
Lattice Reduction Algorithms:
Theory and Practice

Phong Q. Nguyen

INRIA and ENS, Département d’informatique, 45 rue d’Ulm, 75005 Paris, France.
http://www.di.ens.fr/~pnguyen/

Abstract. Lattice reduction algorithms have surprisingly many appli-
cations in mathematics and computer science, notably in cryptology. On
the one hand, lattice reduction algorithms are widely used in public-
key cryptanalysis, for instance to attack special settings of RSA and
DSA/ECDSA. On the other hand, there are more and more crypto-
graphic schemes whose security require that certain lattice problems are
hard. In this talk, we survey lattice reduction algorithms, present their
performances, and discuss the differences between theory and practice.

Intuitively, a lattice is an infinite arrangement of points in Rm spaced with
sufficient regularity that one can shift any point onto any other point by some
symmetry of the arrangement. The simplest non-trivial lattice is the hypercubic
lattice Zn formed by all points with integral coordinates. The branch of number
theory dealing with lattices (and especially their connection with convex sets)
is known as geometry of numbers [24,41,12,5], and its origins go back to two
historical problems: higher-dimensional generalizations of Euclid’s gcd algorithm
and sphere packings.

More formally, a lattice L is a discrete subgroup of Rm, or equivalently, the
set of all integer combinations of n linearly independent vectors b1, . . . ,bn in
Rn:

L = {a1b1 + · · ·+ anbn, ai ∈ Z}.
Such a set (b1, . . . ,bn) is called a basis of the lattice. The goal of lattice reduc-
tion is to find reduced bases, that is bases consisting of reasonably short and
nearly orthogonal vectors. This is related to the reduction theory of quadratic
forms developed by Lagrange [19], Gauss [11] and Hermite [14]. Lattice reduc-
tion algorithms have proved invaluable in many fields of computer science and
mathematics (see the book [30]), notably public-key cryptanalysis where they
have been used to break knapsack cryptosystems [32] and special cases of RSA
and DSA, among others (see [26,21] and references therein).

Reduced bases allow to solve the following important lattice problems, either
exactly or approximately:

– The most basic computational problem involving lattices is the shortest vec-
tor problem (SVP), which asks to find a nonzero lattice vector of smallest
norm, given a lattice basis as input. SVP can be viewed as a geometric gen-
eralization of gcd computations: Euclid’s algorithm actually computes the



smallest (in absolute value) non-zero linear combination of two integers, since
gcd(a, b)Z = aZ+bZ, which means that we are replacing the integers a and b
by an arbitrary number of vectors b1, . . . ,bn with integer coordinates. Since
SVP is NP-hard under randomized reductions [3] (see [17,34] for surveys on
the hardness of lattice problems), one is also interested in approximating
SVP, i.e. to output a nonzero lattice vector of norm not much larger than
the smallest norm.

– The inhomogeneous version of SVP is called the closest vector problem
(CVP); here we are given an arbitrary target vector in addition to the lattice
basis and asked to find the lattice point closest to that vector. A popular
particular case of CVP is Bounded Distance Decoding (BDD), where the
target vector is known to be somewhat close to the lattice.

The first SVP algorithm was Lagrange’s reduction algorithm [19], which solves
SVP exactly in dimension two, in quadratic time. In arbitrary dimension, there
are two types of SVP algorithms:

1. Exact algorithms. These algorithms provably find a shortest vector, but
they are expensive, with a running time at least exponential in the dimension.
Intuitively, these algorithms perform an exhaustive search of all extremely
short lattice vectors, whose number is exponential in the dimension (in the
worst case): in fact, there are lattices for which the number of shortest lat-
tice vectors is already exponential. Exact algorithms can be split in two
categories:
(a) Polynomial-space exact algorithms. They are based on enumer-

ation which dates back to the early 1980s with work by Pohst [33],
Kannan [16], and Fincke-Pohst [6]. In its simplest form, enumeration is
simply an exhaustive search for the best integer combination of the ba-
sis vectors. The best deterministic enumeration algorithm is Kannan’s
algorithm [16], with super-exponential worst-case complexity, namely
nn/(2e)+o(n) polynomial-time operations (see [13]), where n denotes the
lattice dimension. The enumeration algorithms used in practice (such
as that of Schnorr-Euchner [37]) have a weaker preprocessing than Kan-
nan’s algorithm [16], and their worst-case complexity is 2O(n2) polynomial-
time operations. But it is possible to obtain substantial speedups using
pruning techniques: pruning was introduced by Schnorr-Euchner [37] and
Schnorr-Hörner [38] in the 90s, and recently revisited by Gama, Nguyen
and Regev [10], where it was shown that one can reach a 2n/2 heuristic
speedup over basic enumeration.

(b) Exponential-space exact algorithms. These algorithms have a bet-
ter asymptotic running time, but they all require exponential space
2Θ(n). The first algorithm of this kind is the randomized sieve algo-
rithm of Ajtai, Kumar and Sivakumar (AKS) [4], with exponential worst-
case complexity of 2O(n) polynomial-time operations. Micciancio and
Voulgaris [22] recently presented an alternative deterministic algorithm,
which solves both CVP and SVP within 22n+o(n) polynomial-time op-
erations. Interestingly, there are several heuristic variants [31,23,43] of



AKS with running time 2O(n), where the O() constant is much less than
that of the best provable algorithms known. For instance, the recent al-
gorithm of Wang et al. [43] has time complexity 20.3836n polynomial-time
operations.

2. Approximation algorithms. These algorithms are much faster than exact
algorithms, but they only output short lattice vectors, not necessarily the
shortest one: they typically output a whole reduced basis, and are therefore
lattice reduction algorithms. The first algorithm of this kind is the celebrated
algorithm of Lenstra, Lenstra and Lovász (LLL) [20,30], which can approx-
imate SVP to within a factor O((2/

√
3)n) in polynomial time: it can be

viewed as an algorithmic version of Hermite’s inequality. Since the appear-
ance of LLL, research in this area has focused on two topics:
(a) Faster LLL. Here, one is interested in obtaining reduced bases of sim-

ilar quality than LLL, possibly slightly worse, but with a smaller run-
ning time. This is achieved by a divide-and-conquer strategy (such as
in [39,18]) or by using floating-point arithmetic (such as in [36,29,25]).
The most popular implementations of LLL are typically heuristic floating-
point variants, such as that of Schnorr-Euchner [37]: see the survey [42]
on floating-point LLL.

(b) Stronger LLL. Here, one is interested in obtaining better approxima-
tion factors than LLL, at the expense of the running time. Intuitively,
LLL repeatedly uses two-dimensional reduction to find short lattice vec-
tors in dimension n. Blockwise reduction algorithms [35,7,8] obtain bet-
ter approximation factors by replacing this two-dimensional reduction
subroutine by a higher-dimensional one, using exact SVP algorithms in
low dimension. The best polynomial-time blockwise algorithm known [8]
achieves a subexponential approximation factor 2O((n log log n)/ log n): it
is an algorithmic version of Mordell’s inequality. In practice, a popular
choice is the BKZ algorithm of Schnorr-Euchner [37] implemented in
the NTL library [40], which is a heuristic variant of Schnorr’s blockwise
algorithm [35]. The article [9] provides an experimental assessment of
BKZ.

Both categories are in fact complementary: all exact algorithms known first apply
an approximation algorithm (typically at least LLL) as a preprocessing, while all
blockwise algorithms call many times an exact algorithm in low dimension as a
subroutine. Most of the SVP algorithms we mentioned can be adapted to CVP
(see for instance [1]). The provable SVP algorithms are surveyed in [27]. The
heuristic algorithms which we mentioned are such that their running time may no
longer be proved, and/or there may not be any guarantee on the output (should
the algorithm ever terminate). Heuristic algorithms can typically outperform
provable algorithms in practice, for reasons still not well understood.

Finally, it is folklore that lattice reduction algorithms behave better than
their proved worst-case theoretical bounds. In the 80s, the early success of lat-
tice reduction algorithms in cryptanalysis led to the belief that the strongest
lattice reduction algorithms behaved as perfect oracles, at least in small dimen-
sion. But this belief showed its limits in the 90s with NP-hardness results and the



development of lattice-based cryptography, following Ajtai’s worst-case/average-
case reduction [2] and the NTRU cryptosystem [15]. The articles [28,9] clarify
what can be expected in practice, based on experimental results. Such assess-
ments are important to better understand the gap between theory and practice,
but also to evaluate the concrete security of lattice-based cryptography.

References

1. E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices.
IEEE Trans. on Info. Theory, 48(8):2201–2214, 2002.

2. M. Ajtai. Generating hard instances of lattice problems. In Proc. STOC ’96, pages
99–108. ACM, 1996.

3. M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions.
In Proc. of 30th STOC. ACM, 1998.

4. M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In Proc. 33rd STOC, pages 601–610, 2001.

5. J. Cassels. An Introduction to the Geometry of Numbers. 1997.
6. U. Fincke and M. Pohst. Improved methods for calculating vectors of short

length in a lattice, including a complexity analysis. Mathematics of Computation,
44(170):463–471, 1985.

7. N. Gama, N. Howgrave-Graham, H. Koy, and P. Q. Nguyen. Rankin’s constant
and blockwise lattice reduction. In Proc. CRYPTO ’06, volume 4117 of Lecture
Notes in Computer Science, pages 112–130. Springer, 2006.

8. N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequal-
ity. In Proc. 40th ACM Symp. on Theory of Computing (STOC), 2008.

9. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Proc. EUROCRYPT
’08, volume 4965 of Lecture Notes in Computer Science, pages 31–51. Springer,
2008.

10. N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning.
In Proc. EUROCRYPT ’10, volume 6110 of Lecture Notes in Computer Science.
Springer, 2010.

11. C. Gauss. Disquisitiones Arithmeticæ. Leipzig, 1801.
12. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North-Holland, 1987.
13. G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector

algorithm (extended abstract). In Proc. of CRYPTO ’07, volume 4622 of LNCS,
pages 170–186. Springer-Verlag, 2007.

14. C. Hermite. Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de
la théorie des nombres. J. Reine Angew. Math., 40:261–315, 1850.

15. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key
cryptosystem. In Proc. ANTS-III, volume 1423 of Lecture Notes in Computer
Science, pages 267–288. Springer, 1998.

16. R. Kannan. Improved algorithms for integer programming and related lattice
problems. In Proc. 15th ACM Symp. on Theory of Computing (STOC), pages
193–206, 1983.

17. S. Khot. Inapproximability results for computational problems on lattices. 2010.
In [30].

18. H. Koy and C.-P. Schnorr. Segment LLL-reduction of lattice bases. In Proc. CaLC
’01, volume 2146 of Lecture Notes in Computer Science, pages 67–80. Springer,
2001.



19. L. Lagrange. Recherches d’arithmétique. Nouv. Mém. Acad., 1773.
20. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with

rational coefficients. Mathematische Ann., 261:513–534, 1982.
21. A. May. Using LLL-reduction for solving RSA and factorization problems: A

survey. 2010. In [30].
22. D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm

for most lattice problems based on voronoi cell computations. In Proc. STOC ’10,
pages 351–358. ACM, 2010.

23. D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest
vector problem. In Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 1468–1480, 2010.

24. H. Minkowski. Geometrie der Zahlen. Teubner-Verlag, Leipzig, 1896.
25. I. Morel, D. Stehlé, and G. Villard. H-LLL: using householder inside LLL. In Proc.

ISSAC ’09, pages 271–278. ACM, 2009.
26. P. Q. Nguyen. Public-key cryptanalysis. In I. Luengo, editor, Recent Trends in

Cryptography, volume 477 of Contemporary Mathematics. AMS–RSME, 2009.
27. P. Q. Nguyen. Hermite’s constant and lattice algorithms. 2010. In [30].
28. P. Q. Nguyen and D. Stehlé. LLL on the average. In Proc. ANTS-VII, volume

4076 of Lecture Notes in Computer Science, pages 238–256. Springer, 2006.
29. P. Q. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM

J. Comput., 39(3):874–903, 2009.
30. P. Q. Nguyen and B. Vallée, editors. The LLL Algorithm: Survey and Applications.

Information Security and Cryptography. Springer, 2010.
31. P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are

practical. J. of Mathematical Cryptology, 2(2):181–207, 2008.
32. A. M. Odlyzko. The rise and fall of knapsack cryptosystems. In Cryptology and

Computational Number Theory, volume 42 of Proc. of Symposia in Applied Math-
ematics, pages 75–88. A.M.S., 1990.

33. M. Pohst. On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. SIGSAM Bull., 15(1):37–44, 1981.

34. O. Regev. On the Complexity of Lattice Problems with Polynomial Approximation
Factors. 2010. In [30].

35. C.-P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. The-
oretical Computer Science, 53(2-3):201–224, 1987.

36. C.-P. Schnorr. A more efficient algorithm for lattice basis reduction. J. Algorithms,
9(1):47–62, 1988.

37. C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems. Math. Programming, 66:181–199, 1994.

38. C.-P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosystem by
improved lattice reduction. In Proc. of Eurocrypt ’95, volume 921 of LNCS, pages
1–12. IACR, Springer-Verlag, 1995.

39. A. Schönhage. Factorization of univariate integer polynomials by diophantine
aproximation and an improved basis reduction algorithm. In Proc. ICALP ’84,
volume 172 of Lecture Notes in Computer Science, pages 436–447. Springer, 1984.

40. V. Shoup. Number Theory C++ Library (NTL) version 5.4.1. Available at
http://www.shoup.net/ntl/.

41. C. L. Siegel. Lectures on the Geometry of Numbers. Springer, 1989.
42. D. Stehlé. Floating-point LLL: theoretical and practical aspects. 2010. In [30].
43. X. Wang, M. Liu, C. Tian, and J. Bi. Improved Nguyen-Vidick heuristic sieve al-

gorithm for shortest vector problem. Cryptology ePrint Archive, Report 2010/647,
2010. http://eprint.iacr.org/.


