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Abstract. Recently there has been an interest in zero-knowledge pro-
tocols with stronger properties, such as concurrency, unbounded simu-
lation soundness, non-malleability, and universal composability. In this
paper, we show a novel technique to convert a large class of existing
honest-verifier zero-knowledge protocols into ones with these stronger
properties in the common reference string model. More precisely, our
technique utilizes a signature scheme existentially unforgeable against
adaptive chosen-message attacks, and transforms any X-protocol (which
is honest-verifier zero-knowledge) into an unbounded simulation sound
concurrent zero-knowledge protocol. We also introduce {2-protocols, a
variant of X-protocols for which our technique further achieves the prop-
erties of non-malleability and/or universal composability.

In addition to its conceptual simplicity, a main advantage of this new
technique over previous ones is that it avoids the Cook-Levin theorem,
which tends to be rather inefficient. Indeed, our technique allows for
very efficient instantiation based on the security of some efficient signa-
ture schemes and standard number-theoretic assumptions. For instance,
one instantiation of our technique yields a universally composable zero-
knowledge protocol under the Strong RSA assumption, incurring an over-
head of a small constant number of exponentiations, plus the generation
of two signatures.

1 Introduction

The concept of a zero-knowledge (ZK) proof, as defined by Goldwasser, Micali,
and Rackoff [25], has become a fundamental tool in cryptography. Informally,
if a prover proves a statement to a verifier in ZK, then the verifier gains no
information except for being convinced of the veracity of that statement. In
particular, whatever the verifier could do after the ZK proof, it could have done
before the ZK proof, in some sense because it can “simulate” the proof itself. In
early work, Goldreich, Micali and Wigderson [24] showed that any NP statement
could be proven in (computational) ZK. In another early work, Goldreich, Micali
and Wigderson [23] showed the usefulness of ZK proofs in multiparty protocols,
in particular, in having the parties prove the correctness of their computations.
There has been a great deal of work since then on all properties of ZK proofs.
Here we focus on a few such properties, namely, concurrency, non-malleability,
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simulation soundness, and universal composability, with our main goal being to
construct efficient protocols that achieve these properties.

The problem of concurrency was first discussed in Dwork, Naor and Sahai
[17]. Informally, the problem arises when many verifiers are interacting with a
prover. An adversary controlling all the verifiers may coordinate the timing of
their messages so that a simulator would not be able to simulate the execution
of the prover in polynomial time. Canetti et al. [7] showed that without addi-
tional assumptions, such as timing constraints or a common reference string,
logarithmic rounds are necessary to achieve concurrent (black-box) ZK. Prab-
hakaran, Rosen, and Sahai [37] showed that logarithmic rounds suffice. On the
other hand, Damgéard [13] showed that concurrent, constant-round ZK protocols
can be achieved in the common reference string model. Furthermore, Barak [1]
showed that by using a non black-box simulator, constant-round, concurrent
protocols can be constructed in the plain model.?

The problem of malleability was first pointed out by Dolev, Dwork and Naor
[16]. Roughly speaking, the problem is that an adversary may be able to play a
“man-in-the-middle” attack on a ZK protocol, playing the role of the verifier in
a first protocol, and that of the prover in a second protocol, and such that using
information from the first protocol he is able to prove something in the second
protocol that he could not prove without that information. A ZK protocol that
does not suffer from this problem is said to achieve one-time non-malleability
(since the adversary only interacts with one prover). Dolev, Dwork and Naor give
a construction of a one-time non-malleable ZK protocol that uses a polyloga-
rithmic number of communication rounds. Katz [28] describes efficient protocols
for one-time non-malleable proofs of plaintext knowledge for several encryption
schemes. His protocols work in the common reference string model, and consist
of three rounds and constant number of exponentiations. However, since the wit-
ness extractor uses “rewinding,” the resulting protocols were only proven secure
in a concurrent setting with the introduction of timing constraints. Barak [2]
gives a construction of constant-round, one-time non-malleable ZK protocols in
the plain model. His construction uses a non-blackbox proof of security and is
not very efficient. Sahai [40] provides a definition for one-time non-malleability
in the case of non-interactive ZK (NIZK) proofs. De Santis et al. [15] generalize
this to unbounded non-malleability of NIZK proofs, where even any polynomial
number of simulator-constructed proofs does not help an adversary to construct
any new proof. (As they do, for the remainder of this paper we will simply re-
fer to this property as non-malleability, leaving off the “unbounded” modifier.)
Their definition is very strong in that (in some sense) it requires a witness to be
extractable from the adversary. They give two constructions of non-malleable
ZK proofs for any NP language. In fact, these proofs are non-interactive, and
thus achieve concurrent (constant-round) ZK.

3 His construction, however, only admits bounded concurrency, meaning that the num-
ber of sessions that the protocol can execute concurrently and still retain its zero-
knowledge property is at most a fized polynomial in the security parameter.
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The notion of simulation soundness for NIZK proofs was introduced by Sa-
hai [40] in the context of chosen-ciphertext security of the Naor-Yung [33] en-
cryption scheme. Informally, an NIZK proof is one-time simulation sound if even
after seeing a “simulated proof” (which could be of a false statement) generated
by the simulator, the adversary cannot generate a proof for a false statement.
Sahai notes that the Naor-Yung encryption scheme would be adaptive chosen-
ciphertext secure if it used a one-time simulation-sound NIZK proof. De Santis
et al. [15] further generalized this notion to unbounded simulation soundness. An
NIZK proof is unbounded simulation sound if even after seeing any polynomial
number of simulated proofs, the adversary cannot generate a proof of a false
statement. The non-malleable NIZK protocols given in [15] are also unbounded
simulation sound.

The notions of unbounded simulation soundness and non-malleability extend
naturally to the case of interactive proof systems; we do this in Section 2.

Universal composability is a notion proposed by Canetti [5] to describe pro-
tocols that behave like ideal functionalities, and can be composed in arbitrary
ways. Universal composability can be defined in either the adaptive model or
the static model, denoting whether the adversary is allowed to adaptively cor-
rupt parties, or must decide which parties to corrupt before the protocol starts,
respectively. Universal composability is a very strong notion. For example, a
universally composable ZK (UCZK) protocol is both non-malleable (at least in
an intuitive sense) and concurrent.

Canetti [5] proved that UCZK protocols do not exist in the “plain” model,
where there is no assumption about the system set-up. On the other hand,
UCZK is possible in the common reference string model, which is the model we
focus on in this paper. As pointed out by Canetti et al. [8], the non-malleable
NIZK protocols of [15] are also UCZK protocols in the static corruption model.
Since they use non-interactive proof techniques and general NP reductions, these
protocols are not very efficient. Canetti and Fischlin [6] give a construction of
a UCZK protocol for any NP language secure in the adaptive model. Basically,
they use a standard three-round ZK protocol for Hamiltonian Cycle, except that
they use universally composable commitments as a building block. Damgard and
Nielsen [14] use the same general ZK protocol construction as Canetti and Fis-
chlin, but with a more efficient UC commitment scheme.* Specifically, for a se-
curity parameter k, their UC commitment scheme allows commitment to k bits
using a constant number of exponentiations and O(k) bits of communication.
Their most efficient UC commitment schemes are based on the p-subgroup as-
sumption [34] or the decisional composite residuosity assumption (DCRA) [35].
Note that even with the more efficient UC commitment scheme, this approach
to constructing UCZK protocols tends to be fairly inefficient, since a general NP
reduction to Hamiltonian Cycle or SAT is used.

4 In a later version of their paper, Damgard and Nielsen use SAT instead of Hamilto-
nian Cycle [14].
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Our results. We show a new technique that allows us to convert certain types

of honest-verifier ZK protocols into ZK protocols with the stronger proper-

ties described above, i.e., concurrency, unbounded simulation-soundness, non-

malleability, and/or universal composability, in the common reference string

model. More precisely, we can

1. transform any X-protocol [11] (which are special three-round, honest-verifier
protocols where the verifier only sends random bits) into an unbounded
simulation-sound ZK protocol; and

2. transform any {2-protocol (which we introduce in this paper as a vari-
ant of X-protocols) into a non-malleable ZK protocol, and further into a
universally-composable ZK protocol.

The main transformations (sufficient to achieve all results except for UCZK pro-

tocols secure in the adaptive model) use a signature scheme that is existentially

unforgeable against adaptive chosen-message attacks [25], which exists if one-way
functions exist [39], as well as a Y-protocol to prove knowledge of a signature.

Note that one-way functions can be used to construct commitments, and thus if

one-way functions exist, X-protocols exist for any NP statement (say, through

a Cook-Levin reduction, and a standard X-protocol for Hamiltonian Cycle).

Hence the requirement of our main transformations is the existence of one-way

functions. On the other hand, certain signature schemes, such as the Cramer-

Shoup [12] scheme and the DSA scheme [30], admit very efficient X-protocols.

Using these schemes (and at the price of specific number-theoretic assumptions),

we are able to construct strengthened ZK protocols that are more efficient than

all previously known constructions, since we can completely avoid the Cook-

Levin theorem [10,31]. To further achieve a UCZK protocol that is secure in

the adaptive model, we also require a simulation-sound trapdoor commitment

scheme, a new type of commitment scheme that we introduce and which may be
of independent interest. This may be based on trapdoor permutations, but we
are able to construct a more efficient version based on DSA.

We now sketch the intuition behind our technique. We first select two sig-
nature schemes, the second of which being a one-time signature scheme [20].5
The common reference string will contain a randomly generated verification key
vk for the first signature scheme, and hence neither the prover nor the verifier
will know the corresponding signing key. We then take an HVZK protocol IT
for an NP statement ¢, and we modify it to IT*, which consists of (1) a witness
indistinguishable (WI) proof for the statement

“Either ¢ is true, or I know the signature for the message vk’ w.r.t.
verification key vk,”

where vk’ is a freshly generated verification key for the one-time signature scheme
that is also sent to the verifier, and (2) a signature on the transcript of the WI

5 The second signature scheme may be the same as the first, although for greater
efficiency, a signature scheme that is specifically designed for one-time use may be
employed.
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proof using the secret key corresponding to vk’. We show that this is an un-
bounded simulation-sound ZK protocol, and we give some efficient instantiations.

Non-malleability is achieved by replacing the X-protocol with an 2-protocol.
We then show that an non-malleable ZK protocol can be easily augmented to ob-
tain a universally-composable ZK protocol in the static model. Finally, to achieve
a universally-composable ZK protocol in the adaptive model (with erasures), we
start with the augmented non-malleable protocol (based on the {2-protocol), and
modify it using a simulation-sound trapdoor commitment scheme,

2 Preliminaries and Definitions

All our results will be in the common reference string (CRS) model, which
assumes that there is a string uniformly generated from some distribution and is
available to all parties at the start of a protocol. Note that this is a generalization
of the public random string model, where a uniform distribution over fixed-length
bit strings is assumed.

For a distribution A, we say a € A to denote any element that has non-zero
probability in A, i.e., any element in the support of A. We say a <~ A to denote
a is randomly chosen according to distribution A. For a set S, we say a < S to
denote that a is uniformly drawn from S.

We will use signatures schemes that are existentially unforgeable against
adaptive chosen-message attacks [26]. However, some of these may only be used
for a single signature, and for these, more efficient one-time signature scheme
constructions may be used [20].

2.1 Zero-knowledge proofs and proofs of knowledge

Here we provide definitions related to zero-knowledge proofs and proofs of knowl-
edge. They are based on definitions of NIZK proofs from [15], but modified to
allow interaction.

For a relation R, let Lp = {z : (x,w) € R} be the language defined by the
relation. For any NP language L, note that there is a natural witness relation
R containing pairs (z,w) where w is the witness for the membership of z in L,
and that Ly = L. We will use k£ as the security parameter.

For two interactive machines A and B, we define (A, B)[,(x) as the local
output of B after an interactive execution with A using CRS o, and common
input . The transcript of a machine is simply the messages on its input and
output communication tapes. Two transcripts match if the ordered input mes-
sages of one are equivalent to the ordered output messages of the other, and
vice-versa. We use the notation tr > ¢’ to indicate tr matches tr'.

For some definitions below, we need to define security when an adversary is
allowed to interact with more than one instance of a machine. Therefore it will
be convenient to define a common wrapper machine that handles this “multi-
session” type of interaction.® For an interactive machine A, we define to be

5 This is similar to the “multi-session extension” concept in Canetti and Rabin [9].
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a protocol wrapper for A, that takes two types of inputs on its communication
tape:

— (START, 7, z,w): For this message starts a new interactive machine A
with label 7, common input z, private input w, a freshly generated random
input 7, and using the CRS of .

— (MsG,m,m): For this message sends the message m to the interactive
machine with label 7 (if it exists), and returns the output message of that
machine.

We define the output of to be a tuple (z,tr,v), where x is the common input
(from the START message), tr is the transcript (the input and output messages
A) and v is the output of A. (In particular, if A is a verifier in a zero-knowledge

protocol, this output will be 1 for accept, and 0 for reject.) We say 1 is the
wrapper of A that ignores all the subsequent START messages after seeing the
first one. Effectively, 1 is a “single-session” version of A.

We say two interactive machines B and C are coordinated if they have a
single control, but two distinct sets of input/output communication tapes. For
four interactive machines A, B, C, and D we define ((A, B), (C, D))(,] as the
local output of D after an interactive execution with C' and after an interactive
execution of A and B, all using CRS o¢. Note that we will only be concerned
with this if B and C' are coordinated.

We note that all our ZK definitions use black-box, non-rewinding simulators,
and our proofs of knowledge use non-rewinding extractors.

Definition 1. [Unbounded ZK Proof] I = (D,P,V,S = (51,82)) is an
unbounded ZK proof (resp., argument) system for an NP language L with wit-
ness relation R if D is an ensemble of polynomial-time samplable distributions,
P, V, and Sz are probabilistic polynomial-time interactive machines, and Sy is a
probabilistic polynomial-time machine, such that there exist negligible functions
a and B (the simulation error), such that for all k,

Completeness For all x € L of length k, all w such that R(x,w) =1, and all
o € Dy the probability that (P(w),V)s)(x) = 0 is less than a(k).

Soundness For all unbounded (resp., polynomial-time) adversaries A, if o <~ Dy,
then for all v & L, the probability that (A, V), (x) = 1 is less than a(k).

Unbounded ZK For all non-uniform probabilistic polynomial-time interactive
machines A, we have that | Pr[Expt 4(k) = 1] — Pr[Expt5 (k) = 1]] < G(k),
where the experiments Expt 4(k) and Expti(k) are defined as follows:

Expt 4 (k) : Expt5 (k) :
o & Dy, (0,7) «— S1(1F)
Return (, Aol  Return (S'(7) |, A)jo)

where 8'(T) runs as follows on common reference string o, common input
and private input w: if R(z,w) =1, §'(7) runs Sa(7) on common reference
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string o and common input x; otherwise 8'(T) runs Spun, where Spun s an
interactive machine that simply aborts.”

We point out that this definition only requires the simulator to simulate a
valid proof, which is implemented by having S” have access to the witness w and
only invoking Sy when w is valid.® However, S, does not access the witness and
will simulate a proof from the input = only.

Definition 2. [Same-String Unbounded ZK] IT = (D,P,V,S = (51, 82))
s a same-string unbounded ZK argument system for an NP language L with
witness relation R if II is an unbounded ZK argument system for L with the
additional property that the distribution of the reference string output by Sy (1%)
is exactly Dy.

We only define same-string unbounded ZK arguments since, as shown in [15],
any protocol that is same-string unbounded ZK must be an argument, and not
a proof.

The following defines unbounded simulation-sound zero-knowledge (USSZK).
This has been useful in applications. In particular, as shown in [40], the one-
time version suffices for the security of a (non-interactive) ZK protocol in the
construction of adaptive chosen-ciphertext secure cryptosystems using the Naor-
Yung [33] paradigm. We directly define the unbounded version, needed in other
applications such as threshold password-authenticated key exchange [32].

Definition 3. [Unbounded Simulation-Sound ZK]
I =(D,P,V,S =(5,82)) is an unbounded simulation-sound ZK proof (resp.,
argument ) system for an NP language L if IT is an unbounded ZK proof (resp.,
arqgument) system for L and furthermore, there exists a negligible function «
such that for all k,
Unbounded Simulation Soundness
For all non-uniform probabilistic polynomial-time adversaries A = (A1, Az),
where Ay and Az are coordinated, we have that Pr[Expt 4(k) = 1] < a(k),
where Expt 4 (k) is defined as follows:
Expt 4 (k) :
(o,7) — 81 (1%)
(w,tr,0) = (8" (7) | A1), (A2 [V] )i
Let @ be the set of transcripts of machines in
Return 1 iff b= 1, x € L, and for all tr' € Q, tr phtr’
where 8" (1) runs as follows on CRS o, common input x and private input
w: 8"(1) runs Sa(1) on CRS o and common input x.

" Without loss of generality, we assume that if the input to P is not a witness for the
common input, P simply aborts.

8 A must supply a witness, since P is restricted to polynomial time, and thus may
not be able to generate a witness itself. This may seem odd compared to definitions
of standard ZK that assume an unbounded prover, but it does seem to capture
the correct notion of unbounded ZK, and in particular does not allow A to test
membership in L. See Sahai [40] for more discussion.
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In the above definition, we emphasize that S; may be asked to simulate false
proofs for « ¢ Lg, since 8" does not check whether (z,w) € R. The idea is that
even if the adversary is able to obtain acceptable proofs on false statements, it
will not be able to produce any new acceptable proof on a false statement.

The following defines non-malleable zero-knowledge (NMZK) proofs (resp.,
arguments) of knowledge. If a protocol is NMZK according to our definition,
then this implies the protocol is also a NMZK in the explicit witness sense (as
defined in [15]). Moreover, we show that the protocol is also UCZK in the model
of static corruptions. Also note that simulation soundness is implied by this
definition.

Definition 4. [Non-malleable ZK Proof/Argument of Knowledge] IT =
(D,P,V,S = (51,852),& = (£1,&2)) is a non-malleable ZK proof (resp., argu-
ment ) of knowledge system for an NP language L with witness relation R if IT is
an unbounded ZK proof (resp., argument) system for L and furthermore, £ and
&y are probabilistic polynomial-time machines such that there exists a negligible
function « (the knowledge error) such that for all k,

Reference String Indistinguishability The distribution of the first output
of S1(1%) is identical to the distribution of the first output of £1(1%).

Extractor Indistinguishability For any 7 € {0,1}*, the distribution of the
output of 1 is identical to the distribution of the restricted output of

Es(7) K where the restricted output of 1 does not include the ex-

tracted value.

Extraction For all non-uniform probabilistic polynomial-time adversaries A =
(A1, A2), where Ay and Ay are coordinated machines, we have that
| Pr[ExptS (k) = 1] — Pr[Expt(k) = 1]| < a(k), where the experiments
Expt 4(k) and Expt5 (k) are defined as follows:

Expt 4 (k) : Expt (k) :
(0,7) = S1(1F) (0,71, 72) — E(17)
(z,tr,b) (z, tr, (b,w))
" "

('@ A A V| = () | A, (e[ &) | Vi
Let @ be the set of transcripts Let @ be the set of transcripts

of machines in m of machines in .
Return 1 iff b =1 and Return 1 iff b =1, (z,w) € R, and

for all tr' € Q, tr & tr’ for all tr' € Q, tr b tr’

where 8" (1) runs as follows on CRS o, common input x and private input
w: 8"(1) runs Sz2(1) on CRS o and common input x.

In the above definition, as in the definition of USSZK protocols, we emphasize
that Sy may be asked to simulate false proofs for x ¢ Lg, since 8” does not
check whether (z,w) € R. The idea is that even if the adversary is able to obtain
acceptable proofs on false statements, it will not be able to produce any new
acceptable proof for which a witness cannot be extracted.
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2.2 X-protocols

Here we overview the basic definitions and properties of X-protocols [11]

First we start with some definitions and notation. Let R = {(z,w)} be a
binary relation and assume that for some given polynomial p(-) it holds that
|lw] < p(Jz|) for all (z,w) € R. Furthermore, let R be testable in polynomial
time. Let Lg = {z : (z,w) € R} be the language defined by the relation.

Now we define a X-protocol (A, B) to be a three move interactive protocol be-
tween a probabilistic polynomial-time prover A and a probabilistic polynomial-
time verifier B, where the prover acts first. The verifier is only required to send
random bits as a challenge to the prover. For some (z,w) € R, the common
input to both players is  while w is private input to the prover. For such given
x, let (a,c,z) denote the conversation between the prover and the verifier. To
compute the first and final messages, the prover invokes efficient algorithms a(-)
and z(-), respectively, using (z,w) and random bits as input. Using an efficient
predicate ¢(-), the verifier decides whether the conversation is accepting with
respect to x. The relation R, the algorithms a(-), z(:) and ¢(-) are public.

We will need to broaden this definition slightly, to deal with cheating provers.
We will define Lp to be the input language, with the property that Lr C L R,
and membership in Lr may be tested in polynomial time. We implicitly assume
B only executes the protocol if the common input x € Lg.

All X-protocols presented here will satisfy the following security properties:

— Weak special soundness: Let (a, ¢, z) and (a,¢’, 2’) be two conversations, that
are accepting for some given x € Ly If e # ¢/, then © € Lg. The pair of
accepting conversations (a, ¢, z) and (a, ¢’, 2') with ¢ # ¢ is called a collision.

— Special honest verifier zero knowledge (SHVZK): There is a (probabilistic
polynomial time) simulator M that on input x € Lp generates accepting
conversations with a distribution that is computationally indistinguishable
from when A and B faithfully execute the protocol on common input x.
The simulator is special in the sense that it can additionally take a random
string ¢ as input, and output an accepting conversation for & where c is the
challenge. In fact, we will assume the simulator has this special property for
not only x € Ly, but also any = € Lg.

Some of the X-protocols also satisfy the following property.

— Special soundness: Let (a,c, z) and (a,c’,z’) be two conversations, that are
accepting for some given x, with ¢ # ¢’. Then given x and those two conver-
sations, a witness w such that (x,w) € R can be computed efficiently.

A simple but important fact (see [11]) is that if a X-protocol is HVZK, the
protocol is witness indistinguishable (WI) [21].

In our results to follow, we need a particular, simple instance of the main
theorem from [11]. Specifically, we use a slight generalization of a corollary in [11]
which enables a prover, given two relations (Ry, Rz), values (21, z2) € L Ry X L Ros
and corresponding 3-move X-protocols ((A1, B1), (As, B2)), to present a 3-move
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prover verifier

(vk', sk') « sig_gen, (1%) vk
DR () v Dok (vk)

S

s « sig_sign, (sk’, transcript) sig-verify, (vk’, transcript)

Fig. 1. USSﬁk] (z): An unbounded simulation-sound ZK protocol for relationship R

with CRS vk (drawn from the distribution sig_gen,(1¥)), and common input z. The
prover also knows the witness w such that R(z,w) = 1.

Y-protocol (Ag, Boy) for proving the existence of a w such that either (z1,w) €
Ry or (z2,w) € Ry. We call this the “OR” protocol for ((Ay, By), (A2, B2)),

For two X-protocols, (A1, B1) and (As, B2), let (A1, B1) V (Aa, B2) denote
the “OR” protocol for ((A1, B1), (A2, B2)).

3 Unbounded Simulation-Sound ZK

We are now ready to present the first result achieved with our technique: An un-
bounded simulation-sound zero-knowledge protocol for a relation R = {(z,w)}.
We assume that we have the following building blocks:

1. XR:a X-protocol for the binary relation R.

2. SIGy = (sig-geny, sig-sign,, sig-verify,): a signature scheme secure against
adaptive chosen-message attack.

3. Ryr = {(m,s) | sig_verifyy,(vk,m,s) = 1}: a binary relation of message-
signature pairs.

4.  XBer: a Y-protocol with the special soundness property for the binary
relation R, .

5. SIG; = (sig-geny, sig-signy, sig_verify;): a one-time signature scheme secure
against chosen-message attack.

The protocol USS[R;k] (x) is shown in Figure 1. It assumes the prover and
verifier share a common input « to a X-protocol X, and the prover knows w
such that (z,w) € R. The CRS o is the verification key vk of a signature scheme
that is existentially unforgeable against adaptive chosen-message attacks. The
prover generates a pair (vk’,sk’) for a one-time signature scheme, and sends
vk’ to the verifier. After this, vk’ is the common input to a X-protocol XTvx
satisfying special soundness. Then the prover uses the OR construction for X-
protocols to prove that either x € Lg or it knows a signature for vk’ under
verification key vk. (Note that since X ftr satisfies special soundness, intuitively
it is a proof of knowledge.) Finally, the prover signs the transcript with sk’, and
sends the resulting signature to the verifier.
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Now we must describe § = (S1,83) for USS[If,k] (7). S1(1F) first generates
signature keys (vk, sk) < sig,genAO(lk) and outputs (o, 7) = (vk, sk). Sa(sk) first
checks that common input = € Lg. If not, it aborts. Otherwise it runs the pro-

tocol as normal, except generating s’ < sig_signy(sk, vk’), and using knowledge
of s’ to complete the X-protocol L (z) v X Rk (vk').

Theorem 1. The protocol USSﬁ;k] (x) is a USSZK argument.

4 Non-malleable ZK

Our general NMZK construction will be similar to the USSZK construction
above, but with a X-protocol replaced by an {2-protocol, defined here.

4.1 (2-protocols

An f2-protocol (A, B)(, for a relation R = {(z,w)} and CRS o, is a X-protocol

for relation R with the following additional properties.

1. For a given distribution ensemble D, a common reference string o is drawn
from Dy and each function a(), z(-), and ¢(-) takes o as an additional
input. (Naturally, the simulator M in the definition of X-protocols may
also take o as an additional input.)

2. There exists a polynomial-time extractor £ = (€1,&) such that the ref-
erence string output by &£;(1¥) is statistically indistinguishable from Dj,.
Furthermore, given (o,7) « £;(1¥), if there exists two accepting conver-
sations (a,c,z) and (a,c,2') with ¢ # ¢ for some given 2 € Lpg, then
& (z, 7, (a,c, 2)) outputs w such that (z,w) € R.°

Informally, one way to construct §2-protocols is as follows. Our common ref-
erence string will consist of a random public key pk for a semantically-secure
encryption scheme. Then for a given (z,w) € R, we will construct an encryption

e of w under key pk, and then construct a X-protocol to prove that there is a w

such that (z,w) € R and that e is an encryption of w.

As with X-protocols, we will use the V notation to denote an “OR” protocol,
even if one or both of these protocols are 2-protocols.

4.2 NMZK protocol

Let Qfg,} (x) be an £2-protocol for a relation R with common reference string o’

and common input x. Let NM[R;k’U,}(x) be the USS[}zk] (x) protocol with X (z)

9 Notice that this extraction property is similar to that of weak special soundness
of Y-protocols, where there exists an accepting conversation even for an invalid
proof, but two accepting conversations guarantees that the proof is valid. Here, the
extractor can always extract something from any conversation, but it might not be
the witness if there is only one accepting conversation. However, having two accepting
conversations sharing the same a guarantees that the extracted information is indeed
a witness.
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prover verifier

vk’
QF () v ZFor (vk)

(vk', sk') — sig_gen, (17)

S

s « sig_sign, (sk’, transcript) , sig_verify, (vk’, transcript)

Fig. 2. NM[R;,C’U,](Q:): A non-malleable ZK protocol for relationship R with common

reference string (vk,o’) where ¢’ is drawn from the distribution associated with 2%,
and common input x.

replaced by Q[];,} (x). (For every o, the resultant protocol is also a X-protocol.)

Let £o = (£0.1,E0,2) be the extractor for Q[}ff,](ac). The protocol NM[IEk’UI](l‘) is
shown in Figure 2.
We now describe § = (81, Ss) for Nl\/lf?)k,a/]. S1(1%) first generates signature

keys (vk, sk) — sig_geny(1¥) and then sets o’ <~ Dy, where D is the distribution
ensemble for 21 - Next, S1(1%) outputs ((vk,d’),sk). Sa(sk) first checks that

[0’
common input x € Lg. If not, it aborts. Otherwise it runs the protocol as normal,
except generating s’ «— sig_sign,(sk,vk’), and using knowledge of s’ to complete
the protocol Q[Ig,](aﬁ) v DRk (vk!).

Finally, we must describe & = (&;,&;) for NM[R;,S’O_,] (z). £1(1%) generates
signatures keys (vk, sk) < sig_gen,(1%), generates (o', 7") < £n.1(1%), and then
outputs ((vk,c’),sk,7"). E(7') simply runs as V until V outputs a bit b. If
b =1, &(7') takes the conversation (a, ¢, z) produced by Q[Ig/] (z), and generates
w—Epa(z,,(a,¢z2)). fb=0, E(7') sets w «— L. Then E(7’) outputs (b, w).

Theorem 2. The protocol NMfik,g/] (z) is an NMZK argument of knowledge for
the relation R.

5 Universally Composable ZK

First we review the framework of universal composability [5]. Then we prove
that any NMZK protocol with certain simple properties can be augmented to be
UCZK in the model of static corruptions. This result implies as a corollary that a
slight generalization of our protocol from the previous section can be augmented
to be UCZK in this model. Then we give a new construction that is UCZK in
the model of adaptive corruptions.

5.1 The universal composability framework

The universal composability paradigm was proposed by Canetti [5] for defining
the security and composition of protocols. To define security one first specifies an
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ideal functionality using a trusted party that describes the desired behavior of
the protocol. Then one proves that a particular protocol operating in a real-life
model securely realizes this ideal functionality, as defined below. Here we briefly
summarize the framework as defined in Canetti [5].

A (real-life) protocol 7 is defined as a set of n interactive Turing Machines
Py, ..., P,, designating the n parties in the protocol. It operates in the presence
of an environment Z and an adversary A, both of which are also modeled as
interactive Turing Machines. The environment Z provides inputs and receives
outputs from honest parties, and may communicate with A. A controls (and may
view) all communication between the parties. We will assume that messages are
authenticated, and thus A may not insert or modify messages between honest
parties.’® A also may corrupt parties, in which case it obtains the internal state
of the party.

The ideal process with respect to a functionality F, is defined for n parties
Py,...,P,, an environment Z, and an (ideal-process) adversary S. However,
Py,..., P, are now dummy parties that simply forward (over secure channels)
inputs received from Z to F, and forward (again over secure channels) outputs
received from F to Z. Thus the ideal process is a trivially secure protocol with
the input-output behavior of F.

To formulate the universal composition theorem, Canetti [5] also introduces
a a hybrid model, a real-life model with access to an ideal functionality F. In
particular, this F-hybrid model functions like the real-life model, but where the
parties may also exchange messages with an unbounded number of copies of F,
each copy identified via a unique session identifier (sid). The communication
between the parties and each one of these copies mimics the ideal process, and
in particular the hybrid adversary does not have access to the contents of the
messages. See Canetti [5] for details of the universal composition theorem.

The zero-knowledge functionality. The (multi-session) ZK functionality is given
in Figure 3. In the functionality, parameterized by a relation R, the prover sends
to the functionality the input = together with a witness w. If R(z,w) holds, then
the functionality forwards « to the verifier. As pointed out in [5], this is actually
a proof of knowledge in that the verifier is assured that the prover actually knows
w. Note the two types of indices: the sid, which, as before, differentiates messages
to ﬁé%K from messages sent to other functionalities, and ssid, the sub-session ID,
which is unique per input message (or proof).

Recall that we will be designing and analyzing protocols in the common
reference string model, and so they will be operating in the fCDRS—hybrid model,
where FCDRS is the functionality that, for a given security parameter k, chooses
a string from distribution Dy and hands it to all parties.

10 This feature could be added to an unauthenticated model using a message authen-
tication functionality as described in [5].
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Functionality ﬁ?K

ﬁf‘K proceeds as follows, running with security parameter k, parties Pi,..., Py,
and an adversary S:

— Upon receiving (zk-prover, sid, ssid, P;, Pj,z,w) from P;: If R(x,w) then send
(ZK-PROOF, sid, ssid, P;, Pj,z) to P; and S and halt. Otherwise, ignore.

Fig. 3. The multi-session zero-knowledge functionality (for relation R)

5.2 NMZK implies UCZK

Let IT be an NMZK protocol between a prover and verifier. We say II is aug-
mentable if the prover sends the first message, and this message contains the
common input z, along with auxiliary data aux that may contain any arbitrary
public values. (The reason for aux is discussed below.) We will show how to
augment I7 with additional information in each message to allow it to be used
between two parties in the universal composability framework. This augmented
protocol is denoted I , and is constructed as follows.

For an instance of II run between parties P; and P;, set aux to (ssid, P;, P}),
where ssid is defined in the previous section, P; is the identity of the prover, and
Pj is the identity of the verifier.!! Then the ¢th prover message is formatted as
(prvy, sid, ssid, P;, prv-data,), where prv, is the label for the ¢th prover message,
and prv-data, is the data field containing the ¢th message sent by the prover in II.
Analogously, the ¢th verifier message is formatted as (very, sid, ssid, P;, ver-datag),
where very is the label for the fth verifier message, and ver-datay is the data field
containing the fth message sent by the verifier in I7. Finally, before accepting,
the verifier checks that aux corresponds to the values (ssid, P;, P;) outside the
prover data field, and that aux was not used previously.

Theorem 3. L@t I = (D,P,V,SH = (SHJ,SHQ),SH = (51771,51]72)) be an
augmentable NMZK protocol for a relation R. Then the augmented protocol II
securely realizes functionality F¥ in the FErg-hybrid model, assuming static

corruptions.

We say a protocol Il is a UCZK protocol for R if it securely realizes func-
tionality 72 in the FEgq-hybrid model, for some D.

Corollary 1. Let II be protocol NM[T),C’U,}(;U) from Figure 2 with the addition
of the common input x and aux = (ssid, P;, P;) in the first message. Then the
augmented protocol II is a UCZK protocol for R, assuming static corruptions.

11 This auxiliary data aux is necessary since NMZK allows copying proofs exactly, but
the ZK functionality does not, and thus we need some way to make every proof
distinct.
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5.3 UCZK: Adaptive corruptions

Our basic idea to deal with adaptive corruptions is to take the augmentable
version of the NMZK protocol from Corollary 1, denoted NMﬁk’g,] (2;aux), and
apply to it the technique proposed by Damgard [13] and Jarecki and Lysyan-
skaya [27] in which a trapdoor commitment is used to commit to the first mes-
sage of a X-protocol, and then this commitment is opened when sending the
third message. Informally, a trapdoor commitment is a commitment scheme
with the additional property that there is a secret trapdoor such that know-
ing the trapdoor allows a committer to decommit to an arbitrary value. More
precisely, TC = (TCgen, TCcom, TCver, TCkeyver, TCfake) is a trapdoor com-
mitment scheme if it satisfies the properties of completeness, binding, perfect
secrecy, and trapdoorness. The first three properties are the same as in any
unconditionally-hiding commitment scheme. The trapdoor property says (infor-
mally) that TCgen(1*) outputs a secret key (the trapdoor) along with the public
key, and that using this secret key and a commitment/decommitment pair (c, d)
associated with a value v, (i.e., (¢,d) < TCcom(pk,v)), the function TCfake can
for any value v’ output a decommitment d’ that is a valid decommitment of ¢
resulting in v’ (i.e., TCver(pk,c,v',d") = 1).

However, for technical reasons, a “plain” trapdoor commitment does not pro-
vide the properties we need to deal with adaptive corruptions, and so we define a
stronger type of trapdoor commitment scheme, which we call a simulation-sound
trapdoor commitment (SSTC) scheme.'? Roughly speaking, an SSTC scheme is
a trapdoor commitment scheme with an extra input id to the commitment pro-
tocol, which guarantees that a commitment made by the adversary using input
id is binding, even if the adversary has seen any commitment using input id
opened (using a simulator that knows a trapdoor) once to any arbitrary value,
and moreover, any commitment using id’ # id opened (again using the simula-
tor) an unbounded number of times to any arbitrary values.

Now let IT be a three move interactive proof protocol with common input z,
auxiliary input aux, witness w, common reference string o, and prover random
bits r. Similarly to X-protocols, we use the notation a(-), zz(+), and verify 7 ()
to denote the algorithms for computing the two messages of the prover, and veri-
fying the proof, respectively. Using this notation, the protocol UC?,,C* ](l‘; aux)
is shown in Figure 4.

wk,o’!

Theorem 4. Let IT' be the protocol UCka*mk’g,](:v; aux), where

aux = (ssid, P;, Pj). Then the augmented protocol I securely realizes function-
ality FE in the FExs-hybrid model where erasing is allowed, assuming adaptive
corruptions.

12 Universally-composable commitments [6,8] would also suffice, and can be con-
structed using trapdoor permutations. However, this construction is not as efficient
as the SSTC scheme in this paper.
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prover verifier
(z,aux, a) «— amg(z,aux,w,r,o)
*
(a*,r*) « TCcom(pk™, a, aux) _Tamsa |
c&{0,1}*
c
-

z — zm(z,aux,w,r,c,0)

erase(r,w) %" | TCkeyver(pk*,1¥)

TCver(pk™*,a*, a,aux,r*)
verify 7 (x, aux, a, ¢, z, o)

Fig. 4. chk*’vkﬁ/](:ﬂ;aux): A UCZK protocol for R with common reference string
(pk*,vk,¢") drawn from Dpr(TC) x Dui(SIGo) x Dy (2F), common input x, and aux-
iliary input aux where IT = NM[If,kYU,] (x; aux):

6 Efficient Instantiations
Here we briefly discuss some efficient instantiations of our constructions.

Signature schemes First we note that for our constructions we can use a more
general version of the X-protocol for proving knowledge of signatures, as follows.
Consider the binary relation R, = {(m, s)} for a signature scheme SIG. We say
a polynomial-time computable function f is a partial knowledge function of SIG,
if there exists a probabilistic polynomial-time machine M such that every m
and vk, {s1 : 81— M(m,vk)} and {s; : s« sigsign(vk,m); sy — f(m,vk,s)}
have the same distribution. Intuitively, a partial knowledge function carries part
of the information about the signature, yet can be efficiently sampled without
even knowing one. If a signature scheme SIG has a partial knowledge function
f, then the relation R], = {((m,s1),s) : (m,s) € Ryx A s1 = f(m,vk,s)} can
replace R, in the constructions for USSfik], NI\/I[Isz,] (x), and UCg,k*waq (x),
with P sending a randomly sampled s; (partial knowledge) before running the
Y-protocol L (x)V DR (vk', s1). We say R!, is a partial signature relation for
SIG.

It can be shown that the Cramer-Shoup signature scheme [12] and the DSA
signature scheme [30] both admit efficient X-protocols for proving knowledge of
signatures using this more general definition, and thus can be plugged into our
constructions. We discuss the detailed constructions in the full version.

Efficient £2-protocols In the full version we describe an efficient {2-protocol for
proving knowledge of a discrete logarithm. This protocol is based on the De-
cisional Composite Residuosity assumption and the Strong RSA assumption.
In the full version we also describe a generalized version of {2-protocols, and
an efficient generalized {2-protocol for proving plaintext knowledge of ElGamal
encryptions.
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