries to H3 that correspond to those signatures. In a similar way as
used in the proof of Lemma 2, we guess the indexes of these queries and regard
U∗4 as being successful only if the guess is correct. Accordingly, this is equivalent
to an adversary, say U∗5 , that asks H3 only twice and succeeds with probability
ε5 = ε4/

(

qh

2

)

in producing two signatures in the expected relation.
We construct a machineM3 that, given (p,q,g,Y), solves loggY in ZZq by

using U∗5 .

Reduction algorithm:M3 sets (p, q, g) := (p,q,g). It then flips a coin, χ ∈U
{0, 1}, to select either y := Y (case χ = 0) , or y := gx with randomly chosen x
(case χ = 1) .

1. M3 selects w,w0 ∈U ZZq and sets h := gw and z := gw0 by defining H1 so.
2. M3 selects I ∈U {1, . . . , `} and J ∈U {1, 2}.
3. M3 runs U

∗
5 simulating S as follows.

– For runi (i 6= I), M3 simulates with z-side witness in the same way as
shown in Step-2 of Case y = Y in the proof of Lemma 2.

– For runI ,
• if χ = 0,M3 simulates with z-side witness as above, or
• if χ = 1, it defines z1I := H2(rndI) = Y and follows the issuing
protocol by using y-side witness.

M3 simulates H3 by returning random values, say ε1 and ε2.
4. U∗5 outputs two signatures.
5. M3 rewinds and restarts U

∗
5 with the same setting.M3 answers J-th query

to H3 with ε
′
J ∈U ZZq.

6. U∗5 outputs two signatures.
7. Let (ζ, ζ1, ρ,$, σ1, σ2, δ, µ) and (ζ, ζ1, ρ

′, $′, σ′1, σ
′
2, δ

′, µ′) be the resulting sig-
natures that correspond to εJ and ε

′
J respectively. (If any of the resulting

signatures does not correspond to the hash value, M3 fails.) If χ = 0 and
$ 6= $′, M3 outputs logg y = loggY = (ρ − ρ′)/($′ −$) mod q. If χ = 1
and δ 6= δ′, it outputs logg z1I = loggY = (σ1 − σ

′
1)/(µ − µ

′) mod q. M3

fails, otherwise.

Evaluation of success probability: (sketch)
The probability that U∗5 is successful and the obtained twin signatures are cor-
related to runI is at least ε5/`. The probability is taken over the coin flips of G,
S, U∗5 and the choices of H1, H2, H3.
According to Lemma 4, we can find, with probability at least ε5/2`, a conve-

nient random tapes of G,S,U∗5 andH1,H2 that lead U
∗
5 to output twin signatures

that corresponds to runI with probability ≥ ε5/2`. The success probability of U
∗
5
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is now taken over the choice of H3, i.e., ε1 and ε2. We show that the standard
rewinding simulation works to extract the witness of the desired side with prob-
ability not negligible in the security parameter. (The rest of the proof is actually
the same as that in [3], so we give only a brief sketch below.) By ε, we denote
(ε1, ε2) hereafter. Note that the number of all possible ε is q2. Define Succ as a
set of ε with which U∗5 succeeds. Then, there exists a many-to-one mapping from
ε ∈ Succ to eI , which is the challenge from U

∗
5 used in runI . Since ε5/2` is not

negligible in n, #Succ > q holds for infinitely many values of n. Thus, there exist
ε and ε

′ in Succ that result in the same eI . Let tri denote a transcript obtained
in runi. That is, tri = {(rndi, ai, b1i, b2i), ei, di} (excluding dependent variables,
ri, wi, s1i, s2i). For such ε and ε

′, the sequences of the transcriptions are identical
with regard to runI , that is, (tr1, · · · , trI , · · · , tr`) and (tr

′
1, · · · , trI , · · · , tr

′
`).

Since the issuing protocol is witness indistinguishable, the distribution of trI
does not depend on the choice of χ. The same is true for other tri and tr

′
i as they

are produced by z-side witnesses selected independently from χ. Thus, if U ∗5 is
run twice with such ε and ε

′, U∗5 produces a collision that results in exposing
either z-side witness or y-side witness independently from χ. It is successful
if y-side witness is extracted when χ = 0, or z-side witness, which contains
w1 = logg z1 = loggY, is extracted when χ = 1. These successful cases happen
with probability 1/2 due to the random choice of χ. The difficulty is that we
rarely find such ε and ε

′. So we consider what happens if ε and ε
′′ that result in

different eI and e
′
I are chosen in the simulation. In this case, trI and tr

′
I differ

and may reflect the choice of χ so that they only yield a useless witness that we
already have. We can, however, prove that such useless result cannot occur all
the time. Suppose that χ = 0 and ε and ε

′ yield y-side witness as desired, but ε

and ε
′′ only yield useless z-side witness. This means that $ 6= $′ and $ = $′′.

Thus, $′ 6= $′′ and desired y-side witness can be extracted if ε
′ and ε

′′ are
chosen. Following this observation, [3] estimated the probability of finding such
a convenient pair of ε and concluded that it was not negligible in the security
parameter n. ut

5 Application to Double-spender-traceable E-cash

Here we apply the proposed blind signature scheme to create a secure anonymous
e-cash scheme that provides double-spender traceability.
The withdrawal protocol is exactly the same as the signature issuing protocol.

A coin is 7-tuple coin = (ζ, ζ1, ρ,$, σ1, σ2, δ), which omits µ from the signature
described in the previous section. The user stores the coin together with τ and
γ. To pay, the user releases the coin and (εp, µp) where εp = H4(z

τ‖coin‖desc)
and µp = τ − εpγ mod q. Here H4 is a hash function H4 : {0, 1}

∗ → ZZq and
desc is the unique description of the transaction. The shop accepts if

ζ 6≡ 1,

$ + δ ≡ H3(ζ‖ζ1‖g
ρy$‖gσ1ζ1

δ‖hσ2(ζ/ζ1)
δ
‖zµpζεp) mod q, and

εp ≡ H4(z
µpζεp‖coin‖desc) mod q.
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It is not hard to see that a double payment using different desc and desc
′

with the same coin yields (εp, µp) and (ε
′
p, µ

′
p) which allows the bank to extract

blinding factor γ as γ = (µ′p − µp)/(εp − ε
′
p) mod p. Since we can prove that

Lemma 2 also applies to this variant, ζ1/γ should expose z1 used in a particular
withdrawal session invoked by an authenticated user.

6 Conclusion

We presented an efficient three-move blind signature scheme. It provides one-
more unforgeability with polynomially many signatures. From a practical point
of view, the scheme is less efficient than known logarithmically-secure schemes
but remains practical as it costs only a few times more than the Schnorr blind
signature scheme.
The unforgeability was proven under the discrete-log assumption in the ran-

dom oracle model. Computing the exact reduction cost in the style of [5] seems
hard due to the intricate reduction algorithm. Accordingly, the success probabil-
ity was argued in a classical style, i.e., it was shown that the success probability
of the reduction is not negligible with regard to the security parameter.
We also have presented a secure double-spender-traceable e-cash scheme to

demonstrate the suitability of our scheme. The scheme is the first single-term
scheme whose security against parallel withdrawals can be proven only under
the discrete-log and the random oracle assumption.
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Appendix

The following Lemma is known as the Heavy-row Lemma [16] or the Splitting
Lemma [28, 29]. Let X×Y be a product space and A its subset. Let (x, y) denote
an element in X × Y .

Lemma 4. Let A be Pr[(x, y) ∈ A] ≥ ε for some ε, and B be B = {x ∈
X | Pry∈Y [(x, y) ∈ A] ≥ ε/2}. Then, Pr

x∈X
[x ∈ B] ≥ ε/2.

The following lemma is the reverse of the above in some sense.

Lemma 5. Let A be Pr[(x, y) ∈ A] < ε for ε ≤ 1/3. Define

B = {x ∈ X | Pr
y∈Y
[(x, y) ∈ A] > 1− ε}, and

C = {y ∈ Y | Pr
x∈X

[(x, y) ∈ A] > 1− ε}.

Then, either Pr[x ∈ B] < ε or Pr[y ∈ C] < ε holds.

Proof. By contradiction. Assume that Pr[x ∈ B] ≥ ε and Pr[y ∈ C] ≥ ε. Let

BY = {(x, y) ∈ A | x ∈ B}, and

CX = {(x, y) ∈ A | y ∈ C}.

Observe that |CX| > (1 − ε)|X| · ε|Y | and |BY | > ε|X| · (1 − ε)|Y |. Let CX ′

and BY ′ denote minimal subsets of CX and BY , which, respectively, can be
considered as (1− ε)|X| × ε|Y | and ε|X| × (1− ε)|Y | squares over plain X × Y .
Since 1 − ε > ε, the maximum overlap of those squares is ε|X| × ε|Y |. So,
|CX ′ ∩BY ′| ≤ ε2|X||Y |. Since |A| > |CX ′|+ |BY ′| − |CX ′ ∩BY ′|, we have

ε|X||Y | > (1− ε)|X| · ε|Y |+ ε|X| · (1− ε)|Y | − ε2|X||Y |,

ε > 1/3,

which is a contradiction. ut

Lemma 5 can be generalized in the following way by repeatedly applying
itself. Let (x1, . . . , xk) denote an element of product space X

k. Let (x1, . . . , xk)
j

denote removal of the j-th element, i.e., (x1, . . . , xj−1, xj+1, . . . , xk)
j .

Corollary 1. Let A be Pr[(x1, . . . , xk) ∈ A] < ε for ε ≤ 1/3. Then, there exists
j such that Pr[(x1, . . . , xk)

j ∈ Bj ] < ε where

Bj = {(x1, . . . , xk)
j | Pr

xj

[(x1, . . . , xk) ∈ A] > 1− ε}.


