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t. Standard se
urity notions for en
ryption s
hemes do notguarantee any se
urity if the en
rypted messages depend on the se
retkey. Yet it is exa
tly the stronger notion of se
urity in the presen
e ofkey-dependent messages (KDM se
urity) that is required in a number ofappli
ations: most prominently, KDM se
urity plays an important role inanalyzing 
ryptographi
 multi-party proto
ols in a formal 
al
ulus. Butalthough often assumed, the mere existen
e of KDM se
ure s
hemes isan open problem. The only previously known 
onstru
tion was provense
ure in the random ora
le model.We present symmetri
 en
ryption s
hemes that are KDM se
ure in thestandard model (i.e., without random ora
les). The pri
e we pay is thatwe a
hieve only a relaxed (but still useful) notion of key-dependent mes-sage se
urity. Our work answers (at least partially) an open problemposed by Bla
k, Rogaway, and Shrimpton. More 
on
retely, our 
ontri-butions are as follows:1. We present a (stateless) symmetri
 en
ryption s
heme that is infor-mation-theoreti
ally se
ure in fa
e of a bounded number and lengthof en
ryptions for whi
h the messages depend in an arbitrary wayon the se
ret key.2. We present a stateful symmetri
 en
ryption s
heme that is 
ompu-tationally se
ure in fa
e of an arbitrary number of en
ryptions forwhi
h the messages depend only on the respe
tive 
urrent se
retstate/key of the s
heme. The underlying 
omputational assumptionis minimal: we assume the existen
e of one-way fun
tions.3. We give eviden
e that the only previously known KDM se
ure en-
ryption s
heme 
annot be proven se
ure in the standard model (i.e.,without random ora
les).Keywords: Key-dependent message se
urity, se
urity proofs, symmetri
en
ryption s
hemes.1 Introdu
tionProofs of se
urity are a good and sound way to establish 
on�den
e in an en
ryp-tion system. However, \proof" is a bit misleading here: usually, a se
urity proofis not an absolute statement, but merely shows that under 
ertain assumptions,the s
heme is resistant against a 
ertain 
lass of atta
ks. Nothing is guaranteedif the assumptions are invalidated or atta
ks outside the 
onsidered 
lass takepla
e. Therefore, it is 
ru
ial that



{ the underlying assumptions are plausible, and{ the 
onsidered 
lass of atta
ks is as general as possible.Additionally, en
ryption s
hemes are most often used only as a building blo
kin a larger proto
ol 
ontext, and thus{ the 
onsidered 
lass of atta
ks should allow for meaningful and general anal-ysis of the en
ryption s
heme in a larger proto
ol 
ontext.Indistinguishability of 
iphertexts. The most established 
lass of atta
ks
onsists of atta
ks targeted against the indistinguishability of 
iphertexts (IND-CPA [16℄, resp. IND-CCA [21℄ atta
ks). Here, adversary A's goal is to win thefollowing game: �rst, A 
hooses two messages m0;m1, then gets the en
ryption
b of mb (for a random b 2 f0; 1g), and �nally outputs a guess b0 for b. NowA wins if b = b0, i.e., if it guessed 
orre
tly whi
h message was en
rypted. Thes
heme is se
ure if no adversary wins (signi�
antly) more often than in half ofthe 
ases. Intuitively, se
urity in this sense implies that \one 
iphertext lookslike any other."The IND-CPA and IND-CCA notions have been tremendously su

essful andeven proved equivalent to a number of alternative and arguably not less appealingnotions (
f. [5,6,10,19℄). At the same time, IND-CPA and IND-CCA se
urity 
anbe a
hieved under various plausible number-theoreti
 assumptions [16,13,11℄.Key-dependent message se
urity. However, there is one se
urity propertythat is useful and important in many appli
ations, yet is not 
overed by IND-CPA or IND-CCA se
urity: se
urity in presen
e of key-dependent messages. More
on
retely, imagine a s
enario in whi
h the adversary 
an request en
ryptions ofarbitrary (but eÆ
iently evaluatable) fun
tions of the se
ret de
ryption key. Inother words, the adversary 
hooses a fun
tion g and gets the en
ryption of g(K)under se
ret key K. Note that this is something the adversary may not be ableto generate on its own, not even in the publi
-key setting. The adversary's goalis now to distinguish su
h a key-dependent en
ryption from an en
ryption of arandom message. Se
urity of an en
ryption is a useful notion to 
onsider sin
e{ in relevant pra
ti
al settings, this notion is ne
essary: 
onsider, e.g., en
rypt-ing your hard drive (whi
h may 
ontain the se
ret key, e.g., on the swappartition, or in a �le that 
ontains your se
ret keyring),{ 
ertain proto
ols use key-dependent message se
urity expli
itly as a te
hni
altool [8℄,and, possibly most importantly from a theoreti
al perspe
tive,{ key-dependent message se
urity is a key ingredient for showing that se
urityresults that are proven in a formal 
al
ulus are also 
omputationally sound.This latter reason may 
ome a bit surprising, hen
e we explain it in more detail.Formal se
urity proofs. The idea to automate se
urity proofs 
an be tra
edba
k to the seminal work of Dolev and Yao [14℄, who des
ribed a formal 
al
u-lus to analyze se
urity proto
ols. To make the 
al
ulus a

essible to automati
provers, however, base primitives like en
ryption (or, later, signatures) had to2



be over-idealized, dis
onne
ting them from their 
on
rete 
omputational imple-mentations. What was missing for almost 20 years was a soundness result, i.e.,a result that essentially states \whatever 
an be proven in the abstra
t 
al
ulusholds as well in the 
ryptographi
 world, where the ideal en
ryption operator isimplemented with an en
ryption s
heme."But �nally, the soundness result by Abadi and Rogaway [1℄ 
onne
ted theformal, ma
hine-a

essible world with the 
ryptographi
 world. However, withstandard en
ryption s
hemes, only a 
ertain subset of possible proto
ols 
ouldbe 
onsidered, namely those that only 
ontain expressions whi
h ful�l a 
ertain\a
y
li
ity" 
ondition.3 To a
hieve full generality, a stronger requirement (se
u-rity in the presen
e of key-dependent messages) on the en
ryption s
heme wasneeded. This is not a pe
uliarity of the approa
h of Abadi and Rogaway; similarproblems o

ur in related approa
hes, e.g. [20,2,4℄. In parti
ular, Ad~ao et al. [2℄show that in a 
ertain sense, key-dependent message se
urity is a ne
essity forformal soundness.Related work. Around the time when the need for key-dependent se
urity hadbeen realized, formal 
hara
terizations of the se
urity notion were given in [8,7℄.Moreover, [7℄ showed a simple symmetri
 en
ryption s
heme to be se
ure withrespe
t to their notion. However, their s
heme was proven in the random ora
lemodel, and the proof made heavy use of the \ideal" nature of the random ora
le(more details on this in Se
tion 3). Bla
k et al. posed the question of a
hievingkey-dependent se
urity in the standard model.Ba
kes et al. [3℄ 
onsider several strengthenings of the de�nition from [7℄.They prove stru
tural results among the notions (in
luding a way to \pat
h" as
heme that is se
ure in the sense of [7℄ to mat
h the notions from [3℄). However,Ba
kes et al. do not give an a
tual 
onstru
tion of a se
ure s
heme.Our work. Our goal is to a
hieve key-dependent message se
urity, as de�nedby Bla
k et al., in the standard model. We present several results:{ a (stateless) symmetri
 en
ryption s
heme that is information-theoreti
allyse
ure in fa
e of a bounded number and length of en
ryptions for whi
h themessages depend in an arbitrary way on the se
ret key.{ a stateful symmetri
 en
ryption s
heme that is 
omputationally se
ure infa
e of an arbitrary number of en
ryptions for whi
h the messages dependonly on the respe
tive 
urrent se
ret state/key of the s
heme. The underlying
omputational assumption is minimal: we assume the existen
e of one-wayfun
tions.We also stress the stri
tness of key-dependent message se
urity:{ We give eviden
e that the only previously known KDM se
ure en
ryptions
heme 
annot be proven se
ure in the standard model (i.e., without randomora
les).43 They also did only prove se
urity against passive adversaries. However, a
tive se
u-rity was a
hieved by subsequently by [20,2,4℄.4 A similar, but te
hni
ally di�erent result is also 
ontained in the independentwork [17℄. 3



Note. Re
ently, we learned about the (
on
urrent and independent) work [17℄of Halevi and Kraw
zyk. They are interested more generally in keyed primi-tives (su
h as pseudorandom fun
tions, PRFs) whi
h are se
ure in fa
e of key-dependent inputs. They also show that an en
ryption s
heme 
onstru
ted fromsu
h a PRF inherits the underlying PRF's resilien
e against key-dependent in-puts/messages. In parti
ular, Halevi and Kraw
zyk 
onstru
t a PRF (and a
orresponding en
ryption s
heme) that is se
ure in fa
e of inputs whi
h dependin an arbitrary, but known-a-priori way on the key. (That is, for ea
h way inwhi
h the query may depend on the key, they give a PRF whi
h is se
ure in fa
eof su
h inputs.)In 
ontrast to that, we are interested in 
onstru
ting en
ryption s
hemesthat are se
ure in fa
e of (en
ryptions of) messages that depend in an arbitrary,adaptively determined way on the key. Unfortunately, neither our s
hemes northe s
hemes of [17℄ 
an handle the important 
ase of non-trivial key 
y
les, thatis, 
y
li
 
hains of en
ryptions of key Ki under key Ki+1 mod n.
2 PreliminariesBasi
 notation. Throughout the paper, k 2 N denotes the se
urity parameterof a given 
onstru
tion. Intuitively, a larger se
urity parameter should providemore se
urity, but a s
heme's eÆ
ien
y is also allowed to degrade with growingk. A negligible fun
tion vanishes faster than any given polynomial. The statis-ti
al distan
e between two random variables X and Y is denoted by Æ(X ; Y ).The R�enyi entropy H2(X) of a random variable X is de�ned as H2(X) :=�Px log2 Pr [X = x℄2. Two families (Xk) and (Yk) of random variables are 
om-putationally indistinguishable (written X � Y ) if for every PPT (probabilisti
polynomial-time) algorithm A, the fun
tion jPr [A(Xk) = 1℄� Pr [A(Yk) = 1℄j isnegligible in k. A family UHF of universal hash fun
tions is a family of fun
-tions h : f0; 1gn ! f0; 1gm with the property that for x; x0 2 f0; 1gn withx 6= x0, all y; y0 2 f0; 1gm, and uniformly 
hosen h 2 UHF , we have thatPr[h(x) = y; h(x0) = y0℄ = 2�2m.We will further need a strengthened version of the leftover hash lemma thattakes into a

ount additional information S about the randomness K and someadditional information Q unrelated to K.Lemma 1 (Leftover Hash Lemma, extended). Let K, Q, and S be randomvariables over bitstrings of �xed length. Let h be uniformly distributed over afamily UHF of universal hash fun
tions. Let U be uniformly distributed overbitstrings of length jh(K)j. Assume the following independen
es:{ U and (h; S;Q) are independent.{ K and Q are independent.{ h and (K;S;Q) are independent.Then the following bound holds:Æ(h; h(K); S;Q ; h; U; S;Q) � 2jSj+jh(K)j=2�H2(K)=2�1:
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In a typi
al appli
ation of this lemma, h, K, and Q would be mutually inde-pendent, and S would be a fun
tion of (h;K;Q) (say, a side 
hannel). Further-more, U would be some 
ompletely independent random variable, representingthe ideal randomness. This would then imply all the independen
e 
onditions inthe lemma.Proof. In the following, s; q; k range over all values taken by S, Q, K, respe
-tively. By applying the de�nition of the statisti
al distan
e, we have" := Æ(h; h(K); S;Q ; h; U; S;Q)=Xs;q Pr[S = s;Q = q℄ Æ(h; h(K)jS = s;Q = q ; h; U jS = s;Q = q): (1)Here Xj(S = s) stands for the distribution of X under the 
ondition S = s. Sin
eh and (K;S;Q) are independent, hj(S = s;Q = q) is a universal hash-fun
tion.And sin
e U is independent of (S;Q; h), we have that U is uniformly distributedand independent of h given S = s;Q = q. Further, sin
e by assumption h isindependent of (K;S;Q), we have that h and K are independent given S =s;Q = q. Thus the leftover hash lemma in its basi
 form [18℄ applies, and we getÆ(h; h(K)jS = s;Q = q ; h; U jS = s;Q = q) � 2jh(K)j=2�H2(Kj(S=s;Q=q))=2�1:Combining this with (1) we get" �Xs;q Pr[S = s;Q = q℄ � 2jh(K)j=2�H2(Kj(S=s;Q=q))=2�1
=Xs;q Pr[S = s;Q = q℄ � 12q2jh(K)j �Xk Pr[K = kjS = s;Q = q℄2
�Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[S = sjQ = q℄2 � Pr[K = kjS = s;Q = q℄2
=Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[K = k; S = sjQ = q℄2
�Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[K = kjQ = q℄2(�)=Xs;q Pr[Q = q℄ � 12q2jh(K)j �Xk Pr[K = k℄2
=Xs;q Pr[Q = q℄ � 12p2jh(K)j � 2�H2(K)
=Xs;q Pr[Q = q℄ � 2jH(k)j=2�H2(K)�1
=Xs 2jH(k)j=2�H2(K)�1 = 2jSj+jH(k)j=2�H2(K)�1:Here (�) uses that Q and K are independent. ut
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Key-dependent message se
urity. For formalizing key-dependent messagese
urity, we use a variation on the de�nition of Bla
k et al. [7℄:De�nition 2 (KDM se
urity, standard model, symmetri
 setting). Let� = (K; E ;D) be a symmetri
 en
ryption s
heme, let K := (K1; : : : ;Kn) bese
ret keys (where n is polynomial in the se
urity parameter), and let A be anadversary. Let{ RealK be the ora
le that on input g; � returns C  E(1k;K�; g(K)), and{ FakeK be the ora
le that on input g; � returns C  E(1k;K�; U) for anindependently uniformly sele
ted fresh U 2 f0; 1gjg(K)j.In both 
ases, g is en
oded as a 
ir
uit.5 The KDM advantage of A isAdvKDM� (A) := ���Pr hK $ K : ARealK(�) = 1i� Pr hK $ K : AFakeK(�) = 1i���Here K $ K means that ea
h key Ki is 
hosen independently using K.We say that � is KDM se
ure i� for every PPT adversary A and everypolynomial n, the advantage fun
tion AdvKDM� (A) is negligible in the se
urityparameter. We require that A only queries its ora
le with �xed-length fun
tions g,i.e., jg(K)j is the same for all values of K.The relation to real-or-random se
urity. De�nition 2 bears a great re-semblan
e to the real-or-random (ROR-CPA) de�nition for en
ryption s
hemesfrom [5℄. The main di�eren
e is that De�nition 2 equips the adversary withan ora
le that delivers en
ryptions of key-dependent messages (i.e., evaluations)g(K). The way in whi
h these messages depend on the keys is 
ompletely up tothe adversary; the only 
onstraint is that g must be eÆ
iently evaluatable andhave a �xed output length.On a
hieving KDM se
urity and a
tive KDM se
urity. Using the equiv-alen
e of ROR-CPA and IND-CPA se
urity from [5℄, it is easy to see that De�ni-tion 2 is stri
tly stronger than IND-CPA se
urity. A natural adaption of De�ni-tion 2 to a
tive atta
ks|su
h a notion is 
alled AKDM se
urity in [3℄|
onsistsin equipping the adversary with a de
ryption ora
le that is restri
ted in the usualsense to prevent trivial atta
ks. And similarly to the passive 
ase, it is easy to seethat AKDM se
urity is stri
tly stronger than IND-CCA se
urity. On the otherhand, on
e a s
heme is KDM se
ure, it 
an be easily and without (mu
h) loss ofeÆ
ien
y upgraded to AKDM se
urity, as formalized and proved in [3℄. Hen
e,the main diÆ
ulty lies in �nding a s
heme that is KDM se
ure in the �rst pla
e.In the following, this will be our fo
us.3 The s
heme of Bla
k et al.De�nition 2 is very hard to a
hieve. In fa
t, the only 
onstru
tion that is known,due to Bla
k et al. [7℄, to a
hieve De�nition 2 is in the random ora
le model. It5 This has the side-e�e
t that for a polynomial-time adversary A, the fun
tion g isalso polynomial-time 
omputable. 6



will be very useful to take a 
loser look at their s
heme. We will argue that in avery 
on
rete sense, nothing less than a random ora
le will do for their s
heme.Hen
e, their 
onstru
tion merely shows how powerful random ora
les are, butdoes not give a hint on how to a
hieve KDM se
urity in the standard model.This 
onstitutes one motivation for our up
oming weakening of KDM se
urity.S
heme 3 (The s
heme ver). De�ne the symmetri
 en
ryption s
heme ver =(K; E ;D) with se
urity parameter k 2 N, message spa
e f0; 1gk and key spa
ef0; 1gk through{ K(1k) outputs a uniform random key K 2 f0; 1gk.{ E(1k;K;M) samples R $ f0; 1gk and outputs the 
iphertext (R;H(KjjR)�M).{ D(1k;K; (R;D)) outputs the message H(KjjR)�D.The se
urity of ver with a random ora
le. Bla
k et al. proveTheorem 4 (Se
urity of ver [7℄). If H is a random ora
le, then ver is KDMse
ure.The main idea of the proof is to 
onsider an event bad, where bad o

urs i�1. the adversary queries H at any point KjjR that was previously used foren
ryption, or2. one of the fun
tions g submitted to the en
ryption ora
le queries H at the
urrently used point KjjR.If bad does not o

ur, the adversary's view is identi
al in the Real and Fake ex-periments, thanks to the fa
t that di�erent random ora
le queries H(X); H(Y )(X 6= Y ) are statisti
ally independent: ea
h message is padded with 
ompletelyfresh and message-independent randomness. Hen
e, by showing (with an indu
-tive argument) that bad o

urs only with small probability, [7℄ show the s
hemever KDM se
ure.The inse
urity of ver without a random ora
le. Put informally, the proofof ver utilizes one essential property of the random ora
le H: knowledge aboutarbitrary many values H(Yi) (with Yi 6= X) does not yield any informationabout H(X). This use of a random ora
le as a provider of statisti
al indepen-den
e is what makes the proof fail 
ompletely with any 
on
rete hash fun
tionused in pla
e of the random ora
le. There is no hope for the proof strategy tosu

eed without random ora
les. A little more formally, we 
an show that in therandom ora
le model, there exists a spe
i�
 hash fun
tion H that has a numberof generally very useful properties: H is 
ollision-resistant, one-way, 
an be in-terpreted as a pseudorandom fun
tion (in a way 
ompatible with ver), and Hmakes ver IND-CPA. But H makes ver 
ompletely inse
ure in the presen
e ofkey-dependent messages. Hen
e, there 
an be no fully bla
k-box KDM se
urityproof for ver that relies on these properties of H alone.Theorem 5 (Inse
urity of ver). Relative to a random ora
le O, there existsa fun
tion H su
h that 7



1. H is 
ollision-resistant,2. for any fun
tion p(k) 2 k�(1), H is one-way w.r.t. the uniform input distri-bution on f0; 1gp(k),3. the fun
tion FK(R) := H(KjjR) is a pseudorandom fun
tion with seed K,4. the s
heme ver, instantiated with H, is IND-CPA se
ure, but5. the s
heme ver, instantiated with H, is not KDM se
ure.Proof (sket
h). Assume for simpli
ity that the se
urity parameter k is even. Saythat the random ora
le O maps arbitrary bitstrings to k-bit strings. Then denoteby O`(x) the �rst k=2 bits of O(x). Now 
onsider the fun
tion H : f0; 1g� !f0; 1gk withH(x) := (O(x) for jxj 6= 2k;O(x`)� (O`(x)jjO`(O`(x))) for x = x`jjxr and jx`j = jxrj = k:We show the 
laimed properties for H:1. H is 
ollision-resistant. It is 
lear that 
ollisions H(x) = H(y) (withx 6= y) 
annot be found eÆ
iently if x 6= 2k or y 6= 2k. So assume x = x`jjxrand y = y`jjyr for jx`j = jxrj = jy`j = jyrj = k. Collisions of this form implyO`(x`)�O`(x) = O`(y`)�O`(y) and thusO`(x`)�O`(y`) = O`(x)�O`(y): (2)If x` = y`, then this 
onstitutes a 
ollision in O`, so we may assume x` 6= y`. Butthe distributions of O` on k-bit strings and on 2k-bit strings are independent andboth uniform. Hen
e, �nding x and y to satisfy (2) requires a superpolynomialnumber of queries to O` (resp. O) with overwhelming probability.2. H is one-way w.r.t. the uniform distribution on f0; 1gk. For p(k) = 2k,this follows from 
ollision-resistan
e and the fa
t that H is 
ompressing: Sin
ethe preimages of H are not unique, if we are able to �nd a preimage x0 of H(x)for random x 2 f0; 1g2k, with noti
eable probability we will have x 6= x0. Thisallows to �nd 
ollisions eÆ
iently. For details see [12℄. For p(k) 6= 2k, this followsby de�nition of H and the fa
t that the random ora
le is one-way.3. FK(R) := H(KjjR) is a pseudorandom fun
tion. Consider an adversaryA that has ora
le a

ess to O and to FK for uniformly 
hosen K. We denote A'si-th query to FK by Ri. Without loss of generality, assume that A never asksfor the same FK evaluation twi
e, so the Ri are pairwise distin
t. Furthermore,let Xi := KjjRi, and Yi := O`(KjjRi). We 
laim that A doesn't query O withK or any of the values Xi; Yi, ex
ept with negligible probability.We prove our 
laim indu
tively as follows. Let Ei denote the event that Aqueries O with a value that starts with K prior to the i-th FK query. Clearly,E1 happens with exponentially small probability. So �x an i � 1. To 
ompleteour proof, it is suÆ
ient to show that under 
ondition :Ei, the probability forEi+1 to happen is bounded by a negligible fun
tion that does not depend on i.8



Assume that :Ei holds. That means that, given A's view up to and in
ludingthe (i�1)-th FK query, the keyK is uniformly distributed among all k-bit values(or k-bit pre�xes of 2k-bit values) not yet queried by A. By the polynomialityof A, this means that, from A's point of view, K is uniformly distributed on anexponentially-sized subset of 0; 1k. But this means that until the i-th FK query,A has only an exponentially small 
han
e to query one of K;Xj ; Yj (j < i).Hen
e Ei+1 j :Ei happens only with exponentially small probability.Summing up, A never queries O with K or any of the Xi; Yi, ex
ept with neg-ligible probability. Hen
e, FK 
an be substituted with a truly random fun
tionwithout A noti
ing, and the 
laim follows.4. ver with H is IND-CPA. Follows immediately from 3.5. ver with H is not KDM se
ure. A su

essful KDM adversary A on veris the following: A asks its en
ryption ora
le for an en
ryption of O(K) (e.g.,using g with g(x) = O(x) as input to the ora
le). In the real KDM game, the
iphertext will be(R;H(KjjR)�O(K)) = (R;O`(KjjR)jjO`(O`(KjjR)));and hen
e of the form (R; tjjO`(t)) for some t, whi
h 
an be easily re
ognizedby A. But in the fake KDM game, the 
iphertext will have the form (R;U) fora uniformly and independently distributed U , whi
h is generally not of the form(R; tjjO`(t)). Hen
e, A 
an su

essfully distinguish real en
ryptions from fakeones. utHalevi and Kraw
zyk's example. Halevi and Kraw
zyk give a di�erent ex-ample of the\non-implementability"of ver (see [17, Negative Example 4℄). Theyargue that the random ora
le H in ver 
annot be implemented with a PRF thatis 
onstru
ted from an ideal 
ipher using the Davies-Meyer transform. Their ex-ample has the advantage of being less arti�
ial, while being formulated in theideal 
ipher model.
4 Information-theoreti
 KDM se
uritySin
e key-dependent message se
urity is very hard to a
hieve, we start with twosimple s
hemes that do not a
hieve full KDM se
urity, but serve to explain someimportant 
on
epts.4.1 The general idea and a simple s
heme (informal presentation)First observe that the usual one-time pad C =M�K (where C is the 
iphertext,M the message, and K the key) does not a
hieve KDM se
urity. En
ryption ofM = K results in an all-zero 
iphertext that is 
learly distinguishable from arandom en
ryption. However, the slight tweakC = (h;M � h(K)) (h independently drawn universal hash fun
tion)9



does a
hieve a 
ertain form of key-dependent message se
urity: the pad h(K)that is distilled from K is indistinguishable from uniform and independent ran-domness, even if h and some arbitrary (but bounded) information M = M(K)about K is known. (When using suitable bitlengths jKj and jM j, this 
an beshown using the leftover hash lemma [18℄.) So the en
ryption M � h(K) of onesingle message M = M(K) looks always like uniform randomness. Hen
e thes
heme is KDM se
ure in a setting where the en
ryption ora
le is only usedon
e (but on the other hand, information-theoreti
 se
urity against unboundedadversaries is a
hieved).4.2 A more formal generalization of the simple s
hemeOf 
ourse, one would expe
t that by expanding the key, the s
heme stays se
ureeven after multiple (key-dependent) en
ryptions. This is true, but to show this,a hybrid argument and multiple appli
ations of the leftover hash lemma arene
essary. We formalize this statement now.S
heme 6 (The s
heme p-BKDM (for\p-bounded KDM")). Let p 2 Z[k℄be a positively-valued polynomial, let `(k) := (2p(k) + 3)k, and let UHF be afamily of universal hash fun
tions that map `(k)-bit strings to k-bit strings.De�ne the symmetri
 en
ryption s
heme p-BKDM = (K; E ;D) with se
urityparameter k 2 N, message spa
e f0; 1gk, and key spa
e f0; 1g`(k) through� K(1k) outputs a uniform random key K 2 f0; 1g`(k).� E(1k;K;M) samples h $ UHF and outputs the 
iphertext C = (h; h(K) �M).� D(1k;K; (h;D)) outputs the message h(K)�D.De�nition 7 (Bounded KDM se
urity). Let p 2 Z[k℄ be a positively-valuedpolynomial. Then a symmetri
 en
ryption s
heme � is p-bounded KDM se
ureif it is KDM se
ure against PPT adversaries that query the en
ryption ora
leat most p(k) times. Further, � is information-theoreti
ally p-bounded KDMse
ure if it is KDM se
ure against arbitrary (i.e., 
omputationally unbounded)adversaries that query the en
ryption ora
le at most p(k) times.Theorem 8 (Bounded KDM se
urity of p-BKDM). The s
heme p-BKDMis information-theoreti
ally p-bounded KDM se
ure.Proof. In the following, we abbreviate xi; ::; xj with xi::j for all variables x. Letn be the number of keys used. Let an adversary A be given that queries theen
ryption ora
le at most p(k) times. Without loss of generality we 
an assumethe adversary to be deterministi
 (by �xing the random tape that distinguishesbest) and that it performs exa
tly p(k) queries. In the i-th en
ryption in the realexperiment, let �i denote the index of the key that has been used, let hi be thehash fun
tion 
hosen by the en
ryption fun
tion, let mi be the message that isen
rypted, and let 
i be the se
ond 
omponent of the resulting 
iphertext (i.e.,(hi; 
i) is the i-th 
iphertext). Sin
e the adversary is deterministi
, mi dependsdeterministi
ally from the keysK1;n and the 
iphertexts 
1::i�1; h1::i�1, i.e., there10



are deterministi
 fun
tions f̂i withmi = f̂i(K1;n; 
1::i�1; h1::i�1). Similarly, thereare deterministi
 fun
tions �̂i su
h that �i = �̂i(
1::i�1; h1::i�1).Let Ui be independent uniformly distributed random variables on f0; 1gk thatare independent of all random variables de�ned above. Let"i := Æ(h1::i; 
1::i ; h1::i; U1::i)To show that the s
heme is information-theoreti
ally p-bounded KDM se
ure,i.e., that the adversary 
annot distinguish the real and the fake experiment, itis suÆ
ient to show that "p(k) is negligible sin
e the view of A 
an be determin-isti
ally 
omputed from h1::p(k); 
1::p(k).Fix some i 2 f1; : : : ; p(k)g. Let K := K�i , Q := h1::i�1, S := (mi; 
1::i�1),h := hi and let U be uniformly distributed on f0; 1gk and independent of(K;Q; S; h). The following 
onditions hold by 
onstru
tion:{ h is a universal hash fun
tion.{ U is uniformly distributed and independent of (h; S;Q).{ K and Q are independent.{ h is independent of (K;S;Q).So the 
onditions for Lemma 1 are ful�lled and we haveÆ(h; h(K); S;Q ; h; U; S;Q) � 2jSj+jh(K)j=2�H2(K)=2�1 = 2ik+k=2�`(k)=2�1 � 2�kand thusÆ(h1::i; 
i; 
1::i�1 ; h1::i; Ui; 
1::i�1)� Æ(h1::i; hi(K�i);mi; 
1::i�1 ; h1::i; U;mi; 
1::i�1) � 2�k (3)Sin
e (hi; Ui) is independent of (h1::i�1; 
1::i�1; U1::i�1) by 
onstru
tion, from(4.2) we have Æ(h1::i; Ui; 
1::i�1 ; h1::i; Ui; U1::i�1) = "i�1 and hen
e using (3)and the triangle inequality for the statisti
al distan
e, we have"i = Æ(h1::i; 
i; 
1::i�1 ; h1::i; Ui; U1::i�1) � 2�k + "i�1:Sin
e "0 = 0, it follows that "p(k) � p(k) � 2�k is negligible. ut4.3 Dis
ussionThe usefulness of bounded KDM se
urity. Our s
heme p-BKDM 
an beused in any proto
ol where the total length of the en
rypted messages does notdepend on the length of the key. At a �rst glan
e, this restri
tion seems to defeatour purpose to be able to handle key 
y
les: it is not even possible to en
rypt akey with itself. However, a 
loser inspe
tion reveals that key dependent messageso

ur in two kinds of settings. In the �rst setting, a proto
ol might make expli
ituse of key 
y
les in its proto
ol spe
i�
ation, e.g., it might en
rypt a key withitself (we might 
all this intentional key 
y
les). In this 
ase, p-BKDM 
annot beused. In the se
ond setting, a proto
ol does not expli
itly 
onstru
t key 
y
les,but just does not ex
lude the possibility that|due, e.g., to some leakage of11



the key|some messages turn out to depend on the keys (we might 
all thisunintentional key 
y
les). In this 
ase, the proto
ol does not itself 
onstru
tkey 
y
les (so the restri
tion of p-BKDM that a message is shorter than thekey does not pose a problem), but only requires that if key 
y
les o

ur theproto
ol is still se
ure. But this is exa
tly what is guaranteed by p-BKDM. Sofor the|possibly mu
h larger|
lass of proto
ols with unintentional key 
y
lesthe p-BKDM s
heme 
an be used.Multiple sessions of p-BKDM. Theorem 8 guarantees that even in the 
aseof multiple sessions, the s
heme p-BKDM is se
ure assuming that at most p(k)en
ryptions are performed in all sessions together. In some appli
ations, espe-
ially if the number of sessions 
annot be bounded in advan
e, one might needthe stronger property that we may en
rypt p(k) messages with ea
h key. Intu-itively, we might argue that when we re
eive an en
ryption (h;M � h(K)) of amessage M , the entropy of the key K de
reases by at most jM �h(K)j bits, butas long as enough entropy remains in K, we do not learn anything aboutM , andneither about the keys M depends on. This leads to the following 
onje
ture:Conje
ture 9. The s
heme p-BKDM is KDM-se
ure if the adversary performsat most p(k) en
ryptions under ea
h key Ki. This holds even if di�erent keyshave di�erent asso
iated polynomials pi (i.e., key Ki has length O(pi(k)k) andwe en
rypt pi times under Ki).Unfortunately, we do not know how to formally prove Conje
ture 9. Formalizingthe above intuition is not straightforward, sin
e it is not 
lear how to alone de�newhat it means that the entropy of a given key de
reases while the entropy of theothers does not. We leave this 
onje
ture as an open problem.Why en
rypt only key-dependent messages? De�nitions 2 and 7 give theadversary (only) a

ess to an en
ryption ora
le whi
h en
rypts arbitrary fun
-tions of the key (in 
ontrast to [17℄ whi
h additionally provides an en
ryptionora
le for normal messages). In De�nition 2, no generality is lost, sin
e an ordi-nary en
ryption ora
le 
an be emulated by 
hoosing this fun
tion as a 
onstantfun
tion. Call su
h \ordinary" en
ryption queries non-KDM queries. Now it is
on
eivable that a s
heme allows for an unbounded number of non-KDM queries,but only a limited number of a
tually key-dependent queries. The se
urity of su
hs
hemes 
an be appropriately 
aptured using, e.g., the se
urity de�nition of [17℄,whi
h in
orporates separate en
ryption ora
les for key-dependent and non-KDMqueries. While our De�nition 7 does not allow to model su
h s
hemes, it is easyto see that our s
heme p-BKDM is not se
ure against an unbounded number ofnon-KDM en
ryptions (not even against 
omputationally bounded adversaries).5 Computational KDM se
urity5.1 MotivationThe dilemma with hybrid arguments. The dis
ussion in Se
tion 4.3 doesnot only apply to our s
heme p-BKDM. There seems to be a general problem12



with proving KDM se
urity with a hybrid argument. Starting with the real KDMgame, substituting the �rst en
ryption with a fake one �rst is not an option: thelater en
ryptions 
annot be properly simulated. But to substitute the last realen
ryption �rst is not easy either: for this, there �rst of all has to be a guaranteethat at that point, the last key has not already leaked 
ompletely to the adver-sary. In our 
ase, with a bounded overall number of en
ryptions, we 
an give aninformation-theoreti
 bound on the amount of information that has been leakedbefore the last en
ryption. But if there is no su
h bound, information theory
annot be used to derive su
h a bound. Instead, a 
omputational assumptionmust be used. Yet, there seems to be no straightforward way to derive a use-ful statement (e.g., about the 
omputational key leakage) that rea
hes a
ross apolynomial number of instan
es from a single 
omputational assumption withoutusing a hybrid argument. Of 
ourse, this ex
ludes 
ertain intera
tive assump-tions, whi
h essentially already assume se
urity of the s
heme in the �rst pla
e.We do not believe that it is useful or interesting to investigate su
h 
onstru
tionsand assumptions.In other words, we 
annot use hybrid arguments sin
e we do not know whereto pla
e the �rst hybrid step. This situation is similar (but not identi
al) to the
ase of sele
tive de
ommitments [15℄ and adaptively se
ure en
ryption (e.g., [9℄).Hybrid (KEM/DEM) en
ryption s
hemes. Another 
ommon tool for 
on-stru
ting en
ryption s
hemes are hybrid en
ryption s
hemes (no relation to hy-brid arguments). In a hybrid en
ryption s
heme, a 
iphertext 
onsists of a KEM(key en
apsulation me
hanism) part and a DEM (data en
apsulation me
ha-nism) part. The KEM part of the 
iphertext en
apsulates a symmetri
 key Kthat is unrelated to the message M to be en
rypted. The DEM part of the 
i-phertext is a (symmetri
) en
ryption of M under K. The a
tual se
ret key sk ofthe hybrid s
heme is the se
ret key that is needed to de
rypt the KEM part. Itis tempting to use a hybrid 
onstru
tion to get rid of the dependen
y of messageand se
ret key. However, there still is a dependen
y betweenM and sk: the KEM
iphertext provides a relation between sk and K on the one hand, and the DEM
iphertext relates K and M on the other. Hybrid en
ryption te
hniques do nothelp to get rid of dependen
ies between message and se
ret key.Similarly, hybrid en
ryption te
hniques 
annot be used to in
rease the al-lowed message lengths of the s
heme from the previous se
tion. Con
retely, itmay be tempting to use the p-BKDM s
heme as a KEM to en
apsulate a shortkey K, and then to use that key K as se
ret key for a 
omputationally se
ureDEM whi
h en
rypts long messages with short keys. Unfortunately, this breaksthe se
urity proof of p-BKDM (and also, depending on the used DEM, also these
urity itself). Namely, the proof of p-BKDM depends not on the size of theKEM key K, but on the amount of released information about the a
tual KEMse
ret key (whi
h 
orresponds to the length of the message in the KDM setting).So hybrid en
ryption does not help here, either.Stateful KDM se
urity. To nonetheless get a s
heme that is se
ure in fa
eof arbitrarily many en
ryptions of key-dependent messages, we propose stateful13



en
ryption s
hemes. In a stateful en
ryption s
heme, the se
ret key (i.e., theinternal state) is updated on ea
h en
ryption. (De
ryption must then be syn-
hronized with en
ryption: we assume that 
iphertexts are de
rypted in the orderthey got produ
ed by en
ryption.) For su
h a stateful en
ryption s
heme, thereare essentially two interpretations of KDM se
urity:� the message may depend on the 
urrent se
ret key (i.e., state) only, or� the message may depend on the 
urrent and all previously used se
ret keys(i.e., on the 
urrent and all previous states).We 
all the �rst notion weak stateful KDM se
urity, and the se
ond strong statefulKDM se
urity. Weak stateful KDM se
urity 
an be thought of as KDM se
urityin a setting in whi
h erasures are trusted, and strong stateful KDM se
uritymandates that erasures are not trusted (in the most adversarial sense).De�nition 10 (Weak and strong stateful KDM se
urity). A stateful sym-metri
 en
ryption s
heme � is se
ure in the sense of weak stateful KDM se-
urity i� � is ful�lls De�nition 2, where the en
ryption queries are interpretedas a fun
tion in the 
urrent state of the en
ryption algorithm. Further, � isse
ure in the sense of strong stateful KDM se
urity i� � satis�es De�nition 2,where the en
ryption queries are interpreted as a fun
tion in the 
urrent and allprevious states of the en
ryption algorithm.Below we will give a s
heme that 
ir
umvents the hybrid argument dilemmausing pre
isely the fa
t that there is a 
hanging state.Relation to Bla
k et al.'s notion of \stateful KDM se
urity". Bla
k etal. [7℄ already 
onsider the potential KDM se
urity of a stateful symmetri
 en-
ryption s
heme. They show that there 
an be no stateful KDM se
ure s
heme.However, they showed this under the assumption that en
ryption is determinis-ti
. In our de�nition, en
ryption is still probabilisti
, even though stateful. Weuse the state update me
hanism in addition to using randomness, not insteadof it. Their argument does not apply to our de�nition of stateful KDM se
urity,neither to our weak nor to our strong variant.Weak vs. strong stateful KDM se
urity. For some appli
ations, strongstateful KDM se
urity is ne
essary: en
rypting your hard drive (that may 
ontainthe se
ret key) 
annot be done in a provably se
ure way with weak stateful KDMse
urity. (On
e the se
ret key gets to be pro
essed by the s
heme, the statemay have already been updated, so that the message now depends on a previousstate.) Also, the notion of key 
y
les (i.e., keyKi is en
rypted underKi+1 mod n)does not make sense with weak stateful KDM se
ure s
hemes. In these 
ases, theuse of a strong stateful KDM s
heme is �ne. However, it seems te
hni
ally mu
hmore diÆ
ult to 
onstru
t a strong stateful KDM se
ure s
heme.5.2 A se
ure s
hemeWe do not know how to ful�ll strong stateful KDM se
urity. (The issues thatarise are similar as in the stateless 
ase.) However, we 
an present a s
heme thatis se
ure in the sense of weak stateful KDM se
urity.14



Idea of the 
onstru
tion. Our s
heme is a 
omputational variant of p-BKDM(although its analysis will turn out to be very di�erent). The main problem ofp-BKDM is that the se
ret key runs out of entropy after too many KDM en
ryp-tions. Only as long as there is enough entropy left in K, a suitably independentrandom pad 
an be distilled for en
ryption. However, in a 
omputational setting,randomness 
an be expanded with a pseudorandom generator, and some distilled,high-quality randomness 
an be used to generate more (pseudo-)randomness asa new key. More 
on
retely, 
onsider the following s
heme:S
heme 11 (The s
heme sKDM (for \stateful KDM")). Let UHF be afamily of universal hash fun
tions that map 5k-bit strings to k-bit strings, andlet G be a pseudorandom generator (against uniform adversaries) that maps ak-bit seed to a 6k-bit string. De�ne the stateful symmetri
 en
ryption s
hemesKDM = (K; E ;D) with se
urity parameter k 2 N, message spa
e f0; 1gk, andkey spa
e f0; 1g5k through� K(1k) outputs a uniform random initial key (i.e., state) K0 2 f0; 1g5k.� E(1k;Kj ;Mj) pro
eeds as follows:1. sample hj $ UHF ,2. set Sj := hj(Kj),3. set (Kj+1; Pj) := G(S),4. output Cj := (hj ; Pj �Mj).Ciphertext is Cj , and new key (i.e., state) is Kj+1.� D(1k;Kj ; (hj ; Dj)) pro
eeds as follows:1. set Sj := hj(Kj),2. set (Kj+1; Pj) := G(S),3. output Mj := Pj �Dj .Plaintext is Mj , and new key (i.e., state) is Kj+1.Theorem 12. If G is a pseudorandom generator, then sKDM satis�es weakstateful KDM se
urity.Proof. Fix an adversary A that atta
ks sKDM in the sense of weak statefulKDM se
urity. Say that, without loss of generality, A makes pre
isely p(k) en-
ryption queries for a positively-valued polynomial p 2 Z[k℄. Assume that A hasan advantage that is not negligible.Preparation for hybrid argument. For 0 � j � p(k), de�ne the hybrid gameGame j as follows. Game j is the same as the weak stateful KDM game withadversary A, only that� the �rst j en
ryption queries are answered as in the fake weak stateful KDMgame (i.e., with en
ryptions of uniform and independent randomness), and� the remaining queries are answered as in the real game (i.e., with en
ryptionsof adversary-delivered fun
tions evaluated at the 
urrent se
ret key).Base step for hybrid argument. We will redu
e distinguishing between twoadja
ent games to some 
omputational assumption. We will now �rst formulate15



this assumption. Let K 2 f0; 1g5k be uniformly distributed, and letM 2 f0; 1gkbe arbitrary (in parti
ular, M 
an be a fun
tion of K). Then by Lemma 1 itfollows that Æ(M;h; h(K) ; M;h; Uk) � 2�k for independently sampled h $ UHF and independent uniform Uk 2 f0; 1gk. (A
tually, in this 
ase we 
ouldeven use the original version of the Leftover Hash Lemma [18℄.) This impliesÆ(M;h;G(h(K)) ; M;h;G(Uk)) � 2�k;from whi
h the 
omputational indistinguishability 
hain(M;h;G(h(K)))| {z }=:DR � (M;h;G(U)) � (M;h; U6k)| {z }=:DF (4)
for independent uniform U6k 2 f0; 1g6k follows by assumption on G. For ourhybrid argument, it is important that (4) even holds when M is a fun
tion of K
hosen by the distinguisher.Hybrid argument. We will now 
onstru
t from adversary A an adversary Bthat 
ontradi
ts (4) by distinguishing DR and DF . This 
ontradi
tion then 
on-
ludes our proof. Let n denote the number of keys. Let �i denote the index ofthe key 
hosen by A for the i-th en
ryption. Let gi denote the fun
tion 
hosen byA in the i-th en
ryption. Then, the adversary B 
hooses some j 2 f1; : : : ; p(k)guniformly at random and then performs the following simulation for A:{ The �rst j� 1 en
ryptions requested by A are simulated as fake en
ryptions(i.e., with random messages). This is possible without using the keys sin
efor a random message, hi(K�i) is information-theoreti
ally hidden in the
iphertext.{ For the j-th en
ryption, B 
hooses K� randomly for all � 6= �j and de�nes6M(K) := gj(K1; : : : ;K�j�1;K;K�j+1; : : : ;Kn) and requests an input D =:(M;h; (P;K 0)) with that M . (Note that D may be DR or DF .) Then B setsthe new key K�j := K 0 and gives (h;M � P ) as the 
iphertext to A.{ For all further en
ryptions queries, B 
omputes the real 
iphertext using thekeys K1; : : : ;Kn produ
ed in the pre
eding steps.{ Finally, B outputs the output of A.It is now easy to verify that if B gets DR as input, B simulates the Game j� 1,and if B gets DF as input, B simulates the Game j. Hen
ePr �B(DR) = 1�� Pr �B(DF ) = 1�= 1p(k) p(k)Xj=1 Pr [A = 1 in Game j � 1℄� 1p(k) p(k)Xj=1 Pr [A = 1 in Game j℄

= 1p(k)�Pr [A = 1 in Game 0℄� Pr [A = 1 in Game p(k)℄�:The right hand side is not negligible by assumption, thus the right hand side isnot negligible either. This 
ontradi
ts (4) and thus 
on
ludes the proof.6 Note that in this fun
tion de�nition, K is the argument while theK�i are hardwired.In parti
ular, B does not need to know the a
tual value of K for this step.16



5.3 The usefulness of stateful KDM se
urityIn a sense, strong stateful KDM se
urity is \just as good" as standard KDMse
urity. Arbitrarily large messages (in parti
ular keys) 
an be en
rypted bysplitting up the message into parts and en
rypting ea
h part individually. Thekey-depen
ies of the message parts 
an be preserved, sin
e the dependen
iesa
ross states (i.e., dependen
ies on earlier keys) are allowed. This te
hnique isgenerally not possible with weak stateful KDM se
urity. We know of no weaklystateful KDM se
ure s
heme with whi
h one 
ould se
urely en
rypt one's ownkey (let alone 
onstru
t key 
y
les).But despite the drawba
ks of weak stateful KDM se
urity, we believe that thisnotion is still useful: �rst, it serves as a stepping stone towards a
hieving strongstateful KDM se
urity (or even stateless KDM se
urity). Se
ond, in 
ertain appli-
ations, weak stateful KDM se
urity might be suÆ
ient. Imagine, e.g., a settingin whi
h the en
rypted message 
ontains side-
hannel information (like, say, in-ternal measurements from the en
ryption devi
e) on the internal state/se
retkey. If we assume that the old state is erased after en
ryption, the side-
hannelinformation only refers to the 
urrent internal state, and weak stateful KDM se-
urity is enough to provide message se
re
y. Third, weak stateful KDM se
urityprovides an alternative assumption to the assumption of absen
e of key 
y
lesin the formal proto
ol analysis setting. Instead of assuming the absen
e of key
y
les (this assumption may not make sense in a s
heme in whi
h the key spa
e islarger than the message spa
e), we 
an assume that the en
rypted terms dependonly on the 
urrent internal state of the en
ryption algorithm. This assumptionis still a strengthening of standard IND-CPA se
urity and makes sense, sin
e theen
ryption algorithm is only used to en
rypt.
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