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Abstract. A shuffle of a set of ciphertexts is a new set of ciphertexts with the
same plaintexts in permuted order. Shuffles of homomorphic encryptions are a
key component in mix-nets, which in turn are used in protocols for anonymization
and voting. Since the plaintexts are encrypted it is not directly verifiable whether
a shuffle is correct, and it is often necessary to prove the correctness of a shuffle
using a zero-knowledge proof or argument.

In previous zero-knowledge shuffle arguments from the literature the communi-
cation complexity grows linearly with the number of ciphertexts in the shuffle. We
suggest the first practical shuffle argument with sub-linear communication com-
plexity. Our result stems from combining previous work on shuffle arguments
with ideas taken from probabilistically checkable proofs.
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momorphic encryption, mix-net.

1 Introduction

A shuffle of ciphertexts:, ..., ey is a new set of ciphertext®y, ..., Ex with the
same plaintexts in permuted order. Shuffles are used in many protocols for anonymous
communication and voting. It is usually important to verify the correctness of the shuf-
fle. Take for instance a voting protocol where the ciphertexts are encrypted votes; it
is important to avoid that some of the ciphertexts in the shuffle are substituted with
encryptions of other votes. There has therefore been much research on designing zero-
knowledge argumentsor the correctness of a shuffle [37, 1,2, 17, 30, 31, 21, 16, 33, 34,
32,15, 24, 38].

When designing shuffle arguments, efficiency is a major concern. It is realistic to
have elections with millions of encrypted votes, in which case the statement to be proven
is very large. In this paper, our main goal is to ggtractical shuffle argument with low
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8By zero-knowledgearguments[8] we refer to computationally-sound zero-knowledge
proofs [20].



communication complexity. A theoretical solution to this problem would be to use Kil-
ian’'s communication-efficient zero-knowledge argument [26] (see also Micali [29]).
This method, however, requires a reduction to Circuit Satisfiability, a subsequent appli-
cation of the PCP-theorem [4, 3, 12], and using a collision-free hash-function to build a
hash-tree that includes the entire PCP. Even with the best PCP constructions known to
date (cf. [7]), such an approach would be inefficient in practice.

OUR CONTRIBUTION. We present a sublinear-communication 7-move public coin per-
fect zero-knowledge argument of knowledge for the correctness of a shuffle of EIGamal
ciphertexts [13]. (The protocol is presented in the common random string model, but can
also be implemented in the plain model at the cost of a slightly higher constant number
of rounds.) All shuffle arguments previously suggested in the literature have communi-
cation complexity2(N)«, whereN is the number of ciphertexts in the shuffle and

is a security parameter specifying the finite group over which the scheme works. Our
shuffle argument has communication complexitym? + n)x for m andn such that

N = mn. (The constant in the expression is low as well, see Section 8 for a more pre-
cise efficiency analysis.) Witm = N'/2 this would give a size of)(N?/3)x bits, but

in practice a smaller choice of will usually be better for computational reasons. Our
shuffle argument moderately increases the prover’s computational burden and reduces
the amount of communication and the verifier's computational burden in comparison
with previous work.

For practical purposes it will be natural to use the Fiat-Shamir heuristic [14] (i.e.
compute the verifier's public-coin challenges using a cryptographic hash-function) to
make our shuffle argument non-interactive. The Fiat-Shamir heuristic justifies reducing
the communication and verifier computation at the cost of increased prover computa-
tion, since the non-interactive shuffle argument needs to be computed only once by the
prover but may be distributed to and checked by many verifiers. Letting the prover do
some extra work in order to reduce the communication and the computational burden
of each verifier is therefore a good trade-off in practice. To the best of our knowledge,
our protocol is the first practical instance of a sublinear-communication argument for
any interesting nontrivial statement.

We have some further remarks on our result. Our technique also applies to other ho-
momorphic cryptosystems, for instance Paillier encryption [35]; a more general treat-
ment of a wider class of homomaorphic encryptions can be obtained along the lines of
[21]. For simplicity we focus just on EIGamal encryption in this paper. Similarly to pre-
vious shuffle arguments from the literature, we will present our protocol d®aest
verifierzero-knowledge argument. There are very efficient standard techniques for con-
verting honest verifier zero-knowledge arguments into fully zero-knowledge arguments
[10, 18, 22].

TECHNIQUES Our starting point is the honest verifier zero-knowledge shuffle argu-
ment by Groth [21], which builds on ideas by Neff [30]. Borrowing some of the ideas
underlying the PCP theorem, namely the use of Hadamard codes and batch-verification
techniques, we reduce the size of the shuffle argument. We note that unlike Kilian [26]
we do not reduce the shuffle statement to an NP-complete language such as SAT; in-
stead we work directly with the ciphertexts in the shuffle statement. Moreover, while we
use ideas behind the PCP theorem we do not make use of a full-blown PCP. In particu-



lar, our argument avoids any use of linearity testing, low-degree testing, or other forms
of code proximity testing that appear in all known PCPs.

RELATED WORK. Our work was inspired by the recent work of Ishai, Kushile-
vitz, and Ostrovsky [25], which introduced an approach for constructing sublinear-
communication arguments using exponentially long but succinctly described PCPs.
Similarly to [25] we use shofiomomorphiccommitments as the main cryptographic
building block. There are, however, several important differences between our tech-
niques and those from [25]. In particular, the arguments obtained in [25] do not address
our zero-knowledgeequirement (and are only concerned with soundness), they inher-
ently require the verifier to ugerivate coins(which are undesirable in the context of
our application), and they empldipearity testingthat subsequently requires soundness
amplification. Finally, the approach of [25] is generic and does not account for the spe-
cial structure of the shuffle problem; this structure is crucial for avoiding an expensive
reduction to SAT.

2 Preliminaries

2.1 Notation

We let X'y denote the symmetric group dn, 2,..., N}. Given two functionsf, g :
N — [0,1] we write f(k) ~ g(x) when|f (k) — g(k)| = O(k~°) for every constant
c. We say that the functioff is negligiblewhen f(x) = 0 and that it isoverwhelming
whenf (k) ~ 1.

Algorithms in our shuffle argument will get a security parametess input, which
specifies the size of the group we are working over. Sometimes we for notational sim-
plicity avoid writing this explicitly, assuming can be deduced indirectly from other
inputs given to the algorithms.

All our algorithms will be probabilistic polynomial time algorithms. We will assume
that they can sample randomness from sets of theZyp&Ve note that such random-
ness can be sampled from a source of uniform random bits in expected polynomial time
(in log q).

We write A(x;r) = y when A, on inputz and randomness outputsy. We write
y < A(x) for the process of picking randomnesat random and setting:= A(x;r).

We also writey < S for samplingy uniformly at random from the sét.

When defining security, we assume that there is an adversary attacking our scheme.
This adversary is modeled as a non-uniform polynomial time stateful algorithm. By
stateful, we mean that we do not need to give it the same input twice, it remembers
from the last invocation what its state was. This makes the notation a little simpler,
since we do not need to explicitly write out the transfer of state from one invocation to
the next.

2.2 Group Generation

We will work over a groug, of a prime ordey;. This could for instance be a subgroup
of Z;, wherep is a prime angcd(q?, p—1) = ¢; or it could be an elliptic curve group or



subgroup. We will assume the discrete logarithm problem is hai) iMore precisely,

let G be a generating algorithm that takes a security paramesarinput and outputs
gk := (¢, Gy, 9), where byG, we denote a computationally efficient representation of
the group ang is a random generator f@¥,. The discrete logarithm assumption says
that for any non-uniform polynomial time adversady

Pr [(q,Gq,g) —G(1");x — Zg;h:= g" : A(q,Gq,9,h) = x| = 0.

(When the randomness gfis taken from a common random string, the above definition
needs to be strengthened so tHat given the randomness used ®y

2.3 Generalized Pedersen Commitment

We will use a variant of the Pedersen commitment scheme [36] that permits making a
commitment to a length-vector inZj rather than a single element 4f as in Peder-
sen’s original commitment. A crucial feature of this generalization is that the amount
of communication it involves does not grow with The generalized scheme proceeds
as follows. The key generation algorithify.., takes(q, G4, g) as input and outputs a
commitment keyek := (g1, ..., gn, h), Wheregy, ..., g, h are randomly chosen gen-
erators ofGG,. The message spacejd.;, := Zy, the randomizer space .. := Z,

and the commitment space(s;, := G,. (The parameten will be given as an addi-
tional input to all algorithms; however, we prefer to keep it implicit in the notation.)

To commit to ann-tuple (mq,...,m,) € Ly we pick randomness «— Z, and
compute the commitmen®' := A" [[;_, ¢/*". The commitment is perfectly hiding
since no matter what the messages are, the commitment is uniformly distributgd in
The commitment is computationally binding under the discrete logarithm assumption;
we will skip the simple proof.

The commitment keyk will be part of the common random string in our shuffle
argument. We remark that it can be sampled from a random string. We @rite

comek(my, ..., my; ) for making a commitment texy, . . ., m,, using randomness
The commitment scheme is homomorphic, i.e., forall m}, ..., m,,m} r, 1" € Z,
we have

comey (ma, ..., mp;7)-come(mf,...,ml;r") = comep(mi+my, ..., My +ml;r+r').

In some cases we will commit to less tharelements; this can be accomplished quite
easily by setting the remaining message8.to

We will always assume that parties check that commitments are valid, meaning
they check thaC € G,. If G, is a subgroup o, this can be done by checking that
C? = 1, however, batch verification techniques can be used to lower this cost when
we have multiple commitments to chetk. G, is an elliptic curve of ordey, then the
validity check just consists of checking th@tis a point on the curve, which is very
inexpensive.

4 See also [21] for a variant of the Pedersen commitment schemé&{\bat makes it possible
to completely eliminate the cost of verifying validity.



2.4 ElGamal Encryption

ElGamal encryption [13] in the grou@, works as follows. The public key isk :=

y = g® with a random secret kesk := x < Z7. The message spaceid,; := G,
the randomizer space B, := Z, and the ciphertext space@; := G, x G4. To
encrypt a message: € G, using randomnes® € Z, we compute the ciphertext
Epi(m; R) = (g%, yf'm). To decrypt a ciphertext., v) we computen = vu 2.

The semantic security of EIGamal encryption is equivalent to the DDH assumption.
Semantic security may be needed for the shuffle itself to be secure; however, the security
of our shuffle argument will rely on the discrete logarithm assumption only. In particu-
lar, our shuffle argument is still sound and zero-knowledge even if the cryptosystem is
insecure or the decryption key has been exposed.

ElGamal encryption is homomorphic with entry-wise multiplication in the cipher-
text space. For allm, R), (m/, R') € My, x R, we have

Ep(mm/; R+ R') = (g™ 4+ W mm/)
= (g% yRm) - g%,y m') = Bp(m; R) - Byppo(m/; R)).

We will always assume that the ciphertexts in the shuffle are valid,(iev) €
G4 x G4. Batch verification techniques can reduce the cost of verifying validity when
we have multiple ciphertexts. To further reduce the cost of ciphertext verification, Groth
[21] suggests a variant of EIGamal encryption that makes batch-checking ciphertext
validity faster. Our shuffle argument works also for this variant of EIGamal encryption.

Our shuffle argument works with many types of cryptosystems; the choice of El-
Gamal encryption is made mostly for notational convenience. Our technique can be
directly applied with any homomorphic cryptosystem that has a message space of order
q. We are neither restricted to using the same underlying gfgu@,, g) as the com-
mitment scheme nor restricted to using EIGamal encryption or variants thereof. Using
techniques from [21] it is also possible to generalize the shuffle argument to work for
cryptosystems that do not have message spaces of @rdiais latter application does
require a few changes to the shuffle argument though and does increase the complexity
of the shuffle argument, but the resulting protocol still has the same sub-linear asymp-
totic complexity.

2.5 Special Honest Verifier Zero-Knowledge Arguments of Knowledge

We will assume there is a setup algoritignthat generates some setup information
gk. This setup information could for instance be a description of a group that we will
be working in. Consider a pair of probabilistic polynomial time interactive algorithms
(P, V) called the prover and the verifier. They may have access to a common random
stringo generated by a probabilistic polynomial time key generation algorfhrive
consider a polynomial time decidable ternary relatiarFor an element we callw a
witness if (gk, z, w) € R. We define a corresponding group-dependent langiigge
consisting of elements that have a witness such that gk, «, w) € R. We writetr «—

(P(z), V(y)) for the public transcript produced iy andV when interacting on inputs

x andy together with the randomness used Wy This transcript ends witly either



accepting or rejecting. We sometimes shorten the notation by sé&¥ifg, V (y)) = b
if V' ends by accepting,= 1, or rejectingp = 0.

Definition 1 (Argument). The triple (K, P, V) is called anargumentfor relation R
with setupg if for all non-uniform polynomial time interactive adversaridsve have

Completeness:
Pr |gh — G(1%)i0 — K(gh); (z,w) — A(gh,0)
(gk, 2, w) ¢ Ror (P(gk,o,z,w),V(gk,o,1)) = 1} ~ 1.
Computational soundness:
Pr [gk — G(1");0 — K(gk); — Algk,0) :
@ & Ly, and(A, V(gk, o, 7)) = 1} ~ 0.

Definition 2 (Public coin argument).An argument K, P, V') is public coinif the ver-
ifier's messages are chosen uniformly at random independently of the messages sent by
the prover and the setup parametes o.

We define special honest verifier zero-knowledge (SHVZK) [9] for a public coin
argument as the ability to simulate the transcript for any set of challenges without access
to the witness.

Definition 3 (Perfect special honest verifier zero-knowledge)rhe public coin ar-
gument(K, P,V) is called a special honest verifier zero-knowledge argumenffor
with setupg if there exists a probabilistic polynomial time simulat®such that for all
non-uniform polynomial time adversarigswe have

Pr gk  G(1"); 0 K (gk); (z, w, p) — A(gh, );
tr — (P(gk, o, x,w), V(gk, o, z;p)) : (gk, z,w) € RandA(tr) = 1
= Pr[g — G(1%);0  K(gk); (z,w, p) — A(gk,0);
tr — S(gk,o,z,p) : (gk,z,w) € RandA(tr) = 1].

We remark that there are efficient techniques to convert SHVZK arguments into
zero-knowledge arguments for arbitrary verifiers in the common random string model
[10, 18, 22]. In this paper, we will therefore for simplicity focus just on the special
honest verifier zero-knowledge case.

WITNESS-EXTENDED EMULATION. We shall define an argument of knowleéige
through witness-extended emulation, the name taken from Lindell [28]. Whereas Lin-
dell's definition pertains to proofs of knowledge in the plain model, we will adapt his

5 The standard definition gfroofsof knowledge by Bellare and Goldreich [5] does not apply in
our setting, since we work in the common random string model and are interesrgdiments
of knowledge. See Dandgd and Fujisaki [11] for a discussion of this issue.



definition to the setting of public coin arguments in the common random string model.
Informally, our definition says: given an adversary that produces an acceptable argu-
ment with probabilitye, there exists an emulator that produces a similar argument with
probabilitye, but at the same time provides a witness.

Definition 4 (Witness-extended emulation). We say the public coin argument
(K, P,V) has witness-extended emulation if for all deterministic polynomial fithe
there exists an expected polynomial time emul&teuch that for all non-uniform poly-
nomial time adversariesl we have

Pr {gk — G(1"%);0 «— K(gk); (z,s) — A(gk,0);
tr — (P*(gk,0,2,5),V(gk,o,2)) : A(tr) = 1]
~ Pr gk — G(1);0 — K(gk); (z,5) — Algh,0);
(tr,w) - E(P*(gk,a,x,s),V(gk,a,m))(gk’ 0_71,) .

A(tr) = 1 and iftr is accepting thefgk, z, w) € R},

where E' has access to a transcript oraclé®* (gk, o, x, s), V(gk, o, z)) that can be
rewound to a particular round and run again with the verifier using fresh randomness.

We think of s as being the state dP*, including the randomness. Then we have an
argument of knowledge in the sense that the emulator can extract a withess whehever
is able to make a convincing argument. This shows that the definition implies soundness.
We remark that the verifier's randomness is part of the transcript and the prover is
deterministic. So combining the emulated transcript witho, =, s gives us the view
of both the prover and the verifier and at the same time gives us the witness.

Damcard and Fujisaki [11] have suggested an alternative definition of an argument
of knowledge in the presence of a common random string. Witness-extended emulation
as defined above implies knowledge soundness as defined by them [22].

THE FIAT-SHAMIR HEURISTIC. The Fiat-Shamir heuristic [14] can be used to make
public coin SHVZK arguments non-interactive. In the Fiat-Shamir heuristic the veri-
fier's challenges are computed by applying a cryptographic hash-function to the tran-
script of the protocol. Security can be formally argued in the random oracle model [6],
in which the hash-function is modeled as a completely random function that returns
a random string on each input it has not been queried before. While the Fiat-Shamir
heuristic is not sound in general [19], it is still commonly believed to be a safe practice
when applied to “natural” protocols.

2.6 Problem Specification and Setup
We will construct a 7-move public coin perfect SHVZK argument for the relation

R = {(gk:(q,GQ7g),(pk:y,61,~..,eN,E1,~«.,EN),(7T,R1,~~~,RN))’

YyeGaATEXNARL,..., RN ERpp AVi: E; = eﬂf1(i)Epk(1;Ri)}.



In our SHVZK argument, the common random stringvill be generated as a pub-
lic key (g1, ..., gn,h) for the n-element Pedersen commitment scheme described in
Section 2.3. Depending on the applications, there are many possible choices for who
generates the commitment key and how this generation is done. For use in a mix-net,
we could for instance imagine that there is a setup phase, where the mix-servers run a
multi-party computation protocol to generate the setup and the commitment key. An-
other option is to let the verifier generate the common random string, since it is easy to
verify whether a commitment key is valid or not. This option yields an 8-move (honest-
verifier zero-knowledge) argument in the plain motlel.

2.7 Polynomial Identity Testing

For completeness we state a variation of the well-known Schwartz-Zippel lemma that
we use several times in the paper.

Lemma 1 (Schwartz-Zippel).Letp be a non-zero multivariate polynomial of degrée
overZg, then the probability op(x1, ..., x,) = 0 for randomly chosen, ..., z, «—
Z, is at mostd/q.

The Schwartz-Zippel lemma is frequently used in polynomial identity testing. Given
two multi-variate polynomialsp; and p, we can test whethep;(z1,...,2,) —
p2(z1,...,2,) = 0 for randomz,...,z, «— Z,. If the two polynomials are iden-
tical this will always be true, whereas if the two polynomials are different then there is
only probabilitymax(d;, d2)/q for the equality to hold.

3 Product of Committed Elements

Consider a sequence of commitmedts . .., A,, and a value: € Z,. We will give an
SHVZK argument of knowledge dfa;;}; 7" ._; and{r;}!™, such that

i=1,j=

Ay =comeg(arr ,a12 ... ,01n 571)

and a = ﬁﬁaij mod gq.

— . i=1 j=1
Am - Comck(aml sy Am2 5+, Amn 77nm) ¢ J

The argument is of sub-linear size; the prover will semtlcommitments andn el-
ements fronZ,, whereN = mn is the total number of committed elementg. For
m = N'/3 this gives a size of(N?/3)x bits.

5 We can also get full zero-knowledge in the plain model. The verifier picks the common random
string as above and also picks an additional key for a trapdoor commitment scheme. The
verifier then makes engages in a zero-knowledge proof of knowledge of the trapdoor. We can
now use the standard techniques for converting honest verifier zero-knowledge arguments to
full zero-knowledge arguments [10, 18, 22]. By running the two proofs in parallel, the round
complexity is only 8. Note, however, that since the verifier must know the secret trapdoor of
the additional commitment scheme, the protocol is no longer public coin.



The argument is quite complex so let us first describe some of the ideas that go
into it. In our argument, the prover will prove knowledge of the contents of the com-
mitments. For the sake of simplicity we will first describe the argument assuming the
prover knows the contents of the commitments and by the computational binding prop-
erty of the commitment scheme is bound to these values. We will also for the sake of
simplicity just focus on soundness and later when giving the full protocol add extra parts
that will give us honest verifier zero-knowledge and witness-extended emulation. (Note
that even completeness and soundness alone are nontrivial to achieve when considering
sublinear communicatioarguments.)

Consider first commitmentd,, ..., A,, as described above. The verifier will pick
arandom challenge,, . . ., s,,. By the homomorphic property

m

m m m
H At = COmck(Z 81y - - Z 8iQin; Z 8iT)-
=1 =1 =1 =1

In our argument the prover will open this commitment multi-exponentiatiofy as-

m R m I m
Zizl 8iQily .-y fn 1= Zizl S5iQin, 2 1= Zizl 5iTq-

Consider now the case where we have three sets of commitments
{Ay, B}y, {Cu}i2]",—, containing respectively m x n  matrices
A/ B and m? x n matrix C. The verifier will choose random challenges
S1,.+,8myt1,...,tm <« Zg. The prover can open the commitment products

m S;i m ty m m Sity H H R
L2, A 1L, B T, T2, €' as described above. This gives us for each of
then columns

m m m m
fi= E siag; ,  Iji= g tebey @5 = E E SiteCitj-
i—1 =1 =1 =1

In our proofs the verifier will check for each column thigt= f;F;. These checks can

be seen as quadratic equations in variables. ., s, t1, . . . , t,, Of the form
m m m m
(D siais) D _tebes) = 3 Y sitecies.
=1 =1 =1 (=1

If cie; = aijbe; for all i, £, j the check will always pass, whereas if this is not the case,
then by the Schwartz-Zippel lemma there is overwhelming probability over the choice
of s1,...,8m,t1,-..,t, that the check will fail. (This type of checking is also used in
the Hadamard-based PCP of Arora et al. [3].) We therefore have an argumént for
being a commitment tda;;b;; };?:1. The commitmentg’;, for ¢ # £ are just fillers that
make the argument work, we will not need them for anything else. In the argument we
only revealO(n) elements irZ, to simultaneously provél = mn equalitiesc;;; =
a;;b;5; this is what will give us sub-linear communication complexity.

Let us now explain how we choose the matBx For1 < I < m,1 < J <n
we setb;; == [[;Z; [1/—y ai; - II]_, as;. This means thaf3 is a matrix chosen
such thab;; is the previous element in the matdx multiplied with a;;. In particular,
we haveb,,, = [[;Z, [Ij—, ai; = a. In addition, we will have an extra column with
bip :=landforl < i < m : by := bj—1,. In other words, théth column vector



is thenth column vector ofB shifted one step down. The prover will make a separate
set of m commitmentsBy, ..., B, to this column. Choosing3] := com.(1;0) it

is straightforward to verify thab;o = 1. To show that the rest of théth column is
correctly constructed the prover will op ,’3”;21 (By)t- to the messagg, —t,,a. The
linear equations give UEZ:; te—1beo + tma = Y, tebe,, which by the Schwartz-
Zippel lemma has negligible probability of being true unlegs = a andb,y1 o = bey,
forl1 </ <m. N

We have now describell extended with &th column vector. Writd3 for the matrix
with the Oth column and the first — 1 columns ofB. We will apply theA, B, C' matrix
argument we described before to the matrices3, C, where we use commitments
Cy = B;. This argument demonstrates for edch< j < n thatb;; = ai;b; 1.
Putting everything together we now havgy = 1,b;; = a;;b; j—1,bi0 = b;—1,, and
bmn = a, which is sufficient to conclude that= [[;~, [T}, ;.

We will now describe the full protocol. The most significant change from the de-
scription given above is that we now add also elemeiisby; that are chosen at
random to the matrices. The role of these elements is to give honest verifier zero-
knowledge. The prover reveals elements of the fogfm:= ag; + >, sia;; and
Fj :=boj + > - tebej, which reveal nothing aboOt " | s;a;; andd_,~; t,be; when
ag; andby; are random.

Initial message:

ao1, -+, 0on + Zq ; 70 < Rer 3 Ao 1= comer(ao1, aoz, - - -, Gon; o)
I—1 n J
Forl<I<m,1<J<mn:br:=][[_] Hj:l aij - szl ar;
bot,- . ybon <= Zg 5 Tb0,TH1 -+ Tom < Rek
By := comek(bo1 ,bo2, »--- »bon ;750)
By :=comeg(bi1 ,b12,... ,bin;Te1)
Bm = COInck(bml 7b7n2 PR 7bmn ;Tbm)
DEﬁHEblo =1, bog := bln; ey bmo = bm—l,n
/ ! . ! . . ! / —— .
rhy .oy rl — Reg ;s By i=comeg(bag; 15), - . ., B, := come (bmo; 70,)

boo < Zg ; 7 — Rek 3 Bb = comey (boo; 7p)

7 Rek ; B = comeg(bop; 7)

ForO0<i,/<m : ryp— Repandforl <i<m : ry 1= rp.
For0 <i,f <m:

Cip = comer(aitbeo, - - -, Ginben—1;7i0)

Sinceb;; = a;;b; j—1 andr; = ry; We have forl <4 < m thatC;; = B;.
Send(Ay, By, B)), B}, ..., B}, E, Coos - - -, Crum ) 10 the verifier

Challenge: s1,...,8m,t1,. ., tm — Zq

Answer:
Forl < j <n : fj = agj + Z?ll SiQij Fj = bQJ‘ + E;n:l tebgj ; Fy =
boo + Dy 1 tebeo



m m m 2
ZI=r0F D ey SiTi s 2 = e+ 9o berhe s 2 =0+ Yo tery s 2=

7+ Z?L:Q tg_lTé
Zab 1= T00 T Diey SiTio T Dpey teroe + iy Doyey Siterie
Send(fi,. .., fn, Fo, -, Fn, 2,26, 2, 2, zqp) tO the verifier
Verification:
CheckAg [T, A" = come(f1,- -, fn; 2)
Forl < ¢ < m setBy := cy. CheckB, [~ BE’“’ = comek(F1,. .., Fpn;2)
SetB] := comc(1;0). CheckB} [1,~,(B})" = comx(Fp; ).
CheckB [Ts (Bt = come, (Fy, — tmas 2)
Check

m m

Coo- [T Csi - TICoi - TITI Cii*e = comer(f1Fo, - -, fnFn—1; 2an)
=1 (=1

i=1/4=1

Theorem 1. The protocol described above is a 3-move public-coin perfect SHVZK ar-
gument of knowledge af; andr; such thats = [[;", []}_, ai; and for alli we have
A; = comeg (@, ..oy Qin;Ti).

The proof can be found in the full paper [23].

4 Committed Permutation of Known Elements

Consider a vector of commitmens, . . ., B,,, and a set of valuega;; ;27 ,_, . In this

section we will give an argument of knowledgemot X and{r;}", such that:

By = comeg(ar-1(11) ,@n-1(12) 5+ s Qr—1(1n) ;71)

B, = Comck(a’wfl(ml) y Ar=1(m2) -+ s Gx—=1(mn) ;rm)

(Here we identify{ N] with [m] x [n].)

Our argument uses Neff’s idea [30], which is to let the verifier pick a valuae
random and let the prover argue that the committed valyesatisfy[ [;", [;_, (z —
bij) = [[i2, [Tj=, (x — aij). If the committedh;; are a permutation af;; this equation
holds, since polynomials are invariant under permutation of their roots. On the other
hand, ifb;; are not a permutation af;;, then by the Schwartz-Zippel lemma there is
negligible chance over the choice:ofor the equality to hold.

Initial challenge: = «— Z,

Answer: Define B, := com(x,...,z;0)By ..., B! = comg(z,...,z;0)B;"
anda :=[]", H?:1(x — ). .
Make a 3-move argument of knowledge of opening®36f. .., B., such that the
product of all the entries is.

Theorem 2. The protocol is a 4-move public coin perfect SHVZK argument of knowl-
edge Oﬁlij, T4, T such thatB; := Comck(aﬁfl(ﬂ), cey Qr=1(in); ’I“i).

We refer to the full paper [23] for a proof.



5 Multi-exponentiation to Committed Exponents

Consider a set of commitmenty, . .., A,,, a matrix of ciphertext€’;4, ..., E,,, and
m,n

a ciphertextt. In this section we will give an argument of knowledge{ef; };, ;_;,
{r:}, andR such that:

A = Comck(au ;@12 5.+ 5, Aln ;7“1)

m n
: and  E = Ex(LR) [[]]E;
Am = COIM¢k (aml yAm2 5 -+ 5 Gmn ;rm) i=1j=1
The argument will contaimn? commitments;m? ciphertexts and: elements inz,,
whereN = mn. Choosingn = N'/? gives a communication complexity 6f( N2/)x
bits.

When describing the idea, let us first just consider how to get soundness and ig-
nore the issue of zero-knowledge for a moment. In the argument, the prover will prove
knowledge of the committed exponents, so let us from now on assume the committed
values are well-defined. The prover can computeciphertexts

n
o
Diyy = H E}Y.
j=1

We haveE = Epi(1; R)[[i2, Dis = Epe(1; R)TTi%, [1)-, B}’ Ignoring R that

can be dealt with using standard zero-knowledge techniques all that remains is for the
verifier to be convinced;, have been correctly computed. For this purpose the verifier
will select challenges,, . . . , t,,, < Z, atrandom. The prover will ope{;" , Al tothe
valuesfy := >0, i1, .., frn := Y v, tias,. The verifier now checks for eadh<

¢ < mthat][;_, Elf]’ = [I\Z, Dj;. Writing this out we havd [}, ([T}—, Ey;")" =

[1~, Di. Sincet; are chosen at random, there is overwhelming probability for one of
these checks to fail unless for al we haveD;, = []}_, E;;’.

In the argument, we wish to have honest verifier zero-knowledge. We will there-
fore multiply theD;, ciphertexts with random encryptions to avoid leaking information
about the exponents. This, however, makes it possible to encrypt anything,iso
to avoid cheating we commit to the plaintexts of those random encryptions and use the
commitments to prove that they all cancel out against each other.

Initial message:

aol, - 0on < Lg; To < Rek ;5 Ag = comeg(aot, G2, - - -, Aon; T0)
m—1
bot, -y bmm — Zg s 10155 Tmm — Rek s bmm = _Zizl bii 5 Tmm =
m—1
—Zizl Tii
Cor := comey(bo1;701) Com = comey (bom; Tom)

le = Comck’(bml; Tml) cee Cmm = Comck(ban; Tmm)



ROla RS Ran — Ropk ;Rm'm =R — Zm 1
Dor 1= Epi(g"™; Ro) [Ty ESY ++ Dom = Epilg; Rom) T1j—, Eis

Dyt = Epi(¢": Ruu) T2y E57 - D = Egi(g": Ryn) [y By

Send(Ag, Co1, - - -, Cram, Doty - - -, Dinm,) to the verifier
Challenge: t1,...,tm «— Zq4
Answer:
Forl<j<m: fji=agj+ Y o titij; 2:=10+ Y 1oy tiTi
Forl1 </ <m : Fy:= by + 2111 tibie 5 2o == Tor + Zyil tirie 3 Lo =
Roe + >0 tiRie
Send(fi,. -y fus Fiy oo s Finy 2,215« o+ s Zms 21, - - -, Zm,) tO the verifier
Verification:
CheckAg [T%, A = comer(fi,-- -, fni 2)
For1l < ¢ < m check

Oog H Ofé = COIMc} (Fg; Zg) and Epk (gFe; ZZ) H Eef; = DOZ H sz

i=1 j=1

Check[];~, C;; = com,(0;0)
CheckE = H:il Dy,

Theorem 3. The protocol above is a 3-move public coin perfect SHVZK argument of
knowledge ofui1, ..., amn,71,...,"m, R SOE = E,(1; R) -, H?;l Ef/ and
A; = come (@i, ..., Qin;T5).

We refer to the full paper [23] for the proof.

6 Shuffle Argument

Given ciphertexts{e;; };}';_, and {E;;};=),_, we will give an argument of
knowledge ofr € Xy and {R;;};2),;_, such that for alli,j we haveE;; =
ex—1(i5)Epr (1; Rij). The most expensive components of the argument will be a prod-
uct of committed elements argument and a multi-exponentiation to committed elements
argument described in the previous sections. The total size of the argument is therefore
O(m? + n)x bits, whereN = mn. With m = N'/3 this gives an argument of size
O(N?/3)x bits.

The argument proceeds in seven steps. First the prover commits to the permutation
m, by making a commitment ta, ..., N in permuted order. Then the verifier picks
challenges, ..., sm,t1,...,t, atrandom. The prover commits to the challenggs
in permuted order. The prover now proves that she has committgd;tpermuted in
the same order as the permutation committed to in the initial commitment. The point of
the argument is that since the permutation is committed before seeing the challenges, the
prover has no choice in creating the commitment, the random challenges have already
been assigned unique slots in the commitment.



The other part of the argument is to use the committed exponentiation technique to

show tha [\, I}, ef}tj = Ep(LR) T[S, TT)-y Efr(z) for some knownR. If we
look at the plaintext, this implie$[;”, T}, m;‘;%‘ = [I% I, M:ZZ;Z)._With the
permutation fixed before the challenges are chosen at random there is overwhelming

probability that the argument fails unless foralj we haveM;; = m 1.

Initial message: The prover setsu.;;y := m(i — 1) + j. The prover picks

Taly«+sTam < Rek and sets
A = Comck(all ,A12 5.+ ,Q1n §7’a1)
Am = Comck(aml s Am2 5+ -+, Amn ;ram)
First challenge: sq,...,8m,t1,...,tn < Zq
First answer: We defineb, ;) := s;t;. The prover picksy,, ..., 1y, «— R and sets
By = comek(bi1 ;012 5. .. s bin 5701)
Bm = Comck(bml abm2 P 7bmn ;rbm)

Second challenge:\ — Z,
Answer: Make a 4-move argument of knowledge of € X and openings of
A} By, ..., A\ B, so they contain a permutation of thé values\(m(i — 1) +
J) + sit;. Observe, the first move of this argument can be made in parallel with the
second challenge so we only use three additional moves.
Make a 3-move argument of knowledgetgf, r;, R so

By = comeg(b11 ,b12 ... ,bin ;781)

B, = comg (bml ybma . bmn ;rbm)

m n m n

and  [[[[e" = ExsR) ] ES-

i=1j=1 i=1j=1

Theorem 4. The protocol is a 7-move public coin perfect SHVZK argument of knowl-
edge ofr € ¥ andR;; € Ry SOE;; = ex—1(;5) Epr(1; Rij).

We refer to the full paper [23] for the proof.

7 Efficient Verification

The small size of the argument gives a corresponding low cost of verification. There are,
however,2N ciphertexts that we must exponentiate in the verification. In this section
we show that the verifier computation can be reduced to making multi-exponentiations
of the ciphertexts to small exponents.



7.1 Prover-Assisted Multi-exponentiation
In our shuffle argument, the verifier has to compute

m S;

The prover can assist this computation by compufihg. .., D, asD; = [],_, €
The verifier can then compute

m n m
IT1Ie" =115
i=1j=1 j=1
What remains is for the verifier to check that the ciphertexts are correct, which can be
done by verifying

n m n
[[oy =10
j=1 i=1 j=1
for randomly chosen;. Since the check is done off-line, the verifier can use small ex-
ponentsy;, say,32-bit exponents. This trick reduces the amount of verifier computation
that is needed for computing[;", ]\, efj’lt" to onem-exponentiation to exponents
from Z, andm + 1 n-exponentiations to small exponents.

Whenm is small, this strategy may actually end up increasing the communication
complexity of the shuffle. However, the exact same method can be employed when we
let the verifier compute the;-values as products the products ofy, ..., v, and
T1,...,Tn, Wheren = nins. If we choosen, = VN for instance, we get that the
prover only sends/N ciphertexts to the verifier. The verifier then makga’-multi-
exponentiations to small exponeats, . .., o /-

7.2 Randomized Verification

In the argument for multi-exponentiation to committed exponents, the verifier must
checkm equalities of the form

m

Ey(9™: 20) [] B/} = Doe ] D
j=1 [

)

This can be done off-line in a randomized way by picking . . . , a,,, at random and
testing whether

m n m fi m n e
Ep(g= =2y o Ze) [ ] ( E?f) =11 | Borto™; 20 11 B/}
=1 j=1 \u=1 =1 j=1
m m m ti
=1Io: 11 (H Df‘;) :
£=1 i=1 \/=1

This way, we make, m-multi-exponentiations to small exponemtsand onen-multi-
exponentiation to larger exponents



8 Comparison

Let us compare our shuffle argument with the most efficient arguments for correctness
of a shuffle of EIGamal ciphertexts in the literature. Furukawa and Sako [17] suggested
an efficient argument for correctness of a shuffle based on committing to a permutation
matrix. This scheme was further refined by Furukawa [15]. We will use Groth and
Lu’'s [24] estimates for the complexity of Furukawa’s scheme. Neff [30, 31] gave an
efficient interactive proof for correctness of a shuffle. Building on those ideas Groth
[21] suggested a perfect SHVZK argument for correctness of a shuffle. Our shuffle
argument builds on Neff’'s and Groth’s schemes.

We will compare the schemes using an elliptic curve of prime ordeie use
|g] = 256 so SHA256 can be used to choose the public coin challenges. We measure
the communication complexity in bits and measure the prover and verifier computation
in single exponentiations. By this we mean that in all schemes, we count the cost of a
multi-exponentiation ta exponents as single exponentiations. We compare the most
efficient shuffle arguments in Table 1. Section 7 offer a couple of speedup techniques.

Elliptic curve Furukawa-Sak@&roth  [Furukawaproposed
Group orderiq| = 256 [17] [21] [15, 24]

Prover (single expo.) 8N 6N TN 3mN + 5N
Verifier (single expo.) 10N 6N 8N 4N + 3n
Prover's communication (bits)280 N T68N |7T68N 768m? + 768n
Rounds 3 7 3 7

Table 1. Comparison of shuffle arguments fdf = mn ElGamal ciphertexts.

If we employ the randomization techniques from Section 7 then the prover’s cost in-
creases b N exponentiations, whereas the verifier's complexity reducdsMesmall
exponentiations anoh? + 3n exponentiations to full size exponents fray.

For all schemes it holds that multi-exponentiation techniques can reduce their cost,
see e.g. Lim [27]. We refer to the full paper of Groth [21] for a discussion of random-
ization techniques and other tricks that can be used to reduce the computational com-
plexity of all the shuffle arguments. An additional improvement of our scheme is to let
the prover assist the verifier in computing the multi-exponentiafigh, [T, efj’ltj,
see Section 7. Table 2 has back-of-the-envelope estimates when we compare an op-
timized version of our scheme to that of Groth [21]. We assume that we are shuffling
N = 100, 000 EIGamal ciphertexts with parameters= 10,n = 10,000 SON = mn.

We count the computational cost in the number of multiplications. In parenthesis we
are giving timing estimates assuming the use of equipment where a multiplication takes
1us, which is conservative given today’s equipment. We only count the cost of the shuf-
fle argument in Table 2, not the cost of computing the shuffle or the size of the shuffle

(51 Mbits).



Groth [21] proposed
Prover's computation |18 - 10° mults (18 sec|)143 - 10° mults (143 sec|)
Verifier's computation |14 - 10 mults (14 sec]) 5-10° mults ( 5 sec,
Prover’'s communicatigi@7 Mbits 8 Mbits

Table 2. Comparison of shuffle arguments fop0, 000 EIGamal ciphertexts.
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