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Abstract. We consider proof of knowledge protocols where the cheat-
ing prover may communicate with some external adversarial environment
during the run of the proof. Without additional setup assumptions, no
witness hiding protocol can securely ensure that the prover knows a wit-
ness in this scenario. This is because the prover may just be forwarding
messages between the environment and the verifier while the environ-
ment performs all the necessary computation.
In this paper we consider an `-isolated prover, which is restricted to
exchanging at most ` bits of information with its environment. We intro-
duce a new notion called `-isolated proofs of knowledge (`-IPoK). These
protocols securely ensure that an `-isolated prover knows the witness.
To prevent the above-mentioned attack, an `-IPoK protocol has to have
communication complexity greater than `. We show that for any relation
in NP and any value `, there is an `-IPoK protocol for that relation. In
addition, the communication complexity of such a protocol only needs
to be larger than ` by a constant multiplicative factor.

1 Introduction

A proof of knowledge [GMR85,BG92], is a protocol where a prover demonstrates
to a verifier that he has a certain piece of information — typically the witness for
some instance of an NP relation. Soundness of such a proof is usually formalized
by insisting that there is a way to extract the witness from any prover who
successfully convinces the verifier. The definition implicitly assumes that the
prover talks to no one else during the proof. Intuitively, this may seem necessary
to ensure that it is the prover himself who knows the witness, and not someone
else helping the prover.

Nevertheless, in this paper we will consider a cheating prover who is able to
communicate with some external adversarial entity, called the environment. We
will insist that knowledge soundness still means that a witness can be extracted
from the prover himself. From a technical point of view this means that an
extractor is allowed to rewind the prover, but not the environment.

When the cheating prover can communicate arbitrarily with the environment,
this notion can only be achieved by trivial protocols where the prover essentially
hands the witness to the verifier. The obvious reason is that the witness may
be located in the environment and the cheating prover only acts as a channel



between the environment and the verifier while the environment gives an honest
proof. In such a case, the cheating prover learns nothing more than the honest
verifier during the proof and hence extraction implies that the honest verifier
always learns a witness from a single run of the protocol. This simple attack
requires the prover and the environment to communicate an entire transcript
of an honest proof. We study what happens when such an attack is prevented
by limiting the communication between the prover and the environment to be
shorter than the communication used in the protocol.

One can imagine many ways such a partial isolation could be achieved in
practical scenarios. If the prover is in close proximity to the verifier, they can
be expected to communicate orders of magnitude faster than the prover can
communicate with its environment. If in very close proximity, the fixed speed of
light alone can be used to isolate a prover. Alternatively, consider a prover imple-
mented on a smart card: for example, a smart card performing an identification
protocol. The card reader could try to shield the card completely (e.g., using
a Faraday cage) but this requires significant resources. It might be much easier
to only prevent large amounts of communication. For example, the card reader
could limit the amount of communication by measuring the energy consump-
tion of the card. A significant amount of communication takes up a noticeable
amount of energy, typically orders of magnitudes larger than what the card needs
for standard operation.

To facilitate a formal study of such settings, we propose a notion of `-isolated
proofs of knowledge (`-IPoK), where the cheating prover is restricted to commu-
nicating only ` bits of information with the environment during the run of the
proof. Note that the number of bits of information communicated does not neces-
sarily correspond to physical bits. For example, if the prover and the environment
share (very) well synchronized clocks, then a short signal can communicate many
bits of information based on the time it is sent. Later, we will also see that some
of our protocols only need to restrict the number of exchanged messages where
each message may contain arbitrarily many bits of information.

In practice, the physical setting determines the level of isolation and hence the
communication threshold `. For any such threshold, we would like to construct
an `-IPoK protocol. We therefore consider the notion of a parametrized IPoK
compiler, or just IPoK, that generates an `-IPoK protocol for any value of `
polynomial in the security parameter κ. Letting C denote the communication
complexity of the generated proof system, we call O = C/` the overhead. We saw
that any non-trivial `-IPoK protocol must have C > `, so an overhead greater
than 1 is necessary.

It turns out to be easy to construct an IPoK with overhead O = poly(κ) and
with O(`+κ) rounds of communication. This is done by repeating a standard Σ-
protocol ` + κ times so that there are many iterations where the prover cannot
consult the environment. While this seems straightforward, it is not entirely
trivial to prove that it works. Next, we show that, using novel techniques, it
is also possible to construct an IPoK protocol with a constant overhead. This
IPoK compiler generates protocols in which the number of rounds grows with
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the communication threshold `. We show that this is necessary for any black-
box extractable construction. However, using the non-programmable random
oracle model as a non-black-box technique, we construct a constant round IPoK
with an overhead that gets arbitrarily close to 1. Applying the non-black-box
techniques introduced by Barak, we can get a constant-round construction based
on a standard assumption. This last compiler, however, does not have a constant
overhead. Our IPoK compilers are all non-trivial in that they produce protocols
that are Zero Knowledge (ZK) in the standard sense (when the verifier is fully
isolated), or at least witness indistinguishable (WI).

We also propose a notion of `-isolated zero-knowledge (`-IZK), where we
require that a simulator can simulate any cheating verifier V ∗ that communicates
at most ` bits with its environment during the proof. Since 0-IZK is essentially
equivalent to the standard notion of ZK, it is known that every relation in NP has
a 0-IPoK, 0-IZK protocol. On the other hand, consider a cheating verifier that
simply acts as a channel between the environment and the honest prover while
the environment runs the honest verifier code to generate challenge messages.
A simulator for this scenario must essentially run an accepting proof with the
environment, which means that it must know a witness. Since the simulator is
only given the instance and not the witness, this implies that `-IZK proof of
knowledge protocols with communication complexity C ≤ ` only exist for trivial
languages where the witness is easy to find. On the positive side, we show how to
construct an `-IZK, `-IPoK protocol for any NP relation R and any pre-defined
threshold ` polynomial in the security parameter κ.

We conclude the paper by mentioning some applications of `-IPoK using the
physical assumption that one can `-isolate a prover for the duration of the proof
phase. Firstly, we can use a witness indistinguishable (WI) `-IPoK to prevent
“man-in-the-middle” attacks on identification schemes. Secondly, in a followup
paper [DNW07], we show how to implement arbitrary multiparty computation
securely in the UC framework without relying on any trusted third parties if
the players can be partially isolated during a short, initial proof phase. This
improves on the work of [Katz07], which showed that arbitrary MPC is possible
in the UC framework when parties are fully isolated by putting their functionality
on a tamper-proof hardware token. In some sense, our follow-up work justifies
our choice of considering partially isolated parties for proofs of knowledge only
rather than studying arbitrary multiparty computation in general, since the
latter follows from the former.

2 Σ-Protocols

An NP relation R is a set of pairs (x,w) where (x,w)
?
∈ R can be checked in

poly-time in the length of x. For such a relation we define the witnesses for an
instance x as WR(x) = {w|(x, w) ∈ R} and the language L(R) = {x|WR(x) 6= ∅}.

We use Σ-protocols throughout the paper. A Σ-protocol is given by four
PPT ITMs (P, V,S,X ). In a Σ-protocol for relation R, the prover P is given
(x,w) ∈ R and the verifier V is given x. The protocol has three rounds: the
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prover P (x,w) sends the first message a, the verifier V (x) sends a uniformly
random challenge e ∈ {0, 1}l, and P returns a response z. At the conclusion
of the protocol, V (x) outputs a judgment J = accept or J = reject based
only on the conversation (x, a, e, z). An accepting conversation (x, a, e, z) is one
for which V outputs accept. A Σ-protocol is called complete for R if P (x, w)
and V (x) always produce accepting conversations. It is called special knowledge
sound for R if, given two accepting conversations (x, a, e, z) and (x, a, e′, z′) with
e 6= e′, the extractor X outputs w = X (x, a, e, z, e′, z′) such that (x,w) ∈ R.
It is called special honest verifier zero-knowledge for R if for all (x,w) ∈ R the
simulator S on input (x, e) produces a simulated conversation (x, a, e, z) which is
computationally indistinguishable from a conversation produced by P (x,w) on
challenge e. It is called statistical special honest verifier zero-knowledge for R if the
distribution of simulated conversations is statistically close to the distribution
of conversations produced by (P, V ). A Σ-protocol is called a (statistical) Σ-
protocol for R if it is complete, special knowledge sound and (statistical) special
honest verifier zero-knowledge for R.

Many relations in cryptography have statistical Σ-protocols, but not all NP
relations are known to have statistical Σ-protocols. If, however, there exists
perfectly binding, computationally hiding commitment schemes then all NP re-
lations have a Σ-protocol with computational special honest verifier zero knowl-
edge.

Given two NP relations R1 and R2 one can define R = R1∨R2 by ((x1, x2), w) ∈
R iff (x1, w) ∈ R1 or (x2, w) ∈ R2. Given two Σ-protocols Σ1 and Σ2 for R1 re-
spectively R2 one can use the OR-construction [CDS94] to construct a Σ-protocol
Σ = Σ1 ∨ Σ2 for R1 ∨ R2. This Σ-protocol will in addition be witness indistin-
guishable (WI) in the sense that a proof with instance x using witness w1 is (at
least computationally) indistinguishable from a proof with instance x using wit-
ness w2 for an arbitrary (PPT) cheating verifier V ∗ — even if V ∗ is given w1 and
w2. This in turn implies that the proof is witness hiding (WH) if the relations are
hard: A cheating verifier which can compute a witness for R with non-negligible
probability p, after seeing a proof, by definition computes a witness for either R1

or R2 with probability p. If we let P use a random witness, wl ∈ {w1, w2}, then
because of WI, the cheating verifier will compute the witness w3−l not used by
P with a probability negligibly close to p/2. This would contradict the hardness
of R3−l.

3 Isolated Proof of Knowledge and Isolated
Zero-Knowledge

We start by introducing the notions of ∞-IPoK and ∞-IZK, and then discuss
how to restrict the communication. An interactive proof system is defined by
the PPT ITMs (P, V ). We define the following notions:

Completeness We let some PPT environment Z pick (x,w) ∈ R and then run
(P, V ) on (x, w). We require that V accepts with all but negligible probability.
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For simplicity we consider only protocols running in some fixed number of rounds
ρ. The honest execution proceeds as in Fig. 1. We require that Pr[ExecR

P,V,Z(κ) =
0] is negligible in κ for all PPT Z.

setup: First all entities are given κ. Then Z is run to produce (x, w) ∈ R. Then
(x, w) is input to P and x is input to V .

execution: Then for r = 1, . . . , ρ the verifier V is activated to produce a message
v(r) that is input to P which is activated to produce a message p(r) that is
input to V . Then V is activated to produce a judgment J ∈ {accept, reject}.
The output of the execution is a bit Exec, where Exec = 1 iff J = accept.

Fig. 1. Execution ExecR
P,V,Z(κ) with honest parties.

Knowledge Soundness We model a cheating prover by replacing P with an
arbitrary PPT ITM P ∗. We assume that the cheating prover is able to communi-
cate with its environment during the attack on V . In addition we now allow the
environment to pick x which is not necessarily in L(R). We augment the game
with a PPT extractor X whose goal is to recover the witness w from the view of
the prover (including its random coins and its communication with the verifier
V and environment Z) at the conclusion of any accepting run of the protocol.
The extraction game is outlined in Fig. 2. We say that a protocol is an ∞-IPoK
if for each PPT environment Z and each PPT cheating prover P ∗ there exists a
PPT extractor X such that Pr[ExtrR

P∗,V,Z,X (κ) = 0] is negligible in κ.

setup: First all entities are given κ. Then Z is run to produce x, and x is input to
P ∗ and V .

execution: Then for r = 1, . . . , ρ the verifier V is activated to produce a message
v(r) that is input to P ∗ which is activated to produce a message p(r) that is
input to V . Besides this P ∗ can at any time output a message y to Z and get
back a reply z. At the conclusion of the ρ rounds, the verifier V produces a
judgment J ∈ {accept, reject}.

extraction: The output of an execution is a bit Extr. If J = reject then Extr =
1. Otherwise we construct the view σ to be a concatenation of the random coins
of P ∗, the messages v(r), p(r) exchanged between prover and verifier, and all the
messages exchanged between prover and environment. We let w = X (κ, σ). If
w ∈WR(x), then Extr = 1 and otherwise Extr = 0.

Fig. 2. Knowledge soundness extraction: ExtrR
P∗,V,Z,X (κ)

If there exists one X which works for all provers P ∗ and all environments Z,
and X only uses rewinding black-box access to P ∗, then we say that (P, V ) is
a black-box ∞-IPoK for R. Sometimes we allow a small cheat and let X run in
expected polynomial time in which case we say that the protocol is an expected
∞-IPoK.
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Zero Knowledge We model a cheating verifier by replacing V with an arbitrary
PPT ITM V ∗. We assume that the cheating verifier is able to communicate
with its environment during the attack on P . We model this by allowing V ∗ to
communicate with Z. We assume that the execution stops by Z outputting a
bit. The execution with a cheating verifier is given in Fig. 3.

To define zero-knowledge we compare the execution ExecR
P,V ∗,Z to a simu-

lation SimR
S,Z , where S is an ITM acting as simulator. We want to capture that

the proof does not leak any information on w to V ∗ which V ∗ could not have
generated itself. We model the information that V ∗ can collect by what it is able
to output to the environment. The job of the simulator S is then to demonstrate
constructively that whatever V ∗ can leak to the environment could have been
computed by V ∗ without access to P . The details are given in Fig. 4. Because sim-
ulation using a strict PPT simulator is hard, one usually allows a small cheat by
letting S be expected PPT. We say that (P, V ) is ∞-IZK for R if, for every PPT
environment Z and every PPT cheating verifier V ∗, there exists an expected
PPT simulator S such that |Pr[SimR

S,Z(κ) = 1] − Pr[ExecR
P,V ∗,Z(κ) = 1]| is

negligible in κ.

setup: First all entities are given κ. Then Z is run to produce (x, w) ∈ R. Then
(x, w) is input to P and x is input to V ∗.

execution: Then for r = 1, . . . , ρ the cheating verifier V ∗ is activated to produce a
message v(r) that is input to P which is activated to produce a message p(r) that
is input to V ∗. Besides this V ∗ can at any time output a message y to Z and
get back a reply z. The execution stops by Z outputting a bit Exec ∈ {0, 1}.

Fig. 3. Execution ExecR
P,V ∗,Z(κ) with a cheating verifier.

setup: First all entities are given κ. Then Z is run to produce (x, w) ∈ R. Then x
is input to S.

execution: Then S can at any time output a message y to Z and get back a reply
z ∈ {0, 1}∗. The execution stops by Z outputting a bit Sim ∈ {0, 1}.

Fig. 4. Simulation SimR
S,Z(κ)

Isolation The above definition of ∞-IZK, ∞-IPoK captures universally com-
posable zero knowledge proofs of knowledge, as the cheating party is allowed
arbitrary communication with its environment. We now describe how to model
a corrupted party that is isolated from its environment. We start with the cheat-
ing prover in Fig. 2. We do not restrict how much P ∗ and Z communicate before
or after the proof phase. However, from the point where P ∗ receives v(1) until
it outputs p(ρ) we count the number of bits of information exchanged between
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Z and P ∗. We say that P ∗ is (`Z , `P )-isolated if P ∗ sends at most `P bits of
information to Z and receives at most `Z bits of information from Z.

We restrict the cheating verifier in Fig. 3 in the same way, counting its com-
munication with Z from sending v(1) until receiving p(ρ). We then say that
(P, V ) is an (`Z , `P )-IPoK for R if, in the definition of knowledge soundness, we
restrict ourselves to (`Z , `P )-isolated cheating provers P ∗. Similarly, we say that
(P, V ) is (`Z , `V )-IZK for R if we restrict the definition of zero knowledge to
only (`Z , `V )-isolated cheating verifiers V ∗. We define black-box and expected
notions as above. We use `-X to denote (`, `)-X.

Finally, we define the notion of a parametrized IPoK, or just IPoK, which takes
the security parameter κ and the isolation parameter ` as inputs and produces
an `-IPoK protocol. An IPoK + IZK compiler produces a protocol which is `-
IPoK and `-IZK. Letting C(κ, `) denote the communication complexity of the
produced `-IPoK, we use C(κ, `)/` to denote the overhead of the IPoK.

4 Constructing IPoK Compilers

4.1 A Simple Construction

Given any NP relation R, let Σ be a computational Σ-protocol for R. We present
a simple construction of an IPoK compiler for R using the protocol Σ. For any
` and κ, let Σ∗ be the proof system where Σ is run ρ = ` + κ times in sequence
with one-bit challenges: For r = 1, . . . , ρ, first P computes a first message ar for
Σ and sends it to V . Then the verifier sends a uniformly random er ∈ {0, 1}
and P returns the response zr to V . The verifier V accepts iff (x, ar, er, zr) is
accepting for all r = 1, . . . , ρ.
Theorem 1. The proof system Σ∗ is an `-IPoK for R. In addition, it is ZK in
the standard sense of a fully isolated verifier.

Proof. It is well known that there is an expected PPT simulator which sim-
ulates many repetitions of a Σ-protocol with 1 bit challenges for any isolated
malicious verifier V ∗. Hence Σ∗ is 0-IZK. This also implies that it is witness
indistinguishable (WI).

To see that Σ∗ is `-IPoK, let P ∗ be any cheating prover. The strong knowl-
edge soundness extractor (recall Fig. 2) gets the transcript of a random accepting
execution. Then, for each r = 1, . . . , ρ, it rewinds P ∗ to the point just before er

was sent to P ∗ and sends er ′ = 1− er instead. If P ∗ sends anything to Z, then
the extractor aborts the work on round r. Otherwise, it runs P ∗ (and replays
any communication that was sent from Z to P ∗ in this stage during the actual
proof) and gets a response zr ′. If (x, ar, er ′, zr ′) is accepting, then we can use
the special knowledge soundness of Σ to compute w ∈ WR(x). Otherwise, the
extractor proceeds to the next round. If no round yields w ∈ WR(x), then it
gives up.

Clearly X is PPT. We want to show that the probability that P ∗ yields an
accepting execution which X cannot extract is negligible; We call such an exe-
cution a winning execution since on such executions Z and P ∗ win the extraction
game outlined in Fig. 2.
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First let us frame the problem more abstractly. The random coins of P ∗ and
Z together completely determine a strategy of how P ∗ responds to the challenges
posed by V and the communication exchanged for each such message. We model
such a strategy as a binary tree T . The edges of the tree represent the two
possible challenges the verifier can send at any point in the protocol. The nodes
of the tree represent the state of the prover P ∗ (and the environment Z) at
various stages in the protocol. An execution of the protocol between P ∗ and V
corresponds to a random path from the root of the tree to a leaf.

We call a node e-correct if the prover that finds itself in the state repre-
sented by that node gives the correct response (one on which the verifier does
not reject) for the challenge bit e ∈ {0, 1}, possibly after conferring with the
environment. Otherwise we call the node e-incorrect. Similarly we call a node e-
communicating if, on the challenge bit e, the prover sends some communication
to the environment before giving a response.

Now let us look at the paths in the tree T that correspond to winning ex-
ecutions. For any node N along such a path, let e be the challenge bit that
corresponds to the outgoing edge of N which lies on the path of the winning
execution and let ē = 1− e. Then

1. N is e-correct. This has to be the case since the path is accepting.
2. N is ē-incorrect or is ē-communicating. This has to be the case since other-

wise the extractor would be able to extract a witness from this execution.

Now assume that two winning paths diverge from a node N . Then by property
1, N is 0-correct and 1-correct. By property 2, it then follows that N is 0-
communicating and 1-communicating. But there can be at most ` such nodes
on any path since the prover can communicate at most ` times. This shows that
the (non-regular) subtree of T containing only winning paths contains at most
2` paths. There are 2κ+` total paths in T and hence the probability of choosing
a winning path is upper bounded by 1/2κ. We note that the above bound holds
for any tree T and hence the probability of a bad execution occurring in a tree
randomly chosen using the coins of P ∗ and Z is also upper bounded by 1/2κ

which is negligible in κ.
We note that in the above proof, we only need to limit communication from

the environment to the prover. In other words, we actually described an (`,∞)-
IPoK. In addition, the proof also works if we only restrict the number of messages
from the environment to the prover but allow each message to contain arbitrary
many bits of information.

4.2 A Constant Overhead Construction

As before, let R be a relation in NP and let Σ be a Σ-protocol for R with
conversations (a, e, z). We use Σ as a building block from which we compile
our `-IPoK protocol. We again use many repetitions of a Σ-protocol with 1 bit
challenges. However, the prover does not respond with the full value of z in each
round, but only with a small share of z in some ramp secret sharing scheme. This

8



way, the number of bits exchanged in each round is small. At the same time,
if there are enough rounds in which the prover cannot communicate with the
environment, the extractor can use rewinding and learn enough of the shares
to recover the alternative response z′ and hence the witness w. The protocol
uses a perfectly binding, computationally hiding commitment scheme which can
commit to m bits using a O(m)-bit string. It also uses a family of secret-sharing
schemes SSS over some finite field GF(2v). We write a secret sharing of a message
z as (Z[1], . . . , Z[N ]) = SSS(z; r), where r is the randomness used. Here, Z[i] are
the shares and they are elements in the field GF(2v). We call (Z[1], . . . , Z[N ]) a
codeword.

The values of M and N depend on the security parameter κ and the communication
threshold `:

– The input to the prover is (x, w) ∈ R, and the verifier gets x.
– The following interaction is repeated for m = 1, . . . , M :

1. We first have a commit phase. The prover computes:
(a) A random first message am for Σ.

(b) A response z
(b)
m to first message am and challenge b for b ∈ {0, 1}.

(c) A secret sharing Z
(b)
m = SSS(z

(b)
m ; r

(b)
m ) of the secret z

(b)
m using random-

ness r
(b)
m .

(d) A commitment c
(b)
m to the pair (z

(b)
m , r

(b)
m ).

The prover sends (am, c
(0)
m , c

(1)
m ) to V .

2. We now have a read phase of N rounds, where in each round n = 1, . . . , N
the verifier may read the n’th field element in one of the codewords Z

(0)
m

or Z
(1)
m . Formally, for n = 1, . . . , N

(a) V chooses a challenge e ∈ {0, 1,⊥} with probability distribution
Pr(0) = Pr(1) = α/2, Pr(⊥) = (1 − α) and sends the challenge to
V .

(b) If e 6= ⊥, P sends the field element Z
(e)
m [n] to V . Else it sends back ⊥.

If the verifier tries to read more than αN field elements in a single codeword
Z

(e)
m , then the prover stops the protocol, and the verifier rejects.

3. Lastly, there is a verification phase, where the verifier is allowed to see the
opening to one of c

(0)
m or c

(1)
m to check that during the read phase it got

valid shares of a valid response:
(a) V sends a uniformly random challenge b ∈ {0, 1} to P .

(b) P sends an opening of c
(b)
m to V which then recovers (z

(b)
m , r

(b)
m ).

(c) V verifies that

i. The shares of z
(b)
m received during the read stage were calculated

correctly from the sharing Z
(b)
m = SSS(z

(b)
m ; r

(b)
m ).

ii. The conversation (x, am, b, z
(b)
m ) is an accepting conversation of Σ.

Fig. 5. The Constant-Overhead Protocol

We assume that there exists a constant α > 0 such that for any N there is
an instantiation of the secret sharing scheme which shares a message consisting
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of αN field elements and has a privacy threshold αN (any αN shares of the
codeword reveal no information about the shared secret). In addition, the sharing
allows efficient reconstruction when any αN of the shares Z[i] are lost (i.e.
replaced by ⊥). We call α the rate of the secret-sharing scheme. Using this
notation, the full protocol is described in Fig. 5.

Secret-sharing schemes with constant rate α, can be constructed using what is
typically called “ramp schemes”. A well-known ramp scheme can be constructed
by modifying Shamir secret sharing so that the shares are defined by evaluating
a polynomial of degree 2αN − 1 in which the secret makes up the top αN high
degree coefficients and the remaining coefficients are random. This scheme has
a rate of α ≈ 1/3 but requires us to use a field with v ≥ log2(N) which (as we
will see later) will not give us a constant-overhead scheme. It is also possible to
use a ramp scheme over a small (constant sized) finite field. Such schemes were
studied recently in [CC06], [CCGHV07]. In particular, the result of [CCGHV07]
shows how to use algebraic geometric codes to get a scheme with rate α = 5

21
in the field GF(2v) with v = 6. The code is based on the curves of Garćıa and
Stichtenoth [GS96] for which there are efficient constructions.3

Let f(κ) be the communication complexity of the original Σ-protocol. In our
construction we then pick

N ≈ max(α−1f(κ) , 4−1α−1`/κ) , (1)
M ≈ (βL + βF + 1)κ + 1 , (2)

where we define the constants

βL ≈ 16α−1 log2(e) , βF ≈ −1/ log2(α/4) . (3)

The scheme SSS allows us to share a message consisting of αN ≥ f(κ) field
elements, each of length v bits, which gives the capacity of at least f(κ) bits and
hence enough to share a response z of the protocol Σ.

Communication Complexity The communication complexity of all the com-
mit phases and all of the verification phases is O(Mf(κ)) The communication
complexity of a single read phase is simply (v + 2)N since it takes 2 bits to
encode the challenge e and v bits to encode the response. The communication
complexity of all the read phases is then MN(v + 2). Since N ≥ f(κ), the total
communication complexity of the protocol is then O(MNv). Under the assump-
tions that ` ≥ 4κf(κ), equation (1) just becomes N ≥ 4−1α−1`/κ. Assuming,
in addition, that v is constant, the communication complexity of the protocol
simply becomes O(`) which means that the protocol has a constant overhead for
large enough `.

The round complexity of the protocol is O(MN) which, under the above
assumptions on ` and v, is also O(`).
3 Unfortunately, such codes do not exist for all N . However, for any N there is an N ′

in the interval N ≤ N ′ ≤ 8N for which we can construct such a code. We ignore
this subtlety in further discussion since it means at most a small constant blowup
of our parameters.
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Completeness It is clear that an honest prover and an honest verifier generate
an accepting conversation as long as the verifier does not try to read more than
αN positions in the same codeword. The expected number of field elements an
honest verifier reads in a particular codeword is (α/2)N . Using the Chernoff
bound, it is easy to see that the probability of reading more than αN elements
in a single codeword is negligible in N and hence also in κ. Using union bound,
we see that the probability of this happening for any one of the possible 2M
codewords is still negligible in κ.

Knowledge Soundness Extractor The extractor tries to reconstruct as much
as possible of the codewords Z

(0)
m , Z

(1)
m for each m = 1, 2, . . . ,M . It rewinds to

each round in which the prover did not communicate during the original exe-
cution of the protocol. The extractor then tries both of the challenges 0, 1 and
replays any communication from the environment to the prover that occurred
in the original execution. If the prover tries to send out a message to the envi-
ronment, the extractor gives up on recovering that share of the codeword and
replaces it with a loss symbol ⊥. Otherwise the extractor successfully recovers
the same share that the verifier would have gotten during the real execution.
At the end of this process, the extractor will hold some candidate codewords
Z̃

(0)
m , Z̃

(1)
m for each epoch m ∈ 1, . . . ,M . For each such m, either the extractor

can correctly decode both codewords and recover the witness or:

1. One of the codewords has more than αN loss symbols.
2. One of the codewords contains at least one share which is faulty because it

does not correspond to the committed secret sharing.
3. One of the shared secrets z

(b)
m is an incorrect response to the first message

am and the challenge bit b.

We show that the probability of an accepting conversation having one of the
above possibilities occur in each epoch m = 1, . . . ,M is negligible in the security
parameter κ. Intuitively, there cannot be too many states in which the prover will
communicate resulting in a loss symbols, since the prover is limited to sending
at most ` bits to the environment. There also cannot be too many times where
the prover sends faulty shares in an accepting conversation because such con-
versations have a high likelihood of the prover being “caught” in the verification
phase. For the same reason, there cannot be too many times where the prover
shares an incorrect response zm. We formalize this intuition in the full version
of this paper and show that the probability of the prover being involved in an
accepting conversation with the verifier on which the extractor subsequently fails
to extract a witness, is upper bounded by 3× 2−κ. The proof only relies on re-
stricting the number of bits from the prover to the environment. Also, as in the
previous protocol, we only need to restrict the number of exchanged messages
but can allow each message to contain arbitrary many bits of information.

The ZK Simulator We now show that the protocol is also ZK in the standard
sense, which also implies that it is WI. Here we simply modify the usual simulator
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for simulating many repetitions of a Σ-protocol with 1-bit challenges. On each
epoch m, the simulator uses the special HVZK property to produce a random
conversation (a, e, z) for Σ where e is a random bit. It then, in addition, produces
a random secret sharing SSS(z; r) and a commitment c

(e)
m to (z, r). In addition

it produces a commitment c
(1−e)
m to some garbage value. The simulator sends

(a, c
(0)
m , c

(1)
m ) to V ∗. Then the simulator simulates the read phase of the protocol

by responding with random field elements for the challenges 1− e and with the
secret shares of the codeword SSS(z; r) for challenges e. Lastly, in the verification
phase, if the verifier V ∗ picks the challenge e then the simulator honestly opens
c
(e)
m and goes on to the next round. On the other hand, if V ∗ sends the challenge

1 − e then the simulator rewinds V ∗ to the beginning of the epoch and tries
again. This is an expected polynomial time simulation and is indistinguishable
from a real execution by the hiding property of the commitment scheme and the
privacy of the secret sharing scheme.

4.3 Impossibility of a Constant Round Black-Box Extractable IPoK

In both of the IPoK constructions that we saw so far, the number of rounds grows
with the communication threshold `. Clearly, this has to be the case if we are only
restricting the number of messages exchanged rather than the number of bits
of information since otherwise the simple attack mentioned in the introduction
will work. However, we now show that this is a necessary characteristic of any
black-box extractable IPoK compiler even when we restrict the number of bits
of information. In particular, once ` is super-logarithmic (` = ω(log(κ))), then
no protocol with O(1) rounds can be a witness hiding `-IPoK.

Theorem 2. Any black-box construction of a witness hiding (expected) IPoK
compiler, parametrized by the communication threshold ` and the security pa-
rameter κ, with ρ rounds of communication must satisfy `/ρ = O(log(κ)).

Proof. We start with any protocol that runs in ρ rounds and let q = b`/ρc.
Let f : {0, 1}∗ × {0, 1}m → {0, 1}q be a pseudorandom function with keys of
size m. The existence of pseudorandom functions follows from that of one way
functions which are guaranteed to exist if witness hiding proofs of knowledge
exist at all. We define a class of provers with (hardcoded) values r, s ∈ {0, 1}m

and (x, w) ∈ R. For each such prover we have the corresponding environment
with the (hardcoded) value r (which acts as a shared key between environment
and prover) and the hardcoded instance x. A prover P ∗ and the corresponding
environment Z are chosen randomly from this class. The prover P ∗ acts just like
an honest prover but checks in with the environment to make sure it has not
been rewound prior to each round. The interaction is outlined in Fig. 6.

The outlined interaction has P ∗ send q bits on every round and receive q bits
on every round. Since qρ ≤ `, the cheating prover is indeed `-isolated. Assume
that there is an extractor X which recovers a witness. Since the proof is witness
hiding, the extractor must be able to get some more output from P ∗, other than
just one run of the protocol. However, the only way to do so in a black-box
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The prover P ∗ begins by setting view to be the empty string. For i = 1, . . . , ρ:

1. The verifier sends v(i) to P ∗.
2. P ∗ sets view← view||v(i), computes σ

(i)
s ← f(view; s), and sends σ

(i)
s to Z.

3. Z sends σ
(i)
r ← f((σ

(i)
s , i); r) to P ∗.

4. P ∗ verifies σ
(i)
r = f((σ

(i)
s , i); r). If not then P ∗ quits. Otherwise P ∗ computes

the response p(i) and sends it to V .

In the above interaction, Z has a counter to keep track of the round i. After it
reaches i = ρ and sends out σ

(ρ)
r , it aborts and stops responding to any incoming

messages.

Fig. 6. Interaction between P ∗ and Z during a proof with V

manner is to rewind P ∗ and get an additional response p′(i) for some round i.
This is only possible if X finds a collision on f(·; s) or guesses the value of f(·; r)
on some point, which can happen in expected polynomial time if and only if
q = O(log(κ)).

4.4 Non Black-Box Techniques

In Theorem 2, we showed that non-black-box techniques are needed to construct
a constant-round IPoK compiler. The idea of using non-black box techniques
based on standard cryptographic assumptions was first studied by Barak in
[Bar01]. In the full version of this paper, we show how to use Barak’s techniques
to construct a constant round IPoK + IZK compiler.4 Since the extractor for such
a protocol does not rely on rewinding, it is also possible to construct protocols
that are resettable-ZK [CGGM99,BGGL01]: that is the zero knowledge property
holds even when the verifier can reset the prover and force it to run multiple
times with the same random coins. This is especially pertinent to our setting
where isolation might be achieved by putting a prover on a smart-card which
can be easily reset. Barak’s non-black-box techniques are, however, inefficient in
practice (requiring an application of the Cook-Levin reduction) and it does not
seem that they can be used to get a constant round protocol which also has a
constant overhead.

Here we take a different approach and present a very efficient constant round
protocol using random oracles. As before, let R be an NP-relation, and let Σ be
a Σ-protocol for R. We assume an oracle H that takes inputs of size 3κ + ` bits
and outputs κ bits. The protocol is given in Fig. 7.
4 For the reader familiar with Barak’s basic idea, the adaption to the isolated setting

is fairly straight forward: The basic idea is that the prover produces a commitment c
to some machine M , then the verifier returns a long random string r, and the prover
shows that either the claim holds or M(c) = r. The simulator takes M = V ∗ to be
the cheating verifier. In the isolated setting we prove that either the claim holds or
M(c, aux) = r for some auxiliary input aux of length at most ` bits. The simulator
takes aux to be the communication between V ∗ and Z. By letting r be longer than
` + κ bits the soundness is maintained.
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1. First V sends a uniformly random string r of length κ + ` bits to P .
2. Then P starts running κ instances of Σ. It sends the first messages a1, ..., aκ

to V . Then, for i = 1, . . . , κ:
The prover P computes z

(0)
i , z

(1)
i , where ze

i is the response to the first
message ai and the challenge bit e in Σ. The prover chooses random strings
r
(0)
i , r

(1)
i of length κ and sets (s

(0)
i , s

(1)
i ) = (H(r, r

(0)
i , z

(0)
i ), H(r, r

(1)
i , z

(1)
i )).

Lastly, the prover sends (s
(0)
i , s

(1)
i ) to V .

3. V sends random challenge bits e1, ..., eκ to P .
4. For i = 1, . . . , κ, P sends z

(ei)
i , r

(ei)
i to V . By calling H, V checks that s

(ei)
i =

H(r, r
(ei)
i , z

(ei)
i ), and also that (ai, ei, z

(ei)
i ) is an accepting conversation for Σ.

Fig. 7. A WI IPoK from a Random Oracle

Theorem 3. The proof system Σ+ is `-IPoK for R. In addition Σ+ is WI if
Σ is WI. The overhead of the given compiler is 1 + o(1) for large enough `.

Proof. The communication exchanged is that of κ runs of the Σ-protocol (which
is poly(κ)) plus the randomness r and ri and the tags si: a total of ` + poly(κ).
This gives an overhead of 1+poly(κ)/` which is 1+o(1) for large enough `. The
protocol runs in 4 rounds.

The required extractor simply looks at all oracle calls made by P ∗ and tests
if there exists two calls specifying inputs of form (r, r(0)

i , z
(0)
i ), (r, r(1)

i , z
(1)
i ) where

the outputs were used by P ∗ to form a pair (s(0)
i , s

(1)
i ) and where V would accept

both z
(0)
i and z

(1)
i . If so, it computes the witness using the special soundness

property of Σ, otherwise it gives up.
Since P ∗ can send at most ` bits to the environment, the environment has at

least κ bits of uncertainty about r. Therefore all calls to H where r appears in the
input must have been made by P ∗, except with negligible probability. Further-
more, since oracle outputs are κ bits long, they cannot be guessed except with
negligible probability. Hence, any value s

(ei)
i that is checked by V in Step 4 of the

protocol, must have been generated by P ∗ calling H on an input r, r
(ei)
i , z

(ei)
i that

V would accept. We say that such an element s
(ei)
i = H(r, r(ei)

i , z
(ei)
i ) generated

by P ∗ calling H is well formed.
It follows that, except with negligible probability, the only way in which

P ∗ can construct a set of pairs {(s(0)
i , s

(1)
i )} that will make V accept and the

extractor fail is if every pair (s(0)
i , s

(1)
i ) contains exactly 1 well formed element.

But then V accepts with probability at most 2−κ.
If the underlying Σ-protocol is witness indistinguishable, then so are poly-

nomially many repetitions of the protocol run in parallel. The only additional
information the cheating verifier gets here are the hashes s

(ēi)
i = H(r, r(ēi)

i , z
(ēi)
i )

where ēi = 1 − ei is the bit which the verifier did not pick as a challenge in
Step 3 of the protocol. However, these hashes look random (even if the verifier
knows a witness w and can guess z

(ēi)
i ) unless the verifier guesses r

(ēi)
i which

only happens with negligible probability. Hence the protocol is indeed WI.
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We have stated the above result in the random oracle model for simplicity. In
reality, we only use the oracle in a limited way. We do not need a “programmable”
oracle, i.e., the technique where the security reduction gets to decide what the
oracle should output. We rely on the random oracle model to ensure that an
output cannot be computed in a distributed fashion between two parties, each
having only some portion of the input (i.e., the cheating prover knowing r and
the environment knowing zi,e). We believe it should be possible to instantiate
our oracle with a concrete function and a well defined non-black-box assumption
(along the lines of the knowledge of exponent assumption) rather than basing
ourselves on a heuristic.

4.5 From IPoK + WI to IPoK + IZK

For theoretical interest we include the following construction of an IPoK + IZK
from a WI IPoK. In practice, this is only useful if we are in a situation where
both the prover and the verifier can be assumed to be isolated. The construction
is based on the FLS paradigm [FLS99].

Theorem 4. Assuming the existence a perfectly binding, computationally hiding
commitment scheme, there exists an IPoK + IZK compiler for every relation in
NP.

Proof. Let R be any NP relation. The verifier sends two commitments C0 =
commit(m0; r0) and C1 = commit(m1; r1) to κ-bit random elements m0 and
m1 using randomizers r0 and r1 respectively. Then V gives a WI `-IPoK of
(m, r) such that C1 = commit(m; r) or C2 = commit(m; r). It selects which
witness (m1, r1) or (m2, r2) to use uniformly at random. If the proof is accepting,
then P gives a WI `-IPoK of (m, r,w) such that C0 = commit(m; r) or C1 =
commit(m; r) or (x,w) ∈ R.

To show that the protocol is `-IZK, the simulator runs V ∗ through the con-
clusion of the first WI IPoK protocol. If the proof given by V ∗ is accepting
then, since V ∗ is `-isolated, the simulator can extract some (m, r) such that
C0 = commit(m; r) or C1 = commit(m; r). Then the simulator runs the second
WI IPoK using the witness (m, r, ε), and the `-IZK property follows from the
witness indistinguishability of this proof.

To show that the protocol is `-IPoK, the extractor simply extracts a wit-
ness in the WI proof given by the prover to get some (m, r,w) such that C0 =
commit(m; r) or C1 = commit(m; r) or (x, w) ∈ R. If the extractor extracts a
witness (m, r) for C0 or C1 then, with probability close to 1

2 , this differs from
the witness used in the first `-IPoK (by witness indistinguishability) and hence
the prover and extractor together break the hiding property of the commitment
scheme. Hence, with all but negligible probability, the extractor recovers a wit-
ness w such that (x,w) ∈ R.
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5 Applications of WI IPoK

5.1 Preventing “Man-in-the-Middle” Attacks on Identification
Schemes

An identification scheme is an interactive protocol where one party acts as a
prover to securely prove its identity to another party acting as a verifier. Each
prover has a public key which is known to all others. The usual solution has
the prover perform a witness hiding proof of knowledge of the corresponding
secret key. A “man-in-the-middle” attack on an identification scheme involves a
cheating party simultaneously acting as a verifier for party A and a prover for
party B. By simply redirecting messages between A and B the adversary is able
to claim A’s identity and successfully convince the party B. A previous solution
for preventing such attacks, outlined in [CD97] requires a PKI in a strong sense:
all the verifiers must have a registered public key for which they are guaranteed
to know the secret key. Each prover then customizes his proof to a specific verifier
so that the verifier is unable to redirect the proof to another party. Apart from
requiring a strong PKI, in practice this also requires that the prover checks the
identity of the verifier that he communicates with. For instance, if you use your
mobile phone to do a proof of identity and get access to some resource R, the
phone must display the identity of R, so you can verify that you actually meant
to access R.

As an alternative solution, we propose using the physical assumption that the
prover is `-isolated from all parties aside from the verifier. In the introduction,
we discussed some scenarios where this could be a reasonable assumption. The
prover simply uses a witness hiding `-IPoK to prove his identity. The `-IPoK
property ensures that the prover himself knows a witness even if he simultane-
ously acts as a verifier in another instance of the proof, while the witness hiding
property ensures that the verifier cannot learn such a witness. This solution only
requires that the verifier knows the correct public key for the prover, and for this
a standard PKI suffices! In addition, the responsibility of not being fooled by
man-in-the-middle attacks now falls, not on the prover, but on the verifier who
must ensure that any prover he is interacting with is properly isolated. This
places the burden on the physical design of the apparatus and so is much less
prone to human mistakes.

5.2 Setting Up a PKI for General UC MPC

It is known that general multiparty computation secure in the UC framework
is not possible without an honest majority and without any additional setup
assumptions [CKL03]. To remedy this, previous work used setup assumptions
such as the presence of a common reference string (CRS) or the existence of a
public key infrastructure (PKI) where players are guaranteed to know the secret
key corresponding to their registered public key. Both of the above assumptions
require a trusted third party to initialize the setup. It is desirable to eliminate
(or at least reduce) the level of trust required. We instead propose using the
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physical assumption that a player can be partially isolated during a portion of
the computation. A variant of this setting was previously considered in [Katz07],
which showed that one can implement arbitrary multiparty computation in the
UC framework without any trusted third parties by using tamper proof hard-
ware tokens. In particular, it is assumed that a player can isolate such a token
so that it cannot communicate even a single bit of information with any other
party. With `-IPoK protocols, we can weaken the physical setup and only require
that a party can be partially isolated from the environment during a portion of
the computation. The parties once and for all register public keys with each
other and provide proofs of knowledge of the corresponding secret keys using
an `-IPoK protocol where the prover functionality is `-isolated from the envi-
ronment. In a followup paper [DNW07], we show that this setup can be used
as basis for UC secure multiparty computation tolerating an arbitrary number
of adaptive corruptions. Note that, in particular, those results show that the
witness indistinguishability property of the registration proof is sufficient and
zero-knowledge is not required. This is an essential point, as in most settings it
is unreasonable to assume that both of the interacting parties are isolated from
the environment and we showed that one cannot achieve ZK without isolating
the verifier to some extent.

6 Future Directions

The most interesting future research would be to improve the efficiency of the
constructions we gave. In particular, it would be nice to have a smaller constant
overhead than what we achieve in Section 4.2. Perhaps one could even find a
black-box construction with an overhead of 1 + o(1) or show that such con-
structions are impossible. In addition, it would be interesting to come up with a
specific reasonable non-black-box assumption (along the lines of the knowledge
of exponent assumption) under which one could prove the security of the proto-
col in Fig. 7 or some similar protocol which runs in a constant number of rounds
and has an overhead of 1 + o(1).
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