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Abstract. A signature scheme is fully leakage resilient (Katz and Vaik-
untanathan, ASIACRYPT ’09) if it is existentially unforgeable under an
adaptive chosen-message attack even in a setting where an adversary
may obtain bounded (yet arbitrary) leakage information on all interme-
diate values that are used throughout the lifetime of the system. This is a
strong and meaningful notion of security that captures a wide range of
side-channel attacks.

One of the main challenges in constructing fully leakage-resilient sig-
nature schemes is dealing with leakage that may depend on the random
bits used by the signing algorithm, and constructions of such schemes are
known only in the random-oracle model. Moreover, even in the random-
oracle model, known schemes are only resilient to leakage of less than
half the length of their signing key.

In this paper we construct fully leakage-resilient signature schemes with-
out random oracles. We present a scheme that is resilient to any leakage
of length (1− o(1))L bits, where L is the length of the signing key. Our
approach relies on generic cryptographic primitives, and at the same time
admits rather efficient instantiations based on specific number-theoretic
assumptions. In addition, we show that our approach extends to the
continual-leakage model, recently introduced by Dodis, Haralambiev,
Lopez-Alt and Wichs (FOCS ’10), and by Brakerski, Tauman Kalai,
Katz and Vaikuntanathan (FOCS ’10). In this model the signing key
is allowed to be refreshed, while its corresponding verification key re-
mains fixed, and the amount of leakage is assumed to be bounded only
in between any two successive key refreshes.
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1 Introduction

One of the main goals of research in the foundations of cryptography is designing
systems that withstand adversarial behavior. Given a cryptographic task, such
as public-key encryption, one must formalize an attack model specifying a class
of adversaries, and define a notion of security capturing what it means to break
the system. Within such a framework, it is then possible to rigorously analyze
the security of cryptographic systems.

Starting with the seminal work of Goldwasser and Micali [18], various and
increasingly strong attack models and notions of security have been proposed.
Over the years, however, theoreticians and practitioners began to notice that a
large class of realistic attacks, called side-channel attacks, are not captured by
the existing models. In such attacks, the adversary may learn some additional
information about the internal secret state of a system, by measuring various
properties resulting from specific physical implementations (e.g., timing informa-
tion, detection of internal faults, electromagnetic radiation, power consumption
etc.). As a result, it has become an important research agenda to extend the stan-
dard models to capture such side-channel attacks, and to design cryptographic
systems whose security guarantees can be rigorously analyzed and clearly stated
in these stronger models. Our work focuses on the model of memory attacks,
and its bounded-leakage and continual-leakage variants, which we describe next
(several other models are described in the full version).

Memory attacks: bounded-leakage and continual-leakage. The model of memory
attacks was introduced by Akavia, Goldwasser, and Vaikuntanathan [1]. Its main
premise is that the adversary can learn arbitrary information about the secret
state of a system, subject only to the constraint that the amount of information
learned is somehow bounded. More precisely, the adversary can adaptively select
arbitrary poly-time computable functions fi : {0, 1}∗ → {0, 1}λi and learn the
value of fi applied to the internal state of the system, subject only to some
constraint on the output sizes λi.

The work of [1] assumes that there is an a priori determined leakage bound
λ, which bounds the overall amount of information learned by the adversary
throughout the entire lifetime of the system to be

∑
i λi ≤ λ. We call this the

bounded leakage model. Usually the leakage bound λ is also related to the secret-
key size, so that a relatively large fraction λ/|sk| of the secret key can be leaked. A
great deal of research has gone into devising various cryptographic primitives in
this model, such as public-key and identity-based encryption schemes, signature
schemes, and more (see [30, 26, 3, 2, 28, 8, 14] ).

A drawback of the bounded-leakage model is that, if a system is being used
continually for a sufficiently long time, then the amount of leakage observed by
the attacker may exceed any a-priori determined leakage bound. Hence, we would
like to bound the rate of leakage rather than the overall amount of leakage. If we
do not bound the overall leakage, then any static piece of information that stays
unmodified on the system can eventually be fully recovered by the adversary.
Hence the secret keys of such systems must be periodically refreshed. Recently,
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Dodis et al. [13] and Brakerski et al. [10] suggested the continual-leakage model,
in which a scheme periodically self-refreshes its internal secret key, while the
corresponding public key remains fixed. In this model, only the amount of leakage
seen by the adversary in between any two successive refreshes is assumed to be a
priori bounded by some leakage bound λ.4 However, there is no a-priori bound on
the overall amount of information seen by the adversary throughout the lifetime
of the system.

We note that in both the bounded-leakage model and the continual-leakage
model the adversary may be able to learn partial, but yet arbitrary, information
on the entire secret key. This is in contrast with other models, where either the
leakage is assumed to be of “low complexity” (such as AC0 circuits) [25, 16], or
certain secret values are assumed to be leak-free.

Leakage-resilient signature schemes. In this paper we study the security of sig-
nature schemes in the bounded-leakage and continual-leakage models. Signature
schemes in the bounded-leakage model were proposed by Alwen, Dodis, and
Wichs [3] and by Katz and Vaikuntanathan [26], who focused mainly on leak-
age of (only) the signing key of the scheme. Specifically, a signature scheme is
leakage-resilient in the bounded-leakage model if it is existentially unforgeable
against an adaptive chosen-message attack [19] even when adversarially chosen
functions of the signing key are leaked in an adaptive fashion. Signature schemes
satisfying this notion of security were constructed both based on generic cryp-
tographic primitives in the standard model [26] and based on the Fiat-Shamir
transform [17] in the random-oracle model [26, 3].

Although this notion of leakage resilience already captures some attacks,
it does not fully capture general leakage attacks, which may depend on the
entire internal state of the system. In particular, the problem is that both of
the signature scheme constructions from [26, 3] are randomized and hence the
internal state includes, in addition to the secret-key, all of the random coins
used by the signing algorithm.5 The prior schemes may therefore be vulnerable
to leakage-attacks that (also) depend on this randomness.

This was already noted by Katz and Vaikuntanathan [26], who put forward
the stricter notion of a fully leakage-resilient signature schemes (in the bounded-
leakage model). This notion requires a signature scheme to remain existentially
unforgeable under an adaptive chosen-message attack even when the adversary
obtains bounded leakage information on all intermediate values used by the
signer throughout the lifetime of the system, including the secret-keys and inter-
nal random coins (the notion can be naturally extended to the continual-leakage

4 If the time between refreshing is fixed, we can think of this as bounding the rate of
leakage.

5 No known deterministic or public-coin constructions of leakage-resilient signatures
are known. Without leakage, the signing algorithm of any signature scheme can be
made deterministic by using, as its random coins, the output of a pseudorandom
function (PRF) applied to the message, where the seed of the PRF is made part of
the secret key. However, in the setting of key leakage, this transformation may no
longer be secure since the seed to the PRF can also leak.
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model [13, 10]). This stronger notion seems to better capture real attacks, relying
on e.g. timing or power consumption patterns, since these likely do depend on
the internal randomness.

Currently, however, the known constructions of fully leakage-resilient signa-
ture schemes are proven secure only in the random-oracle model [3, 10, 13, 26].
Moreover, even in the random-oracle model, known schemes are either resilient
to leakage of at most half the length of the signing key [3, 13, 26], or require
refreshing of the signing key after every few invocation of the signing algorithm,
even when no leakage occurs [10] (this is required even in the bounded-leakage
model, where refreshing is not part of the typical functionality). In the standard
model, only constructions of “one-time” signatures6 from [26] are known to be
fully leakage resilient.

In a concurrent and independent work, Malkin, Teranishi, Vahlis and Yung
[29] propose a alternate signature scheme in the continual-leakage model. Al-
though the two schemes appear very different at first, they can be seen as sepa-
rate instantiations of a common strategy, which we will explain shortly.

1.1 Our Contributions

We construct the first fully leakage-resilient signature schemes without random
oracles. We first present a scheme in the bounded-leakage model that is resilient
to any leakage of (1 − o(1))L bits, where L is the bit-length of the signing key.
Our scheme is based on generic cryptographic primitives, and is inspired by the
approach of Katz and Vaikuntanathan [26] (although their scheme is resilient
to leakage from the signing key only). Moreover, we show that our construction
can be instantiated based on specific number-theoretic assumptions to yield a
rather efficient scheme.

We then extend our approach to the continual-leakage model by relying
on any continual leakage-resilient one-way relation, a primitive recently intro-
duced by Dodis, Haralambiev, Lopez-Alt and Wichs [13]. Our resulting signature
scheme construction inherits the leakage resilience properties of the underlying
one-way relation with respect to leakage allowed between successive key updates
and during the refreshing algorithm. In particular, instantiating our scheme with
existing constructions of the one-way relations from [13, 10] yields schemes that
are resilient to leakage of logarithmic length from the random bits used by the
refreshing algorithm, and any leakage of length (1 − o(1))L bits between any
two key refreshes based on the Symmetric External Diffie-Hellman (SXDH) as-
sumption, or (1/2−o(1))L bits between refreshes based on the Decisional-Linear
assumption.

Finally, we note that our approach yields the first separation between the
bounded-leakage model and the noisy-leakage model, which was formalized by
Naor and Segev [30] and later refined by Dodis et al. [13, Definition 7.2]. Noisy

6 Such schemes can only be used to sign a single message (or, more generally, some
a priori bound t on the number of messages). The amount of leakage-resilience is
Θ(L/t) bits, and thus degrades with t.
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leakage is a realistic generalization of bounded leakage, in which the leakage is
not necessarily of bounded length, and it is only guaranteed that the secret key
still has some min-entropy even given the leakage. This settles an open problem
posed by Naor and Segev.

1.2 Overview of Our Approach

In this section we present an overview of our approach for constructing fully
leakage-resilient signature schemes. We focus here on our construction in the
bounded-leakage model, as it already emphasizes the main ideas underlying our
approach, and we refer the reader to the full version of the paper for an overview
of our construction in the continual-leakage model. We begin by describing more
clearly the notion of a fully leakage-resilient signature scheme in the bounded-
leakage model. Then, we briefly describe the leakage-resilient signature scheme
of Katz and Vaikuntanathan [26], which serves as our starting point, and explain
the main challenges in constructing fully leakage-resilient signature schemes. The
main part of this overview then focuses on our construction.

Modeling fully leakage-resilient signature schemes. A signature scheme is fully
leakage-resilient in the bounded-leakage model if it is existentially unforgeable
against an adversary that can obtain both signatures on any message of her
choice, and bounded leakage information on all intermediate values used by the
signer throughout the lifetime of the system.

This is formalized by considering an experiment that involves a signer and an
adversary. First, the signer invokes the key-generation algorithm and obtains a
verification key vk and a signing key sk. At this point, a value state is initialized
to contain the random coins that were used by the key-generation algorithm.
The adversary is given the verification key vk and can adaptively submit two
types of queries: signing queries, and leakage queries. A signing query consists of
a message m, and is answered by invoking the signing algorithm with the signing
key and the message. Following each such query, the random coins that were used
by the signing algorithm are added to the state. A leakage query consists of a
leakage function f , and is answered by applying f to the value state. The leakage
functions have to be efficiently computable, and the sum of their output lengths
has to be upper bounded by a predetermined parameter λ. The adversary is
successful if she outputs a pair (m∗, σ∗), where m∗ is a message with which she
did not issue a signing query, and σ∗ is a valid signature on m∗ with respect to
vk. We refer the reader to Section 3 for a formal definition.

The Katz-Vaikuntanathan scheme. The Katz-Vaikuntanathan signature scheme
[26] relies on a second-preimage resistant (SPR) function F : {0, 1}µ(n) →
{0, 1}κ(n) (for some κ(n) < µ(n)), a CPA-secure public-key encryption scheme,
and a (unbounded simulation-sound) NIZK proof system.7 The signing key is a

7 A function F is second-preimage resistant if, given a random input x it is hard to
find x′ 6= x such that F(x′) = F(x). See Definition 2.1 in Section 2. We note that
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random x ∈ {0, 1}µ(n), and the verification key is a triplet (y = F(x), pk, crs),
where pk is a public key for the encryption scheme, and crs is a common-reference
string for the proof system. A signature on a message m consists of a ciphertext
c which is an encryption of m||x using pk, and a proof that the ciphertext c is
indeed an encryption of m||x′, for some x′ ∈ F−1(y).8

This scheme is leakage resilient in the bounded-leakage model. That is, it
satisfies the weaker variant of the above notion of security, where the leakage is
allowed to depend on the signing key only. The security of the scheme is based
on three main properties:

1. A typical verification key has many possible secret keys. Specifically, the set
F−1(y) is of size roughly 2µ(n)−κ(n).

2. The “real” signatures of the scheme are computationally indistinguishable
from “fake” signatures, which are statistically independent of the signing
key. This follows from the semantic security of the encryption scheme and
from the zero knowledge of the proof system. Specifically, a “fake” signature
on a message m can be produced by encrypting m||0n, and then using the
NIZK simulator to generate the proof.

3. Given the decryption key corresponding to pk, any valid forgery produced by
the adversary can be used to extract a preimage x′ of y. This follows from
the soundness of the proof system, which guarantees that the adversary’s
forgery is a “real” signature9 and therefore the corresponding ciphertext can
be decrypted to a valid preimage x′.

These three properties are used to prove the security of the scheme as follows.
Assume there is an adversary that breaks the scheme. Then, given a random
pre-image x of y, we can run this adversary and (by the third property) extract
some valid preimage x′ from the adversary’s signing forgery with a reasonable
probability. This would break second-preimage resistance of F as long as we
can argue that x′ 6= x. To do so, we use the second property to replace “real
signatures” with “fake signatures” without affecting the probability of recovering
some valid preimage x′. But now, the signing queries do not reveal any additional
information about x, given y. So the only correlated information on x that the
adversary sees is the value y = F (x) of size κ(n) and the leakage of size λ.
Therefore, if λ ≤ µ(n)− κ(n)− ω(log(n)), then the adversary has (information
theoretically) super-logarithmic uncertainty about the value of x and hence the
probability of extracting x′ = x from her forgery is negligible.

when F is only assumed to be a one-way function, the scheme may not always be
resilient to leakage, but it is nevertheless existentially unforgeable under an adaptive
chosen-message attack. In this case the scheme can be viewed as a variant of the
Bellare-Goldwasser signature scheme [4].

8 Katz and Vaikuntanathan show that it is actually possible to encrypt only x (in-
stead of m||x), and include m as a label in the statement that is proved using the
NIZK proof system. However, for making this informal description more intuitive,
we consider here an encryption of both m and x.

9 In fact, a stronger notion called simulation-soundness is required, because the ad-
versary gets to see several fake proofs before generating her signature.
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The main challenges. The security proof of the Katz-Vaikuntanathan scheme
relies on the argument that, given many signatures of chosen messages and λ
bits of leakage from the signing key x, the value x is still hard to guess by
the adversary. However, when the leakage may depend also on the randomness
used by the signing algorithm, this is no longer true, and in fact the scheme
is insecure in general. The main problem is that, in the above argument, we
crucially used the ability to switch “real” signatures for “fake” signatures. This
step, in turn, relied on the security of the encryption scheme and the zero-
knowledge property of the proofs. However, we cannot rely on these properties if
the adversary can also leak on the random coins of the encryption scheme and the
proof system! Consider, for example, an instantiation of the scheme with a CPA-
secure encryption scheme defined as Encpk(m||x) = (Enc′pk(s),PRG(s)⊕ (m||x)),

where Enc′ is secure encryption scheme, and PRG is a pseudorandom generator
that is applied on a random seed s. Leaking the seed s, whose length may
be arbitrarily shorter then λ, completely reveals the signing key x. A similar
instantiation for the proof system can be shown to have a similar effect when
the leakage may depend on the randomness used by the prover.10

Our approach. A natural observation is that the above problems can be avoided if
the “real” and “fake” signatures cannot be distinguished even given the random
coins used to generate them. Remember that fake signatures are statistically
independent of the secret key x, while real signatures allow us to extract some
preimage using an appropriate trapdoor (decryption key).

The first idea toward achieving the above is to replace the (unbounded
simulation-sound) NIZK proof system with a statistical non-interactive witness-
indistinguishable (SNIWI) argument system. On one hand we relax the (un-
bounded simulation-sound) zero knowledge property to witness indistinguisha-
bility, and on the other hand we require that proofs generated using different
witnesses are statistically indistinguishable from each other. In particular, this
guarantees that even a correctly generated proof is statistically independent of
the witness (in our case the signing key x) used to generate it.

The harder part lies in getting an encryption scheme where the ciphertexts
are independent of the message (in our case, the signing key x) that they encrypt.
In particular, this clearly contradicts the decryptability of a ciphertext. We could
imagine using known lossy encryption schemes, where the encryption key pk can
be generated in one of two indistinguishable modes: “injective” mode which
allows for decryptability, and “lossy” mode where ciphertexts statistically hide
the message. But remember that we need to satisfy the following two properties
simultaneously: (1) the ability to answer the adversary’s signing queries with
fake signatures that reveal no information about x, (2) the ability to extract a

10 Note that even a leakage function with only one output bit can be easily used to
distinguish an encryption of m||x from an encryption of m||0n, or to distinguish the
prover of the proof system from the simulator of the proof system. Thus, technically
speaking, it seems that at no point in time during the various experiments of the
security proof it is possible to change the way signing queries are answered.
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witness x′ from the adversary’s forgery. By setting the pk to be in either injective
or lossy mode, we can achieve either property, but not at the same time! The
main tool used in resolving this conflict is to design a partitioned-lossy encryption
scheme, where the encryption of some messages is lossy while that of others is
injective.

A selectively-unforgeable signature scheme. For the reader’s intuition, we first
show how to achieve a weaker notion of signature security that we refer to
as selective unforgeability under a chosen-message attack. For this notion, we
assume the adversary specifies the message m∗ on which she plans to forge a
signature in advance, before receiving the verification key. The signing queries
and leakage are still adaptive.

To achieve this notion of security, we introduce the concept of an all-lossy-
but-one (ALBO) public-key encryption scheme. This is a tag-based public-key
encryption scheme, where the encryption procedure takes as input a tag t in
addition to the message. The key-generation procedure takes as input a special
tag t∗ and produces a key pair (pk, sk) such that encrypting under the tag t∗

allows for efficient decryption with sk, but encryption under any other tag t 6= t∗

statistically hides the encrypted message. We call t∗ the injective tag, and any
other tag a lossy tag.11 The only computational requirement is that the public
key hides the injective tag t∗ that was used for its generation.

We now modify the Katz-Vaikuntanathan signature scheme by using an
ALBO encryption scheme instead of a standard CPA-secure scheme. To sign
m, we encrypt (only) the signing key x under the tag t = m. We use a SNIWI
argument system instead of a simulation-sound NIZK to generate the proof. To
argue security, we note that since the adversary’s forgery message m∗ is chosen
ahead of time, we can generate the encryption key pk such that t∗ = m∗ is the
only injective tag, without affecting the adversary’s ability to forge – this change
is indistinguishable even given full view of the signing key x and randomness of
signing. Now we are in a situation where all the signing queries for m 6= m∗

yield signatures which are statistically independent of the signing key x, while
the forgery can be used to extract some preimage x′. Therefore, we can argue
as before: the bounded leakage on the secret key x and randomness of signing is
short enough that x must have entropy left given this leakage, and therefore the
outcome x′ = x is unlikely.

The full scheme. So far we described our approach as leading to the rather
weak notion of selective unforgeability under a chosen-message attack. Our ac-
tual scheme is fully leakage-resilient according to the stronger notion that was
discussed in the beginning of this section (i.e., where the adversary is allowed
to adaptively choose m∗ after seing vk and responses to all signing and leakage
queries).

We note that, in the random-oracle model, there is a simple generic transfor-
mation from selective security to full security by signing the output of the random

11 We note that our notion is the opposite of the notion of an all-but-one lossy trapdoor
function, where there is one lossy tag and all the other tags are injective.
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oracle applied to the message. Alternatively, in the standard model, there is a
simple transformation with exponential security loss by simply “guessing” the
forgery: this can yield fully secure schemes under some exponential hardness as-
sumptions by using complexity-leveraging. Lastly, there is a completely generic
transformation due to [9] (abstracting a non-generic approach of [23]) by hash-
ing the message with a chameleon hash function [27] and signing each prefix of
the hash separately. Unfortunately, this results in long signatures. All of these
generic techniques also work in the setting of full-leakage resilience. We present
an alternative that does not suffer from the above disadvantages.

For our actual scheme, we follow the approach of Boneh and Boyen [5] for
transforming selectively-secure identity-based encryption schemes into fully se-
cure ones using an admissible hash function (see Section 2.3). This relies on
a slightly more refined “partitioning strategy” than the “all-but-one” strategy
used for the selectively-secure scheme. In particular, we introduce the notion of
a R-lossy public-key encryption scheme. This is a generalization of an ALBO
encryption scheme where the set of possible tags is partitioned into injective
tags and lossy tags according to a relation R (in particular, there may be more
than one injective tag). The main idea of this approach is to ensure that, with
polynomial probability, all of the adversary’s signing queries will fall into the
“lossy” partition, while the forgery falls into the “injective” partition.

Comparison to [29]. An alternate way to view our combination of a SNIWI
paired with a partitioned lossy encryption is as a tag-based proof system that
is partitioned to be extractable for some tags and statistically witness indistin-
guishable for others. Our main result shows how to build fully leakage-resilient
signatures from such a proof system. The work of [29] can be seen as an alter-
nate instantiation of this strategy which relies on Groth-Sahai NIZKs [22]. These
NIZKs are either statistically witness indistinguishable or extractable depending
on the choice of the CRS. In the reduction in [29], the CRS of the Groth-Sahai
NIZK is derived from the tag in a clever way (using the Waters Hash [33]) so as
to give an alternate useful partitioning of lossy/extractable tags.

1.3 Paper Organization

In Section 2 we introduce some preliminaries and notation. Section 3 contains
a definition of security in the bounded-leakage model. In Section 4 we intro-
duce R-lossy public-key encryption schemes, a tool used in our constructions.
Section 5 contains the construction and intuition for the security proof of our
signature scheme in the bounded-leakage model. Finally, in Section 6 we discuss
several concluding remarks and open problems. We refer the reader to the full
version of the paper for a specific instantiation of our scheme based on the Linear
assumption and the extension of our scheme to the continual-leakage model.

2 Preliminaries

In this section we present some basic tools that are used in our constructions.
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2.1 Second-Preimage Resistance

A family of efficiently computable functions is a pair of polynomial-time algo-
rithms (KeyGen,F), where KeyGen is a probabilistic algorithm that on input 1n

outputs a description s ∈ {0, 1}∗ of a function F(s, ·) : {0, 1}µ(n) → {0, 1}κ(n).
Such a family is second-preimage resistant (SPR) if given a randomly chosen
input x ∈ {0, 1}µ(n) and a description of a randomly chosen function s ←
KeyGen(1n), it is computationally infeasible to find an input x′ ∈ {0, 1}µ(n)
such that x′ 6= x and F(s, x) = F(s, x′). This is a weakening of the notion of a
family of universal one-way hash functions introduced by Naor and Yung [31],
in which the input x is allowed to be chosen in an adversarial manner (but still
independently of the function description s).

Definition 2.1 (Second-preimage resistance). A family F = (KeyGen,F)
of efficiently computable functions is second-preimage resistant if for any prob-
abilistic polynomial-time algorithm A is holds that

Pr

[
Fs(x

′) = Fs(x) ∧ x′ 6= x

∣∣∣∣s← KeyGen(1n), x← {0, 1}µ(n)
x′ ← A(s, x)

]
< ν(n) ,

for some negligible function ν(n), where the probability is taken over the choice
of x← {0, 1}µ(n) and over the internal randomness of KeyGen and A.

In addition, we say that F = (KeyGen,F) is a family of public-coin second-
preimage resistant functions, if it satisfies Definition 2.1 even when the algorithm
A takes as input also the internal randomness that was used by KeyGen(1n) for
sampling the function. We refer the reader to [24] for more details on public-coin
hash functions.

For any integer functions µ(n) and κ(n) that are polynomially related, the
existence of universal one-way hash functions (and therefore also of second-
preimage resistant functions) with domain {0, 1}µ(n) and range {0, 1}κ(n) is
known to be equivalent to that of one-way functions [32]. As noted by Katz and
Vaikuntanathan [26], standard constructions of universal one-way hash functions
are public coin. In practice, such public-coin functions can be constructed rather
easily from various number-theoretic assumptions. For example, if the discrete
log problem is hard in some group G of prime order p, the family of functions
fg1,...,gk : Zkp → G defined as fg1,...,gk(x1, . . . , xk) =

∏k
i=1 g

xi
i is second-preimage

resistant (and even collision resistant), where g1, . . . , gk ∈ G are chosen uniformly
and independently at random by the key-generation algorithm.

We note that for public-coin SPR functions, there is actually no need for an
explicit key-generation algorithm. Without loss of generality one can define a
single function F′r(x) = (r,Fs(x)), where s = KeyGen(1n; r), and this is also SPR
with the same amount of “lossiness” as the family F .

2.2 Statistical Non-Interactive Witness-Indistinguishable Argument
Systems

A non-interactive argument system for a language L with witness relation RL is a
triplet of algorithms (CRSGen,P,V), where CRSGen is an algorithm generating a
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common reference string crs, and P and V are the prover and verifier algorithms,
respectively. The prover takes as input a triplet (crs, x, w), where (x,w) ∈ RL,
and outputs a proof π. The verifier takes as input a triplet (crs, x, π) and either
accepts or rejects. In this paper we consider a setting where all three algorithms
run in probabilistic polynomial time. The two requirements of an argument sys-
tem are completeness and soundness with respect to efficient cheating provers.
Informally, for every (x,w) ∈ RL the prover generates proofs that are always ac-
cepted by the verifier, and for every x /∈ L any efficient cheating prover has only a
negligible probability of convincing the verifier to accept. An argument system is
called statistical witness indistinguishable if for any x ∈ L and any two witnesses
w0 6= w1 such that (x,w0), (x,w1) ∈ RL, the proofs generated by P(crs, x, w0)
and P(crs, x, w1) are statistically indistinguishable given the common reference
string.

Definition 2.2 (SNIWI argument system). A statistical non-interactive
witness-indistinguishable argument system for a language L with witness re-
lation RL is a triplet of probabilistic polynomial-time algorithms (CRSGen,P,V)
such that the following properties hold:

1. Perfect completeness: For every (x,w) ∈ RL it holds that

Pr [V(crs, x,P(crs, x, w)) = 1] = 1 ,

where crs← CRSGen(1n), and the probability is taken over the internal ran-
domness of CRSGen, P, and V.

2. Adaptive soundness: For every probabilistic polynomial-time prover P∗ it
holds that

Pr

[
V(crs, x, π) = 1 ∧ x 6∈ L

∣∣∣∣ crs← CRSGen(1n)
(x, π)← P∗(1n, crs)

]
< ν(n) ,

for some negligible function ν(n)
3. Statistical witness indistinguishability: There exists a probabilistic poly-

nomial-time algorithm CRSGenWI such that:
– The distributions {CRSGen(1n)} and {CRSGenWI(1

n)} are computa-
tionally indistinguishable.

– For any triplet (x,w0, w1) such that (x,w0) ∈ RL and (x,w1) ∈ RL, the
distributions {crs,P(crs, x, w0)} and {crs,P(crs, x, w1)} are statistically
indistinguishable, when crs← CRSGenWI(1

n).

For our construction we are interested in SNIWI argument systems for NP.
Such an argument system is implied by the construction of Groth, Ostrovsky
and Sahai [21] that satisfies the stronger notion of a perfect non-interactive zero-
knowledge argument system. Their construction can be based on the hardness of
either the Decisional Subgroup problem [7] or the Decisional Linear problem [6].
As pointed out by Groth et al. we note that in their Linear-based construction
the algorithm CRSGen admits oblivious sampling (specifically, the distribution
of the common reference string is statistically-close to the uniform distribution),
which is a technical property that is required for our construction in the bounded
leakage model.
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2.3 Admissible Hash Functions

The concept of an admissible hash function was first defined by Boneh and Boyen
[5] to convert a natural selectively-secure identity-based encryption scheme into
a fully-secure one. In this paper we use such hash functions in a similar manner
to convert a selectively-secure signature scheme (where the adversary declares
the message to be forged ahead of time, before receiving the verification key) into
a fully secure one. The main idea of an admissible hash function is that it allows
the reduction in the proof of security to secretly partition the message space
into two subsets, which we will label as red (R) and blue (B), such that there is a
noticeable probability that all of the messages in the adversary’s signing queries
will be in the blue set, but the forgery will be on a message in the red set. This is
useful if the simulator can efficiently answer signing queries in the blue set, yet
break some hard problem given a valid forgery on a message from the red set.
Our exposition and definition of admissible hash function follow that of Cash,
Hofheinz, Kiltz, and Peikert [11].

For K ∈ {0, 1,⊥}τ(n), we define the function FK : {0, 1}τ(n) → {R, B} which
“colors” the space {0, 1}τ(n) of tags in the following way:

FK(y) :=

{
R if ∀ i ∈ {1, . . . , τ(n)} : Ki = yi or Ki = ⊥
B otherwise

For any u = u(n) < τ(n), we let Ku,n denote the uniform distribution over
{0, 1,⊥}τ(n) conditioned on exactly u positions having ⊥ values. (Note, if K is
chosen from Ku,n, then the map FK(·) colors exactly 2u values red.) We would
like to pick a distribution Ku,n for choosing K so that, there is a polynomial
probability for any set of tags y0, . . . , yq of y0 being colored “red” and all other
tags being colored “blue”. Unfortunately, this cannot happen if we allow all tags.
Instead, we will need to rely on a special hash function the maps messages x to
tags y.

Let H = {Hn}n∈N be a hash-function ensemble, where each H ∈ Hn is
a polynomial-time computable function H : {0, 1}∗ → {0, 1}τ(n). For each
H ∈ Hn, we define the function FK,H : {0, 1}∗ → {R, B}, which “colors” the
space {0, 1}∗ according to FK,H(x) = FK(H(x)).

Definition 2.3 (Admissible hash function [5, 11]). We say that H is an
admissible hash-function ensemble if for every H ∈ H there exists a set badH
of string-tuples such that the following two properties hold:

– For every probabilistic polynomial-time algorithm A there exists a negligible
function ν(n) satisfying

Pr[(x0, . . . , xq) ∈ badH | H ← Hn, (x0, . . . , xq)← A(1n, H)] ≤ ν(n) .

– For every polynomial q = q(n) there is a polynomial p = p(n) and an effi-
ciently computable u = u(n) such that, for every H ∈ Hn and (x0, . . . , xq) 6∈
badH with x0 6∈ {x1, . . . , xq}, we have:

Pr
K←Ku,n

[FK,H(x0) = R ∧ FK,H(x1) = · · · = FK,H(xq) = B ] ≥ 1

p(n)
.
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We note that for the application to identity-based encryption [5, 11] the bad
sets badH are required to be efficiently recognizable, but this is not required
for our application. In addition, we say that H is a public-coin admissible hash-
function ensemble, if it satisfies Definition 2.3 even when the algorithm A takes
as input also the internal randomness that was used by KeyGen(1n) for sampling
the function.

The work of Boneh and Boyen [5] shows how to construct admissible hash
functions from collision-resistant hash functions. Moreover, if the underlying
collision-resistant hash functions are public coin, then so are the resulting admis-
sible hash functions. As already mentioned in Section 2.1, public-coin collision-
resistant hash functions can be constructed rather easily from various number-
theoretic assumptions.

3 Modeling Leakage-Resilient Signature Schemes

A signature scheme is a triplet (KeyGen,Sign,Verify) of probabilistic polynomial-
time algorithms with syntax:

– (vk, sk)← KeyGen(1n) outputs a verification key and signing key.
– σ ← Signsk(m) signs a message m using the singing key sk.
– Verifyvk(m,σ) ∈ {0, 1} outputs a bit deciding wether σ is a valid signature

for m.

We require perfect correctness, which states that for any valid key pair (vk, sk)
output by KeyGen and any message m ∈ {0, 1}∗ we have Verifyvk(m,Signsk(m))
= 1.

A signature scheme is fully leakage-resilient (FLR) in the bounded-leakage
model if it is existentially unforgeable against an adversary that can obtain
both signatures on any message of her choice, and bounded leakage information
on all intermediate values used by the key-generation algorithm and the signer
throughout the lifetime of the system. To model this, we define a variable state
which includes all secret-state used by the system so far. Initially, we set state
to be the random-coins of the KeyGen algorithm (note that we do not need to
explicitly add sk to the state, since it can be easily computed from it by any
leakage function). On each signing query made by the adversary, we append
the random-coins of the signing algorithm to the state. The adversary can leak
arbitrary information about state as long as the amount is overall-bounded.

Definition 3.1 (FLR security — bounded leakage). A signature scheme
Π = (KeyGen,Sign,Verify) is λ-fully-leakage-resilient in the bounded-leakage
model if for any probabilistic polynomial-time adversary A it holds that the prob-
ability of the event Successλ-FLR

Π,A (n) is negligible in n, where this event is defined
via the following experiment:

1. Sample r ← {0, 1}∗, compute (vk, sk) = KeyGen(1n; r), and set state = {r}.
2. The adversary A receives as input the pair (1n, vk), and can adaptively query

a signing oracle and a leakage oracle that are defined as follows:
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– Signing queries. The signing oracle receives as input a message mi,
samples ri ← {0, 1}∗, and then computes σi ← Signsk(mi; ri). It updates
state := state ∪ {ri} and outputs σi.

– Leakage queries. The leakage oracle receives as input a description of
an efficiently computable function fj : {0, 1}∗ → {0, 1}λj , and outputs
fj(state). We call λj the output length of the j-th leakage function.

3. The adversary A outputs a pair (m∗, σ∗).
4. Successλ-FLR

Π,A (n) denotes the event in which:
– Verifyvk(m∗, σ∗) = 1.
– m∗ was not queried to the signing oracle.
– The sum of output lengths of all leakage functions is at most λ(n).

For the definition of security within the continual-leakage model, we refer the
reader to the full version of the paper.

4 R-Lossy Public-Key Encryption

In this section we introduce the notion of an R-lossy public-key encryption
scheme. Informally, such a scheme is a tag-based public-key encryption scheme
where the set of possible tags is partitioned into two subsets: injective tags, and
lossy tags. When a message is encrypted under an injective tag, the resulting
ciphertext can be correctly decrypted using the secret key. On the other hand,
when encrypted under a lossy tag, the ciphertext statistically hides the message.
The partitioning of the tags in defined by a binary relation R ⊆ K × T : the
key-generation algorithm receives as input an initialization value K ∈ K and
this partitions the set tags T so that t ∈ T is injective if and only if (K, t) ∈ R.
More, formally, we require that the relation R ⊆ K × T consists of a sequence
of efficiently (in n) recognizable sub-relations Rn ⊆ Kn × Tn.

The only computational requirement of an R-lossy public-key encryption
scheme is that the public key of the encryption scheme hides the initialization
value K. That is, public keys produced by different initialization values are
computationally indistinguishable.

Definition 4.1 (R-lossy PKE). Let R ⊆ K × T be an efficiently computable
binary relation. An R-lossy public-key encryption scheme is a triplet of proba-
bilistic polynomial-time algorithms (KeyGen,Enc,Dec) such that:

1. Key generation: For any initialization value K ∈ Kn, the key-generation
algorithm KeyGen on input (1n,K) outputs a secret key sk and a public key
pk.

2. Decryption under injective tags: For any initialization value K ∈ Kn
and tag t ∈ Tn such that (K, t) ∈ Rn, and for any message m ∈ {0, 1}`(n),
it holds that

Pr
[
Dectsk(Enctpk(m)) = m

]
> 1− ν(n) ,

for some negligible function ν(n), where (sk, pk)← KeyGen(1n,K), and the
probability is taken over the internal randomness of KeyGen, Enc and Dec.
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3. Lossiness under lossy tags: For any initialization value K ∈ Kn and tag
t ∈ Tn such that (K, t) /∈ Rn, for every pair (sk, pk) of keys produced by
KeyGen(1n,K), and for every two messages m0,m1 ∈ {0, 1}`(n), the distri-
butions Enctpk(m0) and Enctpk(m1) are statistically indistinguishable.

4. Indistinguishability of initialization values: For every sequence of pairs
{(Kn,K

′
n)}n∈N such that Kn,K

′
n ∈ Kn, the two ensembles {pk : (sk, pk)

← KeyGen(1n,Kn)}n∈N and {pk : (sk, pk)← KeyGen(1n,K ′n)}n∈N are com-
putationally indistinguishable.

As with the other primitives that are used in our construction, we need to
be able to obliviously sample public keys in a way that is computationally indis-
tinguishable from those produced by KeyGen(1n, ·). Specifically, we require that
there exists a sequence of initialization values {Kn}n∈N such that the ensemble
{pk : (sk, pk)← KeyGen(1n,Kn)}n∈N is computationally indistinguishable from
the uniform distribution over {0, 1}∗. Note that by the indistinguishability of
initialization values property defined above, this in fact holds for every sequence
{Kn}n∈N.

For our constructions of fully leakage-resilient signature schemes we consider
two relations: the equality relation REQ, and the more general “bit-matching”
relation RBM that is defined below.

The relation REQ. The relation REQ is the equality relation for binary tags of
length τ(n) bits. That is, Kn = Tn = {0, 1}τ(n), and (K, t) ∈ REQ

n if and only if
K = t. An REQ-lossy encryption is just an all-but-one-lossy (ALBO) public-key
encryption scheme, a primitive discussed in the introduction. In this case there
is one injective tag, corresponding to the value of K used during initialization,
and all the other tags are lossy.

The relation RBM. The bit-matching relationRBM is a generalization of equality,
which allows for more complex partitions. For Kn = {0, 1,⊥}τ(n), Tn = {0, 1}τ(n)
define (K, t) ∈ RBM

n ⊆ Kn×Tn iff for every i ∈ {1, . . . , τ(n)} it holds that Ki = ti
or Ki = ⊥. That is, given some fixed initialization value K, the set of injective
tags t are exactly those whose bits match K in all positions i for which Ki 6= ⊥.
Notice that, if K does not contain any ⊥ symbols, then there is a single injective
tag t = K and all other tags are lossy. Therefore RBM-lossy encryption is a strict
generalization of REQ-lossy encryption.

In our signature scheme construction, the RBM-lossy encryption will be used
in combination with an admissible hash function (discussed in Section 2.3). The
admissible hash function gives us a way to map messages to encryption tags such
that, with high probability over an appropriate distribution of K, all signing
queries map to lossy tags while the forgery maps to an injective tag.

Constructions. In the full version, we propose two constructions of RBM-lossy
public-key encryption schemes12. Our first construction is rather generic and is

12 We note that rather straightforward variants of these constructions yield REQ-lossy
public-key encryption schemes.
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based on any lossy public-key encryption scheme. In turn, this implies RBM-lossy
public-key encryption schemes can be based on a variety of number-theoretic
assumptions. Our second construction is based on a specific number-theoretic
assumption (the DDH assumption13) and is significantly more efficient than our
generic construction.

5 A Signature Scheme in the Bounded-Leakage Model

In this section we present our construction of a fully leakage-resilient signature
scheme in the bounded-leakage model (see Definition 3.1). We use the following
primitives in a generic manner:

– Let F = (KeyGenSPR,F) be a family of public-coin second-preimage resistant
functions Fs(·) : {0, 1}µ(n) → {0, 1}κ(n) for some κ(n) < µ(n) (see Section
2.1).

– Let H be a public-coin admissible hash function ensemble (see Section 2.3).

– Let E = (KeyGenRBM ,Enc,Dec) be an RBM-lossy public-key encryption sch-
eme (see Section 4).

– Let Π = (CRSGen,P,V) be a SNIWI argument system for the language

L = {(s, y, pk, t, C) : ∃x, ω st C = Enctpk(x;ω) and Fs(x) = y}

(see Section 2.2).

We assume that the distribution of public keys and common-reference strings
produced by the algorithms KeyGenRBM and CRSGen, respectively, are compu-
tationally indistinguishable from the uniform distribution over {0, 1}∗.14 Define
the signature scheme S = (KeyGen,Sign,Verify):

– Key generation: On input 1n, the algorithm KeyGen samples a uniformly
distributed x ← {0, 1}µ(n), a function description s ← KeyGenSPR(1n) from
the SPR family, and computes y = Fs(x). Then, it samples a description of
an admissible hash function H ← Hn, and samples pk ← {0, 1}∗ and crs←
{0, 1}∗ to be used as a public key for the RBM-lossy encryption scheme and
a common-reference string for the SNIWI argument system, respectively. It
outputs the signing key sk = x and the verification key vk = (s, y,H, pk, crs).

– Signing: On input message m, the algorithm Sign computes an encryption

C = Enc
H(m)
pk (x;ω) of x under the tag H(m) using fresh randomness ω.

Then, it invokes the prover of the argument system to obtain a proof π ←
P(crs, (s, y, pk,H(m), C), (x, ω)), and outputs the signature (C, π).

– Verifying: On input message m and signature σ = (C, π), the algorithm
Verify invokes the verifier of the argument system and outputs 1 if and only
if V(crs, (s, y, pk,H(m), C), π) = 1.

13 Our construction easily generalizes to rely on the d-Linear assumption for any d ≥ 1.
14 More generally, we just require “oblivious”sampling, but we will assume uniform

distribution for simplicity. See Appendix 2.
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Theorem 5.1. Assuming the existence of the schemes F , H, E and Π with
properties described above, the scheme S = (KeyGen,Sign,Verify) is λ-fully-
leakage-resilient in the bounded-leakage model for any λ = µ(n)−κ(n)−ω(log n).
The relative leakage is given by λ/|sk| ≈ (1 − κ(n)/µ(n)) = (1 − o(1)) for an
appropriate choice of κ(n) = o(µ(n)).

Due to space limitations the proof of Theorem 5.1 is left to the full version of
the paper, and we only give a short proof outline here.

Proof outline. Suppose there is an adversary who breaks the security of the
scheme. We can then use the adversary to break the security of the SPR func-
tion as follows. Choose a random crs for the SNIWI argument honestly, and a
(pk, sk) pair for RBM-lossy public-key encryption using an initialization value K
sampled from an appropriate distribution (dictated by the admissible hash func-
tion, depending on the number of signing queries the adversary makes). Given
a random challenge x from the SPR challenger, we embed y = F(x), crs, pk into
the verification key and then run the forging adversary, using x to answer all
its signing/leakage queries. If the adversary’s forgery is on a message m∗ that
corresponds to a injective tag of the encryption scheme, then we use sk to de-
crypt a (hopefully second preimage) x′ from the adversary’s forged signature.
We argue that, with polynomial probability, we do recover a second preimage
x′ 6= x, using the following steps:

– Using the partitioning argument of Boneh-Boyen [5], there is a noticeable
probability that the all of the adversary’s signing queries correspond to
“lossy” tags while the forgery corresponds to an “injective” tag. Here we
rely on the property that the initialization value K is hidden by the public-
key. We call an execution where the above occurs a “good execution.”

– In a good execution, the adversary’s forgery can be decrypted to a valid
preimage x′ ∈ F−1(y), by the soundness of the SNIWI argument.

– Information theoretically, the probability of x′ = x in a good execution is
negligible, since the adversary just doesn’t have enough information about x.
That is, the signature-query responses are independent of x, and the leakage-
query responses and the verification key y are too short. This is formalized
with an entropy argument.

6 Concluding Remarks and Open Problems

Deterministic leakage-resilient signatures. An alternative approach for construc-
ting fully leakage-resilient signature schemes is constructing a signature scheme
that is resilient to leakage from the signing key, and has a deterministic signing
algorithm (this is indeed the idea underlying the fully leakage-resilient one-time
signature schemes of Katz and Vaikuntanathan [26]). In general, the signing
algorithm of any signature scheme can be made deterministic by using as its
random coins the output of a pseudorandom function applied to the message.
This requires, however, that the signing key will include also the key of the
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pseudorandom function, and therefore it is not clear that such a transformation
can preserve leakage resilience.

Bounded leakage vs. noisy leakage. In some scenarios it is not always possible
to assume that the total amount of leakage is upper bounded by λ bits. This
motivated the approach of Naor and Segev [30] (later refined by Dodis et al.
[13, Definition 7.2]) who considered the more general notion of noisy leakage,
in which the leakage is not necessarily of bounded length, but is guaranteed to
reduce the average min-entropy of the secret key by at most λ. Although our
schemes are secure with respect to bounded leakage, they are in fact insecure
with respect to noisy leakage. This seems to be the first separation between
bounded leakage and noisy leakage, and this settles an open problem posed by
Naor and Segev.

Specifically, in our schemes the public key for the RBM-lossy encryption
scheme is sampled obliviously as a uniformly random string pk ∈ {0, 1}∗. For
our specific constructions based on the DDH or Linear assumptions (see full
version), this can be easily seen to imply that with an overwhelming probability
all possible tags for the RBM-lossy scheme are lossy. An analysis almost iden-
tical to that presented in the security proofs of our schemes then shows that a
leakage function that simply outputs a signature on any message m∗ is a valid
leakage function with respect to noisy leakage (yet clearly invalid with respect
to bounded leakage).

Modeling hard-to-invert leakage for signature schemes. In the setting of public-
key encryption a more general model of leakage was formalized by only assuming
that the decryption key cannot be efficiently recovered given the leakage (see [15,
12, 20, 8] and the references therein). For signature schemes, however, it is not
clear how to meaningfully formalize such an attack model. It would be interesting
to formalize hard-to-invert leakage for signature schemes (especially when any
intermediate value may leak, and not only the signing key), and to construct
schemes that are leakage resilient in such a model.
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