
Pushing the Limits: A Very Compact and a
Threshold Implementation of AES

Amir Moradi1, Axel Poschmann?2,
San Ling?2, Christof Paar1, Huaxiong Wang?2

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{moradi,cpaar}@crypto.rub.de

2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore
{aposchmann,lingsan,hxwang}@ntu.edu.sg

Abstract. Our contribution is twofold: first we describe a very com-
pact hardware implementation of AES-128, which requires only 2400
GE. This is to the best of our knowledge the smallest implementation
reported so far. Then we apply the threshold countermeasure by Nikova
et al. to the AES S-box and yield an implementation of the AES im-
proving the level of resistance against first-order side-channel attacks.
Our experimental results on real-world power traces show that although
our implementation provides additional security, it is still susceptible to
some sophisticated attacks having enough number of measurements.

Keywords: side-channel attacks, countermeasures, secret sharing, lightweight,
ASIC

1 Introduction

The mass deployment of pervasive devices promises many benefits such as lower
logistic costs, higher process granularity, optimized supply-chains, or location
based services among others. Besides these benefits, there are also many risks
inherent in pervasive computing: many foreseen applications are security sensi-
tive, such as wireless sensor networks for military, financial or automotive appli-
cations. With the widespread presence of embedded computers in such scenarios,
security is a striving issue, because the potential damage of malicious attacks
also increases. An aggravating factor is that pervasive devices are usually not
deployed in a controlled but rather in a hostile environment, i.e., an adversary
has physical access to or control over the devices. This adds the whole field
of physical attacks to the potential attack scenarios. Most notably are here so-
called side-channel attacks, especially Simple,Differential and Correlation Power
Analysis [6, 18].

? The authors were supported in part by the Singapore National Research Foundation
under Research Grant NRF-CRP2-2007-03.

1.1 Related Work

Low-power low-area implementations of the AES have been reported in [15] re-
quiring 3100 GE and 160 clock cycles and in [13] requiring 3400 GE and 1032
clock cycles. Both implementations use an 8-bit serialized data path and im-
plement only a quarter of the MixColumns operations. The first design, [15],
implements two S-boxes and performs the datapath and the key schedule op-
erations in parallel, while the latter implementation is fully serial and uses a
RAM-like architecture.

Canright has investigated very thoroughly how to implement the AES S-
box in hardware with minimal area requirements [8]. On the other hand, several
masking schemes have been proposed to create a masked AES S-box using either
multiplicative or additive approaches. A common approach is to use the tower-
field representation for an additive masking scheme because of the linearity of
the inversion in GF (22). The examples are [4] and [26] which are provably se-
cure, but in practice obvious first-order leakages have been observed [20]. Later,
Canright et al. [9] applied the idea of [26] to his very compact S-box resulting
in the most compact masked S-box to date. However, as expected its hardware
implementation still has first-order leakage [21].

1.2 Our Work

Our first contribution is a description of the smallest hardware implementation
of AES known to date. Our design goal was solely low area, and thus we were
able to set the time-area and the power-area tradeoffs differently, and in favour
for a more compact hardware realization, compared to [13] and [15]. To pursue
our goal, we have taken a holistic approach that optimizes the total design,
not every component individually. In total we achieved an implementation that
requires only 2400 GE and needs 226 clock cycles, which is to the best of our
knowledge 23% smaller than any previously published implementations.

As a second contribution, we investigate side-channel countermeasures for
this lightweight AES implementation. It turns out that when using Canright’s
representation, the only non-linear function is the multiplication in GF(22). An
example for how to share this function using only three shares has been presented
by Nikova et al. in [24]. Building on these findings, we applied the countermeasure
to our unprotected AES implementation. For this architecture we conducted a
complete side-channel evaluation based on real-world power traces that we obtain
from SASEBO. We use a variety of different power analysis attacks to investigate
the achieved level of resistance of our implementation against first order DPA
attacks even if an attacker is capable of measuring 100 million power traces.

1.3 Outline

We first give a brief introduction to Differential Power Analysis and counter-
measures in the following Section. A general overview follows a more detailed

description of the masking scheme presented in [23, 24], which we use for our ex-
perimental evaluation. Subsequently in Section 3 AES and Canright’s optimized
S-box are briefly recalled, before we describe a shared AES S-box. Based on these
findings, in Section 4 we propose two hardware architectures – unprotected and
protected – of AES-128 and mount DPA attacks on its real-world power traces
in Section 5. Finally we conclude this article in Section 6.

2 Introduction to DPA

Smart cards and other types of pervasive devices performing cryptographic op-
erations are seriously challenged by side-channel cryptanalysis. Several publica-
tions, e.g., [12] have stressed that such physical attacks are an extremely prac-
tical and powerful tool for recovering the secrets of unprotected cryptographic
devices. In fact, these attacks exploit the information leaking through physical
side channels and involved in sensitive computations to reveal the key materials.

Amongst the known sources of side channels and the corresponding attacks
most notable are power analysis attacks [18]. Many different kinds of power anal-
ysis attacks, e.g., simple and differential power analysis (SPA and DPA) [18],
template-based attacks [2], and mutual information analysis [14], have been in-
troduced while each one has its own advantages and is suitable in its special
conditions. However, correlation power analysis (CPA) [6], which is a general
form of DPA, got more attention since it is able to efficiently reveal the se-
crets by comparing the measurements to the estimations obtained by means of
a theoretical power model which fits to the characteristics of the target imple-
mentation.

2.1 Countermeasures

Generally speaking, the goal of a DPA countermeasure is to prevent a depen-
dency between the power consumption of a cryptographic device and character-
istics of the executed algorithm, e.g., intermediate values, executed operations,
and taken branches [19]. Amongst the countermeasures proposed at different
levels of design and abstraction Masking methods, which rely on randomizing
key-dependent intermediate values processed during the execution of the cipher,
are widely applied on either the algorithmic level [26] or the cell level [27]. An
n-order masking technique is in fact an (n+ 1, n+ 1) secret sharing scheme [3,
31], where all shares of the secret are required to proceed.

When an algorithmic masking scheme is applied on a microprocessor-based
platform, it is often combined by shuffling [16] which randomizes the order of
operations. Applying a masking scheme in a software implementation (micro-
processor) can be defeated by higher order attacks [11, 34]. However, practical
experiences like [20] showed that still there is a first-order leakage when hard-
ware (ASIC or FPGA) is protected by a masking scheme at algorithm level.
This leakage can be exploited by sophisticated power models, e.g., toggle-count
model, or by a template-based DPA attack.

In short, currently there exists no perfect protection against DPA attacks.
However, applying appropriate countermeasures makes the attacker’s task more
difficult and expensive. Chari et al. have shown in [10] that up to n-th order DPA
attacks can be prevented by using n masks. Following this direction, Nikova et
al. extended the idea of masking with more than two shares in [23] to prevent
those attacks which use sophisticated power models, e.g., counting the glitches
occurring when the inputs of a complex combinational circuit change. They
showed that non-linear functions implemented in such a way, achieve provable
security against first-order DPA attacks and also resist higher-order attacks that
are based on a comparison of mean power consumption. Estimations of a hard-
ware implementation of these ideas are presented in [24] where an S-box of the
Noekeon cipher [17] is considered as a case study without practical evaluation of
its resistance to DPA attacks. Afterwards, the same approach is applied on the
S-box of the PRESENT cipher [5], and its resistance against first-order attacks is
verified in [28]. Since it seems to be a promising candidate for a lightweight and
side-channel resistant implementation, we have chosen this scheme to implement
the AES S-box and have a comparison (on its first-order leakage) to the masked
AES S-boxes proposed so far, e.g., [9] and [26].

3 Shared Computation of the AES S-box Using
Composite Fields

In this section first an algorithmic description of AES is given, before the AES S-
box as described by Canright is expressed. Finally, the threshold countermeasure
of Nikova et al. is applied to the Canright AES S-box that will be used in the
next section for a protected implementation of the AES.

3.1 Algorithmic Description of AES

In November 2001 the Rijndael algorithm was chosen as the Advanced Encryp-
tion Standard (AES) by the National Institute of Standards and Technology
(NIST) [22]. AES is a symmetric block cipher, that processes data blocks of 128
bits. Three different key lengths are specified: 128, 192, and 256 bits, resulting
in 10, 12 or 14 rounds, respectively. AES is, depending on the key length, also
referred to as AES-128, AES-192, and AES-256 and in the remainder of this
article we focus on the encryption process of AES-128.

At the beginning of the algorithm, the input is copied into the State array,
which consists of 16 bytes, arranged in four rows and four columns (4 × 4 -
Matrix). At the end, the State array is copied to the output.

The bytes of the State are interpreted as coefficients of a polynomial represen-
tation of finite field elements in GF (28). All byte values in the remainder of this
article will be written in hexadecimal notation in the form {ab}. In encryption
mode, the initial key is added to the input value at the very beginning, which
is called an initial round. This is followed by 9 iterations of a normal round
and ends with a slightly modified final round. During one normal round the

following operations are performed in the following order: SubBytes, ShiftRows,
MixColumns, and AddRoundkey. The final round is a normal round without the
MixColumns stage.

SubBytes is a non-linear, invertible byte substitution and consists of two
transformations that are performed on each of the bytes independently: First
each byte is substituted by its multiplicative inverse in GF (28) (if existent),
element {00} is mapped to itself. Then the following affine transformation over
GF (2) is applied: b

′

i = bi⊕ b(i+5)mod8⊕ b(i+6)mod8⊕ b(i+7)mod8⊕ ci for 0 ≤ i ≤ 8,
where bi(ci) is the i-th bit of the byte b(c), c = {63} = 011000112.

ShiftRows cyclically shifts each row of the State by a certain offset. The
first row is not shifted at all, the second row is shifted by one, the third row by
two, and the fourth row by three bytes to the left.

MixColumns processes one column of the State at a time. The bytes are
interpreted as coefficients of a four-term polynomial over GF (24). Each column
is multiplied modulo x4 + 1 with a fixed polynomial a(x) = {03}x3 + {01}x2 +
{01}x+ {02}. This can be written as the following matrix multiplication, where
s′(x) = a(x)⊗ s(x):

S′
0,c

S′
1,c

S′
2,c

S′
3,c

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

S0,c

S1,c

S2,c

S3,c

for 0 ≤ c ≤ 3.

AddRoundKey adds the 128-bit round key generated from KeyExpansion
to the 128-bit State. It is a simple XOR-addition of the round key and the State.

KeyExpansion derives 10 round keys from the initial key iteratively. The
key is grouped into four words w0, w1, w2, and w3, that consist of four bytes each.
w3 is cyclically shifted to the left by one byte. The result is bytewise substituted
by the S-box and then a round constant RCon is XOR-added. Finally the result
is XOR added to w0 yielding w′

0. w′
1 is obtained by XOR adding w′

0 with w1,
w′

2 = w′
1 ⊕ w2 and w′

3 = w′
2 ⊕ w3. The new key state or round key RKi is then

formed by RKi = w′
0|w′

1|w′
2|w′

3. The round constants RConi are derived by the
following equation: RConi = xi mod m(x), where i denotes the round number,
0 ≤ i ≤ 9 and the irreducible polynomial m(x)= x8 +x4 +x3 +x+1. For further
details on AES, the interested reader is referred to [29].

3.2 Canright’s Representation of the AES S-box

Canright investigated the hardware requirements of the AES S-box very thor-
oughly in [8]. He proposed a very compact S-box that is composed of smaller
fields. As one can see from Fig. 1 the input to the S-box is transformed by a linear
mapping that changes the basis from GF(28) to GF(28)/GF(24)/GF(22) (please
ignore pipelining and register remarks in this step, these issues are addressed in
Section 3.3 and in Section 5). The output is transformed by a linear mapping
that combines the basis change back to GF(28) and the inverse mapping of the
AES S-box. Beside two 4-bit XORs, a GF(24) inverter (center module), a GF(24)

�
-1

N
 �

2

�
2

N
 �

�
2N
 �

lin
.

m
a
p

N
 �

N
 �

in
v
.

lin
.

m
a
p

2 bit
4 bit
8 bit
P

ipelining stage

G
F
(2

4
)

s
q
u
a
re

-s
c
a
le
r

G
F
(2

4
)

m
u
ltip

lie
r

G
F
(2

4
) in

v
e
rte

r

G
F
(2

4
)

m
u
ltip

lie
r

G
F
(2

4
)

m
u
ltip

lie
r

2
bit

4
bit

8
bit

P
ipelining

stage
R
egister
R
em
asked

R
egister

F
ig.1.

C
om

posite
field

representation
of

the
A
E
S
S-box,

as
described

in
[8].

T
he

thick
lined

rectangles
are

m
ultipliers

in
G
F
(2

2),
the

only
non-linear

parts.

square-scaler (top left module) and three instances of a GF(24) multiplier (right
and bottom left) are required. The GF(24) square-scaler uses a normal basis
(Γ 4, Γ) and only consists of wiring and three XOR gates. The GF(24) inverter
uses a normal basis (Γ 4, Γ) and consists of 5 XOR gates, some wiring and three
instances of a GF(22) multiplier (thick lined rectangles)3. The GF(24) multiplier
consists of nine XOR gates, some wiring and three parallel instances of a GF(22)
multiplier.

3.3 A Shared AES S-box

To apply the threshold countermeasure of Nikova et al. [24] we need to share
the non-linear functions of the algorithms, while the linear functions are simply
implemented s times in parallel, where s denotes the amount of shares. Partic-
ularly interesting are realizations with minimal amount of shares, i.e., s = 3,
because they require the fewest hardware resources. Having a closer look on the
representation of Canright, it turns out that the only non-linear parts of the
AES S-box are the multipliers in GF(22). In [24] an exemplary realization of
this multiplier using only three shares has been presented. It is noteworthy to
point out that the threshold countermeasure requires registers between different
stages of shared functions. As can be seen from Fig. 1, Canright’s S-box repre-
sentation requires in total five pipelining stages. Note that not only the output
of the shared functions, but all signals have to be pipelined. This implies that
in total we need to store 174 bits, which as we will see in Section 4 will increase
the area requirements even further (please ignore remasked register remarks in
this step, this issue is discussed in Section 5).

4 Hardware Architectures

This section is dedicated to the description of the different hardware profiles that
we will attack in the next section. For this purpose we first introduce the design
flow used before we detail the hardware architectures, and finally summarize the
implementation results.

4.1 Design flow

We used Mentor Graphics ModelSimXE 6.4b and Synopsys DesignCompiler ver-
sion A-2007.12-SP1 for functional simulation and synthesis of the designs to the
Virtual Silicon (VST) standard cell library UMCL18G212T3 [33], which is based
on the UMC L180 0.18µm 1P6M logic process with a typical voltage of 1.8 V. We
used Synopsys Power Compiler version A-2007.12-SP1 to estimate the power
consumption of our ASIC implementations. For synthesis and for power estima-
tion we advised the compiler to keep the hierarchy and use a clock frequency
of 100 KHz, which is a widely used operating frequency for RFID applications.
3 Note that the inverse in GF(22) only consists of some wiring.

Note that the wire-load model used, though it is the smallest available for this
library, still simulates the typical wire-load of a circuit with a size of around
10 000 GE.

To substantiate our claims on the efficacy of the proposed countermeasures,
we implemented the ASIC cores on SASEBO to obtain and evaluate real-world
power traces. For design synthesis, implementation and configuration of SASEBO
we used Xilinx ISE v10.1.03 WebPACK. In a typical application scenario the
cryptographic core would be part of an integrated ASIC, hence for the power
measurements on SASEBO we embedded the cryptographic core in a framework
that handles the communication between the two FPGAs.

4.2 A Very Compact Implementation of AES

key

State
[gReg-8/128]

Key
[gReg-8/128]

data_in

data_out
8

mask mk2
[gReg-8/128]

mask mk1
[gReg-8/128]

mask md1
[gReg-8/128]

mask md2
[gReg-8/128]

mk2

mk1

S2

S3

S1

md1

md2

8

8

8

8

8

8

8

8

8

MK1

MK2

K

S-Box

S2 S3 S1

8 8 8

8 8 8
done Unprotected

data + key masking

8

8

8

K

MK1

MK2

S1

S2

S3

8

8

8

8

8

8

Fig. 2. Hardware architectures of both implementations of a serialized AES-128
encryption-only core.

The most area consumption typically occurs for storing the intermediate
state, because typically flip-flops are used, which have high area requirements. In
the technology we used, a single-input, positive edge triggered D flip-flop requires
5 GE and can store 1 bit. If you have more than one input, e.g. the output from
SubBytes, the ouput from ShiftRows and the output from MixColumns, you need
multiplexers. A Multiplexer for a selection from two inputs to one output (2-to-1
MUX) costs 2.33 GE per bit. Scan flip-flops combine a D flip-flop and a 2-to-1
MUX for 6 GE per bit. That is a saving of 1.33 GE per bit of storage. For

the AES this sums up to 340 GE. Scan flip flops have been used before, e.g. in
implementations of PRESENT [30] and KATAN/KTANTAN [7].

Based on the properties of scan flip-flops (2 inputs “for free”), we designed
the architecture for our tinyAES implementation. As can be seen in Fig. 3, both
the State array and the Key array each consist of a 16 stage 8-bit width shift
register. Each of the stages comprises 8 scan flip-flops (cells 00 to 33) with two
inputs. One input receives the output of the previous stage, while the other
one contains the result of ShiftRows, which comes for free in our design, since
shifting is done by wiring. Instead of adding one 2-to-1 MUX for every cell
of the State array, we designed our architecture in a way that we only need
one additional MUX for every row. These are the 4 2-to-1 MUXes (each 8-bit
width) on the right hand side of the cells (03) to (33), accounting for 75 GE
instead of 300 GE. This choice is strongly related to the choice of parallelism of
the MixColumns operation. Both [13] and [15] implemented MixColumns in a
serialized way, that is, it takes 4 clock cycles to calculate one column. We opted
to implement MixColumns not in a serialized way, because, as we are going to
show below, the hidden overhead is larger than the potential savings.

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

32

8

8

8

8

8

8

8

8

8

8

32

S
B
o
u
t

SBin

c
o
l

8

8

8

8

32

c
o
l

32

c
o
l

32

c
o
l

32

32

MixColumnsState

(a) State array with ShiftRows and MixColumns

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

8

8

8

8

8
selXOR

SBout

input

8

RCon
8

SBin 8 8 8

r
o
u
n
d
k
e
y

8

(b) Key array

Fig. 3. Architectures of storage modules for the State and the Key arrays.

The Key array consists of a similar 128 flip-flop array as the State array, but
the wiring between the registers is different. There are two shifting directions:
horizontal and vertical. The current 8-bit chunk of the round key is output during
the horizontal shifting, while the S-box look-up for the key schedule is performed
during vertical shifting. Note that the RotWord operation is implemented by
taking the output of the (13) cell instead of the (03) cell as the input for the
S-box look-up. The S-box output is XORed to the round constant RCon and
the output of the (00) cell. Once all four S-box look ups have been performed
the first column of the key state contains already the new roundkey, but the
other three columns do not. The remaining steps of the key update is performed
during the output of the round key chunk by XORing the output of cell (00)
to the output of cell (01) as the new input of cell (00). Once the whole row is

output, i.e., every fourth clock cycle, the feedback XOR is not required, and thus
the output of cell (00) is gated with an AND gate. Note that on top of the cost
for storage (768 GE) and the calculation and storage of the round constant (89
GE), in our implementation the whole key schedule requires only one 8-bit AND
gate (11 GE), an 8-bit XOR gate with two inputs (19 GE) and an 8-bit XOR
gate with three inputs (35 GE). We believe that our results are very close to a
theoretical optimum. This is reflected in the area savings compared to previous
results: 924 GE4 vs. 1076 in [15]. [13] uses a RAM-like storage, which includes
both, the State and the Key arrays. Thus for a fair comparison we have to add
both modules together: 1678 GE vs. 2040 GE in [13].

In our architecture, MixColumns is realized by four instances of a module
called col, which outputs the result of the first row of the MixColumns matrix.
Since the matrix used is circulant, one can use the same module and just rotate
the input accordingly. Note that in hardware rotation can be realized by simple
wiring and comes nearly for free. By serializing MixColumns, one can save 75%
of the area (280 GE). Also, 3 of the 4 MUXes on the right hand side of every
row can be discarded, and the 32-bit width 2-to-1 MUX (75 GE) at the right
hand side of the dashed line in Fig. 3 could be shrinked to an 8-bit width 2-
to-1 MUX (19 GE), leading to savings of 112 GE. So in total, the potential
savings for the whole design (not only MixColumns) are 392 GE. However, one
needs to temporarily store at least 3 of the output bytes, because we cannot
over-write the input bytes, before all four output bytes are calculated. That is a
storage overhead of 5×24 = 120 GE. Since the MixColumns matrix is circulant,
we need to rotate the input to the col module with a different offset for every
output byte. This can be implemented by simple wiring (see the right hand side
of col in Fig. 3), followed by a 32-bit width 4-to-1 MUX (192 GE) to select
the correct input. In summary, the potential savings are in this case reduced
to 80 GE, while at the same time one needs far more complex control logic
to orchestrate the control signals for the MUXes and the additional temporary
storage flip-flops (see below).

Instead of using a Finite State Machine (FSM), we rather spent considerable
amount of time and effort to decrease the area requirements for the control logic
for the unprotected version (Profile 1). The control signals are derived from a
5-bit LFSR with taps at bit position 1 and 5 that has a cycle length of 21. This is
exactly the amount of cycles required to perform one round of AES and the key
schedule: 16 cycles forAddRoundKey, 1 for ShiftRows (during which the Key state
is not clocked) and 4 for the parallel execution of MixColumns and SubWord.
Every time a cycle is completed a pulse is generated that is used to control
the MUXes and the clock gating logic. Simple Boolean logic is used to derive all
control signals from this pulse, such that in total only 73 GE are required for the
control logic. In [15] no details about the control logic are given, and 220 GE are
required for both control logic and “others”. Thus a fairer comparison is 80 GE
vs. 220 GE. As a consequence of a very serialized implementation, a RAM-like

4 The key expansion unit of [15] also contains the Round Counter generation, thus in
order to have a fair comparison, we have to add the area for both: 835+89=924 GE.

storage, and usage of an FSM, [13] requires 400 GE for control logic (including
the round constant generation) compared to 162 GE for our implementation.
Similar to [15], we used Canright’s description of the AES S-box [8], which is
the smallest known.

Our envisioned target application is a very constrained device, e.g. a low-cost
passive RFID-tag or similar. By re-ordering the input and output bytes, it is pos-
sible to reduce the area significantly, to be precise by 13.5%. As a consequence,
our implementation requires an input and output ordering that is row-wise,
i.e., S00|S01|S02|S03|S10 . . . S32|S33 and not column-wise (S00|S10|S20|S30|S01 . . .
S23|S33), where Sij denotes one byte of the input/output with 0 ≤ i, j ≤ 3. If
column-wise ordering is needed, 20 additional 8-bit wide 2-to-1 MUXes are re-
quired (373 GE). In fact with our approach we forward the effort of re-ordering
the bytes to the other communication party. In an RFID scenario this will most
likely be a reader or a database server, which is by far not as constrained as
a passive RFID tag. Hence, the costs for the byte re-ordering are marginal.
Furthermore, when two devices with our AES implementation communicate, no
byte re-ordering is needed at all. We believe that this re-ordering does not pose
a severe problem in practice, while at the same time results in an attractive area
saving.

4.3 A Threshold Implementation of AES

If we share both the data path and the key schedule we obtain the threshold
version (profile 2). The additional hardware requirements for this profile are
depicted in Fig. 2 by the dashed lines. For this profile we need four randomly
generated masks (md1,md2,mk1,mk2), which are XORed to the data chunk and
the key chunk. The unmasking step is performed by simply XORing all three
shares yielding the output (data_out). The state of the masks also needs to be
maintained, which leads to two more instantiations of both the State and the
Key module (mask md1, mask md2, mask mk1 and mask mk2). Furthermore, the
S-box is now replaced by a shared S-box module that contains five pipelining
stages (see Fig. 1). This delays the computation of the round keys and, as a
consequence, the pipeline needs to be emptied in every encryption round. Thus
profile 2 needs 25 clock cycles for one round and uses a small FSM to derive the
control signal (77 GE).

4.4 Performance Figures

Table 1 summarizes the implementation figures of both profiles. The upper part
gives a detailed breakdown of the area requirements both in absolute and relative
values. The lower part lists the smallest achievable area requirements, power
estimations, clock cycles, and throughput at 100 KHz.

Profile 1 (unprotected) has an area footprint of 2400 GE of which 70% are
required to store the key and the data state. MixColumns and S-box are the other
two main contributors to the area requirements. Profile 2 (threshold version)
increases the area demands more than four-fold to 10793 GE. The main reason for

Table 1. Breakdown of the post-synthesis implementation results for both architec-
tures of a serialized AES-128 encryption-only core.

Profile 1 Profile 2
Goal AES-128 (unprotected) (threshold version)

% GE % GE

Area

sequential: Round constant 3 89 0.5 89
State array 32 843 8 843
Key array 32 835 8 842
md1 array 8 843
md2 array 8 843
mk1 array 8 842
mk2 array 8 842

combinational: MUXes 5 128 3 376
KeyAdd 1 21 0.5 64
S-box 9 233 35 4071/4244∗

MixCol 14 373 10 1120
control 3 72 0.5 77
other 1 7 0.5 89

compile simple sum 100 2601 100 10941/11114∗

compile ultra sum 2400 GE 10793/11031∗ GE
cycles 226 clk 266 clk
power @100 KHz 3.7 µA 13.4 µA
throughput @100 KHz 57 Kbps. 48 Kbps.

Area compile ultra sum 2421 GE

and cycles 210 clk

Speed power @100 KHz 3.7 µA
throughput @100 KHz 61 Kbps.

∗ using remasked registers excluding PRNGs (explained in Section 5)

this is the S-box, which increases more than 10 fold and now occupies a whopping
35% of the area. This increment mainly comes from the 13-fold increment of the
GF(22) multiplier (13 GE vs. 173 GE) and the four pipelining stages that need
to store an additional 174 bits (870 GE).

Profile 1 requires 21 clock cycles per round and 16 clock cycles to output the
result (226 clock cycles in total). Profile 2 needs 4 additional clock cycles per
round, due to the pipelining stages in the S-box, which leads to a total of 266
clock cycles (18% increment). Please note that the time required can be reduced
by 16 clock cycles for additional 21 GE for profile 1 and 64 GE for profile 2 by
adding another XOR gate for the final KeyAdd allowing to interleave consecutive
message blocks. The power consumption was estimated at 100 KHz and a supply
voltage of 1.8V. The unprotected implementation (profile 1) requires 3.7 µA and
thus is suitable for passive RFID-tags. For profile 2, however, this figure increases
more than threefold to 13.4 µA, which might already decrease the reading range
of a passive RFID tag. If required, power saving techniques might be applied to
reduce the power consumption at the cost of additional area. Please note that

power figures for different standard-cell libraries cannot be compared in a fair
manner. Furthermore, power estimates vary greatly depending on the simulation
method used and effort spent. Therefore we did compare our power figures with
previous works.

5 Experimental Results

In addition to the performance and area consumption features of our thresh-
old implementation, we have implemented the whole AES encryption design on
an FPGA-based platform and analyzed the actual power consumption traces to
practically investigate its resistance to first-order DPA attacks. Later in this sec-
tion the platform used and the measurement setup are introduced, then practical
results are shown to validate the desired security levels.

5.1 Measurement Setup

A SASEBO (Side-channel Attack Standard Evaluation Board) which is partic-
ularly designed for side-channel attack experiments [1] has been used as the
measurement platform. It contains an xc2vp7 Virtex-II Pro FPGA [35] as the
crypto FPGA, clocked at a frequency of 3MHz5, to implement the design. A
LeCroy WP715Zi 1.5GHz oscilloscope at a sampling rate of 1GS/s and a differ-
ential probe which captures voltage drop of a 1Ω resistor at VDD (1.8V) path
are used as the measurement equipments to collect the power traces.

5.2 Side-Channel Resistance

In order to find the leakage points and have a reference to fairly judge about the
power analysis resistance of our implementation, we have switched off the mask
generators and kept all masks as zero to prevent randomization by masking.
100 000 traces are collected from this implementation while encrypting random
plaintexts. As expected and also observed in [20], CPA attacks which use a HW
model predicting the S-box input or output are not able to recover the secrets
of hardware implementations. What should directly lead to a successful attack
is a CPA using HD model which predicts bit flips on a part of the state register
when S-box outputs are overwritten to each other. Therefore, two consecutive
key bytes, i.e., 216 hypotheses, should be guessed. The results of such an attack,
which shows the amount of information leakage related to register updates, is
depicted by Fig. 4(a). Note that to reduce the attack complexity we have given
a favor to the attacker by knowing a key byte and reducing the key hypotheses
to 28. As shown in Fig. 4(b), around 30 000 traces are sufficient to perform a
successful attack. Because of the pipeline architecture of the S-box the correct
key guess appears at more than one clock cycle in the attack results. Also, a
5 This frequency of operation is selected to prevent overlapping power peaks of con-
secutive clock cycles and hence to simplify the attacks.

(a) (b)

Fig. 4. CPA attack results when the mask generators are off by means of a HD model
(a) using 100K measurements and (b) at point 5.1µs over the number of traces.

mutual information analysis attack using the same distinguisher, i.e., HD of the
register updates, is efficiently capable of recovering the secret. The results of
this attack are shown in Fig. 5(a) and Fig. 5(b). It is noteworthy to mention
that those four clock cycles in which the secret leaks clearly in both Fig. 4 and
Fig. 5 are when the intermediate results of the target S-box computation are
consecutively stored in the pipeline registers of the shared S-box.

In order to observe the combinational circuit leakage a correlation-enhanced
collision attack, presented in [21], is mounted by getting average over the ac-
quired traces based on the plaintext bytes, and correlating the mean traces after
alignment based on the clock cycles when the target S-boxes are computed. In
fact, this attack is very similar to a template-based DPA attack using only the
mean vectors of the templates and avoiding the profiling step. The result of this
attack presented in Fig. 6 shows that the leakage of the combinational circuit,
i.e., the S-box instance, also leads to successfully revealing the linear difference
between two key bytes.

In the second step we have measured 5 million traces while the random
number generators are turned on and work normally. The plaintext bytes are
randomly selected, and the masks are shared neither between the plaintext and
key bytes nor between computation rounds of encryptions. In short, there is no
mask reuse in our target design. All attacks, mounted on the first step when
the random number generators were off, are repeated on the new measurements.
The CPA attack using HD, whose result is shown in Fig. 7(a), is expectedly not
successful since registers are masked by means of three shares and the predicted
HD does not fit to the register updates. However, the registers which contain
the shares are updated at the same time, and their information leakages through

(a) (b)

Fig. 5. MIA attack results when the mask generators are off by means of a HD model
(a) using 100K measurements and (b) at point 5.1µs over the number of traces.

(a) (b)

Fig. 6. Correlation collision attack results when the mask generators are off (a) using
100K measurements and (b) at point 4.8µs over the number of traces.

power consumption are inherently summed up. As observed in [32] the sum of
shared registers leakages is not independent of the actual (unshared) value, and
a mutual information analysis is expected to recover the secret. We have re-
peated the last mutual information analysis attack by means of a HD model
as the distinguisher. The corresponding attack result is shown in Fig. 7(b), but
it still cannot distinguish the correct hypothesis. This might be related to the
number of traces; in other words, 5 million traces seem to be not enough due to
the amount of switching and electronic noise in our platform. However, the same
issue has been addressed in [25], where it is argued that the combinational func-
tions following the registers change the distribution of shared register leakages
leading to failed mutual information analysis attacks.

(a) (b)

(c) (d)

Fig. 7. Attack results when the mask generators are working using 5 million traces (a)
CPA using a HD model, (b) MIA using a HD model, (c) correlation collision attack,
and (d) correlation collision attack at point 4.45µs over the number of traces.

On the other hand, repeating the last correlation collision attack, whose
results are given in Fig. 7(c) and Fig. 7(d), led to revealing the secret using
around 3.5 million traces. Since this attack recovers the first-order leakage of
combinational circuits, it shows that our shared S-box still has first-order leakage.
During the investigation of this issue (as also addressed in [25]) we have realized
that the values which are saved in the intermediate registers of our shared S-

box are not uniformly distributed. This means, property 3 illustrated in [23]
and [25] does not hold although we have used the shared multiplication in GF(22)
proposed by the original authors. The problem arises when the output of the
shared multiplication modules which have some shared inputs are mixed by
means of the linear functions. In fact, the correction terms which have been
added to the shared multiplications to provide uniformity are canceled out. It is
actually a practical evidence showing that if the uniformity property does not
hold, the leakage of the combinational circuit caused by the glitches leads to
a recoverable first-order leakage. Since searching through all possible correction
terms and their combination to check whether they lead to a uniform distribution
in our design was a very time consuming task, we could neither check all possible
cases nor could we find a suitable case. Instead, (as also addressed in [25]) we
have tried to use random fresh masks inside each pipeline stage when required.
The scheme we have used to add fresh masks, so-called remasking, is shown by
Fig. 8. We have simulated our shared S-box and tried to find the minimum cases
where remasking is required, and finally yielded the design shown in Fig. 1; the
remasked registers are marked by ○.

a1

a2

a3

m2

m1

b1

b2

b3

clk

Fig. 8. Remasking scheme for a 3-share case

Finally 100 million traces have been acquired from the last design when all random
number generators worked normally and the plaintext bytes were randomly selected. It
should be noted that the fresh masks for the remasked registers are provided by means
of LSFRs which have enough period considering 100 million measurements. All the
attacks illustrated have been repeated here on all measured traces. A CPA and an MIA
using a HD model on S-box outputs are still not applicable; their results are depicted
in Fig. 9(a) and Fig. 9(b) respectively. Also, we have performed a third-order CPA
attack by cubing the power traces and correlating the results to predictions of a HD
model in order to recover the leakage of the inherently summed shared register updates.
The result of this attack shown in Fig. 9(c) indicates that 100 million traces are still
not enough for such a higher-order attack. The correlation collision attack is also not
applicable. Its results are shown in Fig. 9(d). This means that our target design could
prevent the first-order leakage under Gaussian assumption since correlation collision
attack applies only the mean traces6. This confirms the statement given in [25] that
the average power leakage of a threshold implementation should be independent of the
processed values.

6 In fact, we continued the measurements till 400 million, and still this type of attack
was not feasible.

We examined several models and performed a couple of mutual information attacks,
and finally could make the secret distinguishable using HD of the S-box input. Using
this model, similar to correlation collision attacks, the linear difference between two
key bytes can be recovered. The result of this attack is shown by Fig. 9(e) and Fig. 9(f),
and indicates that the secret gets distinguishable using more than 80 million traces.

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Attack results when the mask generators are working and the remasked registers
are applied using 100 million traces (a) CPA and (b) MIA and (c) third-order CPA
using a HD model on S-box outputs, (d) correlation collision attack, (e) MIA using a
HD model on S-box input, and (f) MIA at point 4.7µs over the number of traces.

6 Conclusions

While implementations of cryptographic algorithms in pervasive devices seriously face
area and power constraints, their resistance against physical attacks has to be taken
into account. Unfortunately, nearly all side-channel countermeasures introduce power
and area overheads which are proportional to the values of the unprotected implemen-
tation. Therefore, this fact prohibits the implementation of a wide range of proposed
countermeasures and also limits possible cipher candidates for ubiquitous computing
applications.

Most of the countermeasures proposed for implementing a side-channel resistant
AES in hardware remained unfortunately with a first-order leakage. In this article we
have applied a recently proposed secret sharing-based masking scheme to the AES S-
box in order to improve the first-order resistance. Decomposition of the AES S-box
into a series of S-boxes of algebraic degree two and splitting them into (at least) three
shares is a challenging task. However, we have used the architecture of the smallest

AES S-box and have shared the non-linear operation which is a GF (22) multiplier. To
separate the glitches of different parts of the circuit we have designed the S-box in five
pipeline stages by adding four sets of intermediate registers and applying a remasking
scheme on some selected registers.

Our proposed hardware architecture for the AES reduces the area requirements to
only 2400 GE, which is 23% smaller than the smallest previously published. After the
secret sharing based countermeasure has been applied, the area requirements are 11031
GE, while the timing overhead compared to our unprotected implementation with a
similar architecture is only 18%. According to practical side-channel investigations,
masking the state and the key registers by means of two shares each could improve the
resistance against the considered (most well-known) first-order DPA attacks. Our pro-
tected implementation offers 128-bit standardized security with improved side-channel
resistance for around 11 000 GE.

Acknowledgment

The authors would like to thank Akashi Satoh and Research Center for Information
Security (RCIS) of Japan for the prompt and kind help in obtaining SASEBOs, and
François-Xavier Standaert for his fruitful and helpful comments and suggestions.

References

1. Side-channel attack standard evaluation board (sasebo). Further information are
available via http://www.rcis.aist.go.jp/special/SASEBO/index-en.html.

2. D. Agrawal, J. R. Rao, and P. Rohatgi. Multi-channel Attacks. In CHES 2003,
volume 2779 of LNCS, pages 2–16. Springer, 2003.

3. G. R. Blakley. Safeguarding Cryptographic Keys. In National Computer Confer-
ence, pages 313–317, 1979.

4. J. Blömer, J. Guajardo, and V. Krummel. Provably Secure Masking of AES. In
SAC 2004, volume 3357 of LNCS, pages 69–83. Springer, 2004.

5. A. Bogdanov, G. Leander, L. Knudsen, C. Paar, A. Poschmann, M. Robshaw,
Y. Seurin, and C. Vikkelsoe. PRESENT - An Ultra-Lightweight Block Cipher. In
CHES 2007, volume 4727 of LNCS, pages 450–466. Springer, 2007.

6. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, 2004.

7. C. D. Cannière, O. Dunkelman, and M. Knezevic. KATAN & KTANTAN - A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In CHES 2009,
volume 5747 of LNCS, pages 272–288. Springer, 2009.

8. D. Canright. A Very Compact S-Box for AES. In CHES 2005, volume 3659 of
LNCS, pages 441–455. Springer, 2005.

9. D. Canright and L. Batina. A Very Compact "Perfectly Masked" S-Box for
AES. In ACNS 2008, volume 5037 of LNCS, pages 446–459. Springer, 2008.
the corrected version is available at Cryptology ePrint Archive, Report 2009/011
http://eprint.iacr.org/2009/011.

10. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards Sound Approaches to
Counteract Power-Analysis Attacks. In CRYPTO 1999, volume 1666 of LNCS,
pages 398–412. Springer, 1999.

11. J.-S. Coron, E. Prouff, and M. Rivain. Side Channel Cryptanalysis of a Higher Or-
der Masking Scheme. In CHES 2007, volume 4727 of LNCS, pages 28–44. Springer,
2007.

12. T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. T. M.
Shalmani. On the Power of Power Analysis in the Real World: A Complete Break
of the KeeLoq Code Hopping Scheme. In CRYPTO 2008, volume 5157 of LNCS,
pages 203–220. Springer, 2008.

13. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES Implementation on a Grain
of Sand. Information Security, IEE Proceedings, 152(1):13–20, 2005.

14. B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual Information Analysis.
In CHES 2008, volume 5154 of LNCS, pages 426–442. Springer, 2008.

15. P. Hämäläinen, T. Alho, M. Hännikäinen, and T. D. Hämäläinen. Design and
Implementation of Low-Area and Low-Power AES Encryption Hardware Core. In
DSD, pages 577–583, 2006.

16. C. Herbst, E. Oswald, and S. Mangard. An AES Smart Card Implementation
Resistant to Power Analysis Attacks. In ACNS 2006, volume 3989 of LNCS, pages
239–252. Springer, 2006.

17. G. J. Daemen, M.Peeters and V.Rijmen. The Noekeon Block Cipher. In First
Open NESSIE workshop, 2000.

18. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO 1999,
volume 1666 of LNCS, pages 388–397. Springer, 1999.

19. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, 2007.

20. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES
Hardware Implementations. In CHES 2005, volume 3659 of LNCS, pages 157–171.
Springer, 2005.

21. A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-Enhanced Power Analysis
Collision Attack. In CHES 2010, volume 6225 of LNCS, pages 125–139. Springer,
2010.

22. National Institute of Standards and Technology (NIST). Announcing the Advanced
Encryption Standard (AES). Nov. 2001. Published: Federal Information Processing
Standards Publication 197.

23. S. Nikova, C. Rechberger, and V. Rijmen. Threshold Implementations Against
Side-Channel Attacks and Glitches. In ICICS 2006, volume 4307 of LNCS, pages
529–545. Springer, 2006.

24. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementations of
Non-Linear Functions in the Presence of Glitches. In ICISC 2008, volume 5461 of
LNCS, pages 218–234. Springer, 2008.

25. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. Journal of Cryptology, 2010. in press,
DOI: 10.1007/s00145-010-9085-7.

26. E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A Side-Channel Analysis
Resistant Description of the AES S-Box. In FSE 2005, volume 3557 of LNCS,
pages 413–423. Springer, 2005.

27. T. Popp and S. Mangard. Masked Dual-Rail Pre-charge Logic: DPA-Resistance
Without Routing Constraints. In CHES 2005, volume 3659 of LNCS, pages 172–
186. Springer, 2005.

28. A. Poschmann, A. Moradi, K. Khoo, C.-W. Lim, H. Wang, and S. Ling. Side-
Channel Resistant Crypto for less than 2,300 GE. Journal of Cryptology, 2010. in
press, DOI: 10.1007/s00145-010-9086-6.

29. V. Rijmen and J. Daemen. The Design of Rijndael: AES. The Advanced Encryption
Standard. Springer, 1 edition, 2002.

30. C. Rolfes, A. Poschmann, G. Leander, and C. Paar. Ultra-Lightweight Implemen-
tations for Smart Devices - Security for 1000 Gate Equivalents. In CARDIS 2008,
volume 5189 of LNCS, pages 89–103. Springer, 2008.

31. A. Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–613,
1979.

32. F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed,
M. Kasper, and S. Mangard. The World is Not Enough: Another Look on Second-
Order DPA. In ASIACRYPT 2010, volume 6477 of LNCS, pages 112–129. Springer,
2010.

33. Virtual Silicon Inc. 0.18 µm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 µm Generic II Technology:
0.18µm, July 2004.

34. J. Waddle and D. Wagner. Towards Efficient Second-Order Power Analysis. In
CHES 2004, volume 3156 of LNCS, pages 1–15. Springer, 2004.

35. Xilinx. Virtex-II Pro and Virtex-II ProX Platform FPGAs: Complete Data
Sheet. Available via http://www.xilinx.com/support/documentation/data_
sheets/ds083.pdf, November 2007.

