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Abstract. Despite their popularity, lattice reduction algorithms remain
mysterious cryptanalytical tools. Though it has been widely reported
that they behave better than their proved worst-case theoretical bounds,
no precise assessment has ever been given. Such an assessment would be
very helpful to predict the behaviour of lattice-based attacks, as well as to
select keysizes for lattice-based cryptosystems. The goal of this paper is
to provide such an assessment, based on extensive experiments performed
with the NTL library. The experiments suggest several conjectures on the
worst case and the actual behaviour of lattice reduction algorithms. We
believe the assessment might also help to design new reduction algorithms
overcoming the limitations of current algorithms.

Keywords: Lattice Reduction, BKZ, LLL, DEEP Insertions, Lattice-
based cryptosystems.

1 Introduction

Lattices are discrete subgroups of R™. A lattice L can be represented by a basis,
that is, a set of linearly independent vectors by, ..., by in R™ such that L is equal
to the set L(by,...,bg) = {Zle r;b;, x; € Z} of all integer linear combinations
of the b;’s. The integer d is the dimension of the lattice L. A lattice has infinitely
many bases, but some are more useful than others. The goal of lattice reduction
is to find interesting lattice bases, such as bases consisting of reasonably short
and almost orthogonal vectors.

Lattice reduction is one of the few potentially hard problems currently in use
in public-key cryptography (see [29,23] for surveys on lattice-based cryptosys-
tems), with the unique property that some lattice-based cryptosystems [3,34,35,33,11]
are based on worst-case assumptions. And the problem is well-known for its
major applications in public-key cryptanalysis (see [29]): knapsack cryptosys-
tems [32], RSA in special settings [7,5], DSA signatures in special settings [16,26],
etc. One peculiarity is the existence of very efficient approximation algorithms,
which can sometimes solve the exact problem. In practice, the most popular
lattice reduction algorithms are: floating-point versions [37,27] of the LLL al-
gorithm [20], the LLL algorithm with deep insertions [37], and the BKZ algo-
rithms [37,38], which are all implemented in the NTL library [39].

Although these algorithms are widely used, their performances remain mys-
terious in many ways: it is folklore that there is a gap between the theoretical



analyses and the experimental performances. In the eighties, the early success of
lattice reduction algorithms in cryptanalysis led to the belief that the strongest
lattice reduction algorithms behaved as perfect oracles, at least in small dimen-
sion. But this belief has shown its limits: many NP-hardness results for lattice
problems have appeared in the past ten years (see [23]), and lattice-based at-
tacks rarely work in very high dimension. Ten years after the introduction of
the NTRU cryptosystem [15], none of the NTRU challenges has been solved, the
smallest one involving a lattice of dimension 334. On the other hand, all five
GGH-challenges [12] have been solved [25], except the 400-dimensional one. It
is striking to see that the GGH-350 challenge has been solved, while no 334-
dimensional NTRU lattice has ever been solved. The behaviour of lattice algo-
rithms is much less understood than that of their factoring and discrete loga-
rithm counterpart. It would be useful to have at least a model (consistent with
experiments) for the performances of existing lattice algorithms.

OUuRr REsuLTS. We provide a concrete picture of what is achievable today with
the best lattice reduction algorithms known in terms of output quality and run-
ning time, based on extensive experiments performed with the NTL library dur-
ing the past year. This sheds new lights on the practical hardness of the main
lattice problems, and allows to compare the various computational assumptions
(Unique-SVP, Approximate-SVP) used in theoretical lattice-based cryptogra-
phy [33,11,35,34,3]. For instance, our experiments strongly suggest that Unique-
SVP is significantly easier than Approximate-SVP, and that the hardness of
Approximate-SVP depends a lot on the structure of the lattice. Our experiments
also clarify the gap between the theoretical analyses and the experimental per-
formances of lattice algorithms, and point out several surprising phenomenons
on their behaviour. The most important fact is that asymptotically, all the al-
gorithms known seem to only achieve an exponential approximation factor as
predicted by theory, but the exponentiation bases turn out to be extremely
close to 1, much closer than what theory is able to prove. This seems to nullify
the security property of cryptosystems based on the hardness of approximating
lattice problems with big polynomial factors, unless such schemes use large pa-
rameters. On the other hand, it also makes clear what are the limits of today’s
algorithms: in very high dimension, today’s best algorithms roughly square root
the exponential approximation factors of LLL. Our predictions may explain in
retrospect why the 350-dimensional GGH lattice has been solved, but not the
334-dimensional NTRU lattices or the 400-dimensional GGH lattice. We believe
the assessment might help to design new reduction algorithms overcoming the
limitations of current algorithms. As an illustration, we present an alternative
attack on the historical NTRU-107 lattices of dimension 214.

RELATED WORK. The NTRU company has performed many experiments with
BKZ to evaluate the cost of breaking NTRU lattices. However, such experiments
only dealt with NTRU lattice bases, which have a very special structure. And
their experiments do not lead to any prediction on what can be achieved in
general. Our work is in the continuation of that of Nguyen and Stehlé [28] on
the average-case of LLL. But the goal of this paper is to provide a much broader



picture: [28] only performed experiments with LLL (and not improved algorithms
like BKZ which are much more expensive), and focused on the so-called Hermite-
SVP problem, without considering cryptographic lattices with special structure.

RoOAD MAP. The paper is organized as follows. In Section 2, we provide necessary
background on lattice reduction. In Section 3, we provide a concrete picture of
what lattice reduction algorithms can achieve today. In Section 4, we analyze the
experimental running time of lattice reduction algorithms, and point out several
unexpected phenomenons. In Section 5, we compare our predictions with former
experiments on GGH and NTRU lattices.

2 Background

We refer to [29,23] for a bibliography on lattices.

2.1 Lattices

In this paper, by the term lattice, we mean a discrete subgroup of some R™.
Lattices are all of the form L(bs,...,b,) = {d_1, m;b; | m; € Z} where the
b;’s are linearly independent vectors. Such n-tuple of vectors by, ..., b, is called
a basis of the lattice: a basis will be represented by a row matrix. The dimension
of a lattice L is the dimension n of the linear span of L. The volume of k
vectors vy, ..., vy is det (<Vi7vj>)1/<21',j<k' The wvolume vol(L) (or determinant)
of a lattice L is the volume of any basis of L.

MiINIMA. We denote by A;(L) the i-th minimum of a lattice L: it is the radius of
the smallest zero-centered ball containing at least ¢ linearly independent lattice
vectors. The so-called Hermite’s constant -, of dimension n satisfies Minkowski’s
second theorem: for any n-dimensional lattice L, and for any 1 < d < n, we have

J 1/d
<H )\i(L)> < \/%VOI(L)l/n.

The exact value of +, is only known for 1 < n < 8 and n = 24. For other
values of n, the best numerical upper bounds known are given in [6]. Asymp-
totically, Hermite’s constant grows linearly in n. Rankin (see [8]) generalized
the minima A;(L) to the smallest subvolumes: v, (L) is the minimal value of
vol(x1,...,Xm)/vol(L)™/™ where (x1,...,%,,) range over all m linearly inde-
pendent lattice vectors.

RANDOM LATTICES. There is a beautiful albeit mathematically sophisticated
notion of random lattice, which follows from Haar measures of classical groups.
Such measures give rise to a natural probability distribution on the set of lattices:
by a random lattice, we mean a lattice picked from this distribution. Random



lattices have the following property (see [1] for a proof): with overwhelming prob-
ability, the minima of a random n-dimensional lattice L are all asymptotically
close to the Gaussian heuristic, that is, for all 1 <i <n

(L) T(+n/2)Ym [
(volL)'/" VT 2me’

Many of our experiments use random lattices: by average case, we will mean
running the algorithm on a random lattice. To generate random lattices, we use
the provable method of [13], like [28].

RANDOM BASES. There is unfortunately no standard notion of random bases
for a given lattice. By a random basis, we will mean a basis made of rather large
vectors, chosen in a heuristic random way (see for instance [12]). Note that it is
possible to sample lattice vectors in a sound way, as described by Klein [18] (see
a refined analysis in [31,11]). And from any set of linearly independent lattice
vectors, one can efficiently derive a basis whose vectors are not much longer (see
for instance [2]).

2.2 Lattice problems

The most famous lattice problem is the shortest vector problem (SVP): Given
a basis of a lattice L, find a lattice vector whose norm is A;(L). But SVP has
several (easier) variants which are all important for applications:

— HERMITE-SVP: Given a lattice L and an approximation factor o > 0, find
a non-zero lattice vector of norm < « - (volL)l/ ". The LLL algorithm [20]
and its blockwise generalizations [36,8,10] are designed as polynomial-time
Hermite-SVP algorithms. They achieve an approximation factor (1 + €)™
exponential in the lattice dimension n where € > 0 depends on the algorithm
and its parameters. This exponential factor can actually be made slightly
subexponential while keeping the running time polynomial.

— APPROX-SVP: Given a lattice L and an approximation factor o > 1, find
a non-zero lattice vector of norm < « - A1 (L). Note that it might be difficult
to verify a solution to this problem, since A1 (L) may not be known exactly.
There are provably secure lattice-based cryptosystems [33,35] based on the
worst-case quantum hardness of Approx-SVP with polynomial factor.

— UNIQUE-SVP: Given a lattice L and a gap v > 1 such that Ao(L)/A1 (L) >
7, find a shortest vector of L. There are cryptosystems [3,34] based on the
worst-case hardness of Unique-SVP with polynomial gap: n'-5 for [34] and
n” for [3].

Any algorithm solving Approx-SVP with factor a also solves Hermite-SVP with
factor a\/7,,. Reciprocally, Lovdsz [21] showed that any algorithm solving Hermite-
SVP with factor a can be used linearly many times to solve Approx-SVP with



factor a2 in polynomial time. There are also reductions [2,24] from the worst-

case of Approx-SVP with a certain polynomial factor to the average-case (for a
certain class of lattices) of Hermite-SVP with a certain polynomial factor. Any
algorithm solving Approx-SVP with factor a also solves Unique-SVP with gap
> Q.

We will not discuss the closest vector problem (CVP), which is often used in
cryptanalysis. However, in high dimension, the best method known to solve CVP
heuristically transforms CVP into Unique-SVP (see for instance the experiments
of [25)).

KNAPSACK LATTICES. An interesting class of lattices is the Lagarias-Odlyzko
lattices [19] introduced to solve the knapsack problem: given n integers z1, ...,z
uniformly distributed at random in [1; M] and a sum S = Z?:l €;T; Where
e; € {0,1}and )" ¢; = %, find all the ¢;. The Lagarias-Odlyzko (LO) lattice L [19]
has the following property: if the density d = n/log,(M) satisfies d < 0.6463 . . .,
then with overwhelming probability, L has a unique shortest vector related to
the €;, and A1 (L) = y/n/2. It has been proved [19] that there exists dg such that
if d < dg/n, then with overwhelming probability over the choice of the z;’s, L
has exponential gap, which discloses the ¢; by application of LLL.

2.3 Lattice algorithms

When the lattice dimension is sufficiently low, SVP can be solved exactly in prac-
tice using exhaustive search, thanks to enumeration techniques [37]. But beyond
dimension 100, exhaustive search can be ruled out: only approximation algo-
rithms can be run. Such algorithms try to output lattice bases [by, ..., b,] with
small approzimation factor ||by|| /A1 (L), or small Hermite factor ||by|| /vol(L)*/™.
The main approximation algorithms used in practice are the following:

LLL: it is a polynomial-time algorithm [20] which provably achieves (with ap-
propriate reduction parameters) a Hermite factor 5 (4/3)"~D/4 ~ 1.075"
and an approximation factor < (4/3)("~1/2 ~ 1.154", where n is the lattice
dimension.

DEEP: the LLL algorithm with deep insertions [37] is a variant of LLL with po-
tentially superexponential complexity. It is expected to improve the Hermite
factor and the approximation factor of LLL, but no provable upper bound
is known (except essentially that of LLL). The implementation of NTL ac-
tually depends on a blocksize parameter 3: as § increases, one expects to
improve the factors, and increase the running time.

BKZ: this is a blockwise generalization of LLL [37] with potentially super-
exponential complexity. The BKZ algorithm uses a blocksize parameter (:
like DEEP, as (0 increases, one expects to improve the factors, and in-
crease the running time. Schnorr [36] proved that if BKZ terminates, it
achieves an approximation factor < fyé"il)/ B=1), By using similar argu-
ments as [36], it is not difficult to prove that it also achieves a Hermite
factorg\/%pr("*l)/(’g*l).



DEEP and BKZ differ from the (theoretical) polynomial-time blockwise gen-
eralizations of LLL [36,8,10]: we will see that even the best polynomial-time
algorithm known [10] seems to be outperformed in practice by DEEP and BKZ,
though their complexity might be superexponential. The recent algorithm of [10]
achieves a Hermite factor g \/fy_g("_l)/ ¥~ and an approximation factor <

A B,

Approximation algorithms exploit the triangular representation of lattice
bases, related to orthogonalization techniques. Given a basis B = [by, ..., by],
the Gram-Schmidt orthogonalization (GSO) process constructs the unique pair
(1, B*) of matrices such that B = uB* where u is lower triangular with unit
diagonal and B* = [b},...,b}] has orthogonal row vectors. If we represent
the basis B with respect to the orthonormal basis [b}/||b5]|,...,b%/[|bx|l], we
obtain a triangular matrix whose diagonal coefficients are the ||b}|’s. Thus,
vol(B) = [[i_, [b;||. LLL and BKZ try to limit the decrease of the diagonal
coefficients ||bf]|.

It is sometimes useful to look at more than just the quality of the first
basis vector by. In order to evaluate the global quality of a basis, we define
the Gram-Schmidt log (GSL) as the sequence of the logarithms of the ||b}|:
GSL(B) = (log (|b;] /volLl/”'))i:Ln. It is folklore that the GSL often looks
like a decreasing straight line after running reduction algorithms. Then the av-
erage slope 71 of the GSL can be computed with the least mean squares method:
n =12 (3 i- GSL(B);)/((n+1)-n-(n—1)). When the GSL looks like a
straight line, the Hermite factor H and the average slope 7 are related by

log(H)/n ~ —n/2.

3 Experimental quality of lattice reduction algorithms

In this section, we give a concrete picture of what lattice reduction algorithms
can achieve today, and we compare it with the best theoretical results known.
All our experiments were performed with the NTL 5.4.1 library [39].

First of all, we stress that SVP and its variants should all be considered easy
when the lattice dimension is less than 70. Indeed, we will see in Section 4 that
exhaustive search techniques [37] can solve SVP within an hour up to dimension
60. But because such techniques have exponential running time, even a 100-
dimensional lattice is out of reach.

When the lattice dimension is beyond 100, only approximation algorithms
like LLL, DEEP and BKZ can be run, and the goal of this section is to predict
what they can exactly achieve. Before giving the experimental results, let us say
a few words on the methodology. We have ran experiments on a large number
of samples, so that an average behaviour can be reasonably conjectured. For
each selected lattice, we ran experiments on at least twenty randomly chosen
bases, to make sure that reduction algorithms did not take advantage of special
properties of the input basis: the randomization must make sure that the basis
vectors are not short. Note that one cannot just consider the Hermite normal
form (HNF): for instance, the HNF of NTRU lattices has special properties



(half of its vectors are short), which impacts the behaviour of lattice algorithms
(see [9]). This means that we will ignore the effect of choosing special input bases:
for instance, if one applies LLL on the standard basis of the LO lattice [19], or any
permutation of its rows, it can be shown that if the density is d is lower bounded
by dy > 0, then the first vector output by LLL approximates the shortest vector
by a subexponential factor 20V rather than the general exponential factor
20(m) This phenomenon is due to the structure of orthogonal lattices [29].
Basis randomization allows to transform any deterministic algorithm like LLL
or BKZ into a randomized algorithm. Experiments suggest that LLL and BKZ
behave like probabilistic SVP-oracles in low dimension (see Fig. 1): no matter
which lattice is selected, if the input basis is chosen at random, the algorithm
seems to have a non-negligible probability of outputting the shortest vector.
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Fig. 1. Experimental probability of recovering the shortest vector, given a random basis
of a random lattice, with respect to the dimension.

3.1 Hermite-SVP

The Hermite factor achieved by reduction algorithms seems to be independent
of the lattice, unless the lattice has an exceptional structure, in which case the
Hermite factor can be smaller than usual (but not higher). By exceptional struc-
ture, we mean an unusually small first minimum A; (L), or more generally, an
unusually small Rankin invariant (that is, the existence of a sublattice of unusu-
ally small volume). In high dimension, we have never found a class of lattices for
which the Hermite factor was substantially higher than for random lattices. We
therefore speculate that the worst case matches the average case.

When the lattice has no exceptional structure, the Hermite factor of LLL,
DEEP and BKZ seems to be exponential in the lattice dimension: Figure 2
shows the average Hermite factor, with respect to the lattice dimension and the
reduction algorithm; and Figure 3 shows the logarithm of Figure 2. The figures
show that the Hermite factor is approximately of the form e®**® where n is
the lattice dimension and (a,b) seems to only depend on the lattice reduction
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Fig. 2. The Hermite factor of LLL, BKZ Fig. 3. Logarithm of Figure 2.
and DEEP, depending on the dimension.

| | LLL [BKZ-20|BKZ-28] DEEP-50)

¢ = Hermite factor™ [[1.0219] 1.0128 | 1.0109 | 1.011
Best proved upper bound|| 1.0754 | 1.0337 | 1.0282 | 1.0754

n =average slope GSL ||-0.0430{-0.0263 |-0.0241 | -0.026
Best proved lower bound ||-0.1438|-0.0662 | -0.0556 | -0.1438
Table 1. Average experimental Hermite factor constant of several approximation al-
gorithms on random lattices, and comparison with theoretical upper bounds.

algorithm used. Since we are interested in rough estimations, we simplify e®”*?

to ¢, and Figure 4 shows that a few samples are enough to have a reasonable
approximation of c¢: indeed, when picking random bases of a given lattice, the
distribution looks Gaussian. Figure 5 shows the evolution of ¢ with respect to
the lattice dimension and the reduction algorithm; the value ¢ seems to converge
as the dimension increases. Table 1 gives the approximate value of ¢ and the
corresponding GSL slope 7, depending on the algorithm, and compare it with
the best theoretical upper bound known. It means that DEEP and BKZ have
overall the same behaviour as LLL, except that they give much smaller constants,
roughly the square root of that of LLL.

The case of LLL is interesting: it is well-known that the worst-case Hermite
factor for LLL is (4/3)("~1/4 reached by any lattice basis such that all its 2-
dimensional projected lattices are critical. However, this corresponds to a worst-
case basis, and not to a worst-case lattice. Indeed, when we selected such lattices
but chose a random-looking basis, we obtained the same Hermite factor 1.02"
as with random lattices.

One can note that the constant ¢ is always very close to 1, even for LLL, which
implies that the Hermite factor is always small, unless the lattice dimension
is huge. To give a concrete example, for a 300-dimensional lattice, we obtain
roughly 1.02193% =~ 665 for LLL (which is much smaller than the upper bound
1.07543% ~ 2176069287) and 1.0133%° ~ 48 for BKZ-20 (which is much smaller
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160-dim lattice.

than the upper bound 1.03373% ~ 20814). This implies that Hermite-SVP with
factor n is easy up to dimension at least 450.

Figure 6 shows the evolution of the Hermite factor constant ¢ for BKZ, as the
blocksize increases, and provides two comparisons: one with the best theoreti-
cal upper bound known ~ \/%1/ (5= using the best numerical upper bounds
known on 73, and another with a prototype implementation of the best theo-
retical algorithm known [10], whose theoretical upper bound is \/fy_gl/ (B=1) We
see that both BKZ and slide reduction [10] perform clearly much better than
the theoretical upper bound, but BKZ seems better: slide reduction can be run
with a much higher blocksize than BKZ, but even then, the constants seem a bit
worse. The size of the gap between theory and practice is hard to explain: we do
not have a good model for the distribution of the -dimensional projected lattices
used by BKZ; we only know that it does not correspond numerically to the distri-
bution of a random lattice of dimension 3. Figure 7 compares the Hermite factor
constant ¢ achieved by BKZ and DEEP, as the blocksize increases. It is normal
that the constant achieved by BKZ is lower than DEEP for a fixed blocksize,
since BKZ-reduced bases are also necessarily deep-reduced. But the comparison
is important, because we will see in Section 4 that one can run DEEP on much
bigger blocksize than BKZ, especially for high-dimensional lattices. This opens
the possibility that DEEP might outperform BKZ for high-dimensional lattices.
Figures 6 and 7 suggest that the best reduction algorithms known can achieve
a Hermite factor of roughly 1.01™ in high dimension, but not much lower than
that, since BKZ with very high blocksize is not realistic. For instance, a Hermite
factor of 1.005™ in dimension 500 looks totally out of reach, unless the lattice
has a truly exceptional structure.
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with [10].

3.2 Approx-SVP

As mentioned in Section 2, if we can solve Hermite-SVP with factor ¢ in the
worst case, then we can solve Approx-SVP with factor < ¢2". Thus, if we be-
lieve the previous experimental results on Hermite-SVP, we already expect the
best reduction algorithms to solve in practice Approx-SVP with factor roughly
1.01%" ~ 1.02" in the worst case. More precisely, we can square all the values
of Table 1 and Figures 6 and 7 to upper bound the approximation factor which
can be achieved in practice. This means that Approx-SVP with factor n should
be easy up to dimension at least 250, even in the worst case.

Surprisingly, we will see that one can often expect a constant much smaller
than 1.02 in practice, depending on the type of lattices. First of all, as no-
ticed in [28], the Hermite factor for random lattices is an upper bound for
the approximation factor. More precisely, we know that for a random lattice,

A1 (L) /vol(L)Y/™ ~ 1“(1++rz)1/" ~ /5=, which means that if the Hermite factor

is h, then the approximation factor is & h/,/5%. More generally, for any lattice

2me
L such that A\;(L) > vol(L)'/™, the approximation factor is less than the Her-
mite factor: this means that on the average, we should achieve 1.01™ rather than
1.02". That would imply that Approx-SVP with factor n should be easy on the
average up to dimension at least 500.

We have made further experiments to see if the worst case for Approx-SVP
corresponds to the square of the Hermite factor, or something smaller. By the
previous remark, the worst case can only happen for lattices L such that A1 (L) <
vol(L)Y/". But if \;(L) becomes too small compared to vol(L)'/™, reduction
algorithms might be able to exploit this exceptional structure to find the shortest
vector. After testing various classes of lattices, the worst lattices for Approx-SVP
which we have found are the following echelon lattices derived from the classical
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worst-case analysis of LLL. We call echelon basis a row matrix of the form:

[ ant 0 e - 0]
a2 . \Va2 -1 an?2 0
Echelon(a) = 0 a3 o =1 . 57 (1)
« 0
L 0 0 Va2 —11|

where o € [1;/4/3]. Tt is easy to show that the reverse basis C' = (b, ...,b;)
is HKZ-reduced, and that the successive minima of the echelon lattice L satisfy:
af=1 < M\(L) < oF, which allows to precisely estimate \;(L). We have run
the LLL algorithm on many echelon lattices (where the input basis is randomly
chosen, not an echelon basis), depending on the value of «. The behaviour of
LLL on such lattices is summarized by Figure 8. Two cases can occur:

alpha
1.04
1.035 |~ 7
1.03 - success =
1.025 | 7
1.02 |- 7
1.015 | failure -
1.01 | 7

1.005 [~ 7
! ! ! ! !

1 .
50 100 150 200 250 300 350

Fig. 8. Behaviour of LLL on echelon lattices, with respect to a and the dimension.

— Either LLL succeeds in finding the shortest vector of the echelon lattice, in
which case it actually finds the full HKZ-reduced basis. In particular, this
happened whenever o > 1.043,

— Either LLL fails to recover the shortest vector. Then the slope of the output
GSL and the Hermite factor corresponds to those of random lattices: ¢ =
1.0219 and n = —0.043. This means that the approximation factor of LLL is
roughly . Since a can be as high as 1.038 (in dimension 350) in Figure 8,
this means that the approximation factor of LLL can be almost as high as
the prediction 1.021%" ~ 1.044™.

These experiments suggest that the worst case for Approx-SVP is very close to
the square of the average Hermite factor for all reduction algorithms known, since
this is the case for LLL, and the main difference between LLL and DEEP/BKZ
is that they provide better constants. But the experiments also suggest that
one needs to go to very high dimension to prevent reduction algorithms to take
advantage of the lattice structure of such worst cases.
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To summarize, it seems reasonable to assume that current algorithms should
achieve in a reasonable time an approximation factor < 1.01™ on the average,
and < 1.02™ in the worst case.

3.3 Unique-SVP

From a theoretical point of view, we know that if one can solve Approx-SVP with
factor a in the worst-case, then we can solve Unique-SVP for all gap > «. The
previous section therefore suggests that we should be able to solve any Unique-
SVP of gap roughly > 1.02", which corresponds to the square of the Hermite
factor. In this section, we present experimental evidence which strongly suggest
that Unique-SVP can be solved with a much smaller gap, namely a fraction of
the Hermite factor 1.01", rather than the square of the Hermite factor. This
means that Unique-SVP seems to be significantly easier than Approx-SVP.

The main difficulty with testing the hardness of Unique-SVP is to create
lattices for which we precisely know the gap. We therefore performed experiments
on various classes of lattices having a unique shortest vector.

Semi-Orthogonal Lattices We first tested lattices for which the shortest vec-
tor was in some sense orthogonal to all other lattice vectors. More precisely, we
chose lattices L for which the shortest vector u was such that L' = LN ut
was equal to the projection of L over u’: then \y(L) = A\;(L’) and we chose
L’ in such a way that A1 (L’) could be fixed, so as to select the gap of L. To be
concrete, we tested the following two classes of lattices which are parameterized
by a given pair (g1, g2) of real numbers. The two classes are

0 0 0

g1 0 ... 0 901 Moo o
0go - ° and [ 0 r 1°.:| wherer; €[1;M]

Lo SEERRE

e 071001

where M is a prime number, selected so that Ao(L) & g2: to do so, notice that
the projection L' can be assumed to be random (see [13]), which gives a formula
for A (L") depending simply on M.

Notice that the projected lattice L’ is a hypercubic lattice for the first class,
and a random lattice in the second class. In both cases, (volL)l/" /M(L) =~
A2(L)/A (L) = g2/g1- The experiments on such lattices have been performed in
dimensions 100 to 160, with g2/g1 between 2 and 20, and with randomly chosen
bases.

For both classes, LLL is able to recover the unique shortest vector as soon as
the gap is exponentially large, as shown by Figure 9. More precisely, for the first
class, LLL recovers the unique shortest vector with high probability when the
gap g2/g1 is a fraction of the Hermite factor, as shown by Figure 9 for instance



13

128 16
Hermite factor limit for LLL —ili— Hermite factor limit for BKZ-20 —li—
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Fig.9. Gap limits for solving Unique-SVP|Fig. 10. Same as Figure 9, but with BKZ-
with LLL, and comparison with the Her-|20 on LO lattices.
mite factor.

> 0.26 - 1.021™ for the first class, and > 0.45 - 1.021™ for the second class. The
smaller constants in the first class can perhaps be explained by the presence of
an unusually orthogonal basis in the projected lattice, which triggers the success
of LLL. Again, the behaviour of BKZ is similar to LLL, except that the constants
are even smaller: in fact, the constants are so close to 1 that lattice dimensions
<200 are too small to have good accuracy on the constants. For instance, BKZ-
20 finds the shortest vector in dimension 200 in the first class, as soon as the gap
is > 2.09, and this limit grows up to 6.4 in dimension 300. This suggests that
BKZ-20 retrieves the shortest vector when the gap is > 0.18-1.012". Surprisingly,
we will see in Section 5 that these very approximate BKZ-20 constants seem
consistent with past high-dimensional experiments on the GGH challenges [12].

Knapsack lattices The previous lattices have an exceptional structure com-
pared to a general unique-SVP instance, which might bias the results. This sug-
gests to test other types of lattices, such as the Lagarias-Odlyzko lattices [19].
In order to compare the results with those on semi-orthogonal lattices, we need
to estimate the gap of LO lattices. Unfortunately, no provable formula is known
for the second minimum of LO lattices. However, the analysis of Nguyen and
Stern [30] suggests to heuristically estimate the gap from combinatorial quanti-
ties. More precisely, let N(n,r) be the number of vectors in Z™ or norm < /T,
which can easily be computed numerically. When r becomes large enough that
N(n,r) > M, this hints that A2(L) ~ /r (see [30]). It can be checked experi-
mentally in low dimension that this heuristic approximation is very precise. As
shown in Figures 9 and 10, the minimum gaps for which LLL or BKZ retrieve
the shortest vector are once again proportional to the corresponding Hermite
factors, that is in 0.25-1.021" for LLL and 0.48 - 1.012" for BKZ-20.
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4 Running times

In the previous section, we gave experimental estimates on the output quality of
reduction algorithms. In this section, we now analyze the running-time growth to
see if there are surprising phenomenons, and to guess what can be achieved in a
reasonable time. We mainly ran the BKZ routine of NTL with quadratic precision
to avoid floating-point issues, so the running times should not be considered as
optimal.

4.1 Exhaustive search

In low dimension, SVP can be solved exactly by exhaustive search: in practice,
the most efficient method known is Schnorr-Euchner [37]’s enumeration, which is
used as a subroutine in BKZ, and which outperforms the theoretical algorithms
of Kannan [17] and AKS [4] (even though they have a much better theoretical
complexity, see [31]). Given as input a reduced basis (the more reduced the basis,
the faster the enumeration), it outputs the shortest vector in 20(n?) polynomial-
time operations. Figure 11 shows the average experimental running time of the
enumeration (on a 1.7Ghz 64-bit processor), depending on the quality of the
input basis (LLL, BKZ or DEEP). One can see that when the input basis is only
LLL-reduced, the running time looks indeed superexponential 20("*) We also
see that SVP can be solved in dimension 60 within an hour, but the growth of
the curve also shows that a 100-dimensional lattice would take at least 35,000
years. A stronger preprocessing will reduce the curve a bit, but it is unlikely to
make 100-dimensional lattices within reach.

100000 100000
Running time of BKZ in block 10 —i—
¥  Running time of BKZ inddock 20
10000 #  Runningtime of BKZa# block 25 &
“’ Runnig time of BKZ in block 30 -
1000 10000 & Ru‘n?g umez‘ in block 40 --#--
K v A
100 b v
' oM
3 4 1000 » Y L
5 10 s g al
g g 4 T
3 ] “9 bad ‘:‘
¥ 1 ¥
E E 100 ¢ A &
01 $ f KA
* - t
0.01 10 b “9“
Y&
0.001 >
by
i

0.0001
20

1
25 30 35 50 55 60 20 40 60 80 140 160 180 200

blocdize  *° Pensith’
Fig.11. Running time of the Schnorr-|Fig.12. Running time of BKZ in fixed
Euchner exhaustive search, depending on|blocksize.

the preprocessing.
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4.2 BKZ

No good upper bound on the complexity of BKZ and DEEP is known. If §
is the blocksize and n is the lattice dimension, the best upper bound is (ng3)™
polynomial-time operations, which is super-exponential. But this upper bound
does not seem tight: it only takes a few seconds to reduce a 100-dimensional
lattice with blocksize 20. Since the theoretical analysis is not satisfying, it is
very important to assess the experimental running time of BKZ, which is shown
in Figures 13 and 12. Obviously, for fixed dimension, the running time of BKZ

100000 le+07
Running time of BKZ in dim 65 —ll— Total Iterations —ll—
Running time of BKZ in dim 80 Trivial Iteration

Running time of BKZ in dim 120 -#v- ¥ NonTrivial Iteration -

Running time of BKZ in dim 150 - 16406 NoOps lteration -4

10000

100000
1000

10000

time: seconds
time: seconds

100
1000

10

0 5 10 15 25 30 35 40 0 5 10 25 30 35

0. 1 20
b\ocislze %\ockslze

Fig. 13. Running time of BKZ in fixed di-|{Fig. 14. Number of iterations in BKZ in
mension. dimension 100.

increases with the blocksize. But one can observe a brutal increase in the run-
ning time around blocksize 20 to 25 in high dimension, and the slope of the
increase sharpens with the lattice dimension. We tried to determine the cause of
this sudden increase. The increase does not seem to be caused by floating-point
inaccuracies, as experiments with higher floating-point precision led to a similar
phenomenon: Nor is it caused by the cost of the Schnorr-Euchner enumeration:
exhaustive searches typically represent less than 1% of the total reduction time
in blocksize 25. In fact, it seems to be caused by a sudden increase in the num-
ber of calls to the Schnorr-Euchner enumeration. During a BKZ reduction, each
exhaustive search inside a block gives rise to three possibilities:

1. Either the first block basis vector b} is the shortest lattice vector in the
block. Such cases are counted by NoOps in NTL.

2. Either the shortest lattice vector in the block is one of the 3 projected basis
vectors. Such cases are counted by Triv in NTL.

3. Otherwise, the shortest lattice vector is neither of the § projected basis
vectors. Then the algorithm has to do more operations than in the previous
two cases. Such cases are counted by NonTriv in NTL.

After monitoring (see Figure 14), we observed that the NoOps case occurred most
of the time, followed by Triv reductions and NonTriv reductions for blocksizes
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lower than 25. For higher blocksizes, NoOps was still the majority, but NonTriv
iterations occurred more times than Triv iterations.

From Figures 13 and 12, we deduce that blocksizes much higher than 25 are
not realistic in very high lattice dimension: the running time seems to be expo-
nential in the dimension when the blocksize is > 25, This is why we estimated
the feasibility limit of the Hermite factor to roughly 1.01™ in Section 3, based
on Figures 6 and 7: even if we were able to use blocksize 32, we would still not
beat 1.01™.

4.3 DEEP

100000

Running time (in s) Deep, dim=95 —li—
Running time (in s) Deep, dim=145
Running time (in s) Deep, dim=180 -4

10000

1000

100

time: seconds
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1

0.1

0 5 10 15 20 %5 30 35 40 45 50 55
blocksize

Fig. 15. Running time of DEEP in fixed dimension.

Figure 15 gives the running time of the DEEP algorithm implemented in
NTL, depending on the blocksize. Compared to Figure 13, we see that the run-
ning time of DEEP is much more regular than BKZ: there is no sharp increase
at blocksize 20-25; the running time grows exponentially on a regular basis. Also
the slope of the running-time of DEEP (in logarithmic scale) does not increase
with the dimension of the lattice. This suggests that DEEP can be run in very
high dimension with much higher blocksize than BKZ, which may make DEEP
preferable to BKZ. However, Figure 7 showed that even with much higher block-
size, we do not expect to go significantly below the 1.01™ prediction for the
Hermite factor.

5 Comparison with former lattice-based attacks

In Section 3, we tried to predict the asymptotical behaviour of the best reduc-
tion algorithms known. In this section, we compare our predictions with the
largest lattice experiments ever done: surprisingly, our predictions seem consis-
tent with the experiments, and may explain in retrospect why certain lattice
attacks worked, but not others.
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5.1 The GGH Challenges

In 1999, Nguyen [25] broke four GGH-challenges [12] in dimension 200, 250,
300 and 350, but the 400-dimensional challenge remained unbroken. The attack
heuristically transformed a CVP-instance into a Unique-SVP instance, where a
heuristic value for the gap of the Unique-SVP instance was known. The Unique-
SVP instances arising from GGH-challenges look a bit like the first class of semi-
orthogonal lattices: this is because GGH secret bases are slight perturbations of
a multiple of the identity matrix.

By extrapolating the experimental results of Section 3, we can make a very
rough guess of what should be the gap limit for which the BKZ-20 algorithm
would solve the Unique-SVP instance corresponding to the GGH challenge. The
results are given in Table 2. Even though the prediction 0.18 - 1.012" is only

[Dimension n | 200 | 250 [ 300 | 350 | 400 ]
Estimation of the GGH gap| 9.7 9.4 9.5 9.4 9.6
Gap estimate for BKZ-20| 2.00 3.55 6.44 11.71 21.25
from Section 3

Algorithm used in [25] BKZ-20|BKZ-20|BKZ-20|pruned-BKZ-60|Not broken

Table 2. Comparing predictions with past experiments on the GGH challenges.

a rough estimate, the difference of magnitude shows that in retrospect, it was
not a surprise that Nguyen [25] solved the GGH-challenges with BKZ-20 in
dimension 200, 250 and 300. In dimension 350, the prediction is a bit worse,
which is consistent with the fact that BKZ-20 failed: Nguyen [25] had to use a
pruned BKZ-reduction to solve the GGH-350 challenge. In dimension 400, the
prediction is much worse than the expected gap, and it is therefore not a surprise
that GGH-400 has not been solved. It seems that we would need much stronger
reduction algorithms to solve GGH-400.

Recently, a weak instantiation of GGH was broken in [14], by solving Unique-
SVP instances of polynomial gap using LLL up to at least dimension 1000. For
many parameters, the numerical gap given in [14] is much lower than what
could be hoped from our predictions for LLL, but there is a simple explanation.
The problem considered in [14] is actually much easier than a general Unique-
SVP problem: it is the embedding of a CVP problem when we already know a
nearly-orthogonal basis and the target vector is very close to the lattice. This
implies that LLL only performs a size-reduction of the last basis vector, which
immediately discloses the solution. This also explains why the LLL running times
of [14] were surprisingly low in high dimension.

Recently, a weak instantiation of GGH was broken in [14], by solving Unique-
SVP instances of polynomial gap using LLL, up to at least dimension 1000.
Surprisingly, for many parameters, the numerical gap of the instances solved
in [14] is much lower than what could be hoped from our predictions for LLL. But
there is an explanation. The problem considered in [14] is actually much easier
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than a general Unique-SVP problem: it is the embedding of a CVP problem
when we already know a nearly- orthogonal basis and the target vector is very
close to the lattice. This implies that LLL is fed with a special input basis (not a
random basis), so special that LLL will only perform a size-reduction of the last
basis vector, which will immediately disclose the solution. This explains why the
LLL running times of [14] were surprisingly low in very high dimension. In other
words, the attacks of [14] could even have been carried out without LLL.

5.2 The NTRU lattices

The NTRU cryptosystem [15] is based on the hardness of lattice problems for the
so-called NTRU lattices described in [15]. The key generation process of NTRU
has changed several times over the past ten years: in the original article [15],
the security was based on the hardness of SVP of the NTRU lattices, whereas
more recent versions of NTRU are more based on the hardness of CVP in NTRU
lattices. To simplify, we compare our predictions with the original description of
NTRU based on SVP. In this case, NTRU lattices are essentially characterized
by two parameters: N and ¢ such that the dimension is 2V, the volume is ¢",
and there are heuristically N linearly independent shortest vectors of norm a
bit smaller than /g (and which are related to the secret key). Such lattices
also have 2N trivial short vectors of norm ¢ which are already known. Because
NTRU lattices do not have a unique shortest vector, it is not clear if this fits
any of the models of Section 3. But if we ever find the shortest vector, we will
have found a non-zero vector smaller than ¢, which means solving Hermite-SVP
for a suitable factor. Since we know the lattice volume, we can estimate the
corresponding Hermite factor for all three historical NTRU parameter sets, as
shown in Table 3. On the other hand, Section 3 suggests that we should be able

Value of (N, q) (107,64) | (167,128) | (503,256)
Hermite factor required|(1.00976)2™ [(1.00729)?" [(1.00276)>Y
Table 3. Hermite factor required to solve the three historical NTRU parameter sets.

to achieve a Hermite factor of roughly 1.012V: this means that out of the three
NTRU parameter sets, only the first one (N, ¢) = (107,64) seems close to what
can be achieved in a reasonable time. This parameter set was not supposed to be
very secure (see [15]), but to our knowledge, no NTRU-107 lattice has ever been
broken by direct lattice reduction. The only successful lattice attack was that of
May in 1999 (see [22]), which combined exhaustive search with lattice reduction
of smaller lattices. Surprisingly, it was estimated in [15] that NTRU-107 could
be broken within a day using raw lattice reduction, but no actual break was
reported: the experiments given in [15] only broke slightly smaller values of N.
In fact, if we compute the Hermite factor corresponding to each NTRU instance
broken in [15] using BKZ, similarly to Table 3, we obtain a Hermite factor of the
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form ¢*V where ¢ varies between 1.0116 and 1.0186: such values of ¢ are clearly

consistent the results of Section 3.

Still, since (1.00976)%V of Table 3 is very close to the prediction 1.012V it
seems reasonable to believe that NTRU-107 should be within reach of current
algorithms, or small improvements. We therefore made experiments with three
NTRU-107 lattices generated at random. Out of these three, only one was broken
with BKZ: during the computation of BKZ-25, the shortest vector was found,
but BKZ-25 did not even terminate. But BKZ did not succeed with the other
lattices, and we stopped the computation after a few days. We then tested a
stronger reduction algorithm on all three lattices, inspired by Figure 13:

— We partially reduce the NTRU-107 lattice with BKZ with increasing block-
size for a few hours.

— We project the lattice over the orthogonal complement of the first 107 vec-
tors (we chose 107 based on the GSL slope): this gives a 107-dimensional
projected lattice L’ whose shortest vectors might be the projections of the
initial 214-dimensional lattice L.

— We run BKZ on the projected lattice L’ with increasing blocksize until an
unusually short vector is found: because L’ has much smaller dimension L,
Figure 13 implies that we can run much higher blocksize. In practice, we
could reach blocksize 40. If the short vector is the projection of one of the
shortest vectors of L, we can actually recover a shortest vector of L.

This experiment worked for all three NTRU-107 lattices: we were always able
to recover the secret key, using BKZ of blocksize between 35 and 41 on the pro-
jected lattice, and the total running time was a few hours. By comparison, raw
BKZ reduction only worked for one of the three lattices. This confirms that the
Hermite factor prediction 1.01™ gives a good idea of what can be reached in prac-
tice. And knowing better the limits and the performances of current algorithms
might help to design better ones.
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