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Abstract. Given ann-bit ton-bit MAC (e.g., a fixed key blockcipher) with MAC
securityε againstq queries, we design a variable-length MAC achieving MAC
securityO(εq poly(n)) against queries of total lengthqn. In particular, our con-
struction is the first to break the “birthday barrier” for MACdomain extension
from noncompressing primitives, since our security bound is meaningful even for
q = 2n/poly(n) (assumingε is the best possibleO(1/2n)). In contrast, the pre-
vious best construction for MAC domain extension forn-bit to n-bit primitives,
due to Dodis and Steinberger [11], achieved MAC security ofO(εq2(log q)2),
which means thatq cannot cross the “birthday bound” of2n/2.

1 Introduction

Most primitives in symmetric-key cryptography are built from block ciphers, such as
AES. In this paper, we will concentrate on the question of designing variable-input-
length (VIL) message authentication codes (MACs) from block ciphers. This question
is very well studied, as we survey below. However, with few exceptions, most existing
constructions and their analyses make the following two assumptions: (a)Pseudoran-
domness: the block cipher is modeled as a pseudorandom permutation (PRP); and (b)
Secrecy of Intermediate Results: the attacker only learns the input/output behavior of
the corresponding VIL-MAC, but does not learn any of the intermediate results. As ob-
served by Dodis et al. [9–11], each of these assumptions might either be unnecessarily
strong, or simply too unrealistic in the following two scenarios.

DOMAIN EXTENSION OF MACS. This is our main question. Since the desired MAC
primitive only needs to beunpredictable, it would be highly desirable to only assume
that the block cipher is unpredictable as well, as opposed topseudorandom. Indeed, it
seems that assuming the block cipher is unpredictable is amuch weakerassumption than
assuming full pseudorandomness: to break the latter, all one needs to do is to predict one
bit of “random-looking” information about the block cipherwith probability just a little
over1/2, while the former requires one to fully compute the value of the block cipher
on a new point with non-trivial probability. For example, inthe non-uniform model,
any block cipher (in fact, even non-trivial pseudorandom generator) with ann-bit key
can be very efficiently distinguished from random with advantage2−n/2 [8,11]. To the
best of our knowledge, no such lower bounds are known for breaking unpredictability,
meaning that close to2−n MAC security might be possible for such a block cipher. To
put it differently, while we hope that existing block ciphers are actually PRPs, it seems



quite reasonable to assume that their MAC security could benoticeably betterthan their
PRP security. Thus, if we can design a VIL-MAC whose securityis tightly related to
theunpredictabilityof the block cipher, this VIL-MAC might be more secure than the
MAC whose analysis assumes thepseudorandomnessof the cipher.

Of course, one might hope that existing block-cipher based VIL-MACs, such as
CBC-MAC [5,26] and HMAC [3,6] (whose compression function,under the hood, also
uses a block cipher), are already secure when the block cipher is unpredictable. Unfor-
tunately, as detailed in Dodis et al. [9–11] (see especially[11]), this is not the case: with
few exceptions mentioned shortly, standard constructionsarecompletely insecurewhen
instantiated with unpredictable block ciphers, — often despite having simple proofs of
security when one models the block cipher as a PRP.

RESILIENCE TO SIDE-CHANNELS. Even if the block cipher is a very good PRP, in
practice many cryptographic implementations fall prey to various forms of side-channel
attacks [13, 15–17, 28], where the physical realization of acryptographic primitive can
leak additional information, such as the computation-time, power-consumption, radi-
ation/noise/heat emission etc. Thus, hardware people are paying special attention to
securing block ciphers, such as AES, against such side-channel attacks. Although this
might be a daunting task, it appears reasonable that specialized hardware implementa-
tions of AES might be pretty resistent to common forms of side-channel attacks. On the
other hand, when the block cipher is used in some more complicated application, such
as the design of a VIL-MAC, it might be hard or impractical to design a specialized
“leakage-resilient” implementation for each such application, instead of doing so for a
single, fixed-length building block (such as AES). Motivated by these considerations,
Dodis et al. [9–11] proposed the model where the internals ofthe block cipher imple-
mentation are assumed secure, as usual, but all the externalinput/output behavior of the
block cipher could potentially leak to the attacker (say, via side-channel attack).

To give this model a name while simultaneously making it moregeneral, we say that
a construction of a (deterministic) MACP using some lower level keyed primitive(s)
f is transparent(w.r.t. f ), if (a) the key forP only consists of one of more keys forf ;
(b) when making a queryM to P , the attacker not only getsP (M), but also gets all
the input/output pairs for every call tof made during the evaluation ofP (M). Since
P is deterministic and all keys reside “inside”f , this indeed provides the attacker with
the entiretranscriptof P (M), short of what is happening during the calls tof . Coming
back to our setting, we are interested in building atransparentVIL-MAC out of a block
cipher. As we will see, this question is highly non-trivial even if the block cipher is
assumed pseudorandom, let alone unpredictable. Indeed, asobserved by [9–11], most
existing VIL-MACs, including CBC-MAC [5, 26] and HMAC [3, 6], arecompletely
insecurewhen the intermediate results are leaked, even when instantiated with a PRP.

OUR MAIN RESULT. Motivated by these applications, we ask the same question as
Dodis et al. [9–11], which simultaneously addresses both ofthe above concerns.

Question 1.Can one build atransparentVIL-MAC P out of a block cipherf which is
only assumedunpredictable?

As already mentioned, most standard VIL-MACs built from block ciphers fail to
address either MAC-preservation or transparency (even with a PRP). So we turn to the



known secure approaches. As it turns out, all of them followed the principle of An
and Bellare [2] of first constructing a compressingWeakly Collision Resistant(WCR)1

hash functionF from m to n bits, for some fixedm > n, then iterating this fixed-
length WCRF using some variant of the Merkle-Damgård transform, and finally com-
posing the output with a freshly keyed block cipher. As argued by Preneel and van
Oorschot [27], any construction of this kind can achieve at most birthday security.
Translated to the MAC-preservation setting, even if our original MAC f cannot be
forged with probabilityε usingq queries, the resulting VIL-MACP cannot have secu-
rity greater thanO(εq2), meaning thatq cannot cross2n/2, even isε is assumed to be
(the best possible)1/2n.

Interestingly, even achieving birthday security turns outto be challenging when the
block cipher is only assumed unpredictable. The first secureconstruction of Dodis and
Puniya [10], based on the Feistel network, only achieved security O(εq6). The bound
was then improved toO(εq4) by Dodis, Pietrzak and Puniya [9] using the “enhanced
CBC” construction. Finally, Dodis and Steinberger [11] showed (nearly) birthday se-
curity Õ(εq2) using a new analysis of the Shrimpton-Stam [29] compressionfunction.
All these constructions were also transparent.

We ask the question if it is possible to build (hopefully, transparent) VIL-MACs
from block ciphers withbeyond birthday security. Most ambitiously, iff cannot be
forged with probabilityε usingq queries, we would like to build a VIL-MACP with
security close toO(εq), meaning our security is meaningful even for values ofq ap-
proaching2n, providedε is assumed to be (the best possible)1/2n. As our main result,
we answer this question in the affirmative. Informally (see Section 4 for more details),

Theorem 1. There exist fixed polynomialsa(n) and b(n) and a constructionP of a
transparent VIL-MAC from ann-bit block cipherf , such that the rate2 of P is a(n) and
the MAC securityε′ of P againstq′ queries of total lengthqn is at mostO(b(n)qε),
whereε is the MAC-security off againstq queries. In particular, this bound is mean-
ingful for q (andq′) approaching2n.

OTHER RELATED WORK. As we mentioned, the question of achieving beyond-birthday
security for building VIL-MACs from unpredictable block ciphers was open prior to our
work. In fact, the only domain extension results for MACs with beyond birthday secu-
rity we obtained just recently by Yasuda [31] and Lee and Steinberger [18]. However,
both results started with a shrinking MAC from strictly morethan2n to n bits. As we
will see below, building such shrinking MACs (with beyond birthday security) from
unpredictable block ciphers is highly non-trivial, and will be one of the key challenges
we resolve on route to proving our main result. (However, we note that our result does
not3 simply reduce to building a2n to n bit MAC from ann-bit to n-bit MAC.)

Another related area is that of for building VILpseudorandom functions(PRFs)
with beyond birthday security from PRPs, or more generally,fixed-length PRFs. In

1 WCR security states that it is infeasible to find collisions in F given oracle access toF .
2 Defined as the average number of calls to the block cipherf pern-bit input block.
3 We cannot just build (say) a beyond birthday3n to n bit MAC and then compose it with the

beyond birthday VIL-MAC constructions of [18,31], as each construction would lose a factor
of q in exact security, resulting in already known “birthday” security O(εq2).



particular, several such constructions were found by [1, 4,20, 23–25]. However, it is
easy to see that none of them work either for the MAC domain extension, or even for
building VIL-MACs (let alone PRFs) when the intermediate computation results are
leaked. For example, the corollary of our main result, giving a transparentVIL-MAC
from a(q, εprp)-secure PRP with securityεprp + Õ(q/2n), appears to be new.

Perhaps the closest work to ours is a paper of Maurer and Tessaro [22], who showed
how to build a variable-length random oracle from ann-to-n bit random oracle. Their
construction, analyzed in the indifferentiability framework of [7, 21], has fixed poly-
nomial rate (just like our construction) and security2(1−δ)n, for anyδ > 0. However,
the two settings appear incomparable. On the one hand, the Maurer-Tessaro paper has
to build an “indifferentiability simulator” for their setting (which required “input ex-
traction” not required in our setting). However, they assumed a truly random function,
and could use various probability calculations in derivingtheir result. In our setting,
the block cipher is only unpredictable, and we have to make anexplicit reduction to
unforgeability, which makes matters substantially more delicate.

1.1 Outline of Our Construction

Our construction is quite involved, although we abstract itinto several self-contained
layers. As a side benefit, some of these layers (see below) areof potentially independent
interest, and could be used for other purposes.

STEP 1: REDUCING TO 3n-TO-2n WCR AND 2n-TO-n MAC. First, we notice that
the above mentioned birthday limitation [27] of the An-Bellare approach no longer
holds provided we build a WCR hash functionF from m to 2n bits (for somem > 2n,
saym = 3n). Namely, “birthday on2n bits” might still give good enough security2n.
However, even if we succeed in doing so with beyond birthday security (which will
be one of our key results), we now also have to build a “final” MAC G from 2n to n
bits. Thus, using known techniques but with different parameters (see Lemma 1 and
Figure 1), our problem reduces to building beyond birthday WCRF from 3n to 2n bits
and a beyond birthday MACG from 2n to n bits.

STEP 2: REDUCING TO COVER-FREE FUNCTIONS. It so turns out that both of these
tasks—i.e. the construction of the WCR functionF and the construction of the MAC
G—can be achieved from a more powerful (keyed) primitive which we introduce, called
acover-freefunction. Informally, a keyed functiong from {0, 1}m (recall, we will have
m = 3n) to ({0, 1}n)t (for some parametert), whereg(s) = (z1(s), . . . , zt(s)) ∈
({0, 1}n)t, is calledcover-free(CF) if, given oracle access tog, it is infeasible to
produce a sequence of (distinct) queriess1, s2, . . . , sq ∈ {0, 1}m such that, for some
1 ≤ j ≤ q, zℓ(sj) ∈ {zℓ(s1), . . . , zℓ(sj−1)} for all ℓ ∈ [t]. In other words, for each new
querysj one of the coordinates ofg(sj) must be “uncovered” by previous coordinates
of that index. The caset = 1 corresponds to the standardm to n bit WCR security,
however better (and in particular beyond-birthday) cover-free security can be achieved
with larger values oft.

First, as depicted on the left side of Figure 2, we can composea CFg with t in-
dependently keyed block ciphersf1, . . . ft, by settingG(s) = f1(z1) ⊕ . . . ⊕ ft(zt),
whereg(s) = (z1, . . . , zt). We show that the resultingG is easily seen to be a secure
MAC from m bits ton bits. More precisely, the MAC security ofG is tightly related



to the CF security ofg and the MAC security off (see Lemma 2). Intuitively, a new
forgery forG will give a new forgery for at least one of thefℓ’s, by the CF security of
g. Sincem = 3n > 2n, this already gives us the needed2n to n bit MAC.

More interestingly, as depicted on the right side of Figure 2, we show how to com-
pose a CF functiong with 2t independently keyed block ciphersf1, . . . ft, f

′
1, . . . , f

′
t

(in a variant of the “double-pipe” mode of [19]) to get a WCR functionF from m bits
to 2n bits. Moreover, the WCR security ofF will be “roughly” O(ε′ + qε), whereε′ is
the CF security ofg andε is the MAC security off (see Lemma 3). Thus, as long as
we can build CFg with securityε′ close toO(qε), the WCR security ofF will also be
such. The proof of this result critically uses the bin-filling bin-guessing games of Dodis
and Steinberger [11].

Summarizing the discussion above, our task of building a VIL-MAC P thus reduces
to building a CF functiong with securityε′ ≈ O(qε) whereε is the MAC security of
the underlyingn-bit to n-bit primitive f . We also wish to build the CF functiong with
t as small as possible (which is relevant since the efficiency of P , including the size of
the key, is proportional tot). See Lemma 4.

STEP 3: BUILDING CF FUNCTIONS. This is, by far, the most involved part of our con-
struction. The inspiration for this construction came fromthe afore-mentioned paper of
Maurer and Tessaro [22], who showed how to build a VIL random oracle from ann-to-n
bit random oracle. As we mentioned already, the setting of [22] is incomparable to our
setting, especially since we cannot assume that our block cipher is (pseudo)random.
However, our actual construction of CF functions is quite similar to the correspond-
ing “cover-free” layer of the construction of [22], although we made some changes
(actually, simplifications) to the construction of [22], and our analyses are completely
different. Our CF construction has three layers which we informally call combinatorial,
cryptographic and algebraic. An impatient reader can look at Figure 3 for a concrete
example (witht = 3 and other notation explained below).

STEP 3A : USING INPUT-RESTRICTING FAMILIES . This purely combinatorial step is
precisely the same as in [22], and is also the most expensive step of our construction.
We will use anunkeyedfunctionE from {0, 1}m to ({0, 1}n)r (herer is a parameter)
called aninput-restricting function family(IRFF; see Definition 1). Intuitively, an IRFF
has the property that after anyq queriess1 . . . sq to E, the numberQ of new inputss
for which ther-tupleE(s) is covered by the union ofE(s1), . . . , E(sq) is “not much
larger” thanq, and this should be true even whenq is almost2n. Recall, our final goal
is to ensure that it is hard to produceanysuch new inputs. While IRFFs do not (and
cannot!)4 quite get us there, they ensure that there are not that many choices for the
attacker of which new inputs to “cover” by old inputs.

We discuss the known constructions of IRFFs in Section 4, butmention that the con-
structions of IRFFs are completely combinatorial, and closely related to constructions
of certain types of highly unbalanced bipartite expander graphs. While well-studied,
these types of expander graphs are not yet completely understood, and in particular the
“extreme” setting of parameters relevant to our case has notbeen the object of much
attention. Therefore, although the existence of IRFFs with“good parameters” is known

4 Because they do not have a key and do not rely on any computational assumptions.



(and lead to the asymptotic bound claimed in Theorem 1), the concrete constructions
are pretty inefficient. Nevertheless, as these parameters and efficiency are improved by
future research in computational complexity, so will our final construction.

STEPS3B-C: ADDING CONFUSION AND M IXING . Recall, IRFFs convert our inputs
into anr-tuple(x1. . . . , xr). To get the finalt-tuple(z1, . . . , zt) for our CF functiong,
we can imagine repeating the following two-step precedure (steps 3b and 3c)t times,
each time with a freshly keyed block cipherF (so the total number of block cipher
keys forg will be t). First, we pass allr valuesx1, . . . , xr through the block cipherF
(“confusion step”), getting the valuesy1. . . . , yr. This is the cryptographic “confusion”
layer. Then we algebraically “mix” all2r values(x1 . . . xr, y1 . . . yr) through a fixed,
degree-r multivariate polynomialp (see Equation 3). This gives us one of thet outputs
valuesz1 . . . zt.

The intuition for these last two steps is hard to explain (and, indeed, our analysis is
quite involved). At a high level, the confusion step (evaluating F(x1) . . .F(xr)) is cer-
tainly needed to make a reduction to unforgeability, while the mixing step uses the fact
that low-degree polynomials have few roots, so a “non-trivial” collision on the output
of p will enable one to guess one of the valuesyℓ we are trying to forge. Of course, the
difficulty is to make a successful guess for when and where thenon-trivial collision top
will happen, with probability roughly1/Q, whereQ is the guarantee given by IRFF (so
Q is close toq). It turns out, there is a trivial strategy to make such a guess with “birth-
day” probability1/Q2 ≈ 1/q2, even whent = 1. Of course, such probability is too low,
and this is why we repeat steps 3b-ct times, for an appropriately chosen parametert.
We then show that the required guessing strategy can be reduced to the analysis of two
bin-filling bin-guessing games. The relevance of such gamesto the domain extension
of MACs was first introduced by Dodis and Steinberger [11]. Unfortunately, these two
games are significantly more complicated than the game of [11] or than the game used
in the proof of Lemma 3. Nevertheless, as our most involved technical step, we show
that both games can be won with probability roughly1/(Q ·Q1/t). Thus, by choosing
t > log Q (say,t = n), we get the desired boundO(1/Q) ≈ O(1/q).

EFFICIENCY. Our final VIL-MAC construction uses5t keys forf , where we recall that
the minimal value oft ≈ log q ≤ n. Theoretically, we can reduce key material down
to a single key forf , by “keying” f via fixed, reserved input bits. Namely, to simulate
(at most)5n keys this way we need to reserve⌈log2(5n)⌉ bits of input (and “truncate”
the same number of bits in the output), effectively reducingthe block length of the
construction fromn down ton′ = n − ⌈log2(5n)⌉. Due to the output truncation, we
now also need to guess the missing⌈log2(5n)⌉ output bits not returned by our forger,
incurring an (acceptable) additionalO(n) degradation of the security bound.

Our final VIL-MAC also achieves rate roughly proportional toO(rt) = O(rn).
Achieving a low value ofr (coming from the combinatorial IRFF part) is more prob-
lematic (see Section 4), although existentially one can also maker = O(n). So the
best rate we can hope to achieve using our approach isO(n2). Therefore, we primarily
view our result as an importantfeasibility result, much like the result of Maurer and
Tessaro [22]. Nevertheless, our feasibility opens the doorfor future, potentially more
efficient constructions.



2 Preliminaries

A keyed function familyis a mapf : {0, 1}κ ×Dom(f)→ {0, 1}v whereDom(f) ⊆
{0, 1}∗. The strings in{0, 1}κ are thekeysof f and we writefk(x) for f(k, x) for
k ∈ {0, 1}κ andx ∈ Dom(f).

For MACs we consider the following game, whereA is a halting adversary with
oracle access tofk:

Game Forge(A, f):
k← {0, 1}κ; (x, y)← Afk

If x ∈ Dom(f), fk(x) = y andx was not a query ofA thenA
wins, otherwiseA looses.

We define the insecurity off as a MAC to be

InSecmac
f (T, q, µ) := max

A
Pr[A wins Forge(A, f)]

where the maximum is taken over all adversariesA making at mostq queries of total
combined length at mostµ (after padding, if any) and of “running time” at mostT .
The “running time” is defined to be the total running time of the experiment, including
the time necessary to compute the answers toA’s queries. Moreover we “bill” the final
verification queryfk(x) (and its length) toA (so thatA must in fact makeq− 1 queries
if x ∈ Dom(f); seen another way, we askA to verify its own forgery, if it attempts
one). Whenf has fixed input length (i.e.Dom(f) = {0, 1}m for somem ∈ N) thenµ
is a function ofq and it is convenient to elide the last argument, writingInSecmac

f (T, q)
instead ofInSecmac

f (T, q, µ).
Theweak collision resistanceor “wcr” security of a function familyf is measured

as the maximum advantage of an adversary in finding a collision for a randomly keyed
member off when given oracle access to this member. We writeInSecwcr

f (T, q) for the
maximum such advantage over all adversariesA making at mostq queries of running
time at mostT . (Here we do not measure the total query length, as we will only measure
the wcr security of fixed input length constructions.) We skip a formal pseudocode-
based definition of this standard notion, but mention that the adversary must make the
queries verifying its collision, not merely output a colliding pair.

Given a block lengthn and a messagex, we letPadn(x) be a suffix-free encoding
of x of length a multiple ofn bits (for example, the standard Merkle-Damgård padding
of x, which appends the length ofx as the last block5). Furthermore, given two keyed
compression functionsF : {0, 1}κ1×{0, 1}3n → {0, 1}2n, G : {0, 1}κ2×{0, 1}2n →
{0, 1}n we define a keyed functionMD[F, G] : {0, 1}κ1+κ2 × {0, 1}∗ → {0, 1}n by

MD[F, G]k∗

1
,k∗

2
(x) = Gk∗

2
(Fk∗

1
(xb‖Fk∗

1
(xb−1 · · ·Fk∗

1
(x1‖0

2n) · · · )))

wherePadn(x) = x1x2 · · ·xb and eachxi hasn bits, for all k∗
1 ∈ {0, 1}κ

∗

1 , k∗
2 ∈

{0, 1}κ2 (see Fig. 1).
The proof of the following (standard) lemma is given in in thefull version [12]:

5 This limits the message length to at most2n blocks, but this is not a serious limitation for
practical values ofn.
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Fig. 1: A high-level view of our constructionMD[F, G]. The inputx is padded in a suffix-free
manner inton-bit blocksx1, . . ., xb. All wires shown carryn-bit values.Fk∗

1
: {0, 1}3n →

{0, 1}2n andGk∗
2

: {0, 1}2n → {0, 1}n are compression functions keyed by independent keys
k∗
1 , k∗

2 .

Lemma 1. LetF : {0, 1}κ1×{0, 1}3n → {0, 1}2n, G : {0, 1}κ2×{0, 1}2n → {0, 1}n,
and considerMD[F, G] as a function of key space{0, 1}κ1+κ2 . Then, forq = µ/n,

InSecmac
MD[F,G](T, q̃, µ) ≤ InSecwcr

F (T, q) + InSecmac
G (T, q)

Informally speaking, Lemma 1 reduces our task to building, from ann-bit ton-bit prim-
itive f , compression functionsF andG such thatF has beyond-birthday wcr security
andG has beyond-birthday mac security, where these securities must be based only the
mac security off (i.e., breaking the wcr security ofF must imply breaking the mac
security off , and breaking the mac security ofG must likewise imply breaking the
mac security off ).

To the latter end we introduce in this paper the notion of acover-freekeyed function
family g : {0, 1}κ × {0, 1}m → ({0, 1}n)t. Heret is a parameter of the definition and
we write the output ofgk(x) as(zk

1 (x), . . ., zk
t (x)) ∈ ({0, 1}n)t wherezk

i (x) ∈ {0, 1}n

for eachi; later we will simply write(z1(x), . . . , zt(x)) when the dependence on a key
k is understood. In the cover-free game, an adversary adaptively queriesgk on distinct
pointss1, s2, . . . ∈ {0, 1}m, and wins if for somej each block of output ofgk(sj) is
“covered” by a previous output, in the sense thatzk

ℓ (sj) ∈ {z
k
ℓ (si) : i < j}, 1 ≤ ℓ ≤ t.

The following game formalizes this:

Game Cover(A, g):
k← {0, 1}κ;
If Agk makes distinct queriess1, . . . , sq ∈ {0, 1}m to gk such that

zk
ℓ (sj) ∈ {zk

ℓ (si) : i < j}, 1 ≤ ℓ ≤ t, for somej ≤ q,
ThenA wins; Otherwise,A looses.

We define the cover-free (CF) insecurity ofg as

InSeccoverg (T, q) := max
A

Pr[A wins Cover(A, g)]

where the maximum is taken over all adversariesA making at mostq queries and of
running time at mostT , with the same conventions as above on the running time. We
(informally) say that a function family iscover-freeto mean it has small cover-free
insecurity.
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Fig. 2: On the left, the composition(f ◦g)kk1...kt : {0, 1}m → {0, 1}n. On the right, the parallel
composition(f ◦ g)kk1···ktk′

1
···k′

t
: {0, 1}m → {0, 1}2n.

Given a (cover-free) function familyg : {0, 1}κ × {0, 1}m → ({0, 1}n)t where
the ℓ-th block of gk is given by the functionzk

ℓ : {0, 1}m → {0, 1}n and a function
family f : {0, 1}κ

′

× {0, 1}n → {0, 1}n we define the composed function family
f ◦ g : {0, 1}κ+tκ′

× {0, 1}m → {0, 1}n by

(f ◦ g)kk1···kt
(s) =

t
⊕

ℓ=1

fkℓ
(zk

ℓ (s))

wherek ∈ {0, 1}κ andk1, . . . , kt ∈ {0, 1}κ
′

, andkk1 · · · kt is a shorthand for the
concatenation ofk, k1, . . . , kt. See Figure 2. We also define aparallel composition
f ◦ g : {0, 1}κ+2tκ′

× {0, 1}m → {0, 1}2n of f andg, defined by

(f ◦ g)kk1···ktk′

1
···k′

t
(s) = (f ◦ g)kk1···kt

(s)‖(f ◦ g)kk′

1
···k′

t
(s).

In other words,f ◦ g is simply the concatenation of two functionsf ◦g instantiated with
the sameg-key but independentf -keys.

Recall that our constructionMD[F, G] takes as parameters keyed compression func-
tionsF : {0, 1}κ1×{0, 1}3n → {0, 1}2n andG : {0, 1}κ2×{0, 1}2n → {0, 1}n. Given
a cover-free function familyg : {0, 1}κ×{0, 1}3n → ({0, 1}n)t and a function family
f : {0, 1}κ

′

× {0, 1}n → {0, 1}n, we will setκ1 = κ + 2tκ′, κ2 = κ + tκ, and define

Fk∗

1
(s) = (f ◦ g)k∗

1
(s) (1)

Gk∗

2
(r) = (f ◦g)k∗

2
(0n‖r) (2)

for all s ∈ {0, 1}3n, r ∈ {0, 1}2n, k∗
1 ∈ {0, 1}κ1, k∗

2 ∈ {0, 1}κ2. The specification
of our construction is thus now reduced to defining the cover-free function familyg.



We note that then-bit to n-bit function family f is a parameter of the scheme (not
constructed from any lower-level primitive) whereasg must be instantiated fromf , and
its cover-free security reduced to the mac security off ; see the next section for details
on the construction ofg.

Recall that, by Lemma 1, we are interested in boundingInSecwcr
F (T, q) andInSecmac

G (T, q)
in terms ofInSecmac

f (T, q). Towards this goal, we give two lemmas that upper bound
InSecwcr

f◦g(T, q) andInSecmac
f◦g (T, q) as a function ofInSeccoverg (T, q) andInSecmac

f (T, q).
The proofs of both lemmas are given in the full version [12].

Lemma 2. Letg : {0, 1}κ×{0, 1}m → ({0, 1}n)t, f : {0, 1}κ
′

×{0, 1}n → {0, 1}n.
Then

InSecmac
f◦g (T, q) ≤ InSeccover

g (T, q) + t · InSecmac
f (T, q).

Lemma 3. Letg : {0, 1}κ×{0, 1}m → ({0, 1}n)t, f : {0, 1}κ
′

×{0, 1}n → {0, 1}n.
Then

InSecwcr
f◦g(T, q) ≤ InSeccover

g (T, q) + 2tq log q · InSecmac
f (T + Õ(q), q).

(We note that, unlike Lemmas 1 and 2, the proof of Lemma 3 is nota triviality. In
particular, it requires the analysis of a balls-and-bins game of the type used in [11].)
Combining Lemmas 1, 2 and 3 we directly obtain:

Lemma 4. Letg : {0, 1}κ× {0, 1}3n → ({0, 1}n)t, f : {0, 1}κ
′

× {0, 1}n → {0, 1}n

and letF , G be as in(1), (2). Then, ifq = µ/n,

InSecmac
MD[F,G](T, q̃, µ) ≤ 2 · InSeccover

g (T, q)+ (2tq log q + t) · InSecmac
f (T + Õ(q), q)

Lemma 4 reduces our problem to constructing the cover-free function familyg from the
function familyf such thatInSeccoverg (T, q) can be bounded in terms ofInSecmac

f (T, q).
This is the topic of the next section, and the paper’s main technical achievement.

When a keyed function is built from a smaller primitive, where the function’s key
consists of a finite set of keys for the smaller primitive (which is potentially called
several times with different keys), the notions of MAC, WCR and cover-free securities
naturally extend to atransparentmodel, where the adversary receives a full transcript
of the function’s computation at each query, up to calls to the primitive (namely, calls to
the lower-level primitive appear as oracle calls in the transcript, so as not to reveal the
primitive’s keys). In fact,all results and proofs of this paper can be (easily) interpreted
and are valid in this stronger “transparent” model. However, to keep the presentation
simple, we will not further remind this from here on.

3 Building Cover-Free Function Families from MACs

This section contains our main result, the construction of acover-free function family
based onn-bit ton-bit primitives, that achieves beyond-birthdaysecurity assuming only
good MAC security from the primitives. We note in passing that anunkeyedfunctiong :
{0, 1}m → ({0, 1}n)t cannot be cover-free against information-theoretic adversaries



unlesst2n ≥ 2m or unlesst is as large as the desired query security, which gives values
of t that are too large to be practical for most settings.

Our construction uses the notion of aninput-restricting function family(IRFF), in-
troduced by Maurer and Tessaro [22]. The following definition is slightly modified for
our purposes.

Definition 1. LetK = K(n) ≤ 2n and letm > n. A (m, n, r, δ, K)-IRFF is a setE of
functionsE1, . . . , Er : {0, 1}m → {0, 1}n such that(i) r ≥ 2 andEh(s) 6= Eh′(s) for
all s ∈ {0, 1}m and allh 6= h′, (ii) for all s 6= s′ ∈ {0, 1}m there existsh ∈ {1, . . . , r}
such thatEh(s) 6= Eh(s′), and(iii) for any subsetU ⊆ {0, 1}n such that|U| ≤ rK we
have

∣

∣{s ∈ {0, 1}m : Eh(s) ∈ U for all h = 1 . . . r}
∣

∣ ≤ δ|U|.

The constructions of input-restricting function familiesare discussed in Section 4.
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Fig. 3: Illustration of the cover-free functionZE,r,t
m,n : {0, 1}m → ({0, 1}n)t for parameters

r = 2, t = 3. Additional wires not shown on the diagram carry the input ofeachFi to thei-th
copy ofp.

Our cover-free function family is also adapted from [22]. The construction takes
as parametersm ≥ n as well as integersr, t ≥ 1 and a(m, n, r, δ, K)-IRFF E =
{E1, . . . , Er}. Let F1, . . . ,Ft be n-bit to n-bit primitives (later to be instantiated as
members of function familyf : {0, 1}κ×{0, 1}n → {0, 1}n, possibly fixed-key block-
ciphers). The construction also uses a (concrete, unkeyed)functionp : {0, 1}2rn →
{0, 1}n described below. LetZE,r,t

m,n : {0, 1}m → ({0, 1}n)t be defined by

Z
E,r,t
m,n (s) = (z1(s), . . . , zt(s))

where
zℓ(s) = p(E1(s), . . . , Er(s),F

ℓ(E1(s)), . . . ,F
ℓ(Er(s)))

for 1 ≤ ℓ ≤ t (see Figure 3). FromZE,r,t
m,n we obtain a keyed function family of signature

{0, 1}tκ×{0, 1}m → ({0, 1}n)t by instantiating eachFℓ with a member of a function



family f : {0, 1}κ × {0, 1}n → {0, 1}n; however, we opt for the unkeyed notation (in
whichF

1, . . . ,Ft are implicitly keyed) when possible to reduce notational overhead.
As for the functionp, it is the polynomial

p(x1, . . . , xr, y1, . . . , yr) =
r

∑

j=1

r
∑

i=1

xiy
i
j (3)

wherex1, . . . , yr aren-bit strings treated as elements of the fieldF2n . The only prop-
erties ofp that matter are the two following:

I. Invertibility. For any1 ≤ j ≤ r and any valuesx1, . . . , xr, y1, . . . , yj−1, yj+1, . . . , yr,
z ∈ F2n such thatx1, . . . , xr are not all zero, there are few valuesyj such that
p(x1, . . . , xr, y1, . . . , yr) = z, and these valuesyj are efficiently enumerable.

II. Collision Invertibility. For any1 ≤ j, j′ ≤ r and any valuesx1, . . . , xr , y1, . . . , yj−1,
yj+1, . . . , yr, x′

1, . . . , x
′
r, y′

1, . . . , y
′
j′−1, y

′
j′+1, . . . , y

′
r ∈ F2n such that(x1, . . . , xr) 6=

(x′
1, . . . , x

′
r) there are few valuesyj = y′

j′ such that

p(x1, . . . , xr , y1, . . . , yr) = p(x′
1, . . . , x

′
r, y

′
1, . . . , y

′
r),

and these values are efficiently enumerable.

Both properties are easily verifiable from the fact thatp(x1, . . . , xr, y1, . . . , yr) is a
polynomial ofyj of the typec + x1yj + · · · + xry

r
j , wherec does not depend onyj .

Maurer and Tessaro use a different construction instead ofp which does not obviously
satisfy either property above, that requires enlarging theset of functions{Fℓ} to a set
{Fℓ,v} wherev ranges from 1 to⌈m/n + 1⌉.

To state our main theorem, letInvTime(E , q) be the amount of time required to list
the values{s ∈ {0, 1}m : Eh0

(s) = v andEh(s) ∈ U for h 6= h0} for any given
h0 ∈ [r], v ∈ {0, 1}n and setU ⊆ {0, 1}n such that|U| ≤ rq. We have:

Theorem 2. LetE be a(m, n, r, δ, K)-IRFF, letf : {0, 1}κ × {0, 1}n → {0, 1}n be a
function family, and considerZE,r,t

m,n as a keyed function family of key space{0, 1}κt by
settingFℓ = fkℓ

for anyk1 · · · kt ∈ {0, 1}κt. Then

InSeccover
Z

E,r,t
m,n

(T, q) ≤ 6rQt3Q1/t · InSecmac
f (Tmac, q) (4)

for anyq ≤ K, whereQ = qrδ and

Tmac = T + Õ(Qt) + qrInvTime(E , q) + RootTimer(n)

whereRootTimer(n) is the time required to find all the roots of a polynomial of degree
r in a field of sizeF2n . In particular, whent = n andq ≤ 2n/(rδ), we have

InSeccover
Z

E,r,t
m,n

(T, q) ≤ (12r2δn3) · q · InSecmac
f (Tmac, q)

Proof. Let A′ be an adversary for the game Cover(·,ZE,r,t
m,n ) that runs in timeT and that

has success probabilityεA′ . It suffices to design an adversaryB for the game Forge(·, f)
with advantage at least

εA′(6rQt3Q1/t)−1



and that runs in timeTmac.
B has access to a random memberfk0

of f . B choosest random keysk1, . . . , kt ∈
{0, 1}κ, and selects a random indexℓ0 ∈ [t]. ThenB simulatesA′ with oracleZE,r,t

m,n ,
instantianting the functionFℓ with fkℓ

if ℓ 6= ℓ0 and instantiantingFℓ0 with fk0
, using

its oracle. MoreoverB proceeds to “forget” the value ofℓ0, treats each of the functions
F

ℓ as an oracle, and tries to forge any one of them (predicting their output on an un-
queried input), making only one such forgery attempt duringthe game. SinceB has
chance1/t of forging F

ℓ0 if it does make a correct forgery, it suffices forB to make
such a forgetful forgery with chance at least

εA′(6rQt2Q1/t)−1

in order for it to forgefk0
with chance at leastεA′(6rQt3Q1/t)−1.

It is easier to consider a modified version ofA′, which we call simplyA, that directly
issuesF-queries rather thanZE,r,t

m,n -queries; more precisely,A issues a sequence of
queriesx1, . . ., xq′ whereq′ ≤ qr and eachxj ∈ {0, 1}n; B answers the queryxj with
the tuple(F1(xj), . . . ,F

t(xj)). We can assumeA never makes the same query twice.
We letQi = {xj : j ≤ i} and letSi = {s ∈ {0, 1}m : Eh(s) ∈ Qi for 1 ≤ h ≤ r} for
0 ≤ i ≤ q′ (with Q0 = S0 = ∅). Note that

|Si| ≤ |Sq′ | ≤ |Qq′ |δ ≤ qrδ = Q

by the input-restricting property ofE . We also let∆Si = Si\Si−1 for 1 ≤ i ≤ q′

and putzℓ(C) = {zℓ(s) : s ∈ C} for anyC ⊆ {0, 1}m (which B can compute after
it answersA’s i-th query as long asC ⊆ Si). We sayA “wins the generous cover-free
game” at thei-th query if there exists ans ∈ Si such thatzℓ(s) ∈ zℓ(Si\{s}) for
1 ≤ ℓ ≤ t. Clearly, there exists anA of same running time asA′ whose advantageεA

in the generous game is at least as great asεA′ , sinceA can simply simulateA′ and
ask the variousF-queries needed to compute the answers toA′’s queries; by definition,
A wins if A′ wins Cover(A′,ZE,r,t

m,n ). (It is easy to check that ifA′ makes (distinct)
queriesz1, . . . zj ∈ {0, 1}m such thatzℓ(sj) ∈ {zℓ(si) : i < j}, thenA wins the
generous cover-free game by the time it has finished asking the queries necessary to
compute the answer to the querysj of A′.) Thus it is sufficient to haveB forge one of
theF-functions with probability at leastεA(6rQt2Q1/t)−1. We now viewB as simply
answeringA’s F-queries (as opposed to computing answers toZ

E,r,t
m,n -queries) though

in realityB is running the whole computation, including the simulationof A′ by A.
We view each values ∈ Si as a “bin” witht “slots”; theℓ-th slot of bins “receives

a ball” or “becomes full” at queryj ≥ i if s ∈ Sj (namely, if the bin already exists at
that point), ifzℓ(s) ∈ zℓ(Sj\{s}), and if eithers /∈ Sj−1 or zℓ(s) /∈ zℓ(Sj−1\{s}).
Once a bin receives a ball in a slot, the slot remains full. A slot cannot receive more than
one ball, and bins are never removed; we note that no bins exist at the start, and that
|∆Si| bins are added at thei-th query. Under these definitions,A wins the “generous”
cover-free game precisely if some bin becomes full (i.e., all its slots become full). It is
helpful to pictureA andB as playing an adversarial game in whichA wins if it fills a
bin withoutB forging one of the functionsF1, . . . ,Ft, and whereB wins otherwise (in
fact, we may even pictureA as choosing the answers to its queries, whileB observes
and tries to guess an answer before it is revealed).



We say that ballℓ of a bins ∈ ∆Si is “early” if zℓ(s) ∈ zℓ(Si\{s}) and “late” oth-
erwise; thus a ball is early if and only if it is added to a bin atthe sameA-query which
creates the bin.B plays one of two different forging strategies with equal probability.
The first strategy is designed to prevent too many early ballsfrom appearing in bins
while the second strategy is designed to preventA from filling a bin (the second strat-
egy only functions well if not too many early balls appear in bins, whence the necessity
of the first strategy). We name the two strategies “early prevention” and “late preven-
tion”; despite these names, we emphasize the two strategiesare not played sequentially;
instead,B flips a coin at the start to decide which strategy to use.

We start by describingB’s early prevention strategy. LetQ = qrδ; as noted above,
Q ≥ |Sq′ |, so Q is an upper bound for the total number of bins created during the
game. The goal ofB’s early prevention strategy is to preventA from creating, for every
1 ≤ k ≤ t, Q1−k/t or more bins that each havek or more early balls in them. In
other words, we only require this strategy to work (i.e. forge a functionFℓ with “good
enough” probability) if there is some1 ≤ k ≤ t such thatQ1−k/t or more bins are
created withk or more early balls in them.

We model the early prevention strategy via a slightly simplified balls-in-bins game
described below. To connect this balls-in-bins game with the “real” game played byB
andA, it is helpful to first review the process via which bins are created and early balls
are added to them. Consider a queryxi made byA. Then

∆Si = {s ∈ {0, 1}m : Eh0
(s) = xi for someh0 ∈ [r] andEh(s) ∈ Qi−1 for h 6= h0}

and the elements of∆Si are the new bins created by this query. Each bins ∈ ∆Si

hast slots and the “value”zℓ(s) of the ℓ-th slot of s is revealed whenB makes the
queryFℓ(xi); after the valuezℓ(s) is revealed, an early ball is added to theℓ-th slot ofs
according to whether there exists ans′ ∈ Si\{s} such thatzℓ(s) = zℓ(s

′) or not (notice
thatzℓ(s

′) is known at this point for alls′ ∈ Si). Thus, the process of filling the newly
created bins with early balls consists int “phases” (the queriesF1(xi), . . . ,F

t(xi),
which are made sequentially byB), where theℓ-th phase simultaneously reveals the
values of theℓ-th slots of all the new bins, and whether these slots receiveearly balls or
not. The following balls-in-bins game thus abstracts the process of creation of new bins
and early balls:

‘EARLY PREVENTION’ BALLS-AND-BINS GAME . This game is played between two
adversariesA andB. Parameters are integerst, q′, Q ≥ 1. Rules are as follows:

– The game proceeds inq′ rounds. At roundi, A announces some numbervi ≥ 0 of
bins such that

∑

j≤i vj ≤ Q.
– At the beginning of each round thevi bins are empty. Each bin hast slots. Each

round consists oft phases. At theℓ-th phase,A reveals which of thevi bins have
their ℓ-th slot “filled” by a “ball”.

– Before each phase of each round,B is allowed to secretly predict a bin that will
receive a ball at that phase;B wins if it makes a correct guess, but it is only allowed
to make one guess during the entire game.

– Let bk,i be the number of bins that receivek or more balls at roundi, and let
bk =

∑

i bk,i where the sum is taken over all the rounds. ThenA is required to fill
bins such thatbk ≥ Q1−k/t for at least one value ofk, 1 ≤ k ≤ t.



In the full version [12] we exhibit a strategy forB that gives it at least(t2Q1/t)−1

chance of winning the above game, regardless ofA’s strategy. Thus, ifQ1−k/t or more
bins each receivek or more early balls for some1 ≤ k ≤ t, and ifB uses this strategy,B
has chance(t2Q1/t)−1 of correctly predicting, before the answer to some queryF

ℓ(xi)
is given, that the value returned by this query will result inslot ℓ of some (specific)
bin s ∈ ∆Si receiving an early ball. To guessFℓ(xi), B further chooses a random
s′ ∈ Si\{s}, and solveszℓ(s) = zℓ(s

′) in order to guessFℓ(xi) (sinces receives an
early ball in slotℓ precisely when there exists ans′ ∈ Si\{s} such thatzℓ(s) = zℓ(s

′)).
To see thatzℓ(s) = zℓ(s

′) is really “solvable” two different cases must be considered,
according to whethers′ ∈ ∆Si or not. If s′ /∈ ∆Si thens′ was created by an earlier
A-query and the value of its slots are known, in particular thevaluezℓ(s

′) of its ℓ-th slot
is known. Letxh = Eh(s) for 1 ≤ h ≤ r, let h0 ∈ [r] be the unique index such that
xh0

= xi and letyh = F
ℓ(xh) for 1 ≤ h ≤ r. Then all the valuesx1, . . . , xr, y1, . . . ,

yr are known toB except for the valueyh0
, which it needs to guess using the equation

p(x1, . . . , xr, y1, . . . , yr) = zℓ(s
′). (5)

By condition (i) of Definition 1(x1, . . . , xr) 6= (0, . . . , 0) so, by the ‘Invertibility’ prop-
erty ofp, there are few valuesyh0

that solve (5). More precisely, sincep(x1, . . . , yr) is a
nonzero polynomial of degree at mostr in yh0

, B has to choose from the at mostr roots
of p(x1, . . . , yr)− zℓ(s

′), wherezℓ(s
′) is just a constant. In the second case,s′ ∈ ∆Si

andzℓ(s
′) is not known (likezℓ(s), it is about to be revealed). Letx′

h = Eh(s′), let
h′

0 ∈ [r] be the unique index such thatx′
h′

0

= xi and lety′h = F
ℓ(x′

h) for 1 ≤ h ≤ r.
Then all the valuesx′

1, . . . , x
′
r, y′

1, . . . , y′r are known toB excepty′
h′

0

, andB needs to
solve

p(x1, . . . , xr, y1, . . . , yr) = p(x′
1, . . . , x

′
r, y

′
1, . . . , y

′
r) (6)

(this iszℓ(s) = zℓ(s
′)) for yh0

, y′
h0

(or at least foryh0
). But yh0

= y′
h0

; sincexh0
=

x′
h′

0

= xi; also, by the injectivity ofE , (x1, . . . , xr) 6= (x′
1, . . . , x

′
r), so it follows by the

‘Collision Invertibility’ property ofp that there are few valuesyh0
= y′

h′

0

solving (6); in
fact these are the at mostr different roots ofp(x1, . . . , yr)− p(x′

1, . . . , y
′
r), considered

as a polynomial inyh0
= y′

h′

0

. The termRootTimer(n) in Theorem 2 accounts forB’s
root-finding costs, which are incurred only once in the computation.

Naturally,B’s further guessing ofs′ and of the correct rootyh0
erodes its probability

of making a correct forgery even it has correctly guessed an early ball is about to be
added to a bin slot, but it is easy to bound this erosion:B has chance at least1/|Si| ≥
1/Q of correctly guessings′ and chance at least1/r of correctly guessing the root.
Thus, if Q1−k/t or more bins each receivek or more early balls for some1 ≤ k ≤ t
and ifB is using its ‘early prevention’ strategy (which we have justfinished describing),
thenB has chance at least

1

rQt2Q1/t

of forging. AsB uses this strategy with probability12 , we can therefore assume that
fewer thanQ1−k/t bins receivek early balls for every1 ≤ k ≤ t, or elseB already
reaches the requisite probability of success ofεA(6rQt2Q1/t)−1.



We now discussB’s ‘late prevention’ strategy. HereB attempts to preventA from
filling a bin with t balls by guessing the arrival of late balls. We note that, if aquery
F

ℓ(xi) results in some late ball being placed in theℓ-th slot of bins, thens /∈ ∆Si (by
definition of ‘late’) and so the valuesz1(s), . . . , zt(s) are already known prior to the
answer of the queryFℓ(xi). Moreover the fact that the queryFℓ(xi) results in a late
ball appearing in bins means there is somes′ ∈ ∆Si such that (i)Eh0

(s′) = xi for
someh0 ∈ [r], (ii) the queriesFℓ(Eh(s′)) have already been made6 for h 6= h0, and
(iii) zℓ(s) = zℓ(s

′) (the valuezℓ(s
′) will become known whenFℓ(xi) is answered).

Let x′
1 = E1(s

′), . . . , x′
r = Er(s

′) (sox′
h0

= xi) andy′
1 = F

ℓ(x′
1), . . . , y

′
r = F

ℓ(x′
r),

all of which are known toB excepty′
h0

. Then, ifB has correctly guessed a late ball is
going to appear in theℓ-th slot of bins andhas correctly guessed the value ofs′ ∈ ∆Si,
it can predictFℓ(xi) by solving

p(x′
1, . . . , x

′
r, y

′
1, . . . , y

′
r) = zℓ(s) (7)

for y′
h0

, for which there are at mostr solutions. (This is the second (and last) place
we require the ‘Invertibility’ property ofp.) Given these observations, the following
balls-and-bins game clearly modelsB’s ‘late prevention’ task, up to but not including
guessing the root of (7):

‘L ATE PREVENTION’ BALLS-AND-BINS GAME . This game is played between two
adversariesA andB. Parameters are integerst, q′, Q ≥ 1. Rules are as follows:

– The game involves “bins” witht slots each, where each slot can contain either
contain a ball or not. At the beginning of the game, there are no bins. Bins are
added to the game as described below, and never removed.

– The game proceeds inq′ rounds, each of which consists oft “phases”.
– At the beginning of roundi, A announces some numbervi ≥ 0 such that

∑

j≤i vj ≤
Q. If vi = 0, the round is skipped.

– At phaseℓ of round i, 1 ≤ ℓ ≤ t, A chooses a subset (possibly empty) of the
currently existing bins that do not yet have a ball in theirℓ-th slot, and places balls
in all of their ℓ-th slots, simultaneously. Moreover,A labels each ball placed with
a number from 1 tovi. (Multiple balls with the same label are allowed, and not all
labels are required to appear.)

– At the end of roundi, A introducesvi new bins to the game, each possibly al-
ready containing some balls. Throughout the game, the totalnumber of new bins
introduced withk or more balls already in them must be less thanQ1−k/t for all
1 ≤ k ≤ t.

– Before each phase of each round,B is allowed to secretly predict a bin that will
receive a ball at that phase and a label for that ball;B wins if it guesses both
correctly. It is only allowed to make one guess during the game.

– A must fill some bin witht balls by the end of the game.

We note that the new bins introduced at the end of roundi correspond to the elements
of ∆Si and thatvi corresponds to|∆Si|. The “label” for a ball placed in a bins at

6 This meansA has made the queriesEh(s′) for h 6= h0 so that, in fact, all queriesFℓ′(Eh(s′))
for 1 ≤ ℓ′ ≤ t andh 6= h0 have already been made (not justℓ′ = ℓ).



phaseℓ corresponds to an elements′ ∈ ∆Si such thatzℓ(s) = zℓ(s
′), discussed above.

(In the ‘real game’ betweenB andA several such elementss′ may exist, so that more
accurate modelization would allowA to choose a nonempty list of labels rather than a
single label for each ball; however, seeking to minimize theguessing advantage ofB,
A would automatically make each of these lists a singleton anyway.)

In the full version [12] we exhibit a strategy forB in the ‘late prevention’ game that
succeeds with probability(3Qt2Q1/t)−1 regardless ofA’s strategy. The ‘late preven-
tion’ strategy ofB consists simply of coupling theB-strategy mentioned above with a
guessing of the root of (7). Thus, as long as fewer thanQ1−k/t bins receivek or more
early balls for1 ≤ k ≤ t, as long asA fills some bins witht balls and as long asB uses
its late prevention strategy,B has chance at least

1

3rQt2Q1/t

of forging. SinceB uses the ‘late prevention’ strategy with probability1
2 , this concludes

the proof.

4 Implications

Replacingg in Lemma 4 by our cover-free functionZE,r,t
m,n and using Theorem 2 with

m = 3n, we obtain:

Theorem 3. Let E be a (3n, n, r, δ, K)-IRFF, let f : {0, 1}κ × {0, 1}n → {0, 1}n,
and considerZE,r,t

3n,n as a keyed function family of key space{0, 1}κt like in Theorem 2.

DefineF , G by (1), (2) with g = Z
E,r,t
3n,n. Then

InSecmac
MD[F,G](T, q̃, µ) ≤ 12rQt3Q1/t · InSecmac

f (Tmac, q) (8)

+ (2tq log q + t) · InSecmac
f (T + Õ(q), q)

whereq = µ/n andQ = qrδ as long asq ≤ K, and where

Tmac = T + Õ(Qt) + qrInvTime(E , q) + RootTimer(n).

In particular, whent = n andQ ≤ 2n (i.e.q ≤ 2n/rδ) andq ≤ K we have

InSecmac
MD[F,G](T, q̃, µ) ≤ 24r2δn3q · InSecmac

f (Tmac, q) (9)

+ (2nq log q + n) · InSecmac
f (T + Õ(q), q)

By default we shall apply the second part of Theorem 3, choosing t = n. In order to
interpret (9) we need to know what values ofr, δ andK are achievable via IRFFs and
to knowInvTime(E , q) for those IRFFs, as this term dominatesTmac.

The question of instantiating the IRFFE was already studied by Maurer and Tes-
saro [22], who reduced it to the construction of certain types of highly unbalanced
bipartite expander graphs. While well-studied, these types of expander graphs are not
yet completely understood, and in particular the setting ofparameters relevant to our



case has not been the object of much attention. Here we mention bounds achieved by
two explicit constructions as well as those achieved by a non-explicit, probabilistic con-
struction. In all cases we setm = 3n. We note thatInvTime(E , q) can always be upper
bounded byq3 by appending three functions to the IRFF that read off each block of
input via the identity. Moreover, we can easily enforce condition (i) of Definition 1 as
long asr ≤ 2n. Since the family sizesr in question are anyway polynomial inn, we
assume these tweaks without further mention.

Existential construction. A probabilistic construction [22] achieves a(3n, n, r, δ, K)-
IRFFE with r = O(n), δ ≈ 1 andK = Ω(2n

n ). In this caseQ = qrδ = O(nq). Then
the right-hand side of (9) becomes

O(n5q) · InSecmac
f (Tmac, q).

AssumingInSecmac
f (Tmac, q) ≈ 1/2n, MD[F, G] achieves query security up toq =

Ω(2n/n5). However, this construction is inexplicit.

Expanders of [30].Expanders of Ta-Shma, Umans and Zuckerman yield an explicit
(3n, n, r, δ, K)-IRFF E with r = poly(n), δ = poly(n) andK = Ω( 2n

poly(n) ). In this
caseQ = qpoly(n). The right-hand side of (9) becomes

O(poly(n)q) · InSecmac
f (Tmac, q).

AssumingInSecmac
f (Tmac, q) ≈ 1/2n we can then achieve query security up toq =

Ω(2n/poly(n)). (We note this construction is strictly better from all standpoints than
the one presented by Maurer and Tessaro [22].)

Expanders of [14].Expanders of Guruswami, Umans and Venkatesan yield an explicit
(3n, n, r, δ, K)-IRFF E with r = nO( 1

ε
), δ = poly(n) andK = 2n(1−ε) for anyε ∈

(0, 1). In this caseQ = qpoly(n)nO( 1

ε
). We can sett = log(Q) = log q + O(1

ε log n).
For constantε the right-hand side of (9) again becomes

O(poly(n)q) · InSecmac
f (Tmac, q).

AssumingInSecmac
f (Tmac, q) ≈ 1/2n the insecurity thus remains negligible as long as

q ≤ K = 2n(1−ε). The advantage of this construction is that it affords efficient inver-
sion time ofO(q poly(n)) (as opposed toO(q3) for the previous two constructions).

Interpretation. The assumptionInSecmac
f (Tmac, q) ≈ 1/2n is only realistic as long

asTmac does not allow to do an exhaustive search over the key space off ; assuming
the latter has size2κ ≥ 2n, this implies that our upper bounds are only meaningful if
Tmac ≈ InvTime(E , q) ≪ 2κ (sinceTmac is dominated byInvTime(E , q)). The first
two constructions, which are only known to haveInvTime(E , q) = O(q3), therefore
only give a meaningful bound forq ≪ 2κ/3. Thus, with the current understanding of
InvTime(E , q), they might become beyond birthday only ifκ > 3n/2 (and approach
q ≈ 2n only if κ > 3n). However, the last construction, havingInvTime(E , q) =
O(q poly(n)), yields beyond-birthday security even ifκ = n, which is the case of



AES-128. Once again, though, we stress that the current limitations of our approach
are due only to the limitations in the current constructionsof expander graphs, and are
not related to any “cryptographic” difficulties. Needless to say, future advances in the
constructions of expander graphs will not only improve our parameters, but will likely
have other applications in many areas of theoretical computer science.

Heuristic Instantiation. In practice, we expect to nearly match the good IRFF param-
eters of the existential construction (includingr = O(n) andδ = O(1)) by simply im-
plementing eachEi : {0, 1}3n → {0, 1}n as the XOR of three (independently keyed)
fixed key blockciphers, i.e.Ei(x‖y‖z) = fki,1

(x)⊕fki,2
(y)⊕fki,3

(z). We note that in
this case the3r keysk1,1, . . . , kr,3 do not constitute key material, but are instead fixed
constants of the construction.
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