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Abstract. Standard security notions for encryption schemes do not
guarantee any security if the encrypted messages depend on the secret
key. Yet it is exactly the stronger notion of security in the presence of
key-dependent messages (KDM security) that is required in a number of
applications: most prominently, KDM security plays an important role in
analyzing cryptographic multi-party protocols in a formal calculus. But
although often assumed, the mere existence of KDM secure schemes is
an open problem. The only previously known construction was proven
secure in the random oracle model.

We present symmetric encryption schemes that are KDM secure in the
standard model (i.e., without random oracles). The price we pay is that
we achieve only a relaxed (but still useful) notion of key-dependent mes-
sage security. Our work answers (at least partially) an open problem
posed by Black, Rogaway, and Shrimpton. More concretely, our contri-
butions are as follows:

1. We present a (stateless) symmetric encryption scheme that is infor-
mation-theoretically secure in face of a bounded number and length
of encryptions for which the messages depend in an arbitrary way
on the secret key.

2. We present a stateful symmetric encryption scheme that is compu-
tationally secure in face of an arbitrary number of encryptions for
which the messages depend only on the respective current secret
state/key of the scheme. The underlying computational assumption
is minimal: we assume the existence of one-way functions.

3. We give evidence that the only previously known KDM secure en-
cryption scheme cannot be proven secure in the standard model (i.e.,
without random oracles).

Keywords: Key-dependent message security, security proofs, symmetric
encryption schemes.

1 Introduction

Proofs of security are a good and sound way to establish confidence in an encryp-
tion system. However, “proof” is a bit misleading here: usually, a security proof
is not an absolute statement, but merely shows that under certain assumptions,
the scheme is resistant against a certain class of attacks. Nothing is guaranteed
if the assumptions are invalidated or attacks outside the considered class take
place. Therefore, it is crucial that



— the underlying assumptions are plausible, and
— the considered class of attacks is as general as possible.
Additionally, encryption schemes are most often used only as a building block
in a larger protocol context, and thus
— the considered class of attacks should allow for meaningful and general anal-
ysis of the encryption scheme in a larger protocol context.

Indistinguishability of ciphertexts. The most established class of attacks
consists of attacks targeted against the indistinguishability of ciphertexts (IND-
CPA [16], resp. IND-CCA [21] attacks). Here, adversary A’s goal is to win the
following game: first, A chooses two messages mg, m1, then gets the encryption
¢y of my, (for a random b € {0,1}), and finally outputs a guess b’ for b. Now
A wins if b = b/, i.e., if it guessed correctly which message was encrypted. The
scheme is secure if no adversary wins (significantly) more often than in half of
the cases. Intuitively, security in this sense implies that “one ciphertext looks
like any other.”

The IND-CPA and IND-CCA notions have been tremendously successful and
even proved equivalent to a number of alternative and arguably not less appealing
notions (cf. [BI6JT0IT9]). At the same time, IND-CPA and IND-CCA security can
be achieved under various plausible number-theoretic assumptions [T6/T311].

Key-dependent message security. However, there is one security property
that is useful and important in many applications, yet is not covered by IND-
CPA or IND-CCA security: security in presence of key-dependent messages. More
concretely, imagine a scenario in which the adversary can request encryptions of
arbitrary (but efficiently evaluatable) functions of the secret decryption key. In
other words, the adversary chooses a function g and gets the encryption of g(K)
under secret key K. Note that this is something the adversary may not be able
to generate on its own, not even in the public-key setting. The adversary’s goal
is now to distinguish such a key-dependent encryption from an encryption of a
random message. Security of an encryption is a useful notion to consider since
— in relevant practical settings, this notion is necessary: consider, e.g., encrypt-
ing your hard drive (which may contain the secret key, e.g., on the swap
partition, or in a file that contains your secret keyring),
— certain protocols use key-dependent message security explicitly as a technical
tool [8],
and, possibly most importantly from a theoretical perspective,
— key-dependent message security is a key ingredient for showing that security
results that are proven in a formal calculus are also computationally sound.
This latter reason may come a bit surprising, hence we explain it in more detail.

Formal security proofs. The idea to automate security proofs can be traced
back to the seminal work of Dolev and Yao [14], who described a formal calcu-
lus to analyze security protocols. To make the calculus accessible to automatic
provers, however, base primitives like encryption (or, later, signatures) had to



be over-idealized, disconnecting them from their concrete computational imple-
mentations. What was missing for almost 20 years was a soundness result, i.e.,
a result that essentially states “whatever can be proven in the abstract calculus
holds as well in the cryptographic world, where the ideal encryption operator is
implemented with an encryption scheme.”

But finally, the soundness result by Abadi and Rogaway [1] connected the
formal, machine-accessible world with the cryptographic world. However, with
standard encryption schemes, only a certain subset of possible protocols could
be considered, namely those that only contain expressions which fulfil a certain
“acyclicity” condition[J To achieve full generality, a stronger requirement (secu-
rity in the presence of key-dependent messages) on the encryption scheme was
needed. This is not a peculiarity of the approach of Abadi and Rogaway; similar
problems occur in related approaches, e.g. [20/2/4]. In particular, Adao et al. [2]
show that in a certain sense, key-dependent message security is a necessity for
formal soundness.

Related work. Around the time when the need for key-dependent security had
been realized, formal characterizations of the security notion were given in [8][7].
Moreover, [7] showed a simple symmetric encryption scheme to be secure with
respect to their notion. However, their scheme was proven in the random oracle
model, and the proof made heavy use of the “ideal” nature of the random oracle
(more details on this in Section [3). Black et al. posed the question of achieving
key-dependent security in the standard model.

Backes et al. [3] consider several strengthenings of the definition from [7].
They prove structural results among the notions (including a way to “patch” a
scheme that is secure in the sense of [7] to match the notions from [3]). However,
Backes et al. do not give an actual construction of a secure scheme.

Our work. Our goal is to achieve key-dependent message security, as defined
by Black et al., in the standard model. We present several results:

— a (stateless) symmetric encryption scheme that is information-theoretically
secure in face of a bounded number and length of encryptions for which the
messages depend in an arbitrary way on the secret key.

— a stateful symmetric encryption scheme that is computationally secure in
face of an arbitrary number of encryptions for which the messages depend
only on the respective current secret state/key of the scheme. The underlying
computational assumption is minimal: we assume the existence of one-way
functions.

We also stress the strictness of key-dependent message security:

— We give evidence that the only previously known KDM secure encryption

scheme cannot be proven secure in the standard model (i.e., without random

oracles)

3 They also did only prove security against passive adversaries. However, active secu-
rity was achieved by subsequently by [2012/4].

4 A similar, but technically different result is also contained in the independent
work [17].



Note. Recently, we learned about the (concurrent and independent) work [17]
of Halevi and Krawczyk. They are interested more generally in keyed primi-
tives (such as pseudorandom functions, PRFs) which are secure in face of key-
dependent inputs. They also show that an encryption scheme constructed from
such a PRF inherits the underlying PRF’s resilience against key-dependent in-
puts/messages. In particular, Halevi and Krawczyk construct a PRF (and a
corresponding encryption scheme) that is secure in face of inputs which depend
in an arbitrary, but known-a-priori way on the key. (That is, for each way in
which the query may depend on the key, they give a PRF which is secure in face
of such inputs.)

In contrast to that, we are interested in constructing encryption schemes
that are secure in face of (encryptions of) messages that depend in an arbitrary,
adaptively determined way on the key. Unfortunately, neither our schemes nor
the schemes of [17] can handle the important case of non-trivial key cycles, that
is, cyclic chains of encryptions of key K; under key K; 11 mod n-

2 Preliminaries

Basic notation. Throughout the paper, £ € N denotes the security parameter
of a given construction. Intuitively, a larger security parameter should provide
more security, but a scheme’s efficiency is also allowed to degrade with growing
k. A negligible function vanishes faster than any given polynomial. The statis-
tical distance between two random variables X and Y is denoted by §(X ; Y).
The Rényi entropy Hz(X) of a random variable X is defined as Ha(X) :=
— > log, PriX = z]?. Two families (X) and (Y3) of random variables are com-
putationally indistinguishable (written X =~ Y') if for every PPT (probabilistic
polynomial-time) algorithm A, the function |Pr[A(Xy) =1] — Pr[A(Yy) =1]| is
negligible in k. A family UHF of universal hash functions is a family of func-
tions A : {0,1}" — {0,1}™ with the property that for z,z’ € {0,1}" with
x # z', all y,y € {0,1}™, and uniformly chosen h € UHF, we have that
Prlh(z) — y,h(z') — y/] — 22",

We will further need a strengthened version of the leftover hash lemma that
takes into account additional information S about the randomness K and some
additional information @ unrelated to K.

Lemma 1 (Leftover Hash Lemma, extended). Let K, Q, and S be random
variables over bitstrings of fixed length. Let h be uniformly distributed over a
family UHF of universal hash functions. Let U be uniformly distributed over
bitstrings of length |h(K)|. Assume the following independences:

— U and (h, S, Q) are independent.

— K and Q are independent.

— h and (K, S, Q) are independent.

Then the following bound holds:

5(h,h(K),S,Q ; h,U,S,Q) < oISI+Ih(K)|/2—Ha(K)/2—1



In a typical application of this lemma, h, K, and @ would be mutually inde-
pendent, and S would be a function of (h, K, Q) (say, a side channel). Further-
more, U would be some completely independent random variable, representing
the ideal randomness. This would then imply all the independence conditions in
the lemma.

Proof. In the following, s,q, k range over all values taken by S, @, K, respec-
tively. By applying the definition of the statistical distance, we have
e:=68§(h,h(K),S,Q; hUS, Q)

:ZPI‘[SZSQ: q}(S(h,h(K)‘S:S,Q:q, h’U|S:37Q ZQ) (1)
s,4q

Here X|(S = s) stands for the distribution of X under the condition S = s. Since
h and (K, S, Q) are independent, h|(S = s,@ = q) is a universal hash-function.
And since U is independent of (S, @, k), we have that U is uniformly distributed
and independent of h given S = s, = ¢. Further, since by assumption h is
independent of (K, S, @), we have that h and K are independent given S =
8, @ = q. Thus the leftover hash lemma in its basic form [I8] applies, and we get

S(h,h(K)|S=5Q=q; hyUS=35Q=4q) < 9lh(K)|/2—H(K|(S=5,Q=q))/2—1
Combining this with () we get
e < S Pr[S = 5,Q = g - 2P/ Ha(KI(S=5.Q=a)) /21

5,9

=) PrS=5Q=4 %\/2"’(’()‘-ZPr[K=k|S=s,QZQP
k

5,9

< S PriQ =g 5y/20001 . S PafS = 51Q = gf? - PrlK = K|S = 5,Q = g
k

5,9

= S PrQ =g 5y/2MO1 S PeK = k.8 = 1@ = g
k

s,q
1
< ZPr[Q =q|- 5\/2%,(1()\ . ZPY[K = kQ = q?
s,q k
) 1
= ZPr[Q =ql- 5\/2\’1(K)\ . ZPI[K = k]2
s,q k
=>"Pr[Q =g % 9lh(K)[ . 9~ Ha(K)
s,q
= Zpr[Q = g] - 2H®I/2-Ha(K) -1
s,4q

= S ol HOI/2—Ha ()~ _ 9IS+IH (k)| /2= Ha ()1,

Here (x) uses that () and K are independent. O



Key-dependent message security. For formalizing key-dependent message
security, we use a variation on the definition of Black et al. [7]:

Definition 2 (KDM security, standard model, symmetric setting). Let
II = (K,&,D) be a symmetric encryption scheme, let K := (Ki,...,K,) be
secret keys (where n is polynomial in the security parameter), and let A be an
adversary. Let

— Realk be the oracle that on input g, u returns C « E(1%, K, g(K)), and

— Fakek be the oracle that on input g,p returns C «+ E(1¥,K,,U) for an

independently uniformly selected fresh U € {0, 1}19()I,

In both cases, g is encoded as a circuitl] The KDM advantage of A is

AdvEPM(4) .= ‘Pr {K &Ko AR = 1} —Pr [K S j . AFakexc() — 1”

Here K & K means that each key K; is chosen independently using KC.

We say that II is KDM secure iff for every PPT adversary A and every
polynomial n, the advantage function AdngM(A) s negligible in the security
parameter. We require that A only queries its oracle with fized-length functions g,

i.e., |g(K)| is the same for all values of K.

The relation to real-or-random security. Definition 2] bears a great re-
semblance to the real-or-random (ROR-CPA) definition for encryption schemes
from [5]. The main difference is that Definition [2] equips the adversary with
an oracle that delivers encryptions of key-dependent messages (i.e., evaluations)
g(K). The way in which these messages depend on the keys is completely up to
the adversary; the only constraint is that g must be efficiently evaluatable and
have a fixed output length.

On achieving KDM security and active KDM security. Using the equiv-
alence of ROR-CPA and IND-CPA security from [5], it is easy to see that Defini-
tion [2lis strictly stronger than IND-CPA security. A natural adaption of Defini-
tion 2l to active attacks such a notion is called AKDM security in [3] consists
in equipping the adversary with a decryption oracle that is restricted in the usual
sense to prevent trivial attacks. And similarly to the passive case, it is easy to see
that AKDM security is strictly stronger than IND-CCA security. On the other
hand, once a scheme is KDM secure, it can be easily and without (much) loss of
efficiency upgraded to AKDM security, as formalized and proved in [3]. Hence,
the main difficulty lies in finding a scheme that is KDM secure in the first place.
In the following, this will be our focus.

3 The scheme of Black et al.

Definition [2]is very hard to achieve. In fact, the only construction that is known,
due to Black et al. [7], to achieve Definition 2lis in the random oracle model. It

% This has the side-effect that for a polynomial-time adversary A, the function g is
also polynomial-time computable.



will be very useful to take a closer look at their scheme. We will argue that in a
very concrete sense, nothing less than a random oracle will do for their scheme.
Hence, their construction merely shows how powerful random oracles are, but
does not give a hint on how to achieve KDM security in the standard model.
This constitutes one motivation for our upcoming weakening of KDM security.

Scheme 3 (The scheme ver). Define the symmetric encryption scheme ver =
(K, &, D) with security parameter k € N, message space {0,1}* and key space
{0,1}* through

— K(1%) outputs a uniform random key K € {0, 1}*.

— E(1%, K, M) samples R & {0, 1}* and outputs the ciphertext (R, H(K||R)®

- D(1* K, (R, D)) outputs the message H(K||R) @ D.

The security of ver with a random oracle. Black et al. prove

Theorem 4 (Security of ver [7]). If H is a random oracle, then ver is KDM
secure.

The main idea of the proof is to consider an event bad, where bad occurs iff
1. the adversary queries H at any point K||R that was previously used for
encryption, or
2. one of the functions g submitted to the encryption oracle queries H at the
currently used point K||R.
If bad does not occur, the adversary’s view is identical in the Real and Fake ex-
periments, thanks to the fact that different random oracle queries H(X), H(Y)
(X #Y) are statistically independent: each message is padded with completely
fresh and message-independent randomness. Hence, by showing (with an induc-
tive argument) that bad occurs only with small probability, [7] show the scheme
ver KDM secure.

The insecurity of ver without a random oracle. Put informally, the proof
of ver utilizes one essential property of the random oracle H: knowledge about
arbitrary many values H(Y;) (with Y¥; # X) does not yield any information
about H(X). This use of a random oracle as a provider of statistical indepen-
dence is what makes the proof fail completely with any concrete hash function
used in place of the random oracle. There is no hope for the proof strategy to
succeed without random oracles. A little more formally, we can show that in the
random oracle model, there exists a specific hash function H that has a number
of generally very useful properties: H is collision-resistant, one-way, can be in-
terpreted as a pseudorandom function (in a way compatible with ver), and H
makes ver IND-CPA. But H makes ver completely insecure in the presence of
key-dependent messages. Hence, there can be no fully black-box KDM security
proof for ver that relies on these properties of H alone.

Theorem 5 (Insecurity of ver). Relative to a random oracle O, there ezists
a function H such that



1. H 1is collision-resistant,

2. for any function p(k) € ke | H is one-way w.r.t. the uniform input distri-
bution on {0,1}P*)

3. the function Fx(R) := H(K||R) is a pseudorandom function with seed K,

4. the scheme ver, instantiated with H, is IND-CPA secure, but

5. the scheme ver, instantiated with H, is not KDM secure.

Proof (sketch). Assume for simplicity that the security parameter k is even. Say
that the random oracle O maps arbitrary bitstrings to k-bit strings. Then denote
by Op(z) the first k/2 bits of O(z). Now consider the function H : {0,1}* —
{0, 1}* with

H(z) = {O(x) for |z| # 2k,
O(zp) ® (Op(2)]|Op(Op(z))) for = x|z, and |z¢| = |z, = k.

We show the claimed properties for H:

H is collision-resistant. It is clear that collisions H(z) = H(y) (with
x # y) cannot be found efficiently if x # 2k or y # 2k. So assume z = zy||z,
and y = ye||yr for |z¢| = |z+| = |ye| = |yr| = k. Collisions of this form imply
Op(z0) ® Op(z) = O4(ys) ® Op(y) and thus

Oc(x2) ® Ou(ye) = Ou(z) ® Or(y)- (2)

If 2y = yp, then this constitutes a collision in Oy, so we may assume x, # y;. But
the distributions of O, on k-bit strings and on 2k-bit strings are independent and
both uniform. Hence, finding z and y to satisfy (2] requires a superpolynomial
number of queries to Oy (resp. O) with overwhelming probability.

2l H is one-way w.r.t. the uniform distribution on {0, 1}*. For p(k) = 2k,
this follows from collision-resistance and the fact that H is compressing: Since
the preimages of H are not unique, if we are able to find a preimage z’ of H(z)
for random z € {0,1}2*, with noticeable probability we will have = # z’. This
allows to find collisions efficiently. For details see [12]. For p(k) # 2k, this follows
by definition of H and the fact that the random oracle is one-way.

Bl Fx(R):= H(K||R) is a pseudorandom function. Consider an adversary
A that has oracle access to O and to Fi for uniformly chosen K. We denote A’s
i-th query to Fg by R;. Without loss of generality, assume that A never asks
for the same Fx evaluation twice, so the R; are pairwise distinct. Furthermore,
let X, := K||R;, and Y; := Oy(K||R;). We claim that A doesn’t query O with
K or any of the values X;,Y;, except with negligible probability.

We prove our claim inductively as follows. Let E; denote the event that A
queries O with a value that starts with K prior to the i-th Fx query. Clearly,
Fy happens with exponentially small probability. So fix an i > 1. To complete
our proof, it is sufficient to show that under condition —F;, the probability for
FE;+1 to happen is bounded by a negligible function that does not depend on 1.



Assume that —F; holds. That means that, given A’s view up to and including
the (i—1)-th Fx query, the key K is uniformly distributed among all k-bit values
(or k-bit prefixes of 2k-bit values) not yet queried by A. By the polynomiality
of A, this means that, from A’s point of view, K is uniformly distributed on an
exponentially-sized subset of 0, 1%. But this means that until the i-th Fx query,
A has only an exponentially small chance to query one of K, X;,Y; (j < ).
Hence E;y; | =E; happens only with exponentially small probability.

Summing up, A never queries O with K or any of the X, Y;, except with neg-
ligible probability. Hence, Fx can be substituted with a truly random function
without A noticing, and the claim follows.

Ml ver with H is IND-CPA. Follows immediately from [3]

ver with H is not KDM secure. A successful KDM adversary A on ver
is the following: A asks its encryption oracle for an encryption of O(K) (e.g.,
using g with g(z) = O(z) as input to the oracle). In the real KDM game, the
ciphertext will be

(R, H(K||R) & O(K)) = (R, O¢(K||R)||O(Oc(K||R))),

and hence of the form (R,t||O,(t)) for some ¢, which can be easily recognized
by A. But in the fake KDM game, the ciphertext will have the form (R,U) for
a uniformly and independently distributed U, which is generally not of the form
(R, t||O(t)). Hence, A can successfully distinguish real encryptions from fake
ones. 0

Halevi and Krawczyk’s example. Halevi and Krawczyk give a different ex-
ample of the “non-implementability” of ver (see [17] Negative Example 4]). They
argue that the random oracle H in ver cannot be implemented with a PRF that
is constructed from an ideal cipher using the Davies-Meyer transform. Their ex-
ample has the advantage of being less artificial, while being formulated in the
ideal cipher model.

4 Information-theoretic KDM security

Since key-dependent message security is very hard to achieve, we start with two
simple schemes that do not achieve full KDM security, but serve to explain some
important concepts.

4.1 The general idea and a simple scheme (informal presentation)

First observe that the usual one-time pad C' = M@ K (where C is the ciphertext,
M the message, and K the key) does not achieve KDM security. Encryption of
M = K results in an all-zero ciphertext that is clearly distinguishable from a
random encryption. However, the slight tweak

C=(h, M®h(K)) (hindependently drawn universal hash function)



does achieve a certain form of key-dependent message security: the pad h(K)
that is distilled from K is indistinguishable from uniform and independent ran-
domness, even if h and some arbitrary (but bounded) information M = M (K)
about K is known. (When using suitable bitlengths |K| and |M|, this can be
shown using the leftover hash lemma [I8].) So the encryption M @& h(K) of one
single message M = M (K) looks always like uniform randomness. Hence the
scheme is KDM secure in a setting where the encryption oracle is only used
once (but on the other hand, information-theoretic security against unbounded
adversaries is achieved).

4.2 A more formal generalization of the simple scheme

Of course, one would expect that by expanding the key, the scheme stays secure
even after multiple (key-dependent) encryptions. This is true, but to show this,
a hybrid argument and multiple applications of the leftover hash lemma are
necessary. We formalize this statement now.

Scheme 6 (The scheme p-BKDM (for “p-bounded KDM?”)). Let p € Z[k]
be a positively-valued polynomial, let £(k) := (2p(k) + 3)k, and let UHF be a
family of universal hash functions that map ¢(k)-bit strings to k-bit strings.
Define the symmetric encryption scheme p-BKDM = (K, &, D) with security
parameter k € N, message space {0,1}*, and key space {0,1}**) through

e K(1*) outputs a uniform random key K € {0, 1}¢(¥).

o £(1%, K, M) samples h & UHF and outputs the ciphertext C' = (h, h(K) &
e D(1* K, (h, D)) outputs the message h(K) ® D.

Definition 7 (Bounded KDM security). Let p € Z[k| be a positively-valued
polynomial. Then a symmetric encryption scheme Il is p-bounded KDM secure
if it is KDM secure against PPT adversaries that query the encryption oracle
at most p(k) times. Further, IT is information-theoretically p-bounded KDM
secure if it is KDM secure against arbitrary (i.e., computationally unbounded)
adversaries that query the encryption oracle at most p(k) times.

Theorem 8 (Bounded KDM security of p-BKDM). The scheme p-BKDM
1s information-theoretically p-bounded KDM secure.

Proof. In the following, we abbreviate z;,..,z; with x; ; for all variables x. Let
n be the number of keys used. Let an adversary A be given that queries the
encryption oracle at most p(k) times. Without loss of generality we can assume
the adversary to be deterministic (by fixing the random tape that distinguishes
best) and that it performs exactly p(k) queries. In the i-th encryption in the real
experiment, let u; denote the index of the key that has been used, let h; be the
hash function chosen by the encryption function, let m; be the message that is
encrypted, and let ¢; be the second component of the resulting ciphertext (i.e.,
(hi,c;) is the i-th ciphertext). Since the adversary is deterministic, m; depends
deterministically from the keys K ,, and the ciphertexts ¢y, ;_1,h1.5-1, i.e., there
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are deterministic functions fi with m; = fi(KLn, €1..i-1,h1.i-1). Similarly, there
are deterministic functions fi; such that p; = fi;(c1 i—1, b1 i—1).

Let U; be independent uniformly distributed random variables on {0, 1}* that
are independent of all random variables defined above. Let

gii=0(h1i,c1.4; h1.4,Ur.4)

To show that the scheme is information-theoretically p-bounded KDM secure,
i.e., that the adversary cannot distinguish the real and the fake experiment, it
is sufficient to show that e, is negligible since the view of A can be determin-
istically computed from hy k), C1..p(k)-
Fix some ¢ € {1,...,p(k)}. Let K := K,,,, Q@ := h1_,—1, S 1= (mj,c1.i-1),

h := h; and let U be uniformly distributed on {0,1}* and independent of
(K,Q, S, h). The following conditions hold by construction:

— h is a universal hash function.

— U is uniformly distributed and independent of (k, .S, Q).

— K and @ are independent.

— h is independent of (K, S, Q).
So the conditions for are fulfilled and we have

(5(h,h(K),S,Q : h, U, S, Q) < 2\S|+\h(K)\/27H2(K)/271 _ 2ik+k/27l(k)/271 < 27’9

and thus

d(h1.ircirerio1 s hi sy Uiyeriz1)
<O(ha.iy hi(Ky,)ymiser i1 5 hai, Uymg,er 1) < 27% (3)

Since (h;,U;) is independent of (hy_;—1,c¢1.i—1,U1. i—1) by construction, from
(4.2) we have §(hy1 ;,U;,c1.i-1 5 h1.4,Ui,Ur i—1) = €;—1 and hence using (3)
and the triangle inequality for the statistical distance, we have

gi =0(h1iyciser i hi i, U Uni1) <27% +e; .

Since g9 = 0, it follows that e, < p(k) - 27* is negligible. 0

4.3 Discussion

The usefulness of bounded KDM security. Our scheme p-BKDM can be
used in any protocol where the total length of the encrypted messages does not
depend on the length of the key. At a first glance, this restriction seems to defeat
our purpose to be able to handle key cycles: it is not even possible to encrypt a
key with itself. However, a closer inspection reveals that key dependent messages
occur in two kinds of settings. In the first setting, a protocol might make explicit
use of key cycles in its protocol specification, e.g., it might encrypt a key with
itself (we might call this intentional key cycles). In this case, p-BKDM cannot be
used. In the second setting, a protocol does not explicitly construct key cycles,
but just does not exclude the possibility that—due, e.g., to some leakage of
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the key—some messages turn out to depend on the keys (we might call this
unintentional key cycles). In this case, the protocol does not itself construct
key cycles (so the restriction of p-BKDM that a message is shorter than the
key does not pose a problem), but only requires that if key cycles occur the
protocol is still secure. But this is exactly what is guaranteed by p-BKDM. So
for the—possibly much larger—class of protocols with unintentional key cycles
the p-BKDM scheme can be used.

Multiple sessions of p-BKDM. guarantees that even in the case
of multiple sessions, the scheme p-BKDM is secure assuming that at most p(k)
encryptions are performed in all sessions together. In some applications, espe-
cially if the number of sessions cannot be bounded in advance, one might need
the stronger property that we may encrypt p(k) messages with each key. Intu-
itively, we might argue that when we receive an encryption (h, M @ h(K)) of a
message M, the entropy of the key K decreases by at most |M @ h(K)| bits, but
as long as enough entropy remains in K, we do not learn anything about M, and
neither about the keys M depends on. This leads to the following conjecture:

Congecture 9. The scheme p-BKDM is KDM-secure if the adversary performs
at most p(k) encryptions under each key K;. This holds even if different keys
have different associated polynomials p; (i.e., key K; has length O(p;(k)k) and
we encrypt p; times under K;).

Unfortunately, we do not know how to formally prove Conjecture[dl Formalizing
the above intuition is not straightforward, since it is not clear how to alone define
what it means that the entropy of a given key decreases while the entropy of the
others does not. We leave this conjecture as an open problem.

Why encrypt only key-dependent messages? Definitions[2] and [7] give the
adversary (only) access to an encryption oracle which encrypts arbitrary func-
tions of the key (in contrast to [I7] which additionally provides an encryption
oracle for normal messages). In Definition [2] no generality is lost, since an ordi-
nary encryption oracle can be emulated by choosing this function as a constant
function. Call such “ordinary” encryption queries non-KDM queries. Now it is
conceivable that a scheme allows for an unbounded number of non-KDM queries,
but only a limited number of actually key-dependent queries. The security of such
schemes can be appropriately captured using, e.g., the security definition of [17],
which incorporates separate encryption oracles for key-dependent and non-KDM
queries. While our Definition [7] does not allow to model such schemes, it is easy
to see that our scheme p-BKDM is not secure against an unbounded number of
non-KDM encryptions (not even against computationally bounded adversaries).

5 Computational KDM security

5.1 Motivation

The dilemma with hybrid arguments. The discussion in does
not only apply to our scheme p-BKDM. There seems to be a general problem
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with proving KDM security with a hybrid argument. Starting with the real KDM
game, substituting the first encryption with a fake one first is not an option: the
later encryptions cannot be properly simulated. But to substitute the last real
encryption first is not easy either: for this, there first of all has to be a guarantee
that at that point, the last key has not already leaked completely to the adver-
sary. In our case, with a bounded overall number of encryptions, we can give an
information-theoretic bound on the amount of information that has been leaked
before the last encryption. But if there is no such bound, information theory
cannot be used to derive such a bound. Instead, a computational assumption
must be used. Yet, there seems to be no straightforward way to derive a use-
ful statement (e.g., about the computational key leakage) that reaches across a
polynomial number of instances from a single computational assumption without
using a hybrid argument. Of course, this excludes certain interactive assump-
tions, which essentially already assume security of the scheme in the first place.
We do not believe that it is useful or interesting to investigate such constructions
and assumptions.

In other words, we cannot use hybrid arguments since we do not know where
to place the first hybrid step. This situation is similar (but not identical) to the
case of selective decommitments [15] and adaptively secure encryption (e.g., [9]).

Hybrid (KEM/DEM) encryption schemes. Another common tool for con-
structing encryption schemes are hybrid encryption schemes (no relation to hy-
brid arguments). In a hybrid encryption scheme, a ciphertext consists of a KEM
(key encapsulation mechanism) part and a DEM (data encapsulation mecha-
nism) part. The KEM part of the ciphertext encapsulates a symmetric key K
that is unrelated to the message M to be encrypted. The DEM part of the ci-
phertext is a (symmetric) encryption of M under K. The actual secret key sk of
the hybrid scheme is the secret key that is needed to decrypt the KEM part. It
is tempting to use a hybrid construction to get rid of the dependency of message
and secret key. However, there still is a dependency between M and sk: the KEM
ciphertext provides a relation between sk and K on the one hand, and the DEM
ciphertext relates K and M on the other. Hybrid encryption techniques do not
help to get rid of dependencies between message and secret key.

Similarly, hybrid encryption techniques cannot be used to increase the al-
lowed message lengths of the scheme from the previous section. Concretely, it
may be tempting to use the p-BKDM scheme as a KEM to encapsulate a short
key K, and then to use that key K as secret key for a computationally secure
DEM which encrypts long messages with short keys. Unfortunately, this breaks
the security proof of p-BKDM (and also, depending on the used DEM, also the
security itself). Namely, the proof of p-BKDM depends not on the size of the
KEM key K, but on the amount of released information about the actual KEM
secret key (which corresponds to the length of the message in the KDM setting).
So hybrid encryption does not help here, either.

Stateful KDM security. To nonetheless get a scheme that is secure in face
of arbitrarily many encryptions of key-dependent messages, we propose stateful
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encryption schemes. In a stateful encryption scheme, the secret key (i.e., the

internal state) is updated on each encryption. (Decryption must then be syn-

chronized with encryption: we assume that ciphertexts are decrypted in the order

they got produced by encryption.) For such a stateful encryption scheme, there

are essentially two interpretations of KDM security:

e the message may depend on the current secret key (i.e., state) only, or

e the message may depend on the current and all previously used secret keys
(i.e., on the current and all previous states).

We call the first notion weak stateful KDM security, and the second strong stateful

KDM security. Weak stateful KDM security can be thought of as KDM security

in a setting in which erasures are trusted, and strong stateful KDM security

mandates that erasures are not trusted (in the most adversarial sense).

Definition 10 (Weak and strong stateful KDM security). A stateful sym-
metric encryption scheme II is secure in the sense of weak stateful KDM se-
curity iff IT is fulfills Definition [, where the encryption queries are interpreted
as a function in the current state of the encryption algorithm. Further, II is
secure in the sense of strong stateful KDM security iff II satisfies Definition[Z,
where the encryption queries are interpreted as a function in the current and all
previous states of the encryption algorithm.

Below we will give a scheme that circumvents the hybrid argument dilemma
using precisely the fact that there is a changing state.

Relation to Black et al.’s notion of “stateful KDM security”. Black et
al. [7] already consider the potential KDM security of a stateful symmetric en-
cryption scheme. They show that there can be no stateful KDM secure scheme.
However, they showed this under the assumption that encryption is determinis-
tic. In our definition, encryption is still probabilistic, even though stateful. We
use the state update mechanism in addition to using randomness, not instead
of it. Their argument does not apply to our definition of stateful KDM security,
neither to our weak nor to our strong variant.

Weak vs. strong stateful KDM security. For some applications, strong
stateful KDM security is necessary: encrypting your hard drive (that may contain
the secret key) cannot be done in a provably secure way with weak stateful KDM
security. (Once the secret key gets to be processed by the scheme, the state
may have already been updated, so that the message now depends on a previous
state.) Also, the notion of key cycles (i.e., key K; is encrypted under K; 1 mod n)
does not make sense with weak stateful KDM secure schemes. In these cases, the
use of a strong stateful KDM scheme is fine. However, it seems technically much
more difficult to construct a strong stateful KDM secure scheme.

5.2 A secure scheme

We do not know how to fulfill strong stateful KDM security. (The issues that
arise are similar as in the stateless case.) However, we can present a scheme that
is secure in the sense of weak stateful KDM security.
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Idea of the construction. Our scheme is a computational variant of p-BKDM
(although its analysis will turn out to be very different). The main problem of
p-BKDM is that the secret key runs out of entropy after too many KDM encryp-
tions. Only as long as there is enough entropy left in K, a suitably independent
random pad can be distilled for encryption. However, in a computational setting,
randomness can be expanded with a pseudorandom generator, and some distilled,
high-quality randomness can be used to generate more (pseudo-)randomness as
a new key. More concretely, consider the following scheme:

Scheme 11 (The scheme sKDM (for “stateful KDM?”)). Let UHF be a
family of universal hash functions that map 5k-bit strings to k-bit strings, and
let G be a pseudorandom generator (against uniform adversaries) that maps a
k-bit seed to a 6k-bit string. Define the stateful symmetric encryption scheme
sKDM = (K, &, D) with security parameter k € N, message space {0,1}*, and
key space {0, 1}°* through

e KC(1%) outputs a uniform random initial key (i.e., state) Ky € {0, 1}°*.

1%, K, M;) proceeds as follows:

. sample h; & UHF,
. set SJ' = hj(Kj),
. set (Kj+1,Pj) = G(S),
. output C; := (h;, P; ® M;).

Ciphertext is C;, and new key (i.e., state) is K;1.
e D(1* K, (hj, D;)) proceeds as follows:

1. set SJ' = hj(Kj),

2. set (Kj+1,Pj) = G(S),

3. output M; := P; ® Dj.

Plaintext is M, and new key (i.e., state) is K;41.

o &(
1
2
3
4

Theorem 12. If G is a pseudorandom generator, then SKDM satisfies weak
stateful KDM security.

Proof. Fix an adversary A that attacks SsKDM in the sense of weak stateful
KDM security. Say that, without loss of generality, A makes precisely p(k) en-
cryption queries for a positively-valued polynomial p € Z[k]. Assume that A has
an advantage that is not negligible.

Preparation for hybrid argument. For 0 < j < p(k), define the hybrid game

Game j as follows. Game j is the same as the weak stateful KDM game with

adversary A, only that

e the first j encryption queries are answered as in the fake weak stateful KDM
game (i.e., with encryptions of uniform and independent randomness), and

e the remaining queries are answered as in the real game (i.e., with encryptions
of adversary-delivered functions evaluated at the current secret key).

Base step for hybrid argument. We will reduce distinguishing between two
adjacent games to some computational assumption. We will now first formulate
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this assumption. Let K € {0, 1}°* be uniformly distributed, and let M € {0, 1}*
be arbitrary (in particular, M can be a function of K). Then by it

follows that 6(M,h,h(K) ; M,h,U) < 27F for independently sampled h &
UHF and independent uniform Uy € {0,1}*. (Actually, in this case we could
even use the original version of the Leftover Hash Lemma [18].) This implies

8(M,h,G(h(K)) ; M,h,G(Uy)) <27,

from which the computational indistinguishability chain

(M, h, G(h(K))) = (M, h, G(U)) = (M, h, Ust) (4)
_.DR —.DF

for independent uniform Ug, € {0,1}%% follows by assumption on G. For our
hybrid argument, it is important that ([4) even holds when M is a function of K
chosen by the distinguisher.

Hybrid argument. We will now construct from adversary A an adversary B
that contradicts (4) by distinguishing D® and D¥". This contradiction then con-
cludes our proof. Let n denote the number of keys. Let u; denote the index of
the key chosen by A for the i-th encryption. Let g; denote the function chosen by
A in the i-th encryption. Then, the adversary B chooses some j € {1,...,p(k)}
uniformly at random and then performs the following simulation for A:

— The first j — 1 encryptions requested by A are simulated as fake encryptions
(i.e., with random messages). This is possible without using the keys since
for a random message, h;(K,,) is information-theoretically hidden in the
ciphertext.

— For the j-th encryption, B chooses K, randomly for all ;4 # p; and definedd
M(K) := g;(Ky,...,Ku, 1,K,K, 41,...,K,) and requests an input D =:
(M, h,(P,K")) with that M. (Note that D may be D¥ or D¥.) Then B sets
the new key K, := K’ and gives (h, M @ P) as the ciphertext to A.

— For all further encryptions queries, B computes the real ciphertext using the
keys K1, ..., K, produced in the preceding steps.

— Finally, B outputs the output of A.

It is now easy to verify that if B gets D as input, B simulates the Game j — 1,
and if B gets D as input, B simulates the Game j. Hence

Pr[B(D")=1] — Pr[B(D") =1]
1 p(k) 1 p(k)
:m;Pr[Azl in Gamej—l}—@;Pr[Azlin Game j|

= Zﬁ(Pr [A=1in Game 0] — Pr[A =1 in Game p(k)])

The right hand side is not negligible by assumption, thus the right hand side is
not negligible either. This contradicts (4)) and thus concludes the proof.

6 Note that in this function definition, K is the argument while the K, are hardwired.
In particular, B does not need to know the actual value of K for this step.
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5.3 The usefulness of stateful KDM security

In a sense, strong stateful KDM security is “just as good” as standard KDM
security. Arbitrarily large messages (in particular keys) can be encrypted by
splitting up the message into parts and encrypting each part individually. The
key-depencies of the message parts can be preserved, since the dependencies
across states (i.e., dependencies on earlier keys) are allowed. This technique is
generally not possible with weak stateful KDM security. We know of no weakly
stateful KDM secure scheme with which one could securely encrypt one’s own
key (let alone construct key cycles).

But despite the drawbacks of weak stateful KDM security, we believe that this
notion is still useful: first, it serves as a stepping stone towards achieving strong
stateful KDM security (or even stateless KDM security). Second, in certain appli-
cations, weak stateful KDM security might be sufficient. Imagine, e.g., a setting
in which the encrypted message contains side-channel information (like, say, in-
ternal measurements from the encryption device) on the internal state/secret
key. If we assume that the old state is erased after encryption, the side-channel
information only refers to the current internal state, and weak stateful KDM se-
curity is enough to provide message secrecy. Third, weak stateful KDM security
provides an alternative assumption to the assumption of absence of key cycles
in the formal protocol analysis setting. Instead of assuming the absence of key
cycles (this assumption may not make sense in a scheme in which the key space is
larger than the message space), we can assume that the encrypted terms depend
only on the current internal state of the encryption algorithm. This assumption
is still a strengthening of standard IND-CPA security and makes sense, since the
encryption algorithm is only used to encrypt.
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