Compact Group Signatures Without Random
Oracles

Xavier Boyen! and Brent Waters?

! Voltage Inc., xb@boyen. org
2 SRI International, bwaters@csl.sri.com

Abstract. We present the first efficient group signature scheme that
is provably secure without random oracles. We achieve this result by
combining provably secure hierarchical signatures in bilinear groups with
a novel adaptation of the recent Non-Interactive Zero Knowledge proofs
of Groth, Ostrovsky, and Sahai. The size of signatures in our scheme
is logarithmic in the number of signers; we prove it secure under the
Computational Diffie-Hellman and the Subgroup Decision assumptions
in the model of Bellare, Micciancio, and Warinshi, as relaxed by Boneh,
Boyen, and Shacham.

1 Introduction

Group signatures allow any member of a group to sign an arbitrary number
of messages on behalf of the group, moreover the identity of the signer will
be hidden from all members of the system. Preserving the anonymity of the
signer can be important in many applications where the signer does not want
to be directly identified with the message that he signed. However, there exist
situations where it can be deemed desirable to revoke a signer’s anonymity. For
example, if a signature certified a malicious program, one would want to identify
the party that made the malicious statement. Therefore, in group signatures
there exists a special party known as the group manager which has the ability
to trace the signer of any given signature.

Almost all group signatures schemes are only provably secure in the random
oracle model, where we can only make a heuristic argument about security. Addi-
tionally, efficient constructions are based on strong assumptions ranging from the
Strong Diffie-Hellman [BBS04, BS04]| and Strong RSA [ACJT00, AST02, CL02]
assumptions to the LRSW [CL04, LRSW99| assumption, which itself has the
challenger act as an oracle. The first construction proved secure in the standard
model is due to Bellare et. al. [BMWO03]. They give a method of construct-
ing group signatures from any signature scheme by using Non-Interactive Zero
Knowledge (NIZK) techniques. However, since they use generic NIZK techniques
their scheme is too inefficient to be useful in practice.

We approach the problem of group signatures with the goal of creating an
efficient group signature scheme that is provably secure without random oracles
under reasonable assumptions. In particular we at least wish to avoid “oracle-
like” assumptions that are difficult to falsify [Nao03], since the value of removing

random oracles from the proofs of security while using these types of assumptions
is dubious.

In order to solve this problem we combine two recent ideas from pairing-
based cryptography. First, we derive our underlying signature scheme from the
Waters [Wat05] signature scheme that was proven secure under the computa-
tional Diffie-Hellman assumption in bilinear groups. We create a two-level sig-
nature scheme where the first level is the signer identity and the second level is
the message to be signed. For example, user ID is given a signature on the first
level message “ID” as his private key. Group member ID can sign message M by
creating the two-level hierarchical signature on “ID.M”. Clearly, the signature o
on “ID.M” from the Waters signature scheme will give away the identity of the
signer. To protect his anonymity, a signer, in our scheme, will encrypt the signa-
ture components of o using the Boneh-Goh-Nissim [BGNO05] encryption system.
Additionally, the signer will attach a NIZK proof that the encrypted signature is
a signature on “X.M” for 1 < X < 2’“, where 2% is the number of signers in the
system. Adapting the recent techniques of Groth, Ostrovsky, and Sahai we are
able to get efficient NIZKs for our scheme scheme with O(k) complexity in the
signature size, signing time, and verification time, i.e., logarithmic in the number
of users. We achieve this efficiency by taking advantage of special properties of
the NIZK scheme of Groth, Ostrovsky, and Sahai and avoid the general method
of circuit construction. The security of these techniques is proven based on the
relatively new subgroup decision problem, which was introduced by Boneh, Goh,
and Nissim [BGNO05]. However, recent work [GOS06a] has shown that the tech-
niques of Groth, Ostrovsky, and Sahai can be generalized to work only with the
decision linear assumption, introduced by Boneh, Boyen, and Shacham [BBS04].

1.1 Related Work

Group signatures were first introduced by Chaum and Van Heyst [CvH91] as a
way to provide anonymity for signers within a group. The anonymity, however,
could be revoked by a special third party if necessary. Since then, there have been
several works on this subject [ACJT00, AST02, CL02, CG04, Cam97, Son01,
BBS04, KY03, KY05, BSZ05, BMWO03].

Until recently, the most efficient group signature constructions [ACJT00,
ASTO02, CL02] were proved secure under the Strong-RSA assumption intro-
duced by Baric and Pfitzman [BP97]. Boneh, Boyen, and Shacham [BBS04]
showed how to construct “short” group signatures using bilinear maps under
an assumption they introduced called the Strong Diffie-Hellman assumption.
Concurrently, Camenish and Lysyanskaya [CL04] gave another group signature
scheme that used bilinear maps. Their scheme was proven secure under the in-
teractive LRSW [LRSW99] assumption. All of the above schemes, however, were
only proved secure in the random oracle model.

Bellare, Micciancio, and Warinschi [BMWO03] gave the first construction that
was provably secure in the standard model. Additionally, they provided formal
definitions of the security properties of group signatures, which to that point
were only informally understood. Since their methods use general NIZK proof

techniques, the resulting schemes are inherently too inefficient to be used in
practice.

Recently, Ateniese et. al. [ACHAMO5] proposed an efficient group signature
scheme in the standard model that has the strong exculpability property and is
anonymous under CCA attacks. However, they proved their scheme under new
strong assumptions.

2 Background

We review a number of useful notions from the recent literature on pairing-based
cryptography, which we shall need in later sections. First, we briefly review the
properties that constitute a group signature scheme and define its security.

We take this opportunity to clarify once and for all that, in this paper, the
word “group” by default assumes its algebraic meaning, except in contexts such
as “group signature” and “group manager” where it designates a collection of
users. There should be no ambiguity from context. We give a detailed description
of the background of group signatures in Appendix A.

2.1 Bilinear Groups of Composite Order

We review some general notions about bilinear maps and groups, with an empha-
sis on groups of composite order which will be used in most of our constructions.
We follow [BGNO5] in which composite order bilinear groups were first intro-
duced in cryptography.

Consider two finite cyclic groups G and G of same order n, in which the
respective group operation is efficiently computable and denoted multiplicatively.
Assume the existence of an efficiently computable function e : G x G — G, with
the following properties:

— (Bilinearity) Yu,v € G, Ya,b € Z, e(u®,v*) = e(u,v)®, where the product
in the exponent is defined modulo n;

— (Non-degeneracy) 3g € G such that e(g, g) has order n in G7. In other words,
e(g,g) is a generator of Gr, whereas g generates G.

If such a function can be computed efficiently, it is called a (symmetric) bilinear
map or pairing, and the group G is called a bilinear group. We remark that
the vast majority of cryptosystems based on pairings assume for simplicity that
bilinear groups have prime order. In our case, it is important that the pairing
be defined over a group G containing |G| = n elements, where n = pq has a
(hidden) factorization in two large primes, p # q.

We denote by G, and G, the subgroups of G of respective orders p and g.

Complezity Assumptions. We shall make use of two complexity assumptions:
the first, computational in the prime order subgroup G,, the second, decisional
in the full group G.

The first one is the familiar Computational Diffie-Hellman assumption in bi-
linear groups, which states that there is no probabilistic polynomial time (PPT)
adversary that, given a triple (g, g%, ¢%) € Gf, for random exponents a,b € Zy,
computes g?° € G, with non-negligible probability (i.e., with polynomial prob-
ability in the bit-size of the algorithm’s input). We shall require the CDH as-
sumption in G, to remain true when the factorization of n is known.

The second assumption we need is the subgroup decision assumption, in-
troduced in [BGNO5]; it is based on the hardness of factoring, and is recalled
next.

2.2 Subgroup Decision Assumption

Informally, the subgroup decision assumption posits that for a bilinear group G
of composite order n = pq, the uniform distribution on G is computationally
indistinguishable from the uniform distribution on a subgroup of G (say, G, the
subgroup of order ¢). The formal definition is based on the subgroup decision
problem, which is as follows [BGNO5].

The Subgroup Decision Problem. Consider an “instance generator” algorithm
GG that, on input a security parameter 1%, outputs a tuple (p,q, G, Gr,e), in
which p and ¢ are independent uniform random A-bit primes, G and G are
cyclic groups of order n = pq with efficiently computable group operations (over
their respective elements, which must have a polynomial size representation in
A), and e : G X G — G is a bilinear map. Let Gy, C G denote the subgroup of
G of order g. The subgroup decision problem is as follows:

On input a tuple (n = pq, G, Gr, e) derived from a random execution of
Ggg (1>‘), and an element w selected at random either from G or from G,
decide whether w € Gj.

The advantage of an algorithm A4 solving the subgroup decision problem is de-
fined as A’s excess probability, beyond %, of outputting the correct solution. The
probability is defined over the random choice of instance and the random bits
used by A.

We use composite order groups in order to leverage the recent Non-Interactive
Zero Knowledge proof techniques of Groth, Sahai, and Ostrovsky [GOS06D].

2.3 Hierarchical Signatures

In an A-level hierarchical signature, a message is a tuple of A message com-
ponents. The crucial property is that a signature on a message, My.--- .M;,
can act as a restricted private key that enables the signing of any extension,
M.+ .M;.--- .Mj, of which the original message is a prefix. In a A-level sig-
nature scheme, the messages must obey the requirement that 1 <i¢ < j < A.
We note that this is essentially equivalent to the notion of (A—1)-hierarchical
identity-based signature, or HIBS [GS02], in which the first A—1 levels are viewed

as the components of a hierarchical identity, and the last level (which in HIBS
parlance is no longer deemed part of the hierarchy) is for the message proper.
Our basic group signature uses a two-level hierarchy, though in Section 5 we
shall discuss how additional levels can be used to achieve delegation in group
signatures.

3 Group Signature Scheme

In this section, we present our group signature scheme, which is based solely on
the CDH and the Subgroup Decision assumptions. It is built upon a two-level
hierarchical signature scheme, which we describe first.

3.1 Simple Two-Level Hierarchical Signatures

Waters [Wat05] recently offered an efficient identity-based encryption system
provably secure under “full” adaptive attacks. The system generalizes easily to a
hierarchical IBE of logarithmically bounded depth A < O(log A). Here, A is the
security parameter and A the maximum depth of the HIBE. It is then a triviality
to observe that any A-level HIBE scheme also gives an A-level hierarchical sig-
nature functionality. We describe below the 2-level hierarchical signature scheme
(or 1-level IBS) that results from these transformations.

We assume that identities are strings of k bits, and messages strings of m bits.
To fix ideas, for group signatures one would have, k¥ << m ~ A. The description
that follows assumes that g is a generator of G, so that all elements in G' and
G are in fact in the respective subgroups of prime order p.

Setup(1*): To setup the system, first, a secret o € Z, is chosen at random,
from which the value A = e(g, g)“ is calculated. Next, two random integers
Yy € Z, and 2’ € Z, and two random vectors y = (y1,...,Yk) € Z’; and
z=(21,.-.,2m) € Zy' are selected. The public parameters of the system
and the master secret key are then given by,

PP:(g7u/:gy/7u1:gylv"'auk:gykv
v’:gzl,vl:gzl,---,vm:me,Aze(%g)"‘) € GH™M < G,
MK = ¢% €G.

The public parameters, PP, also implicitly include k, m, and a description
of (p,G,Gr,e).

Extract(PP,MK,ID): To create a private key for a user whose binary identity
string is ID = (k1 ... K1) € {0, 1}, first select a random 7 € Z,, and return,

Ky = (go‘-(u'Hufi)T, g ") e G2

Sign(PP, Kp, M): To sign a message represented as a bit string M = (u1 ... tn)
€ {0,1}™, using a private key K, = (K1, K2) € G?, select a random s € Zy,
and output,

s
Il
—

<.
Il
—

Verify(PP,ID, M,0): To verify a signature S = (Si,S2,53) € G against an
identity ID = (k1 ...k%) € {0,1}* and a message M = (p11 . .. pt) € {0,1}™,
verify that,

?

k m
e(S1,9) - e(Sa,u [uf) - e(Ss, 0" [] v)?) = A.
i=1 j=1

If the equality holds, output valid; otherwise, output invalid.

Security from CDH. The scheme’s existential unforgeability against adaptive
chosen message attacks follows from the Waters’s signature scheme. We provide
a reduction to CDH in the full version of our paper [BWO05].

3.2 Logarithmic-Size Group Signature Scheme

We are now in a position to describe our actual group signature scheme. It is
composed of the following algorithms.

Setup(1*): The input is a security parameter in unary, 1*. Suppose we wish to
support up to 2% signers in the group, and sign messages in {0,1}™, where
k and m are polynomially related functions of .
The setup algorithm first chooses n = pg where p and ¢ are random primes
of bit size ©(A). Let G be a bilinear group of order n and denote by G, and
G, its subgroups of respective order p and g. Next, the algorithm chooses
generators g € G, and h € G,. It chooses a random exponent a € Z,.

Finally, it chooses generators u/,uy,...,ur € G and v',v1,...,v,, € G.
The bilinear group, (n,G,Gr,e), is published together with the public pa-
rameters,

PP = (g, h7 ’U;/, Uty «vvy Uk, ’Ul, Uiy «++y Um, A:€(g7g)a)

€ G x Gy x GF™T2 5 Gy

The master key for user enrollment, MK, and the group manager’s tracing
key, TK, are,

MK = g% € G, TK=gq €Z.

Enroll(PP,MK|ID): Suppose we wish to create a group signature key for user
ID where 0 < ID < 2*. We denote by k; the i-th bit of ID. The algorithm
chooses a random s € Z,, and creates the key for user ID as,

k
Kp = (K1, K, K3) = (ga . (U'Hu;“> , g % h*) €G3
i=1

The key for user ID is essentially a private key for identity ID in the Waters
IBS scheme, except that we are working in a bilinear group G of composite
order, and are adjoining the additional element h* € G|,.

Sign(PP,ID, Kp, M): To sign a message M = (p1...um) € {0,1}™, user ID
first chooses random exponents ty,...,tx € Z,, and, for all i = 1,...,k, it
creates,

) R 2% —1 Nt
¢ =ujt - hh, m = (u™ T R

The signer also defines ¢ = Zle t; and ¢ = o’ Hle ¢ = (v Hle uft) - ht.
The set of values, ¢; and m;, are proof that ¢ is well formed. It also lets
V = o'[[]~, v!". Then, it picks two random exponents 31, sy € Z,, and
creates,

U1=K1'K§-031-V82, o =Ko g™, o3 =g 2.

If we let s; = 51 + s, with s as in the Enroll procedure, then we have,

k m
_ o / Ki Sl. / i Sz.hslt_ . 51,152 — 4,51 — 452
or=g"(u U, v v; =g 02 =9 ,03=9g .
i=1 i=1

The final signature is output as:
2k+3
o= (01702,03, Cly.n.yCh, 771,...,7rk) € G2+ 3,

Verify(PP,ID, M, o): The verification proceeds in two phases. In the first phase
the verifier will reconstruct ¢ and check to make sure that it is well formed.
To do this, it computes,

k
c=u' Hci, and checks that, Vi=1,...,k : e(c;,u; '¢;) < e(h,m;).
i=1

This proof shows that all ¢; = u[*h'i for k; € {0,1}, and thus that c is well
formed. Next, the verifier focuses on the actual signature. To do so, it derives
V =v'[[i%, v/ from the message, and checks that,

e(o1,9) - e(og,¢) - e(o3, V) ZA.

This proof shows that (o1, 09, 03) is a valid two-level hierarchical signature,
after the blinding factors h*1* and h' cancel each other out in the product
after they are respectively paired with g and g—*1.

If all tests are successful, the verifier outputs valid; otherwise, it outputs
invalid.

Trace(PP, TK, o): Suppose the tracing algorithm wishes to trace a signature
o, assumed to pass the verification test for some message M that is not
needed here. Let k; denote the i-th bit of the signer’s identity ID that is to
be determined. To recover the bits of ID, for each i = 1,...,k, the tracer
sets,

i N = g0
m:{o if (¢:i)? =g,

1 otherwise.

The reconstituted signer identity is output as ID = (k1 ...#sy) € {0,1}F.

4 Proofs of Security

We now prove the main security properties of our group signature scheme.

4.1 Full Anonymity (under CPA attack)

We prove the security of our scheme in the anonymity game against chosen
plaintext attacks. We refer to [BMWO03] for the game description, which should
also be clear from the proof.

Intuitively, our proof follows from two simple arguments. First, we show that
an adversary cannot tell whether h is a random generator of G, or G by reduction
from the subgroup decision problem. Next, we show that if h is chosen from G
then the identity of a signer is perfectly hidden.

Theorem 1. Suppose no t-time adversary can solve the subgroup decision prob-
lem with advantage at least esq. Then for every t'-time adversary A where t' ~t
we have that Advy < 2é4q.

We first introduce a hybrid game H; in which the public parameters are the
same as in the original game except that h is chosen randomly from G instead
of G,. We denote the adversary’s advantage in this game as Adv4 m,.

Lemma 1. For all t'-time adversaries as above, Adva — Adva g, < 2é€q.

Proof. Consider an algorithm B that plays the subgroup decision problem. Upon
receiving a subgroup decision challenge (n,G,Gr,e,w) the algorithm B first
creates public parameters for our scheme by setting h = w and choosing all other
parameters as the scheme does. It then sends the parameters to A and plays the
anonymity game with it. If w is randomly chosen from G, then the adversary
is playing the normal anonymity game, otherwise, if w is chosen randomly from
G then it plays the hybrid game H;. The algorithm B will be able to answer all
chosen plaintext queries—namely, issue private signing keys for, and sign any
message by, any user—, since it knows the master key.

At some point the adversary will choose a message M and two identities ID;
and ID2 it wishes to be challenged on (under the usual constraints that it had
not previously made a signing key query on ID,, or a signature query on 1D .M).

The simulator B will create a challenge signature on M, and A will guess the
identity of the signer. If A answers correctly, then B outputs b = 1, guessing
w € Gy; otherwise it outputs b = 0, guessing w € G.

Denote by Advp the advantage of the simulator B in the subgroup decision
game. As we know that Prfw € G] = Prw € Gy = 3, we deduce that,

Advg — Adva, g, =Prb=1lw e Gy] — Prlb = 1|lw € G]
=2Prb=1,we Gy —2Prb=1,w e G| =2Advp < 2€q,

since by our hardness assumption Advpg must be lesser than eyq, given that B
runs in time t ~ t'.

Lemma 2. For any algorithm A, we have that Adva g, = 0.

Proof. We must argue that when h is chosen uniformly at random from G,
instead of G, in the real scheme, then the challenge signature is statistically
independent of the signer identity, ID, in the adversary’s view (which might
comprise answers to earlier signature queries on ID). Consider the challenge
signature,

g = (01,0’2,0’3, Cly.+eyClky T1y...,TE),

and let us determine what such an adversary might deduce from o.

First, observe that o2 and o3 by themselves do not depend on (any of the
bits x; comprising) the signer identity ID. However, since the adversary is com-
putationally unbounded, we must assume that they reveal s; and ss.

Next, consider ¢; = uf*h' and the corresponding m; = (uj™ 'hti)ti =
(ufiuf* " Tht)t for each i. There are two competing hypotheses that may be
formulated by the adversary: k; =0 V k; = 1. For either hypothesis, there is a
solution for the ephemeral exponent t; that explains the observed value of ¢;. In
other words, in the adversary’s view,

Vi € {1, .. ,k} : 37’077'1 € Zn s.t. (Iﬂ',ti) = (0,’7’0) V (I{i,ti) = (].,Tl)

and ¢; =h™ =uh™.

Using the last equality we find that the observed value of m; is compatible with
both hypotheses:

(il o) = (A7) = (g™ = K7 = (W) = (™)™ = (], _y).
This all means that, the knowledge of ¢; and m; does not disambiguate the
relevant bit k; € {0,1}. Taken together, all the ¢; and 7; do not reveal anything
about ID.

Last, we consider g1 = g® - ¢ - V*2. But this value is just redundant in the
eyes of the adversary, since he already knows all the values that determine it,
including a = log,, o) A

Therefore, ID is statistically independent of the entire signature o, which
proves the lemma.

4.2 Full Traceability

We show how to reduce the full traceability of our scheme to the two-level sig-
nature scheme described in Section 3.1. We create a simulator that will interact
with a challenger for the security game of the Waters signature scheme. If the
adversary asks for the secret key of user ID, the simulator will simply ask for a
first-level signature on ID and give this to the adversary. If the adversary asks
for a signature of message M by user ID the simulator will ask the challenger for
a second-level signature on ID.M and then blind the signature itself.

The adversary will finally output a signature ¢* on some message M*. In
order for the adversary to be successful the signature will need to verify. By the
perfect binding properties of the underlying NIZK techniques, a signature can
be traced to some user ID* and we can recover from it a Waters two-level signa-
ture on ID*.M*; the simulator will submit this as its forgery in its own attack
against the underlying signature scheme. The adversary will only be considered
successful if he had not asked for the private key of user ID* and had not queried
for a signature on M* from user ID*. However, these are precisely the conditions
that the simulator needs to abide by to be successful in its own game.

One tricky point in our reduction is that the simulator will play the signa-
ture game in the subgroup G,, however the parameters for the group signature
scheme are to be given in the group G, and so will be the forgery produced by
the adversary. In addition, we note that the adversary is effectively given the
factorization n = pq, as required by the full traceability security definition which
demands that the tracing key TK = ¢ be disclosed for this attack. Our formal
reduction follows.

Theorem 2. If there exists a (t, €) adversary for the full tracing game then there
exists a (t,e€) UF-CMA adversary against the two-level signature scheme, where
t~t.

Proof. Suppose there exists an algorithm A that is successful in the tracing
game of our group signature scheme with advantage e. Then we can create a
simulator B that existentially forges signatures in an adaptive chosen message
attack against the two-level signature scheme, with advantage e.

The simulator will be given the factorization n = pq of the group order
|G| = n. As usual, denote by G, and G, the subgroups of G of respective order
p and ¢, and by analogy let G, and G, be the subgroups of G of order p and
g. The simulator begins by receiving from its challenger the public parameters
of the signature game, all in subgroups of order p,

PP=(g, =g", in=g",. ... ax=3"
V=, =37, ..., tm=g"", A=e(§,§)") € Gy X Gy,
The simulator then picks random generators (f, h, ¥, Y1, -+, Vis Vs V1y e« -y Um) €

G’;+m+4 and a random exponent 3 € Z,. The simulator publishes the group

signature public parameters as,

PP = (g:§f7 haul:a/7l7ul:ﬂl’yla"'auk:’ak’yk}a

V=0V 0 =0 v, 0 = Ok U, A=A -e(f, f)?)

The distribution of the public key is the same is in the real scheme. The simulator
also gives the tracing key TK = ¢ to the adversary.

Suppose the adversary asks for the private key of user ID. To answer the
query, the simulator first asks the challenger for a first-level signature on message
ID, and receives back f(.D = (f(l, f(g) S G;‘;. As before, k; denotes the i-th bit of
ID. The simulator then chooses a random r € Z, and creates the requested key
as,

k
KID:(K1=f(1'fﬁ'(7/H7fi)ra Ky=Ks-f7", Kzg=h"")

i=1

This is a well formed private key in our scheme.

Suppose the simulator is asked for a signature on message M = (p1 ... fiy) €
{0,1}™ by user ID = (k1 ...kx) € {0,1}*. The simulator starts as in the real
scheme, by choosing random tq,...,t; € Z,, defining t = Zle t;, and creating
the values ¢; = uf - bt and m; = (u7™~' - ht)b for all i = 1,...,k. Next,
the simulator requests a two-level signature on ID.M and receives in return
S = (51,859,93) € Gg. It then chooses random 7,72 € Z,; and creates the
remaining components,

k m
or = Si-f0([T/ T[vi)=-hmt, oo =Sef™™, o3 =Ssf "
i=1 i=1
The simulator gives the full signature o = (01,09,03,¢1,...,Ck, 71, ..., Tk) tO
the adversary. Again, this is a well-formed signature in our scheme.
Finally, the adversary gives the simulator a forgery o* = (01, 02,03,¢1,...,¢k

Ty ..., M) on message M™* = (uq ... fty,). The simulator first checks that the
signature verifies, otherwise the adversary is not successful and the simulator can
abort. Next, it sets out to trace the identity, ID*, of the forgery. Let x; denote
the i-th bit of the string ID* that is to be determined. For each i = 1,...,k,
the tracer sets k; = 0 if (¢;)? = 0 and x; = 1 otherwise. It then reconstitutes
ID* = (k1...kk). If either the key for ID* or a signature on M* by ID* was
previously requested by the adversary, the simulator can safely abort since the
adversary was not successful. Otherwise the adversary was successful and the
simulator must produce its own forgery.

To see how, recall that for all i we have that e(c;,u; ‘¢;) = e(h,), which
has order ¢ in Gr. Therefore, either ¢; € G, or c;u; e G,. It follows that
c=ui'f "i for the previously determined r; € {0,1} for some unknown 7}, and
therefore, that ¢ = v’ Hle ci = (' Hle ﬂfi)f’”/ for some r’. Let then § € Z,, be

an integer which is 0 (mod ¢) and 1 (mod p). The verification equation entails,

This, however, leaves S* = (09,09, 03) € G;’, as the sought forgery on ID*.M* in

the underlying hierarchical signature scheme, which the simulator gives to the
challenger. Therefore, our simulator will be successful whenever the adversary
is.

5 Extensions

Our framework of creating group signature schemes from hierarchical signature
schemes allows us to extend our basic scheme in some interesting ways. We
outline a few of these applications in the present section.

5.1 Fast Verification

Perhaps the main drawback of our scheme in terms of practicality, is that, taken
at face value, signature verification requires 2k + 3 pairing computations. How-
ever, in all known realizations of the pairing, it turns out that when computing
multiple pairings in a product, the cost incurred by adding each extra pairing is
significantly lesser than the cost of the first pairing. The reason is because the
sequence of doublings in Miller’s algorithm [Mil04] can be amortized over all the
pairings in a given product, in a very similar way to the multi-exponentiation
algorithm. To push this idea further, it is possible to batch the k remaining
equations into a single “multi-pairing”, using randomization, at the cost of k
extra exponentiations in G: to check that Vi = 1,...,k : e(c;, ui_lci) = e(h,m;),
the verifier would pick 71, ...,y € Z,, and test,

(e(c;i,uflci) . e(h_”,m)) 1.

i=1

Probabilistic signature verification can thus be performed with a total of 2
multi-pairings and k£ exponentiations for the ¢". Notice that since h is constant
across all signers for the life of the system, the A~ can be computed compara-
tively very quickly using a few amortized pre-computations.

5.2 Long Messages

Once we have a signature scheme that can sign messages in {0,1}™ for large
enough m = O(\), it is easy to sign arbitrary messages with the help of a
Universal One-Way Hash Function (UOWHF) family H, a description of which

is added to the public key. To sign M € {0,1}*, first pick a random index h
into the family, which determines a function Hj, € H. Next, let M’ = h||Hp, (M),
and compute o’ = Sign(PP, D, K5, M’), a signature on M’ in the initial scheme.
The signature on M is then given by o = (h,d”).

Since |h| and |Hp(M)| both grow linearly in the security parameter, it suffices
to let m = ©(\) with a constant factor large enough to accommodate the two. A
standard argument shows that the new scheme is existentially unforgeable under
adaptive chosen message attacks whenever the old one was. Also, it is easy to see
that this transformation does not affect anonymity or tracing, since it operates
only on the message, and does so in a “public” way.

5.3 Delegation

Using a hierarchical signature scheme we can allow for a group signature scheme
where a signer can delegate its authority down in a hierarchical manner. Sup-
pose we have an (A + 1)-level hierarchical signature scheme where at each level
identities can be at most d bits long (except the last level, which must support
messages of sufficient size m, as discussed above). Then we can extend the tech-
niques from our basic scheme to create a new group signature scheme that allows
for hierarchical identities of up to A levels, where someone with an identity at
level [can delegate down to a new user at level [+ 1.

To do this we simply extend our scheme to hide identities at all levels. How-
ever, this will come with an O(Ad + m) cost in signing time, verification time,
and signature size.

5.4 Revocation

Keys can be revoked in any group signature scheme in a very generic manner,
in which the group master sends a revocation message linear in the number of
remaining signers. Upon enrollment, each user is assigned an additional, unique,
long-lived decryption key. Then, to revoke a user, the group master would re-
key the group signature sub-system, and form a public revocation message that
contains the new public key as well as the signing key of each remaining user
encrypted under that user’s long-term key. (Alternatively, the group master could
broadcast a constant size revocation message containing only the new PK, and
privately communicate a new key to each signer.)

Using an extension of our methods we can have a constant size revocation
message along with an O(r) overhead for our group signature scheme, where r
is the number of revoked users. Essentially, the idea is for the signers to attach
an additional proof for each revoked user that they are not that user.

These two techniques can be used in conjunction. Most revocation messages
can be kept short using the second technique. However, when the number of
revoked users becomes too large, the group master issues out a long revocation
message to re-key the system.

5.5 Partial Revelation of Identities

A user might also wish to selectively reveal parts of his identity. For example,
suppose there are two classes of users in a system where one class of users
consists of administrators whose extra privilege is important in some, but not
all applications. We could then organize the identities in such a way that a user’s
identity consisted of his class bit followed by a unique bitstring.

For some types signatures it might be important for a user to reveal his
privilege, while keeping his identity secret within this class. In our signature
scheme a signer can do this by simply not encrypting the class bit of his identity,
while hiding all of the other bits.

Using selective revelation will be preferable to the alternative of creating
a new group signature scheme for each possible group of users. This type of
technique can be generalized to more complicated types of selective revelation
by using the NIZK techniques in more complicated ways, although the signature
overhead will likely become larger with more complicated proofs.

5.6 Using Prime Order Groups

In our current scheme we work in composite order groups and the anonymity of
our scheme rests on the hardness of the Subgroup-Decision problem. An inter-
esting extension of our work would be to apply our techniques to work in prime
order groups. This would give us a wider range of underlying elliptic curve im-
plementations to choose from and allow us to explore alternative complexity
assumptions. Recent work [GOS06a] has shown that the NIZK techniques of
Groth, Sahai, and Ostrovsky can be realized in prime order groups under the
Decision-Linear Assumption [BBS04]. We can plug these new NIZK techniques
into our group signature framework and realize our scheme in prime order groups.

6 Conclusion

In this paper we presented the first efficient group signature scheme that is prov-
ably secure without random oracles, based on bilinear maps. We built our group
signature scheme from the Waters two-level hierarchical signatures scheme, where
the first level is the identity of the signer and the second level is the signed
message. Additionally, we applied the recent NIZK proof techniques of Groth,
Ostrovsky, and Sahai in a novel manner to hide the identity of the signer.

We proved the security of our scheme using the subgroup decision and the
computational Diffie-Hellman assumptions. Its signing time, verification time,
and signature size are all logarithmic in the number of signers.

Our method of using a hierarchical signature scheme allowed us to create
clean, modular proofs of security. Additionally, it had the added benefit of al-
lowing for a hierarchical identity structure. We expect our new framework of
creating group signatures to enable many other extensions in the future.

Acknowledgments

We thank Dawn Song for suggesting the concept of signature delegation and
Dan Boneh for useful comments and suggestions.

References

[ACHAMO5]

[ACJTO00]

[AST02]

[AT99]

[BB04]

[BBS04]

[BGNOS5]

[BMWO03]

[BP97]

[BS04]

[BSZ05]

[BWO05]

Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno
de Medeiros. Practical group signatures without random oracles. Cryp-
tology ePrint Archive, Report 2005/385, 2005. http://eprint.iacr.
org/.

Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A
practical and provably secure coalition-resistant group signature scheme.
In Proceedings of Crypto 2000, volume 1880 of Lecture Notes in Computer
Science, pages 255-70. Springer-Verlag, 2000.

Giuseppe Ateniese, Dawn Song, and Gene Tsudik. Quasi-efficient re-
vocation of group signatures. In Proceedings of Financial Cryptography
2002, 2002.

G. Ateniese and G. Tsudik. Some open issues and directions in group
signatures. In Proceedings of Financial Cryptography 1999, volume 1648
of Lecture Notes in Computer Science, pages 196-211. Springer-Verlag,
1999.

Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity
based encryption without random oracles. In Advances in Cryptology—
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 223-38. Springer-Verlag, 2004.

Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signa-
tures. In Advances in Cryptology—CRYPTO 2004, volume 3152 of Lec-
ture Notes in Computer Science, pages 41-55. Springer-Verlag, 2004.
Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas
on ciphertexts. In Proceedings of TCC 2005, Lecture Notes in Computer
Science. Springer-Verlag, 2005.

Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations
of group signatures: Formal definitions, simplified requirements, and a
construction based on general assumptions. In Advances in Cryptology—
EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 614-29. Springer-Verlag, 2003.

Niko Baric and Birgit Pfitzman. Collision-free accumulators and fail-
stop signature schemes without trees. In Advances in Cryptology—
EUROCRYPT 1997, Lecture Notes in Computer Science, pages 480-94.
Springer-Verlag, 1997.

Dan Boneh and Hovav Shacham. Group signatures with verifier-local
revocation. In Proceedings of ACM CCS 2004, pages 168-77. ACM Press,
2004.

Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signa-
tures: The case of dynamic groups. In Proceedings of CT-RSA 2005, Lec-
ture Notes in Computer Science, pages 136—-153. Springer-Verlag, 2005.
Xavier Boyen and Brent Waters. Compact group signatures without
random oracles. Cryptology ePrint Archive, Report 2005/381, 2005.
http://eprint.iacr.org/.

[Cam97]

[CGO4]

[CL02]

[CLO4]

[CvHI1]

[GOS06a]

[GOSO06b]

[GS02]

[KY03]

[KY04]

[KYO05]

[LRSW99]

[Mil04]

[Nao03]

[Son01]

[Wat05]

Jan Camenisch. Efficient and generalized group signatures. In Advances
in Cryptology—FEUROCRYPT 1997, Lecture Notes in Computer Science,
pages 465—479. Springer-Verlag, 1997.

Jan Camenisch and Jens Groth. Group signatures: Better efficiency and
new theoretical aspects. In Proceedings of SCN 200/, pages 120-133,
2004.

Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and ap-
plication to efficient revocation of anonymous credentials. In Advances in
Cryptology—CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 61-76. Springer-Verlag, 2002.

Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In Advances in Cryptology—
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science.
Springer-Verlag, 2004.

David Chaum and Eugene van Heyst. Group signatures. In Advances in
Cryptology—FEUROCRYPT 1991, volume 547 of Lecture Notes in Com-
puter Science, pages 257—65. Springer-Verlag, 1991.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and
new techniques for NIZK. Manuscript, 2006.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive
zero knowledge for NP. In Advances in Cryptology—EUROCRYPT 2006,
Lecture Notes in Computer Science. Springer-Verlag, 2006. To appear.
Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography.
In Advances in Cryptology—ASIACRYPT 2002, Lecture Notes in Com-
puter Science. Springer-Verlag, 2002.

Aggelos Kiayias and Moti Yung. Extracting group signatures from traitor
tracing schemes. In Advances in Cryptology—EUROCRYPT 2003, Lec-
ture Notes in Computer Science, pages 630-648. Springer-Verlag, 2003.
Aggelos Kiayias and Moti Yung. Group signatures: Provable security,
efficient constructions and anonymity from trapdoor-holders. Cryptology
ePrint Archive, Report 2004/076, 2004. http://eprint.iacr.org/.
Aggelos Kiayias and Moti Yung. Group signatures with efficient con-
current join. In Advances in Cryptology—EUROCRYPT 2005, Lecture
Notes in Computer Science, pages 198—214. Springer-Verlag, 2005.
Anna Lysyanskaya, Ron Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In Proceedings of SAC 1999, volume 1758 of Lecture
Notes in Computer Science, pages 184-99. Springer-Verlag, 1999.
Victor Miller. The Weil pairing, and its efficient calculation. Journal of
Cryptology, 17(4), 2004.

Moni Naor. On cryptographic assumptions and challenges. In Advances
in Cryptology—CRYPTO 2003, Lecture Notes in Computer Science,
pages 96-109. Springer-Verlag, 2003.

Dawn Xiaodong Song. Practical forward secure group signature schemes.
In ACM Conference on Computer and Communications Security—CCS
2001, pages 225-234, 2001.

Brent Waters. Efficient identity-based encryption without random ora-
cles. In Advances in Cryptology—EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science. Springer-Verlag, 2005.

A Group Signatures

A group signature scheme consists of a pentuple of PPT algorithms:

— A group setup algorithm, Setup, that takes as input a security parameter
1* (in unary) and the number of signers in the group, for simplicity taken
as a power of two, 2¥, and outputs a public key PK for verifying signatures,
a master key MK for enrolling group members, and a tracing key TK for
identifying signers.

— An enrollment algorithm, Enroll, that takes the master key MK and an
identity ID, and outputs a unique identifier sjp and a private signing key K
which is to be given to the user.

— A signing algorithm, Sign, that takes a group member’s private signing key
K, and a message M, and outputs a signature o.

— A (usually deterministic) verification algorithm, Verify, that takes a message
M, a signature o, and a group verification key PK, and outputs either valid
or invalid.

— A (usually deterministic) tracing algorithm, Trace, that takes a valid sig-
nature o and a tracing key TK, and outputs an identifier s;p or the failure
symbol 1.

There are four types of entities one must consider:

— The group master, which sets up the group and issues private keys to the
users. Often, the group master is an ephemeral entity, and the master key
MK is destroyed once the group is set up. Alternatively, techniques from dis-
tributed cryptography can be used to realize the group master functionality
without any real party becoming in possession of the master key.

— The group manager, which is given the ability to identify signers using the
tracing key TK, but not to enroll users or create new signing keys for existing
users.

— Regular member users, or signers, which are each given a distinct private
signing key Kp.

— Outsiders, or verifiers, who can only verify signatures using the public key
PK.

We require the following correctness and security properties.

Consistency. The consistency requirements are such that, whenever, (for a group
of 2F users),
(PK, MK, TK) « Setup(1*,2%), (sip, Kip) — Enroll(MK,ID), o «— Sign(K,, M),

we have, (except with negligible probability over the random bits used in Verify
and Trace),

Verify(M, o, PK) = valid, and Trace(o, TK) = sp.

The unique identifier sjp can be used to assist in determining the user ID from
the transcript of the Enroll algorithm; sjp may but need not be disclosed to the
user; it may be the same as ID.

Security. Bellare, Micciancio, and Warinschi [BMWO03] characterize the funda-
mental properties of group signatures in terms of two crucial security properties
from which a number of other properties follow. The two important properties
are:

Full Anonymity which requires that no PPT adversary be able to decide (with

non-negligible probability in excess of one half) whether a challenge signature
o on a message M emanates from user ID; or IDs, where IDy, 1Dy, and
M are chosen by the adversary. In the original definition of [BMWO3], the
adversary is given access to a tracing oracle, which it may query before and
after being given the challenge o, much in the fashion of IND-CCA2 security
for encryption.
Boneh, Boyen, and Shacham [BBS04] relax this definition by withholding
access to the tracing oracle, thus mirroring the notion of IND-CPA security
for encryption. We follow [BBS04] and speak of CCA2-full anonymity and
CPA-full anonymity respectively.

Full Traceability which requires that no coalition of users be able to generate,

in polynomial time, a signature that passes the Verify algorithm but fails
to trace to a member of the coalition under the Trace algorithm. According
to this notion, the adversary is allowed to ask for the private keys of any
user of its choice, adaptively, and is also given the secret key TK meant for
tracing—but of course not the enrollment master key MK.
It is noted in [BMWO03] that this property implies that of exculpability [AT99],
which is the requirement that no party, not even the group manager, should
be able to frame a honest group member as the signer of a signature he did
not make. However, the model of [BMWO03] does not consider the possibility
of a (long-lived) group master, which could act as a potential framer. To
address this problem and achieve the notion of strong exculpability, intro-
duced in [ACJTO00] and formalized in [KY04, BSZ05], one would need an
interactive enrollment protocol, call Join, at the end of which only the user
himself knows his full private key. We do not further consider exculpability
issues in this paper.

We refer the reader mainly to [BMWO3] for more precise definitions of these and
related notions.

