A Toolbox for Cryptanalysis: Linear and Affine
Equivalence Algorithms*

Alex Biryukov, Christophe De Canniere**, An Braeken**, and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT /SCD-COSIC,
Kasteelpark Arenberg 10,
B-3001 Leuven-Heverlee, Belgium
{alex.biryukov, christophe.decanniere,
an.braeken, bart.preneel}@esat.kuleuven.ac.be

Abstract. This paper presents two algorithms for solving the linear and
the affine equivalence problem for arbitrary permutations (S-boxes). For
a pair of n X n-bit permutations the complexity of the linear equivalence
algorithm (LE) is O(n®2™). The affine equivalence algorithm (AE) has
complexity O(n®22™). The algorithms are efficient and allow to study lin-
ear and affine equivalences for bijective S-boxes of all popular sizes (LE
is efficient up to n < 32). Using these tools new equivalent representa-
tions are found for a variety of ciphers: Rijndael, DES, Camellia, Serpent,
Misty, Kasumi, Khazad, etc. The algorithms are furthermore extended
for the case of non-bijective n to m-bit S-boxes with a small value of
|n — m| and for the case of almost equivalent S-boxes. The algorithms
also provide new attacks on a generalized Even-Mansour scheme. Finally,
the paper defines a new problem of S-box decomposition in terms of Sub-
stitution Permutations Networks (SPN) with layers of smaller S-boxes.
Simple information-theoretic bounds are proved for such decompositions.
Keywords: Linear, affine equivalence algorithm, S-boxes, Block-ciphers,
Rijndael, DES, Cryptanalysis, Algebraic attacks, S-box decomposition,
Side-channel attacks.

1 Introduction

In this paper we study invariant properties of permutations (S-boxes) under the
action of groups of linear or affine mappings. By using a cryptanalytic approach
to this problem we provide efficient algorithms for detecting linear and affine
equivalences. Linear/affine equivalence problems are of interest in various areas
of mathematics. It is also a natural problem for a cryptanalyst/cipher designer
to look at, since basic properties of S-boxes, such as differential [7] and linear

* The work described in this paper has been supported in part by the Commission of
the European Communities through the IST Programme under Contract IST-1999-
12324 and by the Concerted Research Action (GOA) Mefisto.

** F.W.O. Research Assistant, sponsored by the Fund for Scientific Research — Flanders
(Belgium).

34 Alex Biryukov, Christophe De Canniere, An Braeken, and Bart Preneel

properties [20] are invariant under these transformations. An efficient algorith-
mic tool allows to study the properties of a whole equivalence class by analyzing
a single representative. Further motivations to study this problem are: deeper
understanding of Rijndael (AES) [13] — a block cipher with nice algebraic struc-
ture; recent interest in potential algebraic attacks [10, 22]; and the discovery of a
variety of equivalent representations for the AES [4, 15] and other ciphers. Such
representations help to describe ciphers with simpler systems of low-degree equa-
tions, allow more efficient implementations, and are very useful in the design of
countermeasures against side-channel attacks. These problems show that it is
essential to have a toolbox of generic algebraic algorithms for the analysis and
design of block ciphers. This paper makes one step in this direction.

We provide algorithms that can quickly test if two S-boxes S; and Sy are
equivalent, i.e., if there exist (linear or affine) mappings A1, A such that A30S5; 0
Ay = S,. The complexity of our linear equivalence algorithm (LE) is O(n32"),
and the affine equivalence algorithm (AE) has complexity O(n®22"). Within
these complexities, both algorithms will either return the mappings A; and As,
or detect that the S-boxes are inequivalent. This should be compared with 0(2”2)
for a naive algorithm that guesses one of the mappings. We solve the affine
equivalence problem by finding unique representatives for the linear equivalence
classes — a method of interest in itself. The efficiency of the given algorithms
allows to find linear equivalences for n up to 32 and affine equivalences for n up
to 17, which covers most of the S-boxes used in modern symmetric primitives
and allows to study partial functions composed of several S-boxes and portions
of the mixing layers. We extend our results for the case of non-bijective S-boxes
with n input bits and m output bits when the input/output deficiency |n — m)|
is small. Another interesting extension is the search for almost equivalent S-
boxes, which is as efficient as the basic algorithms. This tool will be of interest
to the cryptanalyst/cipher designer since it allows to check quickly if a certain
S-box is close to the set of affine functions or if two S-boxes, one with unknown
structure and the other with known algebraic structure are almost equivalent.
This approach induces an interesting metric in the space of affine equivalence
classes of S-boxes.

Using our toolbox of algorithms we find that many S-boxes of popular ciphers
are self-affine equivalent, which allows to produce equivalent representations of
these ciphers. Among the examples are: AES (for which we show more non-trivial
dual ciphers than in “The Book of Rijndaels” [4]), DES, Serpent, Misty, Kasumi,
Khazad, etc. We also compare the original S-boxes of DES and the strengthened
set S°DES [18]. It is easy to observe that there is much less variety in the set of
classes of the more recent S-boxes, which is a consequence of the introduction of
additional design criteria.

We also show that our algorithms can be viewed as attack algorithms against
a generalized Even-Mansour scheme (with secret affine mappings instead of
XORs of constant secret keys). Finally we introduce a new S-box decomposition
problem: the problem of finding SPNs with layers of smaller S-boxes equivalent
to a single large S-box. This problem is natural in the context of algebraic at-

A Toolbox for Cryptanalysis: Linear and Affine Equivalence Algorithms 35

tacks on ciphers and also in the context of efficient hardware implementations
for large lookup tables. We show simple lower bounds for this S-box decompo-
sition problem. For 8-bit S-boxes the bound is 20 layers of 4-bit S-box SPNs,
which may imply that 8-bit S-boxes are too small to withstand potential alge-
braic attacks [10]. Exactly how relevant the algebraic attacks are and whether
suboptimal S-box decomposition algorithms exist is a matter of future research.

This paper is organized as follows: in Sect. 2 and 3 we describe our linear
equivalence and affine equivalence algorithms. In Sect. 4 we describe extensions
of these algorithms to non-bijective S-boxes and to almost-equivalent S-boxes.
In Sect. 5 we discuss self-equivalences found in S-boxes of various ciphers and
corresponding equivalent representations of AES, DES, Camellia, Serpent, Misty,
Kasumi and Khazad. In Sect. 6 we apply our algorithms to a generalized Even-
Mansour scheme. Sect. 7 provides a few results on the S-box decomposition
problem. Finally Sect. 8 summarizes the paper.

2 The Linear Equivalence Algorithm (LE)

In this section we provide an efficient algorithm for solving the linear equivalence
problem for n x n-bit S-boxes. Here and in the rest of this paper, by linear
mapping we mean a mapping L(z) over GF(2)" that satisfies L(x +y) = L(x) +
L(y). It will be useful to think of L as an n x n matrix. A mapping is called
affine if it can be written as A(x) = L(x) + ¢ with some constant ¢ € GF(2)".
The algorithms we will describe can be generalized to arbitrary fields. Note that
the algorithm in this section is very similar to the “to and fro” algorithm used
to solve the polynomial isomorphism problem for systems of quadratic equations
in [23]. This fact was pointed out to us by an anonymous referee.

Let us consider the problem of checking linear equivalence between two per-
mutations (S-boxes) S; and Sy. The problem is to find two invertible linear
mappings L1 and Ls, such that Ly o S; 0o L1 = S3. A naive approach would
be to guess one of the mappings, for example L. Then one can extract Lo
from the equation: Ly = S5 o Ll_1 o Sl_l, and check if it is a linear, invertible
mapping. There are 0(2"2) choices of invertible linear mappings over n-bit vec-
tors. For each guess one will need about n? steps to check for linearity and
invertibility using Gaussian elimination. For large n we could benefit from the
asymptotically faster Coppersmith-Winograd’s method [11] of O(n?37%). How-
ever, for n < 32, which is of main practical interest, we can use 32-bit processor
instructions to bring the complexity to n? steps. In total the naive algorithm
would require O(n327") steps (a similar naive affine equivalence algorithm will
use O(n?2"("*t1)), For n = 6 this approach will require about 2** steps.

Improving the naive approach is easy: we need only n equations in order
to check Lo for invertibility and linearity. If one guesses only log, n vectors
from L; one may span a space of n points (by trying all linear combinations
of the guessed vectors), evaluate the results through Lq, S; and Sy and have n
constraints required to check for linearity of L. If the n new equations are not
independent one will need to guess additional vectors of L;. Such an algorithm

36 Alex Biryukov, Christophe De Canniere, An Braeken, and Bart Preneel

would require guessing of nlog, n bits of L; and the total complexity would be
O(n?2m1°8"). Below we will show a much more efficient algorithm, which stays
feasible for much higher values of n (up to n = 32).

Another natural approach to the linear equivalence problem would be to
follow a reduction from a Boolean linear equivalence problem. Recently a new
heuristic algorithm for the Boolean equivalence problem was described by Fuller
and Millan in [15]. They propose an algorithm based on the distribution of
the Walsh-Hadamard transform and the autocorrelation. The complexity of this
algorithm is roughly n”, which is already a higher complexity than for the algo-
rithms we present in this paper. Trying to adapt Fuller-Millan’s approach, one
might decide to build difference distribution [7] (or linear approximation [20])
tables for the two S-boxes and to match the frequencies between the tables after
applying small changes to the S-boxes. However, the construction of a differ-
ence distribution table for a n x n-bit S-box requires O(22") steps and memory;
creating a linear approximation table takes O(n22") steps and O(22") memory.
Thus an algorithm using frequencies in such tables seems to be lower bounded by
O(22") steps. Note that for strong ciphers frequency profiles in such tables are
artificially flattened, which will make any such algorithm even harder to apply.

2.1 Our Linear Equivalence Algorithm

In our algorithm we exploit two ideas. The first one we call a needlework effect in
which guesses of portions from L; provide us with free knowledge of the values of
Ls. These new values from Lo allow us to extract new free information about L1,
etc. This process is supported by a second observation, which we call exponential
amplification of guesses, which happens due to the linear (affine) structure of the
mappings. The idea is that knowing k vectors from the mapping Li, we know
2% linear combinations of these vectors for free. Now we are ready to describe
our algorithm.

In the description we use the following notation: the linear mappings L, and
Ly will be denoted by A and B~! respectively. The sets C 4, Cz are the sets of
checked points for which the mapping (A or B respectively) is known. By con-
struction, these sets will also contain all the linear combinations of known points.
The sets Uy, Up are the sets of yet unknown points. The sets N 4, Np describe
all the new points for which we know the mapping (either A or B, respectively),
but which are linearly independent from points of C'4 or Cp, respectively. The
sets C'; N and U are always disjoint. We introduce the following natural notation
for operations on sets:

FW) ={F(z) |z W} (1)
Waec={xPc|zeW}. (2)

Starting with the empty sets C'4, Cp (no points known), and the complete un-
known sets Ua, Up, we make initial guesses for the value A(z) for some point z,
and place it into N4. Usually two guesses would be sufficient in order to start
the exponential amplification process. However we can do better if S1(0) # 0

A Toolbox for Cryptanalysis: Linear and Affine Equivalence Algorithms 37

and thus S3(0) # 0. In such a case we can add the value of 0 to both N4
and Np. Using the fact that A(0) = B(0) = 0 we can start with less initial
guessing, which saves us a factor of 2™ in complexity. The algorithm follows the
implications of the initial guess until we have enough vectors for A or B to ei-
ther reach a contradiction or have n independent vectors completely defining the
mapping. If we obtain a mapping that is either non-invertible or non-linear, we
reject the incorrect guess. Otherwise we check all the points of both mappings
to avoid degenerate cases of “almost” affine mappings (we exploit this feature
in Sect. 4.3).

Linear Equivalence (LE)

Us <= {0,1}"; U < {0,1}"
Na <= O;Np <=9
Ca<=2;Cp<=0
while (Ua # @ and Up # @) or (All guesses rejected) do
if No =& and N = & then
If previous guess rejected, restore Ca,Cpr,Ua,Up.
Guess A(z) for some z € Ua
Set Na <= {z}, Ua <= Ua \ {z}
end if
while N4 # @ do
Pick x € Na; Na <= Na \ {z}; Ng < S2(x ® Ca)\ CB
Ca<=CaU(z®Ca)
if |Ng| +log, |Cs| > const - n then
if B is invertible linear mapping then
Derive A and check A, B at all points, that are still left in U4 and Ug.
else
Reject latest guess; Na <= @; Np < @
end if
end if
end while
while Np # @ do
Pick y € Ng; Ng <= N\ {y}; Na = S2 ' (y @ Cs) \ Ca
Cp<=CpU(y®Cg)
if |Np| +log, |Cs| > const - n then
if A is invertible linear mapping then
Derive B and check A, B at all points, that are still left in U4 and Ug.
else
Reject latest guess; Na <= @; Np < @
end if
end if
end while
Uas<=Ua\Ca; Ug<=Up\Cs
end while

L If one S-box maps zero to zero and the other does not, they cannot be linearly
equivalent.

38 Alex Biryukov, Christophe De Ca§]_miere7 An Braeken, and Bart Preneel
2

Fig. 1. The relations between the different sets for the LE algorithm.

The complexity of this approach is about n3 - 2" steps (for S-boxes that do
not map zero to zero, and n® - 22" otherwise). In practice our algorithms are
faster by taking into account 32-bit operations, which reduce the complexity to
O(n?2") as long as n < 32. For 8-bit S-boxes it is about 214 steps. For 16-bit
S-boxes it is 224 steps. Table 2 in Appendix A lists the complexities for n < 32.

3 The Affine Equivalence Algorithm (AE)

In this section we generalize the equivalence problem to the affine case. This
time we want an algorithm that takes two n x n-bit S-boxes S; and S5 as input,
and checks whether there exists a pair of invertible affine mappings A; and As
such that As 0.S; 0 A] = Ss. Each of these affine mappings can be expressed as
a linear transform followed by an addition, which allows us to rewrite the affine
equivalence relation as B~1S1(A -z @ a) ® b = Sy(x),Vz € {0,1}" with A and
B invertible n x n-bit linear mappings and with n-bit constants a and b.

3.1 Basic Algorithm

As the problem is very similar to the linear equivalence problem, it seems natural
to try to reuse the linear algorithm described above. A straightforward solution
would be:

for all a do
for all b do
check whether S1(z @ a) and Sa(z) @ b are linearly equivalent
end for
end for

This approach adds a factor 22" to the complexity of the linear algorithm, bring-
ing the total to O(n323™). This algorithm is rather inefficient as the linear equiv-
alence needs to be checked for each pair (a,b).2 In a second approach, we try

2 Another solution is to avoid guessing the constants by considering linear combina-
tions consisting of only an odd number of points. We need three guesses to initiate
this process, hence the total complexity is the same.

A Toolbox for Cryptanalysis: Linear and Affine Equivalence Algorithms 39

to avoid this by assigning a unique representative to each linear equivalence
class. Indeed, if we find an efficient method to identify this representative for a
given permutation, then we can check for affine equivalence using the following
algorithm:

for all a do

insert the representative of the lin. equiv. class of S1(z @ a) in a table T}
end for
for all b do

insert the representative of the lin. equiv. class of Sy(z) @ b in a table T,
end for
if T NTy # @ then

conclude that S; and S, are affine equivalent
end if

The complexity of this second algorithm is about 2™ times the work needed
for finding the linear representative. If the latter requires less than O(n322"),
then the second approach will outperform the first. Next, we present an algorithm
that constructs the representative in O(n32"). As a result, the total complexity
of finding affine equivalences is brought down to O(n®22"). Table 2 shows these
complexities for values of n < 32. The same complexity estimation holds for the
case of inequivalent S-boxes.

An additional interesting property of this approach is that it can efficiently
solve the problem of finding mutual equivalences in a large set of S-boxes. Due
to the fact that the main part of the computation is performed separately for
each S-box, the complexity will grow only linearly with the number of S-boxes
(and not with the number of possible pairs).

3.2 Finding the Linear Representative

The efficiency of an algorithm that finds the linear representative Rg for an
S-box S depends on how this unique representative is chosen. In this paper,
we decide to define it as follows: if all S-boxes in a linear equivalence class are
ordered lexicographically according to their lookup tables, then the smallest is
called the representative of the class. With this order the smallest permutation
is the identity, and for example, permutation [0,1,3,4,7,2,6, 5] is smaller than
the permutation [0,2,1,6,7,4, 3, 5].

In order to construct the representative Rg for the linear class containing a
given S-box S, we use an algorithm that is based on the same principles as the
algorithm in Sect. 2.1: after making an initial guess, we incrementally build the
linear mappings A and B such that Ry = B~!0S0 A is as small as possible. This
is repeated and the representative Rg is obtained by taking the smallest R’y over
all possible guesses. When explaining the algorithm, we will refer to the same sets
Ca, Cg, N4, Ng, Us and Upg as in Sect. 2.1, but as their function throughout
the algorithm is slightly different, we first reformulate their definition:

40 Alex Biryukov, Christophe De Canniere, An Braeken, and Bart Preneel

Fig. 2. The relations between the different sets for the AE algorithm.

Sets Dy and Dp — values for which A or B are known respectively. As A is
a linear mapping, any linear combination of points of D 4 will also reside in
D 4. The same is true for Dp. Note that D4 and Dp always include 0.

Sets C'4 and Cp — points of D4 that have a corresponding point in Dg and
vice versa, i.e., S o A(Cy) = B(Cp). For these values, Ry and ng_l are
known respectively.

Sets N4 and Np — remaining points of D 4 and Dg. We have that SoA (N4)N
B (NB) = .

Sets U, and Up — values for which A and B can still be chosen. It is important
to note that the algorithm will update sets D4 and Uy, in such a way that
d<wuforanyd € Dy and u € Ugy.

The main part of the algorithm that finds a candidate R/ consists in repeat-
edly picking the smallest input « for which RY is not known and trying to assign
it to the smallest available output y. Using the definitions above, this may be
written as:

while N4 # @ do
pick = mingen, (1) and y = mingep, (¢)
complete B such that B(y) = S o A(x) and thus Ry(z) =y
update all sets according to their definitions
while Ny = @ and N # @ do
pick z = mingey , (t) and y = minge v, (¢)
complete A such that A(z) = S~! o B(y) and thus R(z) =y
update all sets according to their definitions
end while
end while

When this algorithm finishes, N4 and Npg are both empty. If U4 and U turn
out to be empty as well, then R is completely defined. In the opposite case, we
need to guess A for the smallest point in U,4. This will add new elements to N 4,
such that we can apply the algorithm once again. To be sure to find the smallest
representative, we must repeat this for each possible guess.

In most cases, we will only need to guess A for a single point, which means
that about 2" possibilities have to be checked. Completely defining R’y for a
particular guess takes about 2" steps. However, most guesses will already be

A Toolbox for Cryptanalysis: Linear and Affine Equivalence Algorithms 41

rejected after having determined only slightly more than n values, because at that
point R will usually turn out to be larger than the current smallest candidate.
Due to this, the total complexity of finding the representative is expected to be
O(n32m).

We now explain how the sets are updated in the previous algorithm. We only
consider the case where Ny # @ and x = mingepn, (t), but the other case is
very similar. The first step is to use the value of B(y) to derive B for all linear
combinations of y and Dpg. This implies that:

B < DpU(Dp®y) (3)
Up <= Up\ (Dp®y) . (4)

Next, the algorithm checks whether any new point inserted in Dp has a corre-
sponding point in D 4 and updates C'g, Ng, C4 and N4 accordingly:

Chr<=CpUB ' [B(Dp®y)NSoA(N4), (5)
Np < NgUB ' [B(Dp®y)\SoA(Na), (6)
Cly=CaUA oS B(Dp@y)NSoA(Ny), (7)
Ny <=Ns\A oS ' [B(Dpdy)NSoA(Ny) . (8)

The resulting sets are depicted in dashed lines in Fig. 2.

3.3 A Different Approach using the Birthday Paradox

The efficiency gain obtained in the previous subsections is due to the fact that
the computation is split into two parts, each of which depends on a single S-box
S1 or Ss only. In this subsection, we apply the same idea in a different way
and present a second algorithm which is directly based on the birthday method
from [23].

In order to explain the algorithm, we will denote the input and corresponding
output values of S; by z¢ and yi, with 3¢ = Sj(2%). For the second S-box
S, we use the notations x% and y4. Suppose now that we are given a set of
pairs (z%,9}) and a second set of pairs (z%,y%), and are asked to determine
whether both ordered sets are related by affine transforms, i.e., zi = Aj(x})
and yi = A5 ' (y3) for all i. A straightforward method would be to collect n 4 1
independent equations z{ = A;(x}), perform a Gaussian elimination in order
to recover the coefficients of A;, and verify if this transform holds for the other
values in the sets. If it does, this procedure can be repeated for A,.

We can as well take a different approach, however. The main observation now
is that any linear relation between different x%, containing an even number of
terms, must hold for the corresponding values x4 as well, given that z¢ = A; (z5).
This implies that we can first derive linear relations for % and z% separately (or
for i and i), and then check for conflicts. If conflicts are found, we conclude
that the sets are not related by affine transforms.

42 Alex Biryukov, Christophe De Canniere, An Braeken, and Bart Preneel

This second approach allows to construct an efficient probabilistic algorithm
for finding affine equivalences, given that they exist. For both S; and S5, we start
with 237/2 sets of 3 random pairs (z%,9%), withi = 1,2,3 and j = 1 or 2 for S} or
S, respectively. Out of these, two sets are likely to exist, such that ¢ = A;(z%)
and thus ¢} = Ay ' (y3) for i = 1,2,3 (due to the birthday paradox). We will call
this a collision. If we were able to detect these collisions, we would immediately
obtain linear equations relating the coefficients of A; and A, ' and could start
the amplification process described earlier. Applying the approach described in
the previous paragraph to small sets of 3 pairs would result in a lot of false
collisions, however. We therefore first need to expand the sets. In order to do
this, we take all odd linear combinations of the values z{ and compute their
image after applying S;. This will yield new y¢ values. We can then successively
repeat this process in backward and forward direction, until the sets have the
desired size. Note that this process assures that two expanded sets are still related
by the affine transforms A; and A, given that the original sets were.

The algorithm is expected to require about O(n?- 231/ %) computations. Note
that this algorithm is probabilistic (it will fail if no collisions occur), though its
success probability can easily be increased by considering a larger number of
random sets. It cannot be used to determine with certainty that two S-boxes are
not equivalent, however, and this is an important difference with the previous
deterministic algorithms. More details about this algorithm will be available in
extended version of the paper.

4 Extensions

This section presents some useful extensions of the LE and AE algorithms.

4.1 Self-Equivalent S-boxes

The affine equivalence algorithm was designed to discover equivalence relations
between different S-boxes, but nothing prevents us from running the algorithm
for a single S-box S. In this case, the algorithm will return affine mappings A
and As such that Ay 0 S o A7 = S. The number of different solutions for this
equation (denoted by s > 1) can be seen as a measure for the symmetry of
the S-box. We call S-boxes that have at least one non-trivial solution (s > 1)
self-equivalent S-boxes.

4.2 Equivalence of Non-invertible S-boxes

So far, we only considered equivalences between invertible n x n-bit S-boxes, but
similar equivalence relations exist for (non-invertible) n to m-bit S-boxes with
m < n. This leads to a natural extension of our equivalence problem: find an
n X n-bit affine mapping A; and an m X m-bit affine mapping A, such that
Ay 057 0A; =85, for two given n x m-bit S-boxes S7 and S.

A Toolbox for Cryptanalysis: Linear and Affine Equivalence Algorithms 43

The main problem when trying to apply the algorithms described above in
this new situation, is that the exponential amplification process explicitly relies
on the fact that the S-boxes are invertible. In cases where the difference n —m is
not too large, slightly adapted versions of the algorithms still appear to be very
useful, however.

The difference between the extended and the original algorithm resides in
the way information about A; is gathered. In the original algorithm, each iter-
ation yields a number of additional distinct points which can directly be used
to complete the affine mapping A;. This time, the S-boxes are not uniquely
invertible and the information obtained after each iteration will consist of two
unordered sets of about 2"~ values which are known to be mapped onto each
other. In order to continue, the algorithm first needs to determine which are the
corresponding values in both sets. This can be done exhaustively if 2”7 is not
too large, say less than 8. Once the order has been guessed, 2"~™ points are
obtained. Since slightly more than n points should suffice to reject a candidate
for the representative, one would expect that the total complexity is:

TL3 L9m (2n—m!) Qn%m . (9)

In order to test the extended algorithm, we applied it to the eight 6 x 4-bit
S-boxes of DES. The algorithm showed that no affine equivalences exist between
any pair of S-boxes, with the single exception of Sy with itself. The equivalence
relation was found to be B71S,(A-x ®a) ®b = S4(r) with A = I and B a
simple bit permutation [4,3,2,1], a = 1011115 and b = 01105. Note that this
specific property of Sy was already discovered by Hellman et al. [17] by looking
at patterns in the lookup table.

4.3 Almost Affine Equivalent S-boxes

Another interesting problem related to equivalence is the problem of detecting
whether two S-boxes are almost equivalent. The S-boxes S; and S are called
almost equivalent if there exist two affine mappings A; and As such that As o
S1 0 Ay and Sy are equal, except in a few points (e.g., two values in the lookup
table are swapped, or some fixed fraction of the entries are misplaced).

A solution to this problem can be found by observing that the linear equiva-
lence algorithm of Sect. 2.1 requires only about O(n) S-box queries to uniquely
determine the mappings A and B that correspond with a particular guess. Af-
ter the mappings are discovered it is a matter of a simple consistency test to
check all the other values, however for the “almost” equivalent case we may tol-
erate inconsistencies up to a given fraction f of the whole space. The algorithm
should make sure that the defect points are not chosen for the construction of
the mappings. If the fraction of defect points is small, it is sufficient to run our
algorithm about (1 — f) 7"t times with randomized order of guesses and pick
the mappings with the minimal number of inconsistencies. For example for n = 8
and the fraction of defects 20%, one will need about 10 iterations of our basic
algorithm.

44 Alex Biryukov, Christophe De Canniere, An Braeken, and Bart Preneel

5 Equivalent Descriptions of Various Ciphers

In this section we apply our tools to various ciphers in order to find equivalent
descriptions.

5.1 Rijndael

When our AE tool is run for the 8-bit S-box S used in Rijndael [13], as many
as 2040 different self-equivalence relations are revealed (see Appendix B.2). Al-
though this number might seem surprisingly high at first, we will show that
it can easily be explained from the special algebraic structure of the S-box of
Rijndael.

To avoid the confusion of working in GF(2%) and GF(2)® simultaneously,
we first introduce the notation [a], which denotes the 8 x 8-bit matrix that
corresponds to a multiplication by a in GF(28). Similarly, we denote by Q the
8 x 8-bit matrix that performs the squaring® operation in GF(28). Considering
the fact that the Rijndael S-box is defined as S(z) = A(zx~!) with A a fixed
affine mapping (not to be confused with A; or As), we can now derive a general
expression for all pairs of affine mappings A; and A, that satisfy As0S0A4; = S:

Ai(z) =[] - Q" -z, (10)
Ay(z)=A(Q " [a]- A Y(z)) , with0<i<B8andaecGF(2°%)\{0}. (11)

Since i takes on 8 different values* and there are 255 different choices for a,
we obtain exactly 2040 different solutions, which confirms the output of the AE
algorithm.

The existence of these affine self-equivalences in Rijndael implies that we can
insert an additional affine layer before and after the S-boxes without affecting
the cipher. Moreover, since the mixing layer of Rijndael only consists of additions
and multiplications with constants in GF(28), and since [a] - Q* - [¢] = [¢*'] - [a] -
Q?, we can easily push the input mapping A; through the mixing layer. This
allows us to combine A; with the output mapping of a previous layer of S-boxes,
with the plaintext, the round constants or with the key. The resulting ciphers
are generalizations® of the eight “squares” of Rijndael, obtained in a somewhat
different way by Barkan and Biham [4]. By modifying the field polynomial used
in these 2040 ciphers, one should be able to expand the set of 240 dual ciphers
in The Book of Rijndaels [5] to a set of 61,200 ciphers.

Note that these ideas also apply to a large extent to other ciphers that use
S-boxes based on power functions. These include Camellia, Misty and Kasumi
(see Appendix B.2).

3 Note that this is possible since squaring is a linear operation in GF(2%) (see also [4]).
4 One can easily check that Q% = I and thus Q¢ = Q%*.
® For a = 1 we obtain the 8 square ciphers constructed in [4].

A Toolbox for Cryptanalysis: Linear and Affine Equivalence Algorithms 45

5.2 Other SPN Ciphers

All affine equivalences in the Rijndael S-box are directly related to its simple
algebraic structure, but using our general AE tool, we can also build equiva-
lent representations for S-boxes that are harder to analyze algebraically. Two
examples are Serpent [6] and Khazad [2].

An interesting property that is revealed by the AE algorithm is that the
set of eight S-boxes used in Serpent (see Appendix B.2) contains three pairs
of equivalent S-boxes ({S2,S6}, {53,597}, {S4,55}) and one pair of inversely
equivalent S-boxes ({Sp, S;*}). Moreover, four of the S-boxes are self-equivalent.
This allows to apply specific modifications to the mixing layer and to change the
order in which the S-boxes are used, and this without affecting the output of
the cipher. Notice also that the two inversely equivalent S-boxes (Sy and Sp) are
used in consecutive rounds. The mixing layer probably prevents this property
from being exploited, however.

In the case of Khazad, both 4 x 4-bit S-boxes P and @ are found to be self-
and mutually equivalent. This implies that the complete cipher can be described
using affine mappings and a single non-linear 4 x 4-bit lookup table. Note that
this is not necessarily as bad as it sounds: each cipher can be described with
affine mappings and a single non-linear 2 x 1-bit AND.

5.3 DES

Sect. 4.2 already mentions that one of the 6 x 4-bit S-boxes used in DES (S4)
is self-equivalent and that no other equivalences exist. All DES S-boxes have
the special property that they can be decomposed into four 4 x 4-bit S-boxes.
Hence, it might be interesting to look for equivalences in these smaller S-boxes
as well. This time, many equivalences and self-equivalences are found (we refer
to Appendix B.1 for more details). To our knowledge these were not previously
known.

6 Application to Generalized Even-Mansour Scheme

In this section we apply our algorithms to a generalized Even-Mansour scheme.
In [14] Even and Mansour proposed the following construction: given a fixed
n X n-bit pseudo-random permutation F', one adds two n-bit secret keys K7 and
K> at the input and at the output of the scheme, i.e., C = F(K;® P)® Ks. The
result is provably secure against a known plaintext attack with O(2™) steps and
a chosen plaintext attack with 0(2"/ 2) steps. The chosen plaintext attack which
matches the lower bound was shown by Daemen in [12], and a known plaintext
with the same complexity was given by Biryukov and Wagner in [9)].

Consider a generalized Even-Mansour scheme, in which key additions are
replaced by secret affine transforms A;, Ay, ie., C = Ay(F(A1(P))). It seems
that a standard application of Daemen’s attack, or a slide-with-a-twist attack to
this cipher will not work. However a simple application of our affine equivalence

46 Alex Biryukov, Christophe De Canniere, An Braeken, and Bart Preneel

algorithm provides an attack on such a construction. Indeed, the attacker is given
two black boxes for which he has only oracle access: the box S7 that implements
the cipher S1 = A3(F(A1(P))), and the box Sy that implements the pseudo-
random permutation Sy = F. The attacker knows that S; and Sy are affine
equivalent, and his goal is to find the equivalence, which is the secret key. In this
formulation it is exactly the problem that can be solved by our AE algorithm.
The complexity of this adaptive chosen plaintext/adaptive chosen ciphertext
attack is O(n322") steps. This compares very favorably to an exhaustive search
of O(2"") steps.

7 Decomposition of Large S-boxes using Smaller S-boxes

In this section we consider the following problem: given an n x n-bit S-box,
represent it with an SPN network of smaller m x m-bit S-boxes. How many S-
box layers of SPN one has to provide? The natural motivation for this question
is twofold: S-boxes that allow SPN-representations with few layers may allow a
simple representation as systems of low-degree equations, which in term might
be exploited by algebraic attacks or other cryptanalytic approaches. Another
obvious motivation is more efficient hardware/software implementations. This
section gives a lower bound for the number of S-box layers of an SPN network
when representing an arbitrary nm x m-bit S-box based on a simple counting
argument. We also show how to solve this problem for SPNs consisting of three
S-box layers separated by two affine layers.

We look for representations of an n x n-bit S-box by an SPN of k smaller m x
m-bit S-boxes. We derive a relation between n, m, k, and the number [of S-box
layers of SPN, which gives us a lower bound for the number of S-box layers one
has to provide. An SPN network with [layers, each layer consisting of k parallel
m X m-bit S-boxes and an affine transformation, gives rise to approximately

-1

m k
()" (% (22m(2m _ 2m_21)!2 (2 1)2> 2m(2" =27 (27 - 1))

different S-boxes. This number is obtained by first taking k arbitrary m X
m-bit S-boxes. In each of the following [— 1 rounds there are 27(2" —
2n=1)... (27 —1) different choices for an affine transformation and approximately
22m(2m_2m2_ﬂ1!)2m(2m_1)2 different choices for an S-box because the S-box has to

belong to a different affine equivalence class.® If we compare this number with
the total number of n x n-bit S-boxes 2"!, we get a lower bound for the number
of S-box layers. Results for the most typical cases are shown in Table 1.

One of the conclusions that may be drawn from this table is that popular
8-bit S-boxes might be vulnerable to simple representations with 4-bit S-boxes.

8 Here we use the approximation for the number of equivalence classes, however for
small m the approximation is not valid and we used exact values, found by careful
counting of equivalence classes (see Table 5 in Appendix C).

A Toolbox for Cryptanalysis: Linear and Affine Equivalence Algorithms 47

Table 1. Number of SPN layers for various choices of parameters n and m.

Original S-box size : n 6 8 9 10 12 12 12 16 16
Small S-box size :m 3 4 3 5 3 4 6 4 8
Small S-boxes :k=n/m 2 2 3 2 4 3 2 4 2
Layers of SPN i1 8 20 43 39 276 246 75 3196 285

On the other hand, 12-bit and 16-bit S-boxes look less vulnerable to S-box
decomposition.

If we know that a large S-box has the internal structure of an SPN with
three S-box layers, we can apply a very efficient multiset attack described by
Biryukov and Shamir in [8] to recover the hidden structure. Such an attack uses
22M queries to the S-box and k23™ steps of analysis and is very efficient for all
m-bit S-boxes of practical importance. For example this approach would be able
to recover the structure of the S-boxes of Khazad [2] and Whirlpool [3] if these
S-boxes would be presented just by an 8 x 8-bit lookup table. Extension of this
approach beyond five layers is still an open problem.

8 Summary

In the view of rising interest in algebraic properties of various symmetric primi-
tives, this paper provided several generic algorithms for the toolbox of a crypt-
analyst /cipher designer. We developed very efficient algorithms for detecting
linear and affine equivalence of bijective S-boxes. We also studied extensions of
these algorithms for the case of non-bijective S-boxes with small input/output
deficiency, and to the case of checking for almost equivalence between S-boxes.
This notion of almost equivalence introduces an interesting metric over S-box
equivalence classes. We have shown that our affine equivalence algorithm may be
viewed as an attack on a generalized Even-Mansour scheme with XORs replaced
by secret affine mappings. We also described new equivalences found in many
popular ciphers: Rijndael, DES, Camellia, Misty, Kasumi, Khazad. Finally, we
discussed the problem of S-box decomposition into small S-box SPN (a property
of interest to some algebraic attacks and to hardware designers) and provided
simple lower bounds for this problem.

Acknowledgements. We would like to thank Jasper Scholten for his helpful
advice as well as the anonymous referees, whose comments helped to improve
this paper.

References

1. K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moria, J. Nakajima, T. Tokita,
Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design and
Analysis, submitted to NESSIE, 2000. Available at http://www.cryptonessie.
org.

48

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Alex Biryukov, Christophe De Canniere, An Braeken, and Bart Preneel

P.S.L.M. Baretto, V. Rijmen, The Khazad Legacy-Level Block Cipher, submitted
to NESSIE, 2000. Available at http://www.cryptonessie.org.

P.S.L.M. Baretto, V. Rijmen, The Whirlpool Hashing Function, submitted to
NESSIE, 2000. Available at http://www.cryptonessie.org.

E. Barkan, E. Biham, In how Many Ways Can You Write Rijndael, Proceedings
of Asiacrypt 2002, LNCS, to appear. Earlier version at TACR eprint server, http:
//eprint.iacr.org/.

E. Barkan, E. Biham, The Book of Rijndaels, Available on IACR eprint server,
http://eprint.iacr.org/.

. E. Biham, R.J. Anderson, L.R. Knudsen, Serpent: A New Block Cipher Proposal,

Proceedings of Fast Software Encryption’98, LNCS 1372, pp. 222-238, Springer-
Verlag, 1998.

E. Biham, A. Shamir, Differential cryptanalysis of the Data Encryption Standard,
Springer-Verlag 1993.

A. Biryukov, A. Shamir, Structural Cryptanalysis of SASAS, LNCS 2045, Proceed-
ings of Eurocrypt 2001, pp.394-405, Springer-Verlag, 2001.

A. Biryukov, D. Wagner, Advanced Slide Attacks, Proceedings of Fast Software
Encryption 2000, LNCS 1807, pp. 589-606, Springer-Verlag, 2000.

N. Courtois, J. Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined Systems
of Equations, Proceedings of Asiacrypt’2002, LNCS, to appear. Earlier version at
IACR eprint server, http://eprint.iacr.org/.

D. Coppersmith, S. Winograd, Matriz Multiplication via Arithmetic Progressions,
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
pp.1-6, 1987.

J. Daemen, Limitations of the Even-Mansour Construction, Proceedings of Asi-
acrypt’91, LNCS 739, pp. 495499, Springer-Verlag, 1991.

J. Daemen, V. Rijmen, The Design of Rijndael, Springer Verlag, 2002.

S. Even, Y. Mansour, A Construction of a Cipher from a Single Pseudorandom
Permutation, Journal of Cryptology, Vol. 10, no. 3, pp. 151-161, Springer-Verlag,
1997.

J. Fuller, W. Millan, On linear Redundancy in the AES S-Boz, Available online on
http://eprint.iacr.org/, 2002.

M. A. Harrison, On the Classification of Boolean Functions by the General Linear
and Affine Group, Journal of the Society for Industrial and Applied Mathematics,
Vol. 12, pp. 284-299, 1964.

M.E. Hellman, R. Merkle, R. Schroppel, L. Washington, W. Diffie, S. Pohlig,
P. Schweitzer, Results of an initial attempt to cryptanalyze the NBS Data En-
cryption Standard. Technical report, Stanford University, U.S.A., September 1976.
K. Kim, S. Lee, S. Park, D. Lee, Securing DES S-boxes Against Three Robust
Cryptanalysis, Proceedings of SAC’95, pp. 145-157, 1995.

C.S. Lorens, Invertible Boolean Functions, Space General Corporation Report,
1962.

M. Matsui, Linear Cryptanalysis Method for DES Cipher, Proceedings of Euro-
crypt’93, LNCS 765, pp. 386—-397, Springer-Verlag, 1993.

M. Matsui, New Block Encryption Algorithm MISTY, Proceedings of Fast Software
Encryption 97, LNCS 1267, pp. 54-68, Springer-Verlag, 1997.

S. Murphy, J.B. Robshaw, Essential Algebraic Structure Within the AES, Proceed-
ings of CRYPTO 2002, LNCS 2442, pp.17-38, Springer-Verlag 2002.

J. Patarin, L. Goubin, N. Courtois, Improved Algorithms for Isomorphisms of Poly-
nomials, Proceedings of Eurocrypt’98, LNCS 1403 , pp.184—200, Springer-Verlag,
1998.

A Toolbox for Cryptanalysis: Linear and Affine Equivalence Algorithms 49

Table 2. Complexities of linear and affine algorithms.

Dimension n 4 5 6 7 8 9 10 12 16 24 32
E —E 58 9I0 5IT 913 511 515 917 5IU 524 533 5a2
AE . p292n 912 915 917 920 922 924 927 931 940 957 974
AE (n—m=1): 2nn2(2!)g 910 912 9ld 916 918 920 922 925 932 945 958
AE (n—m=2) : 2nn2(22!)2% 913 915 918 921 923 926 928 933 942 961 979
AE (n—m=3): 2nn2(23!)2% 916 919 923 926 929 933 936 942 955 979 9103

A Complexities of LE and AE Algorithms

In this appendix we compute the complexities of the LE and AE algorithms
together with complexities of the AE algorithm for the non-bijective case, which
are shown in Table 2. Note that we use n? for the complexity of the Gaussian
elimination since n < 32 and we assume an efficient implementation using 32-bit
operations.

B Equivalent S-boxes in Concrete Ciphers

In this appendix we briefly discuss the affine equivalences found between S-boxes
of various ciphers.

B.1 DES and S°DES

As mentioned in Sect. 4.2, there are no affine equivalences between the 6 x 4-bit
S-boxes of DES, except for S4. However, when each S-box is decomposed into
its four 4 x 4-bit S-boxes, then additional equivalences appear. The relations are
summarized in the extended version of the paper. The most noticeable properties
are the fact that all 4 x 4-bit S-boxes of Sy (S4,0, S4,1, Sa,2 and Sy 3) belong to
the same class, and that a relatively large number of S-boxes are equivalent to
their inverse.

After the introduction of DES, different sets of alternative S-boxes have been
proposed. In 1995, Kwangjo Kim et al. suggested to use the so-called S°DES
S-boxes, which were designed with additional criteria in order to achieve immu-
nity against differential, linear, and Improved Davies’ cryptanalysis. The table
showing how this influences the equivalence relations is omitted due to space
limits and can be found in the extended version of the paper. A first conclusion
is that the new set contains considerably more equivalent 4 x 4-bit S-boxes.” In
addition, there is a clear increase of s, the number of self-equivalences. Given the
fact that the size of an equivalence class is proportional to 1/s, we conclude that
the new design criteria considerably reduce the space from which the S-boxes or
their inverses are chosen.

7 Note that none of these S-boxes is equivalent to any of the original DES S-boxes due
to the additional design criteria.

50 Alex Biryukov, Christophe De Canniere, An Braeken, and Bart Preneel

Table 3. Serpent and Khazad. Table 4. Rijndael, Camellia, Misty and Kasumi.

Cipher Members s Cipher Members s
Serpent So, S; 4 Rijndael/Camellia S, S~' 2040 = 8 x 255
Sy, S 4 Misty /Kasumi Sy 889 =7 x 127
So, Syt Ss, Sgt 4 So 4599 = 9 x 511

Ss, Szt Sz, 871

S4, S5 1

Syt st 1

Khazad P, P ', Q,Q ' 4

Table 5. Number of linear and affine equivalence classes of permutations.

Dimension 1 2 3 4 5
#Lin. Eq. Classes 2 2 10 52,246 2,631,645,209,645,100,680,144
#Af. Eq. Classes 1 1 4 302 2,569,966,041,123,963,092

B.2 Serpent, Khazad, Rijndael, Camellia, Misty and Kasumi

The affine equivalences found in the 4 x 4-bit S-boxes of Serpent and Khazad
are shown in Table 3. Note that there are no equivalences between these S-boxes
and the 4 x 4-bit S-boxes of DES or S°DES.

Table 4 lists the number of self-equivalences s for the 8 x 8-bit S-box of
Rijndael and the 7 x 7-bit and 9 x 9-bit S-boxes of Misty (which are affine
equivalent to the ones used in Kasumi). An explanation for the large number of
self-equivalences in Rijndael is given in Sect. 5.1. A similar reasoning applies to
S7 and Sy, as both are designed to be affine equivalent with a power function
over GF(27) and GF(2°) respectively.

C The Number of Equivalence Classes

Another problem related to linear and affine equivalences is the problem of count-
ing equivalence classes. This problem was solved in the 1960s by Lorens [19] and
Harrison [16] using Polya theory, by computing the cycle index polynomial of
the linear and affine groups. Results were given for n <5 (see Table 5).

We implemented a similar algorithm for counting the number of equivalence
classes for larger n and verified that this number is very well approximated by
2"1/|G|?, where |G| is the size of the linear or affine group. These results were
used in Sect. 7 for the computation of Table 1: for S-box sizes 3 and 4 we used
exact values and for the larger sizes we used the approximation.

