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Abstract. This paper provides theoretical foundations for the group
signature primitive. We introduce strong, formal definitions for the core
requirements of anonymity and traceability. We then show that these im-
ply the large set of sometimes ambiguous existing informal requirements
in the literature, thereby unifying and simplifying the requirements for
this primitive. Finally we prove the existence of a construct meeting our
definitions based only on the sole assumption that trapdoor permutations
exist.

1 Introduction

A central line of work in theoretical cryptography is to provide formal (and
strong) definitions of security for cryptographic primitives, and then provide
constructions, based on general computational-complexity assumptions (such as
the existence of one-way or trapdoor functions), that satisfy the definitions in
question. The value and difficulty of such “foundational” work is acknowledged
and manifest. A classical example is public-key encryption. Although it might
seem like an intuitive goal, much work has been required to formally define and
provably achieve it [19,21,18,22,25,16], and these advances now serve as the
basis for new schemes and applications. This paper provides such foundations
for the group signatures primitive.

BACKGROUND. In the group signature setting introduced by Chaum and Van
Heyst [14] there is a group having numerous members and a single manager.
Associated to the group is a single signature-verification key gpk called the
group public key. Each group member ¢ has its own secret signing key based
on which it can produce a signature relative to gpk. The core requirements as
per [14] are that the group manager has a secret key gmsk based on which it
can, given a signature o, extract the identity of the group member who created
o (traceability) and on the other hand an entity not holding gmsk should be
unable, given a signature o, to extract the identity of the group member who
created o (anonymity). Since then, more requirements, that refine or augment



616 Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi

the core ones, have been introduced (eg. unlinkability, unforgeability, collusion
resistance [5], exculpability [5], and framing resistance [15]) so that now we have
a large set of unformalized, overlapping requirements whose precise meaning,
and relation to each other, is neither always clear nor even always agreed upon
in the existing literature.

The state of the art is represented by [5, 2] that identify weaknesses in pre-
vious works and present new schemes. The schemes in [2] are claimed to be
proven-secure (in the random oracle model). However, while the work in question
establishes certain properties, such as zero-knowledge, of certain subprotocols of
its scheme, there is no actual definition of the security of a group signature
scheme. For example, the anonymity requirement is formulated simply as the
phrase “given a valid signature of some message, identifying the actual signer
is computationally hard for everyone but the group manager.” This is like for-
mulating the privacy requirement for an encryption scheme as the phrase “the
ciphertext should not reveal information about the message to anyone except
the owner of the secret key,” yet to truly capture privacy requires significantly
more precise and non-trivial definitions, as evidenced by [19, 21, 18,22, 25, 16]. In
particular the informal requirement of [2] leaves open the issue of what exactly
is the attack model and definition of adversarial success. Can the attacker see, or
request, previous signatures? Can it call on the group manager to “open” some
previous signatures? Can it have partial information ruling out some signers a
priori? With such questions unanswered, we believe it is premature to say that
proven-security has been achieved.

Furthermore, all claims of proven secure schemes so far have been in the
random-oracle model. As far as we know, there are no constructions even claimed
to be proven secure in the standard model.

NEW NOTIONS. Providing appropriate definitions has required significantly more
than merely formalizing the intuitive informal requirements of previous works.
We consider novel attack capabilities and success measures, and then formu-
late strong versions of the core requirements that we call full-anonymity and
full-traceability. Perhaps surprisingly, we are then able to show that these two
requirements are enough, in the sense that all the other requirements are implied
by them. Our formalisms build on definitional ideas used for encryption [19, 21,
18,22, 25, 16] and digital signatures [20].

FuLL-ANONYMITY. We adopt an indistinguishability based formalization under
which the adversary produces a message and a pair of group-member identities,
is returned a target signature of the given message under a random one of the
two identities and then is required to have negligible advantage over one-half in
determining under which of the two identities the target signature was produced.
Within this framework, we define a strong adversary that may corrupt all the
members of the group, including the one issuing the signature. (Formally, the
adversary is given the secret keys of all group members.) We also capture (in
analogy to the definition of encryption secure against chosen-ciphertext attack
[25]) the possibility that the adversary can see the outcome of opening attempts
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conducted by the group manager on arbitrary signatures of its choice (except of
course the challenge signature).

FULL-TRACEABILITY. Our formulation of traceability is much stronger than
what was called traceability in the past, and can be viewed also as a strong
form of collusion-resistance. It asks that a group of colluding group members
who pool their secret keys cannot create a valid signature that the opening al-
gorithm would not catch as belonging to some member of the colluding group,
and this is true even if the colluding group knows the secret key of the group
manager under which signatures are opened.

IMPLICATIONS. As indicated above, there is a large and growing list of informal
security requirements for group signatures. We show however that all existing
requirements are implied by full-anonymity plus full-traceability. This provides
a conceptual simplification with a clear advantage: having to check only two
security properties makes it easier to give formal proofs of security when new
group signature schemes are invented.

These implications might seem surprising at first glance, particularly because
the implied properties include seemingly unrelated notions like unforgeability
(nobody outside the group can produce valid signatures) or security against
framing attacks (no one can produce signatures that will be later attributed to a
honest group member that never signed the corresponding document). However
the fact that a small number of strong formal notions imply a large number
of informal requirements should be viewed, based on historical evidence, as an
expected rather than a surprising benefit, and even as a test of the definitions in
question. As an analogy, in the absence of a strong formal notion, one might for-
mulate the security of encryption via a list of requirements, for example security
against key-recovery (it should be hard to recover the secret key from the public
key), security against inversion (it should be hard to recover the plaintext from
the ciphertext), security under repetition (it should be hard to tell whether the
messages corresponding to two ciphertexts are the same) and so on, and we can
imagine these requirements being discovered incrementally and being thought to
be quite different from each other. However, strong notions like indistinguisha-
bility [19], semantic security [19] and non-malleability [16] imply not only all
these, but much stronger properties, and in particular put the different informal
requirements under a common umbrella. We believe we are doing the same for
group signatures.

OUR SCHEME. With such strong notions of security, a basic theoretical question
emerges, namely whether or not a scheme satisfying them even exists, and, if so,
what are the minimal computational-complexity assumptions under which this
existence can be proven. We answer this by providing a construction of a group
signature scheme that provably achieves full-anonymity and full-traceability (and
thus, by the above, also meets all previous security requirements) assuming only
the existence of trapdoor permutations. We stress that this result is not in the
random oracle model. Additionally we note that (1) Our construction is “non-
trivial” in the sense that the sizes of all keys depend only logarithmically (rather
than polynomially) on the number of group members, (2) It can be extended
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to permit dynamic addition of group members, and (3) It can be extended to
achieve forward security (cf. [28]).

The construction uses as building blocks an IND-CCA secure asymmet-
ric encryption scheme, known to exist given trapdoor permutations via [16];
simulation-sound adaptive non-interactive zero-knowledge (NIZK) proofs for NP,
known to exist given trapdoor permutations via [17,27]; and a digital signature
scheme secure against chosen-message attack, known to exist given trapdoor per-
mutations via [6]. As often the case with constructs based on general assump-
tions, our scheme is polynomial-time but not practical, and our result should be
regarded as a plausibility one only.

The basic framework of our construction builds on ideas from previous works
(eg. [2]). Roughly, the secret signing key of a group member includes a key-pair
for a standard digital signature scheme that is certified by the group manager.
The group member’s signature is an encryption, under a public encryption key
held by the group manager, of a standard signature of the message together
with certificate and identity information, and accompanied by a non-interactive
zero-knowledge proof that signature contains what it should. However, our re-
sult is still more than an exercise. Previous works did not try to achieve security
notions as strong as we target, nor to pin down what properties of the build-
ing blocks suffice to actually prove security. For example we found that the
encryption scheme had to be secure against chosen-ciphertext attack and not
just chosen-plaintext attack. Further subtleties are present regarding the NIZK
proofs. We require them to be simulation-sound and also have a strong, adaptive
zero-knowledge property [27]. On the other hand, we only require NIZK proofs
for a single theorem rather than multiple theorems. We highlight this because
at first glance it can sound impossible, but it is due to the strong ZK property,
and the situation is not without precedent: single-theorem adaptive ZK proofs
have sufficed also for applications in [27].

RELATED WORK. As indicated above, the notion of group signature was intro-
duced by Chaum and Heyst in [14]. They also gave the first schemes. Since then,
many other schemes were proposed, including [15,11,24,13,4]. These schemes
improve on the performance of the original group signature scheme of [14], but
leave open some important security issues, most notably security against coali-
tions of group members. The importance of achieving provable security against
coalitions of group members is pointed out in [5], where a (partial) coalition at-
tack on the scheme of [13] is also described. A subsequent work trying to address
the issue of securing group signature schemes against coalition attacks is [2]. On a
separate research line, [10, 3, 12] investigate issues related to the dynamics of the
group, to support membership revocation, and independent generation of group
member keys. Still another extension is that of [28], that combines group signa-
ture schemes with forward security [1, 8]. The strong anonymity and traceability
issues discussed in this paper are largely independent of the group dynamics or
other desirable properties like forward security. So, for ease of exposition, we first
present and analyze our definitions for the syntactically simpler case of static
groups. Dynamic groups and other extensions are discussed in Section 5.
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2 Definitions of the security of group signature schemes

NOTATION AND TERMINOLOGY. If z is a string, then |z| denotes its length, while
if S is a set then |S| denotes its size. The empty string is denoted by . If k € N
then 1% denotes the string of k ones. If n is an integer then [n] = {1,...,n}.
If A is a randomized algorithm then [A(z,y,...)] denotes the set of all points
having positive probability of being output by A on inputs z,y,..., and by
z & A(z,y,...) the result of running A on the same inputs with freshly generated
coins. We say that a function f: N — N is nice if it is polynomially bounded
(i.e. there exists a polynomial p(-) such that f(k) < p(k) for all £ € N) and
polynomial-time computable. The notion of a function v»: N — N being negligible
is standard. In this paper we will need a notion of negligibility of a two-argument
function p: N x N — N. We say such a pu is negligible if for every nice function
n: N — N, the function p,: N — N is negligible, where p, (k) = p(k,n(k)) for
all k e N.

SYNTAX OF GROUP SIGNATURE SCHEMES. A group signature scheme GS =
(GKg, GSig, GVf, Open) consists of four polynomial-time algorithms:

e The randomized group key generation algorithm GKg takes input 1%, 17,
where k € N is the security parameter and n € N is the group size (ie. the
number of members of the group), and returns a tuple (gpk, gmsk, gsk),
where gpk is the group public key, gmsk is the group manager’s secret key,
and gsk is an n-vector of keys with gsk[i] being a secret signing key for
player i € [n].

e The randomized group signing algorithm GSig takes as input a secret signing
key gsk|i] and a message m to return a signature of m under gsk[i] (i € [n]).

e The deterministic group signature verification algorithm GVf takes as input
the group public key gpk, a message m, and a candidate signature o for m
to return either 1 or 0.

e The deterministic opening algorithm Open takes as input the group manager
secret key gmsk, a message m, and a signature o of m to return an identity
1 or the symbol L to indicate failure.

For simplicity we are assigning the members consecutive integer identities 1, 2,
...,n. We say that o is a true signature of m if there exists i € [n] such that
o € [GSig(gskl[i], m)]. We say that ¢ is a wvalid signature of m with respect to
gpk if GVf(gpk, m,o) = 1.

CORRECTNESS. The scheme must satisfy the following correctness requirement:
For all k,n € N, all (gpk, gmsk, gsk) € [GKg(1%,1")], all i € [n] and all m €
{0,1}~

GVf(gpk, m, GSig(gsk][i], m)) = 1 and Open(gmsk, m, GSig(gsk[i],m)) =i .

The first says that true signatures are always valid. The second asks that the

opening algorithm correctly recovers the identity of the signer from a true sig-
nature.
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DiscussioN. The definitions above are for the setting in which the group is
static, meaning the number and identities of members is decided at the time the
group is set up and new members cannot be added later. We prefer to begin with
this setting because, even though dynamic groups (in which members may be
added at any time) have been considered, proper definitions of security have not
been provided even for the basic static-group case. Furthermore the important
definitional issues arise already in this context and can thus be treated in a
simpler setting. The extension to dynamic groups is relatively straightforward.

COMPACTNESS. In practice it is preferable that sizes of keys and signatures in a
group signature scheme do not grow proportionally to the number of members n.
Actually, a polynomial dependency of these sizes on log(n) can be shown to be
unavoidable, but ideally one would not want more than that. In our context, this
leads to the following efficiency criterion for a group signature scheme. We call
a group signature scheme GS = (GKg, GSig, GVf, Open) compact if there exist
polynomials p;(-,-) and pa(:,-,-) such that

lgpk|, |gmsk|, |gskl[i]| < p1(k,log(n)) and |o| < pa(k,log(n), |m|)

for all k,n € N, all (gpk, gmsk, gsk) € [GKg(1*,1™)], all i € [n], all m € {0,1}*
and all o € [GSig(gsk[i], m)].

FuLL-ANONYMITY. Informally, anonymity requires that an adversary not in pos-
session of the group manager’s secret key find it hard to recover the identity of
the signer from its signature. As discussed in the introduction, our formalization
is underlain by an indistinguishability requirement, on which is superimposed an
adversary with strong attack capabilities. To capture the possibility of an adver-
sary colluding with group members we give it the secret keys of all group mem-
bers. To capture the possibility of its seeing the results of previous openings by
the group manager, we give it access to an opening oracle, Open(gmsk, -, -), which
when queried with a message m and signature o, answers with Open(gmsk, m, o).

Let us now proceed to the formalization. To any group signature scheme GS =
(GKg, GSig, GVf, Open), adversary A and bit b we associate the first experiment
given in Figure 1. Here, A is an adversary that functions in two stages, a choose
stage and a guess stage. In the choose stage A takes as input the group members
secret keys, gsk, together with the group public key gpk. During this stage,
it can also query the opening oracle Open(gmsk,-) on group signatures of his
choice, and it is required that at the end of the stage A outputs two valid
identities 1 < ig,7; < n, and a message m. The adversary also outputs some state
information to be used in the second stage of the attack. In the second stage, the
adversary is given the state information, and a signature on m produced using
the secret key of one of the two users ig, i1, chosen at random. The goal is to
guess which of the two secret keys was used. The adversary can still query the
opening oracle, but not on the challenge signature. We denote by

AdvgsT (k,n) = Pr [Expgsly' (k,n) = 1] — Pr [Expgs’s” (k,n) = 1]

the advantage of adversary A in breaking the full-anonymity of GS. We say
that a group signature scheme is fully-anonymous if for any polynomial-time
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Experiment Expg‘fso,r/’;b(k, n)
(gpk, gmsk, gsk) & GKg(1*,1™)
(St, @0, %1, m) & AOpen(emsks) (choose, gpk, gsk) ; o < GSig(gsk[is], m)
d & AOpen(gmsk,,) (guess, St, o)
If A did not query its oracle with m, o in the guess stage then return d EndIf
Return 0

Experiment Expg§® (k,n)
(gpk, gmsk, gsk) & GKg(1¥,1™)
St « (gmsk, gpk) ; C « 0 ; K + ¢; Cont « true
While (Cont = true) do
(Cont, St, j) < A®SEK1) (choose, St, K)
If Cont = true then C — C U {j}; K « gsk[j] EndIf
Endwhile
(m, o) & ASSEEK) (guess, St)
If GVf(gpk,m,o) = 0 then return 0; If Open(gmsk, m,o) = L return 1
If there exists ¢ € [n] such that the following are true then return 1 else return 0:
1. Open(gmsk,m,o0) =i & C
2. i, m was not queried by A to its oracle

Fig. 1. Experiments used, respectively, to define full-anonymity and full-traceability
of group signature scheme GS = (GKg, GSig, GVf, Open). Here A is an adversary, b €
{0, 1}, and St denotes state information passed by the adversary between stages.

adversary A, the two-argument function Adv{s’ (-, -) is negligible in the sense

of negligibility of two-argument functions defined at the beginning of this section.

In the above experiment, the adversary issues a request to sign its message m
under one of two identities ig,4; that it specifies, and wins if it can guess which
was chosen. One might feel that allowing just one such request is restrictive,
and the adversary should be allowed a sequence of such requests. (The challenge
bit b remains the same in answering all requests). However, a standard hybrid
argument shows that, under polynomial-time reductions, allowing a polynomial
number of requests is equivalent to allowing just one request, so our definition
is not restrictive. This hybrid argument depends on the fact that the adversary
has the group public key and the secret signing keys of all members.

FULL-TRACEABILITY. In case of misuse, signer anonymity can be revoked by
the group manager. In order for this to be an effective deterrence mechanism,
the group signature scheme should satisfy the following, informally described,
security requirement. We require that no colluding set S of group members (even
consisting of the entire group, and even being in possession of the secret key for
opening signatures) can create signatures that cannot be opened, or signatures
that cannot be traced back to some member of the coalition. We remark that
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giving the opening key to the adversary does not model corruptness of the group
manager,! but rather compromise of the group manager’s key by the adversary.
We call our requirement full-traceability.

We formally define full-traceability using the second experiment of Figure 1.
Here, adversary A runs in two stages, a choose stage and a guess stage. On
input the group public key gpk and the secret of the group manager, gmsk, the
adversary starts its attack by adaptively corrupting a set C of group members.
The identity of the group members that are corrupted and their number is
entirely up to it. At the end of the choose stage the set C contains the identities
of the corrupted members. In the guess stage, the adversary attempts to produce
a forgery (m, o), and we say it wins (meaning the experiment returns 1), if o
is a valid group signature on m, but the opening algorithm returns L or some
valid user identity ¢ such that i ¢ C. Otherwise, the experiment returns 0. We
define the advantage of adversary A in defeating full-traceability of the group
signature scheme GS by:

Advgss (k,n) = Pr [Expgs®y(k,n) = 1],
and say that GS is fully-traceable if for any polynomial-time adversary A, the

two-argument function Advtgrg‘:i‘(-, -) is negligible.

3 Relations to Existing Security Notions

We show that our formulations of anonymity and traceability are strong enough
to capture all existing informal security requirements in the literature. This
highlights the benefits of strong notions.

UNFORGEABILITY. A basic requirement of any digital signature scheme ([14]) is
that signatures cannot be forged, i.e., it is computationally unfeasible to produce
message signature pairs (m, o) that are accepted by the verification algorithm,
without knowledge of the secret key(s). We did not include unforgeability among
the main security properties of group signature schemes, since it immediately
follows from full-traceability.

In order to define unforgeability, one can restrict the adversary used in the
definition of full-traceability to just the second stage: in the first stage it does
not ask for any secret key, and also, the secret key of the group manager is not
part of its initial state St. Still, the adversary can obtain digital signatures of
its choice using the signing oracle. In this case a successful attack against the
full-traceability requirement reduces to producing a valid message signature pair
(m, o) such that message m was not queried to the signing oracle. The condition
about the opening algorithm tracing the signature to a nonmember of the set of
corrupted users is vacuously satisfied because this set is empty.

EXCULPABILITY. Exculpability (first introduced in [5]) is the property that no
member of the group and not even the group manager can produce signatures
on behalf of other users.

1 See section 5 for a detailed discussion of this case
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Clearly, a group signature scheme secure against full-traceability has also the
exculpability property. If either the group manager or a user defeats the exculpa-
bility of a group signature scheme, then an adversary against full-traceability can
be easily constructed. In the first case, the adversary simply follows the strategy
of the group manager and produces a signature that is a forgery in the sense of
full-traceability: it can not be traced to the one who produced it. In the second
case, say user ¢ can defeat the exculpability property. Then, an adversary as in
the full-traceability experiment, which in the first stage makes a single request
for gskli], and then follows the strategy of the user to produce the forgery, is
successful against full-traceability.

TRACEABILITY. Originally [14], the name “traceability” was used to denote the
functional property that if a message is signed with key gskl[i] and the open-
ing algorithm is applied to the resulting signature, the output of the opening
algorithm must be ¢. Later, the term has been overloaded to include an actual
security requirement, namely that it is not possible to produce signatures which
can not be traced to one of the group that has produced the signature. The two
requirements seem to be first separated in [2] where the latter was identified with
coalition resistance (see below). Nevertheless, a group signature scheme that is
fully traceable, is also traceable (under either definition of traceability).

COALITION RESISTANCE. The possibility of a group of signers colluding together
to generate signatures that cannot be traced to any of them was not part of
the original formulation of secure group signature schemes. The requirement of
traceability even in the face of attacks by a coalition of group members was
explicitly considered for the first time only recently in [2], and termed coalition
resistance. In the descriptions of the property, details such as whether the coali-
tion is dynamically chosen or not are left unspecified. A strong formalization of
coalition resistance can be obtained using the experiment for full-traceability in
which the adversary is not given the secret key of the group manager. The rest
remains essentially unchanged. It is then immediate that fully-traceable group
signature schemes are also coalition resistant.

FRAMING. Framing is a version of coalition resistance that was first considered
in [15]. Here, a set of group members combine their keys to produce a valid
signatures in such a way that the opening algorithm will attribute the signature
to a different member of the group. As in the case of coalition resistance, framing
has not been formally defined, issues similar to the one discussed above being
left unspecified. A strong formalization for framing is the following: consider an
experiment in which a user’s identity w is chosen at random from the set of
all users, and all group secret keys, except the secret key of u, together with
the secret key of the group manager are given to the adversary. The adversary
wins if it manages to produce a signature which will open as user u, and we
call a scheme secure against framing if no efficient adversary can win with non-
negligible probability.

A group signature scheme that is fully-traceable, is also secure against fram-
ing. Indeed, an adversary B against framing can be turned into an adversary
A against full-traceability as follows. It generates a random user identity and
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requests the secret keys of all other users. Then it runs adversary B with in-
put these secret keys and the secret key of the group manager and outputs the
forgery attempted by B. If B is successful in its framing attempt, then A defeats
full-traceability.

ANONYMITY. As we have already discussed, anonymity is just a weaker form of
full anonymity, in which the adversary does not have access to the opening oracle,
and also, has no information of the member’s secret keys. Clearly, a scheme that
is fully-anonymous is also anonymous.

UNLINKABILITY. This is related to anonymity rather than full-traceability. The
intuition is that a party after seeing a list of signatures, can not relate two sig-
natures together as being produced by the same user. As for anonymity, it was
implicit in previous definitions that the attacker was assumed not to be a group
member. Again, realistic scenarios exist where this is not necessarily the case.
It is thus necessary to consider distinct security notions for the two cases i.e.
insider [ outsider unlinkability. In either case, formalizing unlinkability is not an
easy task because it is not clear how (possibly linked) signatures should be pro-
duced. For example we can require that it is computationally hard to distinguish
between a box that each time receives an input message produces a signature
using a fixed secret key gsk][i], or a box where ¢ is chosen uniformly at ran-
dom for every invocation of the oracle. However, it is not clear why the uniform
distribution should be used in the second case. Alternatively, we could let the ad-
versary choose the distribution in the second case, but still in real applications it
seems unjustifiable to assume that the signer is chosen each time independently
at random and the choice of the signer at different times might be correlated.
We considered various possible formalization of the notion of unlinkability, and
in all cases we could prove that it follows from anonymity. Also, it seems that for
any reasonable formulation of unlinkability, one can prove that anonymity also
follows. We conclude that anonymity and unlinkability are technically the same
property, and only the easier to define anonymity property needs to be included
in the security definition. We postpone a formalization of unlinkability together
with a proof of the above fact for the full version of the paper.

4 Our construction

We begin by describing the primitives we use in our construction.

DIGITAL SIGNATURE SCHEMES. A digital signature scheme DS = (K, Sig, Vf)
is specified, as usual, by algorithms for key generation, signing and verifying.
We assume that the scheme satisfies the standard notion of unforgeability under
chosen message attack [20]. It is known that such a scheme exists assuming one-
way functions exist [26], and hence certainly assuming the existence of a family
of trapdoor permutations.

ENCRYPTION SCHEMES. A public-key encryption scheme AE = (Ke, Enc, Dec) is
specified, as usual, by algorithms for key generation, encryption and decryption.
We assume that the scheme satisfies the standard notion of indistinguishability
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under chosen-ciphertext attack (IND-CCA) [25]. It is known that the existence
of trapdoor permutations implies that such schemes exists [16].

SIMULATION-SOUND NON-INTERACTIVE ZERO KNOWLEDGE PROOF SYSTEMS.
We will use simulation-sound NIZK proofs of membership in NP languages.
Simple NIZK proof systems are provided by [17], and in [27] it is shown how
to transform any such proof system into one that also satisfies simulation-
soundness. These proofs systems pertain to the witness relations underlying the
languages, which is how we will need to look at them. An NP-relation over do-
main Dom C {0,1}* is a subset p of {0,1}* x {0,1}* such that membership of
(z,w) € pis decidable in time polynomial in the length of the first argument for
all  in domain Dom. The language associated to p is the set of all x € {0,1}*
such that there exists a w for which (x,w) € p. Often we will just use the term
NP-relation, the domain being implicit. If (z,w) € p we will say that z is a
theorem and w is a proof of x.

Fix a NP relation p over domain Dom. Consider a pair of polynomial time
algorithms (P, V), where P is randomized and V is deterministic. They have
access to a common reference string, R. We say that (P, V') form a non-interactive
proof system for p [17,9] over domain Dom if there exists a polynomial p such
that the following two conditions are satisfied:

1. Completeness: Vk € N, V(z,w) € p with |z| < k and € Dom—
Pr [Rﬁi {O,l}p(k) s Pk,x,w,R) : V(k,z,m R) = 1} =1.
2. Soundness: Vk € N, Vﬁ, Vx € Dom such that x & L,
Pr[R£{0,1}P<’“> . m— Pk,x,R) : V(k,x,m R) = 1] < o7k,

We detail the zero-knowledge requirement as well as the simulation-soundness
property in the full paper [7].

SPECIFICATION. We need to begin by specifying the witness relation p under-
lying the zero-knowledge proofs. We will then fix a proof system (P,V) for p
and define the four algorithms constituting the group signature scheme in terms
of P,V and the algorithms of DS and AE. Consider the relation p defined as
follows: ((pk,, pk,, M,C), (i, pk’, cert,s,r)) € p iff Vf(pk,, (i, pk’),cert) = 1,
Vf(pk', M,s) = 1, and Enc(pk,, (i, pk’, cert, s);r) = C. Here M is a k-bit mes-
sage, C' a ciphertext and s a signature. We are writing Enc(pk,, m;r) for the
encryption of a message m under the key pk, using the coins r, and assume that
|r] = k. The domain Dom corresponding to p is the set of all (pk., pk,, M, C)
such that pk, (resp. pk,) is a public key having non-zero probability of being
produced by K. (resp. Ks) on input k, and M is a k-bit string. It is immediate
that p is a NP relation over Dom, and consequently we can fix a non-interactive
zero knowledge proof system (P, V') for it. Based on this, the algorithms defining
the group signature scheme are depicted in Figure 2.

SECURITY REsuLTs. Fix digital signature scheme DS = (K, Sig, Vf), public-
key encryption scheme AE = (K, Enc, Dec), NP-relation p over domain Dom,
and its non-interactive proof system (P,V) as above, and let GS§ = (GKg,
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Algorithm GKg(k, n)
RE{0,137%) ; (pk,, ske) < Ke(k) ; (pk,,sks) < Ke(k)
For i < 1 ton do
(pk;, ski) & Ks(k) ; cert; < Sig(sks, (i, pk;))
gskl[i] < (k, R, i, pk,, ski, cert;, pk,, pk,)
Endfor
gpk — (R, pk,, pk,) ; gmsk — (n, pk,, ske, pk,); Return (gpk, gmsk, gsk)

Algorithm GVf(gpk, (m, o))
Parse gpk as (R, pk., pk,); Parse o as (C, )
Return V(k, (pk,, pk,, M,C), 7, R)

Algorithm GSig(gsk[i],m)
Parse gsk[i]| as (k, R, i, pk,, sk;, cert;, pk,, pk,)
s « Sig(sk;,m); r & {0,1}*; C — Enc(pk,, (i, pk;, cert;, s); 1)
T P(k, (pk,, pk,,m,C), (i, pk;, certs, s,7),R) ; 0 < (C,m); Return o

Algorithm Open(gmsk, gpk, m, o)
Parse gmsk as (n, pk,,ske, pk,); Parse o as (C, )
If V(k,(m,C),m, R) = 0 then return L
Parse Dec(ske, C) as (i, pk, cert, s)
If (n < ¢ OR Vf(pk,m,s) =0 OR Vf(pk,, (i, pk), cert) = 0) then return L
Else return ¢

Fig.2. Our construction: Group signature scheme GS = (GKg, GSig, GVf, Open)
associated to digital signature scheme DS = (K, Sig, Vf), public-key encryption scheme
AE = (K., Enc, Dec), and non-interactive proof system (P, V).

GSig, GVf, Open) denote the signature scheme associated to them as per our
construction. We claim the following two lemmas, proved in [7]:

Lemma 1. If AE is an IND-CCA secure encryption scheme and (P,V) is a
simulation sound, computational zero-knowledge proof system for p over Dom
then group signature scheme GS is fully-anonymous. |

Lemma 2. If digital signature scheme DS is secure against forgery under chosen-
message attack and (P,V) is a sound non-interactive proof system for p over
Dom then group signature scheme GS is fully-traceable. |

The scheme we have described is compact. Indeed, keys, as well as sizes of sig-
natures of k-bit messages, are of size poly(k,log(n)). We also know that the
existence of a family of trapdoor permutations implies the existence of the prim-
itives we require [16, 6,17, 27]. Thus we get:

Theorem 1. If there exists a family of trapdoor permutations, then there exists
a compact group signature scheme that is fully-anonymous and fully-traceable.
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5 Dynamic Groups and Other Extensions

In the previous sections we considered static group signatures schemes. In this
section we discuss various extensions of the basic definition, including schemes
where the group is dynamic. Following standard terminology [23] we refer to
these groups as partially or fully dynamic.

PARTIALLY DYNAMIC GROUPS. These are groups supporting either join (incre-
mental) or leave (decremental) operation. Here we concentrate on incremental
groups, and postpone the discussion of leave operation to the next paragraph. In
an incremental group signature scheme, the key generation algorithm produces
(beside the group public key gpk) two secret keys: an issuing key gisk and an
opening key gmsk. No signing keys gsk are output by the key generation algo-
rithm. The two keys gisk, gmsk are given to two different group managers, one
of which has authority on the group membership, and the other has authority on
traceability. Using gisk, the key issuer can generate (possibly via an interactive
process) signing keys gsk[i] and distribute them to perspective group members
(which we identify with the index 7). The basic definition of security is essentially
the same as described in the previous sections. Key gisk is given to the adver-
sary in the definition of anonymity, but not in the definition of traceability, as
knowledge of this key would allow to generate “dummy” group members and use
their keys to sign untraceable messages. Alternatively, one can postulate that if
the signature opener cannot trace a signature, then he will blame the key issuer.
Our construction (and proof of security) from section 4 can be easily extended
to support incremental group operations, with the certificate creation key sk
used as gisk.

Although the above definition allows the group to change over time, the se-
curity properties are still static: a signer ¢ that join the group at time ¢, can use
the newly acquired key gsk[i] to sign documents that predate time ¢. This prob-
lem can be easily solved enhancing the signatures with an explicit time counter,
and using the technique of forward security. Before explaining the connection
with incremental groups, we discuss forward security, which may be a desirable
security feature on its own. As for standard digital signature schemes [8], for-
ward security for group signatures is defined using a key evolution paradigm.
The lifetime of the public key is divided into time periods, and signing keys
of the group members change over time, with the key of user i at time j de-
noted gsk;[i]. At the end of each time period, each user updates his key using
an update algorithm gsk; [i] = GUpd(gsk;[i]). Although the forward secu-
rity requirement for group signature schemes was already considered before [28],
that definition has a serious security flaw: [28] only requires that no adversary,
given gsk,[i], can efficiently recover gsk;[i] for any j < ¢. This is not enough!
2 We define forward secure group signature schemes requiring that an attacker
should not be able to produce valid signatures for any earlier time period. Our

% Consider a scheme where gsk;[i] = (kj; h;) GUpd(kj; hy) = kj; g(h;) for some one
way permutation g, and only the first part of the key k; is used by the signing
algorithm. Such a scheme would certainly satisfy the definition of [28], but it is
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scheme from Section 4 can be easily modified to achieve forward security, by
replacing the signature scheme used by group members with a forward secure
one DS = (K, Vf, Sig, Upd).

In the context of dynamic group signature schemes, signing keys are not
stolen by an adversary, but given by the key issuer to the group members. Still,
if the signature scheme is forward secure, then the group member cannot use the
(legitimately obtained) key to sign documents the predate the joining time. A
(forward) secure partially dynamic group signature scheme supporting the join
operation is obtained letting the key issuer generate key gsk,[i] when user ¢ joins
the group at time t.

FuLLY DYNAMIC GROUPS. Now consider a group where members can both join
and leave the group. The issue of members leaving the group is much more
delicate than the one of members joining the group, and several alternative
(and incompatible) definitions are possible. As for partially dynamic groups, the
signing keys gsk; [i] may vary over time, but this time also the public key gpk;
is allowed to change. Consider a signature o produced (using key gsk,[i]) at
time a by some user ¢ who belonged to the group at time 1, but not at times
0 and 2, Now, say o is verified at time b (using key gpk,). When should o be
accepted by GVf? There are two possible answers: (1) if ¢ was a group member
when then signature was generated, or (2) if ¢ belonged to the group at the time
verification algorithm is invoked.? Clearly, there is no “right” answer, and what
definition should be used depends on the application. In either case, different
kinds of inefficiency are necessarily introduced in the protocol. In case (2), o
should be accepted if b = 1, but not if b = 0 or b = 2. In particular, the public
keys gpk; must be different. This is undesirable because it requires the verifier to
continuously communicate with the group manager to update the group public
key.* Moreover, this definition raises potential anonymity problems: verifying the
same signature against different public keys gpk;, one can determine when the
signer joined and left the group, and possibly use this information to discover
the signer identity. Now consider case (1). This time, the public key may stay the
same throughout the lifetime of the group, but the key update function gsk ;[i] =
GUpd(gsk;_,[i]) should not be publicly computable by the group members. This
introduces inefficiency, as the group members now need to interact with the key
issuer to update their signing key from one time period to the next.

Our construction can be easily adapted to satisfy either definition of security
for fully dynamic groups, e.g., by rekeying the entire group at the end of each

clearly not forward secure: even if the past keys cannot be recovered, the adversary
can still forge messages in the past!

3 Notice that in the first case, signatures should remain valid (and the signer anony-
mous) even after the signer leaves the group, while in the second case removing the
signer from the group should immediately invalidate all of its signatures.

4 Alternatively, one can consider public keys of the form gpk; = (gpk, j), where the
time dependent part can be supplied autonomously by the verifier. But in this case
the life time of secret key gsk|[i] needs to be decided in advance when the user i joins
the group.
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time period. Due to the high (but unavoidable) cost of rekeying operations, fully
dynamic group signatures should be used only if required by the application,
and in all other situations the simpler incremental groups are clearly preferable.

DISHONEST GROUP MANAGERS. The last extension to the definition we discuss
pertains the case where the group manager holding gmsk is not honest. The
experiments we gave in Section 2, only capture the situation where the adversary
obtained the group manager’s secret key. If the group manager is truly dishonest,
one should also assume that he does not behave as prescribed when applying the
opening algorithm. For example, when asked to open a signature he can falsely
accuse an arbitrary user (i.e. he does not use his secret key), or claim that the
signature can not be open (e.g. he changes the secret key).

We consider a solution in which when opening a signature the group man-
ager (on input opening key gmsk, message m and signature o) outputs not only
a user identity 4, but also a “proof” 7. This proof can be (publicly) verified
by a “judging” algorithm GJudge such that if Open(gmsk,m,o) = (i,7) then
GJudge(m, 0,4, 7) = true. Within this framework, it is possible to formally cap-
ture security requirements regarding dishonest behavior of the group manager.

Our scheme from Section 4 can be easily modified accordingly. We use an au-
thenticated encryption scheme AE in which when decrypting a ciphertext, one
also recovers the randomness that was used to create it. Opening a signature
(C, ) is done as follows: the group manager recovers the plaintext underlying
C as (i, pk;,cert;, s) and also recovers the randomness r that was used to cre-
ate C. Then, it outputs (i,7), where 7 = ({i, pk;,cert;, s),r), is the “proof”
that the signature was created by user 4. The judging algorithm GJudge simply
checks whether C' is the result of encrypting (i, sk;, pk;, cert;, s} with pk, using
randomness 7.
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