
Tight Proofs for Signature Schemes without
Random Oracles

Sven Schäge

Horst Görtz Institute for IT-Security
Ruhr-University of Bochum

sven.schaege@rub.de

Abstract. We present the first tight security proofs for two general
classes of Strong RSA based signature schemes. Among the affected sig-
nature schemes are the Cramer-Shoup, Camenisch-Lysyanskaya, Zhu,
and Fischlin signature scheme. We also present two bilinear variants of
our signature classes that produce short signatures. Similar to before, we
show that these variants have tight security proofs under the the Strong
Diffie-Hellman (SDH) assumption. We so obtain very efficient SDH-based
variants of the Cramer-Shoup, Fischlin, and Zhu signature scheme and
the first tight security proof of the recent Camenisch-Lysyanskaya scheme
that was proposed and proven secure under the SDH assumption. Cen-
tral to our results is a new proof technique that allows the simulator to
avoid guessing which of the attacker’s signature queries are re-used in
the forgery. In contrast to previous proofs, our security reduction does
not lose a factor of q here.

Keywords: signature class, tight security, SRSA, SDH, standard model

1 Introduction

Provable Security and Tight Reductions. The central idea of
provable security is to design a cryptographic scheme in such a way that
if an attacker A could efficiently break its security properties then one
can also construct an efficient algorithm B, to break a supposedly hard
problem. In this way, we prove the security of the scheme by reduction
from the hardness assumption. Now, if B has almost the same success
probability as A while running in roughly the same time we say that the
security reduction is tight. Otherwise, the security reduction is said to be
loose. It is no secret why cryptographers are interested in tight security
proofs: besides being theoretically interesting, they allow for shorter secu-
rity parameters and better efficiency. This work was also motivated by the
observation that for several of the existing Strong RSA (SRSA) based sig-
nature schemes without random oracles we do not know if tight security

proofs exist. Those schemes which we know to have a tight security proof,
also have some limitations concerning practicability (which in turn cannot
be found among the signature schemes with a loose security reduction). In
2007, Chevallier-Mames and Joye addressed this problem in the following
way [6]: they took a tightly secure signature scheme, the Gennaro-Halevi-
Rabin scheme [10], and improved its efficiency by re-designing one of
its most time-consuming functions. The problem with such an approach
is that it only affects new implementations of the considered signature
scheme. Therefore, we take the same approach as Bernstein at EURO-
CRYPT ’08 who proved tight security for the original Rabin-Williams
signature scheme in the random-oracle model [2]. However, in contrast
to Bernstein we concentrate on schemes that are secure in the standard
model.

Contribution. In this work, we ask the following question: are there
tight security proofs for the existing practical signature schemes by Cramer-
Shoup [8], Zhu [19], Camenisch-Lysyanskaya [4] and Fischlin [9] (which we
only know to have loose security reductions)? We answer this question in
the affirmative and present the first tight proofs for the above signature
schemes. However, our result is not limited to the original schemes. In
our analysis, we generalize the schemes by Camenisch-Lysyanskaya, Fis-
chlin and Zhu by introducing a new family of randomization functions,
called combining functions. The result of this generalization is an abstract
signature scheme termed ’combining scheme’. In a similar way, we intro-
duce a second general class of signature schemes called ’chameleon hash
scheme’ that can be regarded as a generalization of the Cramer-Shoup
signature scheme. Then, we prove the combining signature scheme and
the chameleon hash scheme to be tightly secure under the SRSA assump-
tion when instantiated with any secure combining function, respectively
chameleon hash function. Finally, we show that our results do not only
hold under the SRSA assumption. We analyze whether there also ex-
ist tight security reductions for analogous schemes based on the SDH
assumption in bilinear groups. Interestingly, most of the above schemes
have not been considered yet under the SDH assumption (except for the
Camenisch-Lysyanskaya scheme), although, at the same security level,
the group description is much shorter in bilinear groups than in factor-
ing based groups. We develop an SDH-based variant of the combining
signature scheme and the chameleon hash scheme and prove it to be exis-
tentially unforgeable under adaptive chosen message attacks with a tight
security reduction. In doing so, we present the first SDH-based variants
of the Fischlin, the Zhu and the Cramer-Shoup signature scheme and

the first tight security proof of the SDH-based Camenisch-Lysyanskaya
scheme. When instantiated with existing combining functions (respec-
tively chameleon hash functions), we obtain short and efficient signature
schemes. All our results (on the combining class) can easily be extended
to signature schemes for message blocks (as defined in [4, 5]), where we
can even use distinct combining functions for each message block. Our re-
sults can be interpreted in two positive ways: 1) Existing implementations
of the affected signature schemes (with a fixed parameter size) provide
higher security than expected. 2) New implementations can have shorter
security parameters what transfers to higher efficiency.

Technical Contribution. In the existing proofs, the simulator parti-
tions the set of forgeries by at first guessing j ∈ {1, . . . , q} where q is the
number of signature queries made by the attacker. Only if the attacker’s
forgery shares some common values with the answer to the j-th signa-
ture query the simulator can break the SRSA assumption. Otherwise the
simulator just aborts. Since the number of signature queries rises poly-
nomially in the security parameter the security proof loses a factor of q
here. Our main contribution is a new technique that renders the initial
guess unnecessary. As a consequence, any forgery helps the simulator to
break the SRSA assumption. This results in a tight security proof.

Related Work. Our work is related to the existing hash-and-sign sig-
nature schemes without random oracles that are proven secure under the
SRSA or the SDH assumption. We subsequently give a brief overview on
the available results. In 1988, Goldwasser, Micali and Rivest published
the first provably secure, but inefficient signature scheme [11]. More than
a decade later, in 1999, Gennaro, Halevi, and Rabin [10] presented a sig-
nature scheme that is secure in the standard model under the Flexible or
Strong RSA assumption (SRSA). This scheme is more efficient, both the
key and the signature size are less than two group elements (à 1024 bits),
but as a drawback, it relies on an impractical function that injectively
maps messages to primes [7]. Advantageously, the Gennaro-Halevi-Rabin
signature scheme is known to have a tight security proof. At the same time
and also based on the SRSA assumption, Cramer and Shoup [8] proposed
an efficient standard model signature scheme, that unlike [10] does not
require to map messages to primes. In contrast, primes can be drawn uni-
formly at random from the set of primes of a given bitlength. Based on
this work, Zhu [18, 19], Fischlin [9], Camenisch and Lysyanskaya [4], and
Hofheinz and Kiltz [12] in the following years presented further SRSA-
based schemes. These schemes are either more efficient than the Cramer-

Shoup scheme or very suitable in protocols for issuing signatures on com-
mitted values. In 2004, Boneh and Boyen presented the first hash-and-sign
signature scheme that makes use of bilinear groups [3]. The big advantage
of bilinear groups is the very compact representation of group elements.
The Boneh-Boyen signature scheme is proven tightly secure under a new
flexible assumption, the q-Strong Diffie Hellman (SDH) assumption. In
2004, Camenisch and Lysyanskaya also presented a signature scheme that
relies on bilinear groups [5]. Unlike the Boneh-Boyen scheme, their scheme
is proven secure under the LRSW [14] assumption. However, in the same
paper they also propose a variant that is based on the SDH assumption in
bilinear groups. The corresponding security proof was provided four years
later in [15, 1]. Similar to the original Camenisch-Lysyanskaya scheme the
security proof of the SDH scheme is loose.

2 Preliminaries

Before presenting our results we briefly review the necessary formal and
mathematical definitions. For convenience, we also describe two general
setup and key generation procedures (settings) in Section 2.7 and Sec-
tion 2.8. When describing our signature schemes in Sections 3.1, 3.2, 3.5
we will refer to the corresponding setting and only describe the signature
generation and verification algorithms.

2.1 Notation

For a, b ∈ Z, a ≤ b we write [a; b] to denote the set {a, a+1, . . . , b− 1, b}.
For a string x, we write |x|2 to denote its bit length. If z ∈ Z, we write
|z| to denote the absolute value of z. For a set X, we use |X| to refer

to its size and x
$← X to indicate that x is drawn from X uniformly at

random. For n ∈ N, we use QRn to denote the set of quadratic residues
modulo n, i.e. QRn = {x|∃y ∈ Z∗

n : y2 = x mod n}. If A is an algorithm
we use A(x1, x2, . . .) to denote that A has input parameters x1, x2,
Accordingly, y ← A(x1, x2, . . .) means that A outputs y when running
with inputs x1, x2, PPT refers to probabilistic polynomial-time. We
write κ ∈ N to indicate the security parameter and 1κ to describe the
string that consist of κ ones. In the following, we implicitly assume that
the size of the generated key material is always polynomially dependent
on the security parameter.

2.2 Signature Scheme

A digital signature scheme S consists of three algorithms. The PPT
algorithm KeyGen on input 1κ generates a secret and public key pair
(SK,PK). The PPT algorithm Sign takes as input a secret key SK and
the message m and outputs a signature σ. Finally, the deterministic poly-
nomial time algorithm Verify takes a public key PK, a message m and
a signature σ to check whether σ is a legitimate signature on m signed
by the holder of the secret key corresponding to PK. Accordingly, the
algorithm outputs 1 to indicate a successful verification and 0 otherwise.

2.3 Strong Existential Unforgeability

The standard notion of security for signature schemes is due to Gold-
wasser, Micali and Rivest [11]. In this paper, we use a slightly stronger
definition called strong existential unforgeability. The signature scheme
S = (KeyGen,Sign,Verify) is strongly existentially unforgeable under an
adaptive chosen message attack if it is infeasible for a forger, who only
knows the public key and the global parameters, to produce, after obtain-
ing polynomially (in the security parameter) many signatures σ1, . . . , σq
on messages m1, . . . ,mq of its choice from a signing oracle O(SK, ·), a
new message/signature pair.

Definition 1. We say that S is (q, t, ϵ)-secure, if for all t-time adver-
saries A that send at most q queries to the signing oracle O(SK, ·) it
holds that

Pr

[
(SK,PK)← KeyGen(1κ), (m∗, σ∗)← AO(SK,·)(PK),

Verify(PK,m∗, σ∗) = 1

]
≤ ϵ,

where the probability is taken over the random coins of KeyGen and A
and (m∗, σ∗) is not among the message/signature pairs obtained using
O(SK, ·) (i.e. (m∗, σ∗) /∈ {(m1, σ1), . . . , (mq, σq)}).

2.4 Collision-Resistant Hashing

Definition 2 (Collision-resistant hash function). Let Hk for k ∈
N be a collection of functions of the form h : {0, 1}∗ → {0, 1}k. Let
H = {Hk}k∈N. H is called (th, ϵh)-collision-resistant if for all th-time
adversaries A it holds that

Pr

[
h

$← Hk, (m,m′)← A(h), m ̸= m′,
m,m′ ∈ {0, 1}∗, h(m) = h(m′)

]
≤ ϵh,

where the probability is over the random bits of A.

2.5 Chameleon Hash Function

A chameleon hash function CH = (CHGen,CHEval,CHColl) consists of
three algorithms [13]. The PPT algorithm CHGen takes as input the secu-
rity parameter κ and outputs a secret key SKCH and a public key PKCH.
Given PKCH, a random r from a randomization space R and a message
m from a message spaceM, the algorithm CHEval outputs a chameleon
hash value c in the hash space C. Analogously, CHColl deterministically
outputs, on input SKCH and (r,m,m′) ∈ R×M×M, r′ ∈ R such that
CHEval(PKCH,m, r) = CHEval(PKCH,m

′, r′).

Definition 3 (Collision-resistant chameleon hash function). We
say that CH is (ϵCH, tCH)-collision-resistant if for all tCH-time adversaries
A that are only given PKCH it holds that

Pr

(SKCH, PKCH)← CHGen(1κ), (m,m′, r, r′)← A(PKCH),
r, r′ ∈ R, m,m′ ∈M, m′ ̸= m,

CHEval(PKCH, r,m) = CHEval(PKCH, r
′,m′)

 ≤ ϵCH,

where the probability is over the random choices of PKCH and the coin
tosses of A.

We also require that for an arbitrary but fixed public key PKCH
output by CHGen, all messages m ∈ M generate equally distributed
hash values when drawing r ∈ R uniformly at random and outputting
CHEval(PKCH, r,m). We write ch(r,m) to denote CHEval(PKCH, r,m)
and ch−1(r,m,m′) for CHColl(SKCH, r,m,m′) if the keys are obvious from
the context. The security of chameleon hash functions can be based on
very standard assumptions like the discrete logarithm assumption [13] or
the factoring assumption [13, 17] which are weaker than the SDH, respec-
tively the SRSA assumption.

2.6 Combining Function

In this section, we introduce a new family of functions called combining
functions. We will subsequently use the concept of combining functions
to generalize several existing signature schemes.

Definition 4 (Combining Functions). Let Vk for k ∈ N be a col-
lection of functions of the form z : R × M → Z with |Z| ≤ 2k. Let
V = {Vk}k∈N. We say that V is (tcomb, ϵcomb, δcomb)-combining if for all
attackers A there exist negligible functions ϵcomb(k) and δcomb(k) and the

following properties hold for z
$← Vk.

1. for all m ∈ M it holds that |R| = |Zm| where Zm is defined as
Zm = z(R,m). For all m ∈ M and all t ∈ Z there exists an efficient
algorithm z−1(t,m) that, if t ∈ Zm, outputs the unique value r ∈ R
such that z(r,m) = t, and ⊥ otherwise.

2. for t
$← Z and r′

$← R we have for the maximal (over all m ∈ M)
statistical distance between r′ and z−1(t,m) that

max
m∈M

{
1/2 ·

∑
r∈R

∣∣Pr[r′ = r]− Pr[z−1(t,m) = r]
∣∣} ≤ δcomb.

3. for all r ∈ R, it holds for all tcomb-time attackers A that

Pr

[
(m,m′)← A(z, r), m,m′ ∈M,
m ̸= m′, z(r,m) = z(r,m′)

]
≤ ϵcomb,

where the probability is taken over the random bits of A.

In the following, we assume that when used in signature schemes, z
$← Vk

is chosen uniformly at random during the key generation phase.

Table 1. Examples of statistically secure combining functions. Let V = {Vk}k∈N with
Vk = {z(r,m)}, l, lr, lm ∈ N, lr > lm and p be prime.

z(r,m) R M Z combining

EX1 r +m mod p Zp Zp Zp (·, 0, 0)
EX2 r ⊕m {0, 1}l {0, 1}l {0, 1}l (·, 0, 0)
EX3 r +m [0; 2lr − 1] [0; 2lm − 1] [0; 2lr + 2lm − 2] (·, 0, 2lm−lr)

In Table 1, we present three concrete examples (EX1, EX2, EX3) of
statistically secure combining functions. The following lemma shows that
these examples are valid combining functions with respect to Definition 4.

Lemma 1. EX1 and EX2 constitute (·, 0, 0)-combining functions and EX3
constitutes a (·, 0, 2lm−lr)-combining function.

Proof. Let us first analyze EX1 and EX2. We have thatM = R = Z =
Zm for all m ∈ M and we can efficiently compute r as r = t−m mod p
or r = t ⊕ m for all given t ∈ Z and m ∈ M. Furthermore, since z is
bijective in both input parameters z−1(t,m) is uniformly distributed in
R for all m ∈ M and random t ∈ Z. Thus, δcomb = 0. Finally, since
z is a bijection in the second input parameter, it is collision-free (prop-
erty 3) in both examples and we have that ϵcomb = 0. Now, let us ana-
lyze EX3. For given m ∈ M and t ∈ Z, z−1(t,m) outputs r = t − m

if t − m ∈ R and ⊥ otherwise. To show that z is collision-free, ob-
serve that m ̸= m′ implies r + m ̸= r + m′ for all r ∈ R. To an-
alyze D = maxm∈M

{
1/2 ·

∑
r∈R

∣∣Pr[r′ = r]− Pr[z−1(t,m) = r]
∣∣} first

note that for t′
$← Zm, z−1(t′,m) is uniform in R since |Zm| = |R|

implies that z−1(·,m) defines a bijection from Zm to R. For t′ $← Zm and

t
$← Z we get

D ≤ max
m∈M

1/2 ·
∑

t0∈Zm

∣∣Pr[t′ = t0]− Pr[t = t0]
∣∣ ≤ 2lm−lr

Three further examples of combining functions can be obtained when
first applying a (th, ϵh)-collision-resistant hash function that maps (long)
messages toM. Lemma 2 guarantees that the results are still combining
according to Definition 4. The proof of Lemma 2 is straight-forward and
can be found in the full version.

Lemma 2. Let V be a (tcomb, ϵcomb, δcomb)-combining function and H
be a (th, ϵh)-collision-resistant hash function. Then V ′ = {V ′k}k∈N with

V ′k = {z(r, h(m))|z $← Vk, h
$← Hk} is (min{tcomb, th}, ϵcomb + ϵh, δcomb)-

combining.

2.7 The Strong RSA Setting

Definition 5 (Strong RSA assumption (SRSA)). Given an RSA
modulus n = pq, where p, q are sufficiently large primes, and an element
u ∈ Z∗

n, we say that the (tSRSA, ϵSRSA)-SRSA assumption holds if for all
tSRSA-time adversaries A

Pr [(x, y)← A(n, u), x ∈ Z∗
n, y > 1, xy = u mod n] ≤ ϵSRSA,

where the probability is over the random choices of u, n and the random
coins of A.

Definition 6 (SRSA setting). In this setting, KeyGen(1κ) outputs the
key pair (SK = (p, q), PK = n) for a safe modulus n = pq such that
p = 2p′ + 1, q = 2q′ + 1, and p, q, p′, q′ are primes. All computations are
performed in the cyclic group QRn. Let li = li(κ) for i ∈ {n, t, c, e,m}
be polynomials. We require that |n|2 = ln and |p′|2 = |q′|2 = ln/2 − 1.
Furthermore, we assume that the (tSRSA, ϵSRSA)-SRSA assumption holds.
We let u, v, w be public random generators of QRn with unknown logu v,

loguw, and logv w. When using combining functions z(r,m), we assume
that M ⊆ [0; 2lm − 1], Z ⊆ [0; 2lz − 1] and R ⊆ [0; 2lr − 1]. We let
E ⊆ [2le−1; 2le−1] denote the set of le-bit primes. Finally, we require that
lm ≤ lc, lz, lr < le < ln/2− 1.

2.8 The Strong Diffie-Hellman Setting

Definition 7 (Bilinear groups). Let G1 =<g1>,G2 =<g2> and GT

be groups of prime order p. The function e : G1 ×G2 → GT is a bilinear
pairing if it holds that 1) for all a ∈ G1, b ∈ G2, and x, y ∈ Zp we have
e(ax, by) = e(a, b)xy (bilinearity), 2) e(g1, g2) ̸= 1GT

is a generator of GT

(non-degeneracy), and 3) e is efficiently computable (efficiency). We call
(G1, g1,G2, g2,GT , p, e) a bilinear group.

Definition 8 (SDH assumption (SDH)). Let (G1, ĝ1,G2, ĝ2,GT , p, e)
be a bilinear group. We say that the (qSDH, tSDH, ϵSDH)-SDH assumption
holds if for all tSDH-time attackers A that are given a (qSDH +3)-tuple of

elements W =
(
g1, g

x
1 , g

(x2)
1 , . . . , g

(xqSDH)
1 , g2, g

x
2

)
∈ GqSDH +1

1 ×G2
2 it holds

that

Pr [(s, c)← A(W), c ∈ Zp, s ∈ G1, e(s, gx2g
c
2) = e(g1, g2)] ≤ ϵSDH,

where the probability is over the random choices of the generators g1 ∈ G1,
g2 ∈ G2, x ∈ Zp and the random bits of A.

Definition 9 (SDH setting). In the SDH setting, all computations are
performed in the cyclic groups of (G1, g1,G2, g2,GT , p, e) such that |p|2 =
lp = lp(κ). The PPT KeyGen(1κ) chooses x

$← Zp and outputs (SK =
x, PK = gx2). We assume that the (qSDH, tSDH, ϵSDH)-SDH assumption
holds. Finally, we suppose that the values a, b, c ∈ G1 are public random
generators of G1 such that loga b, loga c, and logb c are unknown. In case
of combining functions z(r,m), we assume that Z ⊆ Zp and R ⊆ Zp.

3 Signature Classes

For convenience, we now introduce two general signature classes. The
combining signature scheme SCMB constitutes a useful abstraction of the
Camenisch-Lysyanskaya, the Fischlin, and the Zhu signature scheme us-
ing combining functions. The chameleon signature scheme SCH can be re-
garded as a general variant of the original Cramer-Shoup signature scheme
where we do not specify a concrete instantiation of the chameleon hash
function.

3.1 SRSA-Based Combining Signature Scheme SCMB,SRSA

In the SRSA setting, Sign(SK,m) randomly draws r ∈ R and e ∈ E and

computes a signature σ = (r, s, e) on message m with s =
(
uvrwz(r,m)

) 1
e .

Let us now show that our construction generalizes the claimed signa-
ture schemes. Observe that we can easily obtain the Fischlin scheme [9]
if we instantiate the combining function with EX2 of Table 1. Further-
more, we can also get the Camenisch-Lysyanskaya scheme [4] using EX3.
This becomes obvious if we substitute v by v′ = vw as uvrwr+m =
u(vw)rwm = u(v′)rwm. 1 We note that when we use the Camenisch-
Lysyanskaya scheme with long messages we must first apply a collision-
resistant hash function to the message. What we essentially get is Zhu’s
scheme [18, 19]. By Lemma 2, the resulting function is still combining.
The verification routine Verify(PK,m, σ) takes a purported signature

σ = (r, s, e) and checks if se
?
= uvrwz(r,m), if |e|2 = le, and if e is odd.

3.2 SDH-Based Combining Signature Scheme SCMB,SDH

We also present an SDH-based variant SCMB,SDH of the combining sig-
nature scheme. We remark that for the Camenisch-Lysyanskaya scheme
there already exists a corresponding SDH-based variant, originally in-
troduced in [5] and proven secure in [15, 1]. Similar to SCMB,SRSA, we
obtain the SDH-based Camenisch-Lysyanskaya scheme when instantiat-
ing the combining function with EX1. In the same way, we can also get
SDH-based variants of the Fischlin signature scheme (using EX2) and
of Zhu’s scheme (using Lemma 2). In the SDH-based combining scheme,
Sign(SK,m) at first chooses a random r ∈ R and a random t ∈ Zp\{−x}.
It then computes the signature σ = (r, s, t) with s =

(
abrcz(r,m)

) 1
x+t .

Given a signature σ = (r, s, t), Verify(PK,m, σ) checks if e
(
s, PKgt2

) ?
=

e
(
abrcz(r,m), g2

)
.

1 To be precise, our generalization slightly differs from the Camenisch-Lysyanskaya
scheme. In the original scheme, it is required that lr = ln + lm + 160. As a result,
the authors recommend for 160 bit long messages that lr = 1346, ls = 1024, and
le = 162. In our scheme, we simply require that lm ≤ lr < le < ln/2 − 1. Then,
we can set lr = 320, ls = 1024, and le = 321 for a probability ϵcomb = 2−160.
Therefore, the signature size of our signature scheme is much shorter (only (320 +
1024 + 321)/(1346 + 1024 + 162) ≈ 66% of the original signature size) and the
scheme is more efficient (since shorter exponents imply faster exponentations) than
the original scheme.

3.3 SRSA-Based Chameleon Hash Signature Scheme SCH,SRSA

The scheme SCH,SRSA is defined in the SRSA setting. KeyGen(1κ) addi-
tionally generates the key material (SKCH, PKCH) for a chameleon hash
function. The value PKCH is added to the scheme’s public key. (SKCH
is not required. However, it may be useful when turning the signature
scheme into an online-offline signature scheme [17].) The signature gener-
ation algorithm Sign(SK,m) first chooses a random r ∈ R and a random
prime e ∈ E. It then outputs the signature σ = (r, s, e) on a message

m where s =
(
uvch(r,m)

) 1
e . To verify a purported signature σ = (r, s, e)

on m, Verify(PK,m, σ) checks if e is odd, if |e|2 = le, and if se
?
= uvch(r,m).

3.4 SDH-Based Chameleon Hash Signature Scheme SCH,SDH

Let us now define a new variant of the chameleon hash signature scheme
that is based on the SDH assumption. Again, KeyGen(1κ) also adds the
public key PKCH of a chameleon hash function to PK. In the SDH set-
ting, Sign(SK,m) first chooses a random r ∈ R and a random t ∈ Zp \
{−x}. Using SK = x, it then outputs the signature σ on m as σ = (r, s, t)

where s =
(
abch(r,m)

) 1
x+t . To verify a given signature σ = (r, s, t) on

m, Verify(PK,m, σ) checks if e
(
s, PKgt2

) ?
= e

(
abch(r,m), g2

)
. A suitable

chameleon hash function can for example be found in [13].

3.5 The Cramer-Shoup Signature Scheme SCS,SRSA

Let us now review the Cramer-Shoup signature scheme that is defined
in the SRSA setting. The Cramer-Shoup scheme SCS,SRSA additionally
requires a collision-resistant hash function h : {0, 1}∗ → {0, 1}lc . The
message space is so extended toM = {0, 1}∗. Suppose lc < le < ln/2− 1.
- KeyGen(1κ) additionally computes a random le-bit prime ẽ. The secret
key is SK = (p, q) the public key is PK = (n, ẽ).

- Sign(SK,m) first chooses a random r ∈ QRn and evaluates (the
chameleon hash function) c = rẽ/vh(m) mod n. Then it draws a ran-

dom le-bit prime e ̸= ẽ and computes the value s =
(
uvh(c)

)1/e
mod n.

The signature is σ = (r, s, e).
- Verify(PK,m, σ) re-computes c = rẽ/vh(m) mod n and checks whether

s
?
=

(
uvh(c)

)1/e
mod n, if e is odd, and if |e|2 = le.

Unfortunately, the proof of the more general chameleon hash scheme
class does not formally transfer to the Cramer-Shoup signature scheme
because in the Cramer-Shoup scheme the key material of its chameleon

hash function is not chosen independently. In particular, the chameleon
hash function uses the same RSA modulus and the same value v. This
requires slightly more care in the security proof. We provide a full proof
of the Cramer-Shoup signature scheme in the full version.

4 Security

Theorem 1. The Cramer-Shoup signature scheme, the combining signa-
ture class (in both the SRSA and the SDH setting), and the chameleon
signature class (in both the SRSA and the SDH setting) are tightly secure
against adaptive chosen message attacks. In particular, this implies that
the Camenisch-Lysyanskaya, the Fischlin, the Zhu, and the SDH-based
Camenisch-Lysyanskaya scheme are tightly secure against strong existen-
tial forgeries under adaptive chosen message attacks.

We subsequently provide the intuition behind our security proofs. In
Section 4.4, we present a full proof of security for SCMB,SRSA, which
seems to us to be the technically most involved reduction. The proof of
SCMB,SDH proceeds analogously and appears in the full version. We then
informally show how to transfer our technique to SCH. In the full version
we also provide a full proof of security of the Cramer-Shoup signature
scheme.

4.1 The SRSA-Based Schemes

Let us first consider the SRSA-based schemes, where B is given an SRSA
challenge (û, n) with û ∈ Z∗

n. Assume that attacker A issues q signature
queries m1, . . . ,mq ∈ M. As a response to each query mi with i ∈ [1; q],
A receives a corresponding signature σi = (ri, si, ei) ∈ R×QRn × E.

Recall that the existing security proofs for schemes of the combining
class (e.g. [9]) consider two forgers that loosely reduce from the SRSA
assumption. This is the case when it holds for A’s forgery (m∗, (r∗, s∗, e∗))
that gcd(e∗,

∏q
i=1 ei) ̸= 1.2 Given that |e∗|2 = le this means that e∗ = ej

for some j ∈ [1; q]. Let us concentrate on the case that r∗ ̸= rj . The proof
of the remaining case (e∗ = ej , r

∗ = rj and m∗ ̸= mj) is very similar. It
additionally exploits the properties of the combining function.

The proofs in [8, 9, 18, 4, 19] work as follows: the simulator B at first

guesses j
$← {1, . . . , q}. By construction, B can answer all signature

queries but only if A outputs a forgery where e∗ = ej it can extract

2 The proof of the case gcd(e∗,
∏q

i=1 ei) = 1 is straight-forward.

a solution to the SRSA challenge. In all other cases (if e∗ = ei for some
i ∈ {1, . . . , q} \ {j}), B just aborts. Since the number of signature queries
q rises polynomially in the security parameter, the probability for B to
correctly guess j in advance is q−1 and thus not negligible. However, the
security reduction loses a factor of q here.

Our aim is to improve this reduction step. Ideally, we have that any
forgery which contains e∗ ∈ {e1, . . . , eq} helps the simulator to break
the SRSA assumption. As a result, the simulator can completely avoid
guessing. The main task is to re-design the way B computes A’s input
parameters: for every i ∈ {1, . . . , q}, we must have exactly one choice of
ri such that B can simulate the signing oracle without having to break
the SRSA assumption. On the other hand, if A outputs (m∗, (r∗, s∗, e∗))
with e∗ = ei for some i ∈ [1; q] and r∗ ̸= ri, B must be able to compute a
solution to the SRSA challenge. Let us now go into more detail.

For simplicity, assume that B can setup A’s input parameters such
that the verification of a signature σ = (r, s, e) always reduces to

se = ûf(r) mod n. (1)

Suppose that neither û nor f : R → N are ever revealed to A. We
exploit that the ri are chosen independently at random. So, they can
be specified prior to the signature queries. Now, B’s strategy to simulate
the signing oracle is to define r1, . . . , rq such that for every i ∈ [1; q] it
can compute a prime ei ∈ E with ei|f(ri). Without having to break the
SRSA assumption, B can then compute si = ûf(ri)/ei and output the i-th
signature as (ri, si, ei).

Let us now turn our attention to the extraction phase where B is
given A’s forgery (m∗, (r∗, s∗, e∗)). By assumption we have e∗ = ei for
some i ∈ [1; q] and r∗ ̸= ri. B wants to have that gcd(e∗, f(r∗)) = D < e∗

(or f(r∗) ̸= 0 mod e∗) because then it can find a solution to the SRSA
challenge by computing a, b ∈ Z \ {0} with af(r∗)/D + be∗/D = 1 using
extended Euclidean algorithm and outputting

(s∗)aûb = ûD/e∗ , e∗/D.

B’s strategy to guarantee gcd(e∗, f(r∗)) = D < e∗ is to ensure that e∗ =
ei ̸ |f(r∗). Unfortunately, B cannot foresee r∗. Therefore, the best solution
is to design f such that ei ̸ |f(r∗) for all r∗ ̸= ri.

Obviously, B makes strong demands on f . We now present our con-
struction of f and argue that it perfectly fulfills all requirements. We

define f as

f(r) =

q∑
i=1

ri

q∏
j=1
j ̸=i

ej − r

q∑
i=1

q∏
j=1
j ̸=i

ej , (2)

for r1, . . . , rq ∈ R . Furthermore, e1, . . . , eq ∈ E must be distinct primes.
First, observe that for every k ∈ [1; q] the function reduces to f(rk) =∑q

i=1,i ̸=k(ri − rk)
∏q

j=1,j ̸=i ej and thus f(rk) = 0 mod ek. On the other

hand, it holds for r ̸= rk that f(r) = (rk − r)
∏q

j=1,j ̸=k ej mod ek. Since
lr < le, we have that |rk − r| < ek and as the ei are distinct primes, we
finally get that gcd((rk−r)

∏q
j=1,j ̸=k ej , ek) = 1 and thus f(r) ̸= 0 mod ek

for r ̸= rk.

4.2 The SDH-Based Schemes

Under the SDH assumption, the situation is very similar. Here we also an-
alyze three possible types of forgeries (m∗, (r∗, s∗, t∗)): 1.) t∗ /∈ {t1, . . . , tq},
2.) t∗ = ti with i ∈ [1; q] but r∗ ̸= ri, and 3.) t∗ = ti, r

∗ = ri (butm
∗ ̸= mi)

with i ∈ [1; q]. Again, we concentrate on the second case. At the begin-

ning, B is given an SDH challenge
(
ĝ1, ĝ

x
1 , ĝ

(x2)
1 , . . . , ĝ

(xq)
1 , g2, g

x
2

)
. This

time, B chooses PK = gx2 . In the SDH setting, Equation (1) transfers to

e(s, PKgt2) = e(ĝ
f(r,x)
1 , g2)⇔ sx+t = ĝ

f(r,x)
1 . (3)

In contrast to the SRSA setting, f is now a polynomial with indeterminate

x and maximal degree q. Again, B must keep f(r, x) and the ĝ
(xi)
1 secret

from A. We define

f(r, x) =

q∑
i=1

ri

q∏
j=1
j ̸=i

(x+ tj)− r

q∑
i=1

q∏
j=1
j ̸=i

(x+ tj),

for r1, . . . , rq ∈ R and distinct t1, . . . , tq ∈ Zp. Using the SDH challenge,

B can easily compute ĝ
f(r,x)
1 since f(r, x) has maximal degree q. Observe

that it always holds that (f(r, x)−(rk−r)
∏q

j=1,j ̸=k(x+ tj))/(x+ tk) ∈ Z.
If r = rk, we surely have that f(r, x)/(x + tk) ∈ Z. If r ̸= rk, then long
division gives us D ∈ Z with D ̸= 0 and a new polynomial f̃tk(r, x) with
coefficients in Z such that f(r, x) = f̃tk(r, x)(x + tk) +D. Similar to the
SRSA class, we can find a solution to the SDH challenge from A’s forgery
as (

(s∗)ĝ
−f̃t∗ (r

∗,x)
1

)1/D

= ĝ
1/(x+t∗)
1 , t∗.

4.3 Security of the Chameleon Hash Signature Class

The chameleon hash class is also tightly secure in the SRSA and the
SDH setting. For convenience let ci = ch(ri,mi) for i ∈ [1; q] and c∗ =
ch(r∗,m∗). Altogether there are again three types of forgeries to consider:
1) e∗ /∈ {e1, . . . , eq} (t∗ /∈ {t1, . . . , tq}), 2) e∗ = ei (t

∗ = ti) but c∗ ̸= ci ,
and 3) e∗ = ei (t

∗ = ti), c
∗ = ci but m

∗ ̸= mi. The proof of 1) is straight-
forward and very similar to the proof of Type I forgers of the combining
class. The proof of 3) clearly reduces to the security properties of the
chameleon hash function. The proof of 2) requires our new technique to
set up f(c) (f(c, x)). Recall Section 4 where we analyzed the equations
se = ûf(c) and f(c) =

∑q
i=1 ci

∏q
j=1,j ̸=i ej − c

∑q
i=1

∏q
j=1,j ̸=i ej in the

SRSA setting (and sx+t = ĝ
f(c,x)
1 and f(c, x) =

∑q
i=1 ci

∏q
j=1,j ̸=i(x+ tj)−

c
∑q

i=1

∏q
j=1,j ̸=i(x+ tj) in the SDH setting).

In the proof of the combining class the ci are random values (ci = ri)
that can be specified prior to the simulation phase. In the proof of the
chameleon hash class we take a similar approach. Now the ci are the
output values of a chameleon hash function. In the initialization phase of
the proof we choose q random input pairs (m′

i, r
′
i) ∈M×R, i ∈ [1; q] to

compute the ci = CHEval(PKCH,m
′
i, r

′
i). Then we prepare the function

f(c) (f(c, x)) with C = {c1, . . . , cq} and a set of q random primes le-bit
primes (random values t1, . . . , tq ∈ Zp) as in the proofs of the combining
class. Next, we embed f(c) (f(c, x)) in the exponents of the two group
elements u, v (a, b). In the simulation phase we give the simulator SKCH
to map the attacker’s messages mi to the prepared ci by computing ri =
CHColl(SKCH, r

′
i,m

′
i,mi). In this way we can successfully simulate the

signing oracle. In the extraction phase, the properties of the chameleon
hash function guarantee that c∗ /∈ {c1, . . . , cq} (otherwise we can break
the security of the chameleon hash function). This ensures that we can
find a solution to the SRSA challenge (SDH challenge).

4.4 Security Analysis of SCMB,SRSA

Lemma 3. In the SRSA setting, suppose the (tSRSA, ϵSRSA)-SRSA as-
sumption holds and V is a (tcomb, ϵcomb, δcomb)-combining function. Then,
the combining signature class as presented in Section 3.1 is (q, t, ϵ)-secure3

3 Using explicit bounds on the prime counting function [16], we can lower bound the
number of primes in E for le ≥ 7 as |E| > (2le − 1)/(ln(2le − 1) + 2) − (2le−1 −
1)/(ln(2le−1 − 1)− 4).

against adaptive chosen message attacks provided that

q = qSRSA, ϵ ≤ 9

2
ϵSRSA+3ϵcomb+3qδcomb+

3q2

|E|
+9 ·22−ln/2, t ≈ tSRSA.

The proof of Lemma 3 is the first step in the proof of Theorem 1. It
implies that the original Camenisch-Lysyanskaya, the Fischlin and the
Zhu’s signature scheme are tightly secure against existential forgeries un-
der adaptive chosen message attacks.

Proof. Assume that A is a forger that (q, t, ϵ)-breaks the strong existen-
tial unforgeability of SCMB,SRSA. Then, we can construct a simulator B
that, by interacting with A, solves the SRSA problem in time tSRSA with
advantage ϵSRSA. We consider three types of forgers that after q queries
m1, . . . ,mq and corresponding responses (r1, s1, e1), . . . , (rq, sq, eq) parti-
tion the set of all possible forgeries (m∗, (r∗, s∗, e∗)). In the proof, we treat
all types of attackers differently. At the beginning, we let B guess with
probability at least 1

3 which forgery A outputs. Lemma 3 then follows
by a standard hybrid argument. We assume that B is given an SRSA
challenge instance (û, n). Let Pr[Si] denote the success probability of an
attacker to successfully forge signatures in Game i.

Type I Forger (e∗ /∈ {e1, . . . , eq})

Game0. This is the original attack game. By assumption, A (q, t, ϵ)-
breaks SCMB,SRSA when interacting with the signing oracle O(SK, ·). We
have that,

Pr[S0] = ϵ . (4)

Game1. Now, B constructs the values u, v, w using the SRSA challenge
instead of choosing them randomly from QRn. First, B chooses q random

primes e1, . . . , eq
$← E and three random elements t′0, t

′′
0

$← Z(n−1)/4 and

t0
$← Z3(n−1)/4. In the following let ē :=

∏q
k=1 ek, ēi :=

∏q
k=1,k ̸=i ek and

ēi,j :=
∏q

k=1,k ̸=i,k ̸=j ek. The simulator computes u = û2t0ē, v = û2t
′
0ē, w =

û2t
′′
0 ē using the SRSA challenge. Since the t0, t

′
0, t

′′
0 are not chosen uni-

formly at random from Zp′q′ we must analyze the success probability for
A to detect our construction. Observe that (n−1)/4 = p′q′+(p′+q′)/2 >
p′q′. Without loss of generality let p′ > q′. Now, the probability of a ran-
domly chosen x ∈ Z(n−1)/4 not to be in Zp′q′ is

Pr[x
$← Z(n−1)/4, x /∈ Zp′q′] = 1−

|Zp′q′ |
|Z(n−1)/4|

<
1

q′ + 1
< 2−(|q′|2−1) .

With the same arguments we can show that t0 is also distributed almost
uniformly at random in Zp′q′ and Z3p′q′ . Since the ei are primes smaller
than p′ and q′ it holds that ei ̸ |p′q′. Therefore, the distribution of the
generators is almost equal to the previous game and we get by a union
bound that

Pr[S1] ≥ Pr[S0]− 3 · 2−(ln/2−2) . (5)

Game2. Now, B simulates O(SK, ·) by answering A’s signature queries.
Subsequently, set zj = z(ej ,mj) and z∗ = z(e∗,m∗). The simulator B
sets PK = n and for all j ∈ {1, . . . , q} it chooses a random rj ∈ R and

outputs σj = (rj , sj , ej) with sj = (uvrjwzj)
1
ej = û2(t0+t′0rj+t′′0 zj)ēj . The

distribution of the so computed values is equal to the previous game and

Pr[S2] = Pr[S1] . (6)

Game3. Now, consider A’s forgery (m∗, (r∗, s∗, e∗)). Define ê = (t0 +
t′0r

∗+ t′′0z
∗). For A’s forgery it holds that (s∗)e

∗
= û2ēê. We also have that

gcd(e∗, 2ēê) = gcd(e∗, ê) since by assumption we know gcd(e∗, 2ē) = 1. We
will now analyze the probability for the event gcd(e∗, ê) < e∗ to happen.
If gcd(e∗, ê) = e∗ (or ê = 0 mod e∗) B, simply aborts and restarts. Since
|e∗|2 = le, it holds that gcd(e∗, p′q′) < e∗. Write t0 ∈ Z3(n−1)/4 as t0 =

t0,1+p′q′t0,2 where t0,2 ∈ [0; 2] and t0,1 ∈ [0, p′q′−1] and observe that A’s
view is independent from t0,2. Let T = ê−p′q′t0,2. We now argue that there
exists at most one t̃0,2 ∈ [0; 2] such that T + t̃0,2p

′q′ = 0 mod e∗. This is
crucial because if A produces forgeries with T + t̃0,2p

′q′ = 0 mod e∗ for
all t̃0,2 ∈ [0; 2] it always holds that gcd(e∗, ê) = e∗ and B cannot extract
a solution to the SRSA challenge (using the techniques described below).
Assume there exists at least one such t̃0,2. Then, we have that T+t̃0,2p

′q′ =
0 mod e∗. Let us analyze the remaining possibilities t̃0,2 ± 1 and t̃0,2 ± 2
as A = T + t̃0,2p

′q′ ± p′q′ mod e∗ and B = T + t̃0,2p
′q′ ± 2p′q′ mod e∗.

Since gcd(e∗, p′q′) < e∗ we know that p′q′ ̸= 0 mod e∗. As T + t̃0,2p
′q′ = 0

mod e∗ we must have that A ̸= 0 mod e∗. Also, because e∗ is odd we know
that 2p′q′ ̸= 0 mod e∗ and thus B ̸= 0 mod e∗. So, because there can only
exist at most one t̃0,2 ∈ [0; 2] with gcd(e∗, ê) = e∗ and since this t̃0,2 is
hidden from A’s view, A’s probability to output it is at most 1/3. This
means that with probability at least 2/3, B has that gcd(e∗, ê) = d < e∗.
Using A’s forgery (m∗, (r∗, s∗, e∗)), B can break the SRSA assumption by
computing a, b ∈ Z with gcd(e∗/d, 2ēê/d) = ae∗/d+ b2ēê/d = 1 and

ûd/e
∗
= ûa(s∗)b, e∗/d.

Finally, we have that
Pr[S3] ≥ 2 · Pr[S2]/3 (7)

and
Pr[S3] = ϵSRSA . (8)

Plugging in Equations (4)–(8), we get that ϵ ≤ 3
2ϵSRSA + 3 · 22−ln/2.

Type II Forger (e∗ = ei and r∗ ̸= ri)
We only present the differences to the previous proof.

Game1. First, B randomly chooses q distinct le-bit primes e1, . . . , eq and
q random elements r1, . . . , rq ∈ R. Additionally, it chooses three random

elements t0, t
′
0, t

′′
0 from Z(n−1)/4. Next, B computes u = û2(t0ē+

∑q
i=1 riēi),

v = û2(t
′
0ē−

∑q
i=1 ēi), and w = û2t

′′
0 ē using the SRSA challenge. Again,

Pr[S1] ≥ Pr[S0]− 3 · 2−(ln/2−2) . (9)

Game2. Now B simulates the signing oracle O(SK, ·). On each signature
query mj with j ∈ {1, . . . , q}, B responds with σj = (rj , sj , ej) using the
precomputed rj and ej and computing sj as

sj = û2((t0+t′0rj+t′′0 zj)ēj+
∑q

i=1,i̸=j(ri−rj)ēi,j) .

Since we have chosen the ei to be distinct primes we have by a union
bound that

Pr[S2] ≥ Pr[S1]−
q2

|E|
. (10)

Game3. Now consider A’s forgery (m∗, (r∗, s∗, e∗)). By assumption there
is an i ∈ {1, . . . , q} with e∗ = ei and ri ̸= r∗. Then we have that(

(s∗) · û−2((t0+t′0r
∗+t′′0 z

∗)ēi+
∑q

j=1,j ̸=i(rj−r∗)ēi,j)
)ei

= û2(ri−r∗)ēi .

Since |ri−r∗| < ei and ei is an odd prime, we get gcd(2(ri−r∗), ei) = 1 and

as before we can compute û
1
ei which is a solution to the SRSA challenge.

Pr[S3] = ϵSRSA . (11)

Summing up Equations (9)–(11), we get ϵ ≤ ϵSRSA + q2/|E|+ 3 · 22−ln/2.

Type III Forger (e∗ = ei and r∗ = ri)
There are only minor differences as compared to the previous proof.

Game1. First, B randomly chooses q le-bit primes e1, . . . , eq and q ran-
dom z1, . . . , zq ∈ Z, Then, B draws three random elements t0, t

′
0, t

′′
0 from

Z(n−1)/4. Next, B computes u, v, and w as u = û2(t0ē+
∑q

i=1 ziēi), v = û2t
′
0ē,

and w = û2(t
′′
0 ē−

∑q
i=1 ēi).

Pr[S1] ≥ Pr[S0]− 3 · 2−(ln/2−2) . (12)

Game2. This game is equal to the previous game except that we require
the ei to be all distinct. We have that

Pr[S2] ≥ Pr[S1]−
q2

|E|
. (13)

Game3. Now B simulates the signing oracle. For each queriesmj with j ∈
{1, . . . , q}, B computes rj = z−1(zj ,mj). If rj /∈ R, B aborts. Otherwise
it outputs the signature σj = (rj , sj , ej) with sj being computed as

sj = (uvrjwzj)
1
ej = û2((t0+t′0rj+t′′0 zj)ēj+

∑q
i=1,i̸=j(zi−zj)ēi,j) .

The properties of the combining function guarantee that the rj are sta-
tistically close to uniform over R such that,

Pr[S3] ≥ Pr[S2]− qδcomb . (14)

Game4. This game is like the previous one except that B aborts whenever
there is a collision such that zi = z(ri,mi) = z(ri,m

∗) = z∗ for some ri.
Observe that we must have m∗ ̸= mi, otherwise A just replayed the i-the
message/signature pair. For all tcomb-time attackers this happens with
probability at most ϵcomb. Therefore,

Pr[S4] ≥ Pr[S3]− ϵcomb . (15)

Consider A’s forgery (m∗, (r∗, s∗, e∗)). By assumption, there is one index
i ∈ {1, . . . , q} with e∗ = ei and r∗ = ri. For this index it holds that(

(s∗) · û−2((t0+t′0r
∗+t′′0 z

∗)ēi+
∑q

j=1,j ̸=i(zj−z∗)ēi,j)
)ei

= û2(zi−z∗)ēi .

Since we have excluded collisions, it follows that zi ̸= z∗. As |zi−z∗| ≤ ei,

B can compute û
1
ei as a solution to the SRSA challenge. Finally,

Pr[S4] = ϵSRSA . (16)

Equations (12)–(16) show ϵ ≤ ϵSRSA+ϵcomb+qδcomb+q2/|E|+3 ·22−ln/2.

Acknowledgement I would like to thank Mathias Herrmann, Tibor
Jager, Eike Kiltz, and Maike Ritzenhofen for useful comments on ear-
lier drafts of this paper and the anonymous referees of EUROCRYPT’11
for helpful comments and suggestions.

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In Prisco, R.D.,
Yung, M., eds.: SCN. Volume 4116 of Lecture Notes in Computer Science., Springer
(2006) 111–125

2. Bernstein, D.J.: Proving tight security for Rabin-Williams signatures. In Smart,
N.P., ed.: EUROCRYPT. Volume 4965 of Lecture Notes in Computer Science.,
Springer (2008) 70–87

3. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptology 21(2) (2008) 149–177

4. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In
Cimato, S., Galdi, C., Persiano, G., eds.: SCN. Volume 2576 of Lecture Notes in
Computer Science., Springer (2002) 268–289

5. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In Franklin, M.K., ed.: CRYPTO. Volume 3152 of Lecture
Notes in Computer Science., Springer (2004) 56–72

6. Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme
without hash function. In Abe, M., ed.: CT-RSA. Volume 4377 of Lecture Notes
in Computer Science., Springer (2007) 339–356

7. Coron, J.S., Naccache, D.: Security analysis of the Gennaro-Halevi-Rabin signature
scheme. In: EUROCRYPT. (2000) 91–101

8. Cramer, R., Shoup, V.: Signature schemes based on the Strong RSA assumption.
ACM Trans. Inf. Syst. Secur. 3(3) (2000) 161–185

9. Fischlin, M.: The Cramer-Shoup Strong-RSA signature scheme revisited. In
Desmedt, Y., ed.: Public Key Cryptography. Volume 2567 of Lecture Notes in
Computer Science., Springer (2003) 116–129

10. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: EUROCRYPT. (1999) 123–139

11. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2) (1988) 281–308

12. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In
Wagner, D., ed.: CRYPTO. Volume 5157 of Lecture Notes in Computer Science.,
Springer (2008) 21–38

13. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS, The Internet Society
(2000)

14. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In Heys,
H.M., Adams, C.M., eds.: Selected Areas in Cryptography. Volume 1758 of Lecture
Notes in Computer Science., Springer (1999) 184–199

15. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In Halevi, S., Rabin, T., eds.: TCC. Volume 3876 of Lecture Notes in Computer
Science., Springer (2006) 80–99

16. Rosser, B.: Explicit bounds for some functions of prime numbers. American Journal
of Mathematics 63(1) (1941) 211–232

17. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In Kilian,
J., ed.: CRYPTO. Volume 2139 of Lecture Notes in Computer Science., Springer
(2001) 355–367

18. Zhu, H.: New digital signature scheme attaining immunity to adaptive-chosen
message attack. Chinese Journal of Electronics 10(4) (2001) 484–486

19. Zhu, H.: A formal proof of Zhu’s signature scheme. Cryptology ePrint Archive,
Report 2003/155 (2003) http://eprint.iacr.org/.

