
Highly-Efficient Universally-Composable
Commitments based on the DDH Assumption⋆

Yehuda Lindell

Department of Computer Science
Bar-Ilang University, Israel

lindell@cs.biu.ac.il

Abstract. Universal composability (a.k.a. UC security) provides very
strong security guarantees for protocols that run in complex real-world
environments. In particular, security is guaranteed to hold when the pro-
tocol is run concurrently many times with other secure and possibly inse-
cure protocols. Commitment schemes are a basic building block in many
cryptographic constructions, and as such universally composable com-
mitments are of great importance in constructing UC-secure protocols.
In this paper, we construct highly efficient UC-secure commitments from
the standard DDH assumption, in the common reference string model.
Our commitment stage is non-interactive, has a common reference string
with O(1) group elements, and has complexity of O(1) exponentiations
for committing to a group element (to be more exact, the effective cost is
that of 23 1

3
exponentiations overall, for both the commit and decommit

stages). We present a construction that is secure in the presence of static
adversaries, and a construction that is secure in the presence of adaptive
adversaries with erasures, where the latter construction has an effective
additional cost of just 5 1

3
exponentiations.

1 Introduction

Background – universal composability and efficiency. Modern crypto-
graphic protocols are run in complex environments. Many different secure and
insecure protocols are executed concurrently, and some protocols may have been
designed specifically to attack others [13]. The classic definitions of security
that consider stand-alone executions only do not guarantee security in mod-
ern real-world setting. Universal composability (or UC security) is a definitional
framework that guarantees security even if the protocol is run concurrently with
arbitrarily many other secure and insecure protocols, and even if related inputs
are used. More specifically, a UC-secure protocol behaves like an ideal execution
(where an incorruptible trusted party carries out the computation for the par-
ties) no matter what other protocols are being run by the honest parties at the
time.

⋆ This research was supported by the European Research Council as part of the ERC
project “LAST”, and by the israel science foundation (grant No. 781/07).

The UC-framework models the real-world execution environment in a far
more realistic way than the classic stand-alone definitions. As such, one would
expect the framework to be adopted by practitioners and those interested in
implementing cryptographic protocols that could be run in practice. In the set-
ting of key exchange this is indeed the case. For just two examples, the SIGMA
family of key exchange protocols that are part of IKE (the standardized Internet
key exchange protocol) and the HMQV protocol have been proven secure in the
UC-framework [5, 15]. However, beyond key exchange, there seems to have been
little interest in UC-security from the applied cryptographic community. (We
stress that this is in contrast to the recent growing interest in implementations
of general and specific protocols for secure two-party and multiparty computa-
tion; see [17, 2, 23, 20, 19] for just a few examples.) There are a number of reasons
for this. We believe that one of the primary reasons is the lack of efficient UC-
secure primitives, the exception being UC-secure oblivious transfer [22]. Given
this state of affairs, it is very difficult to construct efficient UC-secure protocols
that can be reasonably implemented.

UC commitments. Commitment schemes are one of the most basic building
blocks for cryptographic protocols. A commitment scheme is made up of two
phases: a commit phase in which a committer commits to a value while keep-
ing it hidden, and a decommit phase in which the committer reveals the value
that it previously committed to. The binding property of a commitment states
that the committer is bound to a single value after the commit phase and can
only decommit to that value; the hiding property states that the receiver learns
nothing about the committed value until it is revealed. As such, a commitment
scheme has been intuitively described as a digital envelope containing the com-
mitted value: once the envelope has been closed the committer cannot change the
value, and until the envelope is opened the receiver cannot learn what is inside.
Despite this appealing description, regular commitments do not behave in this
way. For just one example, they may be malleable (e.g., it may be possible to
generate a commitment to 2x from a commitment to x, without knowing x). In
contrast, UC-secure commitments are non-malleable, cannot be copied, and are
guaranteed to remain secure irrespective of whatever other protocols are run.

Commitment schemes that are secure in the UC-framework were first pre-
sented by Canetti and Fischlin in [4]. They also showed that it is impossible
to construct UC commitments in the plain model, and thus some setup like a
common reference string is required. The commitment schemes of [4] have the
property that O(1) asymmetric operations are needed for every bit committed
to. Soon after, Damg̊ard and Nielsen [9] presented UC commitments with the
property that O(1) exponentiations are sufficient for committing to an entire
string (that can be mapped into a group element). This is a significant improve-
ment. However, the Damg̊ard-Nielsen construction suffers from a few drawbacks.
First, it requires a common reference string that grows linearly with the num-
ber of parties in the system; specifically, one group element is needed for every
party. This is a significant obstacle in implementations because it means that it
is not possible to publish a single common reference string that can then be used

by arbitrary parties who wish to run the protocol. Second, the Damg̊ard-Nielsen
constructions are based on theN -residuosity and p-subgroup assumptions. These
are less established assumptions than RSA and DDH, for example. Furthermore
the N -residuosity assumption, which has become accepted since its introduction
in [21], suffers from a significant computational overhead. This is due to the fact
that exponentiations are modulo N2 (at least) and thus a modulus N of size
1536 – which is needed for reasonable security – results in exponentiations mod-
ulo a number of length 3072 bits. In contrast, basic discrete log exponentiations
can be run in Elliptic curves of size 224 or 256 bits and are significantly faster.
In cryptographic protocols where many UC commitments are needed (see below
for an example), this can be a real obstacle.

Our results. We present a conceptually simple and efficient protocol for UC-
secure commitments in the common reference string model that is based on
the DDH assumption. Our protocol requires O(1) regular group exponentiations
and has a common reference string with O(1) group elements for any number
of parties. In addition, we have a version that provides security in the presence
of adaptive adversaries with erasures that has only slightly additional cost. A
comparison of our result with the construction of Damg̊ard-Nielsen, which is the
previous best known, yields the following:
– Assumptions: We rely on the standard DDH assumption, while Damg̊ard-

Nielsen rely on the N -residuosity or p-subgroup assumptions.
– Common reference string (CRS): Our common reference string contains a

description of the discrete log group, its order and 7 group elements, and
can be used by any number of parties. Thus, a single CRS can be published
for all to use. In contrast, Damg̊ard-Nielsen need a CRS with a single (ring
or group) element for every party in the system.

– Efficiency: Our protocol has a non-interactive commitment phase with just
5 exponentiations to be computed by the committer. The decommit phase is
interactive and requires both parties overall to compute 21 exponentiations.
Using optimizations for computing multi-exponentiations of the form gr · hs

the overall cost in both phases is 231
3 regular DDH exponentiations. In con-

trast Damg̊ard-Nielsen have an interactive commitment phase with 10 large
modulus exponentiations and a non-interactive decommit phase requiring 4
exponentiations.1 Based on experiments, we estimate that our commitment
scheme is approximately 25–30 times faster than the scheme of Damg̊ard-
Nielsen. (This estimate is not based on an implementation of the schemes,
but rather a comparison of the time taken to compute 14 exponentiations
modN2 with a modulus N of size 2048 bits versus 23 1

3 Elliptic curve “ex-
ponentiations” over a field of size 256 bits, using the Crypto++ library [25].
When using a modulus N of size 1536 bits versus a curve over a field of size
224 bits, our scheme is approximately 20 times faster.)

1 The question of whether there is more cost in the commitment or decommitment
phase is significant in protocols of the cut-and-choose type where many commitments
are sent and only some of them opened. In such cases, it is preferable to use a
commitment scheme with a faster commitment phase.

– Adaptive security: The Damg̊ard-Nielsen construction is secure only for static
corruptions (where the set of corrupted parties is fixed before any commit-
ments are sent), whereas we also have a construction that is secure in the
presence of adaptive corruptions with erasures. (In this model, the adver-
sary can choose to corrupt parties over time, but an honest party can follow
erase instructions and it is assumed that once data is erased it cannot be
retrieved by the adversary if it later corrupts the party.) The additional cost
of achieving adaptive security is just 51

3 exponentiations, yielding a total of
28 2

3 . In this case, however, the majority of the work is in the commitment
stage and not in the decommitment stage.

An example – UC zero-knowledge from Sigma-protocols. Since our effi-
ciency improvement over prior work is concrete and not asymptotic, we demon-
strate its potential significance in implementations. We do this by considering the
ramification of our efficiency improvement on constructions of efficient UC-secure
zero-knowledge protocols. Many, if not most, useful efficient zero-knowledge pro-
tocols are based on Sigma protocols [8]. In the stand-alone case, transformations
from Sigma protocols to zero-knowledge and zero-knowledge proofs of knowledge
are highly efficient, requiring only a few additional exponentiations; see [10, Sec-
tion 6.5]. Unfortunately, no such efficient analogue is known for achieving UC
zero-knowledge from Sigma protocols. Rather, it is necessary to repeat the Sigma
protocol L times in order to achieve a soundness error of 2−L. In addition, 3 UC-
commitments are needed for each repetition (but only two are opened); see [12]
and [16, App. C] for a description of the transformation. Setting L = 40 for a rea-
sonable soundness error, we have that 120 UC commitments are needed for the
transformation. Assuming 47 milliseconds for our scheme and 1.35 seconds for
Damg̊ard Nielsen (based on estimates using the Crypto++ library), we have that
the additional overhead resulting from the UC commitments is 5.6 seconds for
our protocol versus 162 seconds for Damg̊ard-Nielsen (the difference is actually
even greater since 40 of the 120 commitments are not opened; see Footnote 1).
We conclude that in protocol implementations the efficiency improvement gained
by using our new UC commitment protocol can be definitive.

2 Preliminaries and Definitions

Universal composability [3] is a definition of security that considers a stand-alone
execution of a protocol in a special setting involving an environment machine Z,
in addition to the honest parties and adversary. As with the classic definition of
secure computation, ideal and real models are considered where a trusted party
carries out the computation in the ideal model and the real protocol is run in
the real model. The environment adaptively chooses the inputs for the honest
parties, interacts with the adversary throughout the computation, and receives
the honest parties’ outputs. Security is formulated by requiring the existence of
an ideal-model simulator S so that no environment Z can distinguish between
the case that it runs with the real adversary A in the real model and the case
that it runs with the ideal-model simulator S in the ideal model.

In slightly more detail, we denote by idealF,SA,Z(n, z) the output of the
environment Z with input z after an ideal execution with the ideal adversary
(simulator) S and functionality F , with security parameter n. We will only
consider black-box simulators S, and so we denote the simulator by SA meaning
that it works with the adversary A attacking the real protocol. Furthermore,
we denote by realπ,A,Z(n, z) the output of environment Z with input z after
a real execution of the protocol π with adversary A, with security parameter n.
Our protocols are in the common reference string (CRS) model. Formally, this
means that the protocol π is run in a hybrid model where the parties have access
to an ideal functionality Fcrs that chooses a CRS according to the prescribed
distribution and hands it to any party that requests it. We denote an execution
of π in such a model by hybridFcrs

π,A,Z(n, z). Informally, a protocol π UC-realizes a
functionality F in the Fcrs hybrid model if there exists a probabilistic polynomial-
time simulator S such that for every non-uniform probabilistic polynomial-time
environment Z and every probabilistic polynomial-time adversary A, it holds
that {

idealF,SA,Z(n, z)
}
n∈N;z∈{0,1}∗

c≡
{
hybridFcrs

π,A,Z(n, z)
}
n∈N;z∈{0,1}∗

.

The importance of this definition is a composition theorem that states that any
protocol that is universally composable is secure when run concurrently with
many other arbitrary protocols; see [3] for definitions and details.

UC commitments. The multi-commitment ideal functionality Fmcom, which is
the functionality that we UC realize in this paper, is formally defined in Figure 1.

FIGURE 1 (Functionality Fmcom)

Fmcom proceeds as follows, running with parties P1, . . . , Pm, a parameter 1n,
and an adversary S:
– Commit phase: Upon receiving a message (commit, sid, ssid, Pi, Pj , x)

from Pi where x ∈ {0, 1}n−log2 n, record the tuple (ssid, Pi, Pj , x) and
send the messages (receipt, sid, ssid, Pi, Pj) to Pj and S. Ignore any future
commit messages with the same ssid from Pi to Pj .

– Reveal phase: Upon receiving a message (reveal, sid, ssid) from Pi: If
a tuple (ssid, Pi, Pj , x) was previously recorded, then send the message
(reveal, sid, ssid, Pi, Pj , x) to Pj and S. Otherwise, ignore.

The ideal commitment functionality

For technical reasons, the length of the committed value x is n − log2 n. It
is defined in this way because our commitment involves encrypting x together
with the session identifiers sid, ssid and the parties’ identities (i, j). Now, the
encryption that we use is of a single group element that is of length n, and
so the combined length of x, sid, ssid, i, j must be n. We therefore define each

identifier and identity to be of size log2 n
4 ; this means that each comes from a

superpolynomial domain and so there are enough to ensure that the session
identifiers do not repeat and each party has a unique identity. Thus, taking x of
size n− log2 n we have that the string (x, sid, ssid, i, j) is of length n.

3 Efficient UC Commitments

3.1 Protocol Idea and Overview

Before describing the idea behind our construction, recall that a UC-secure com-
mitment must be both extractable (meaning that a simulator can extract the
value that a corrupted party commits to) and equivocal (meaning that a simu-
lator can generate commitments that can be opened to any value), without the
simulator rewinding the adversary. In addition, the adversary must not be able
to generate commitments that are related to commitments generated by honest
parties; thus, the commitment must be essentially non-malleable. Our protocol
is in the common reference string (CRS) model; this is justified by the fact that
UC commitments cannot be achieved in the plain model [4].

The high-level idea behind our construction is as follows. The committer com-
mits to a string by encrypting it with a CCA2-secure encryption scheme Ecca,
using a public-key pk1 that is found in the common reference string (CRS). Ob-
serve that this enables extraction because when simulating a protocol that is in
the CRS model, the simulator is allowed to choose the CRS itself. Thus, it can
choose the public key so that it knows the corresponding private decryption key.
This enables it to decrypt and obtain the committed value. Next, in order to
decommit, it is clearly not possible to reveal the value and randomness used to
encrypt, because encryptions are perfectly binding and so it is not possible to
equivocate. Thus, in order to decommit, the committer instead sends the com-
mitted value and then proves in zero knowledge that this is indeed the correct
value. At first sight, this approach may seem futile because in the UC setting it
seems no easier to construct UC zero-knowledge than UC commitments. Never-
theless, we observe that the proof need not be a full fledged UC zero-knowledge
protocol, and in particular there is no need to extract the witness from the proof.
Rather, the only property that we need is that it be possible to simulate without
rewinding. This is due to the fact that the extraction of the committed value
already took place in the commit stage and this proof is just to ensure that cor-
rupted parties decommit to the same value that they committed to. Thus, only
soundness is necessary. (Of course, the ability for a simulator to equivocate is
due to its ability to run a zero-knowledge simulator and essentially lie about the
value committed to.) The proof that we use is based on a Sigma protocol and we
make it zero knowledge (without rewinding) by having the verifier first commit
to its challenge and then run the Sigma protocol with the verifier decommitting.
In order to have a straight-line simulator we make this commitment from the
verifier be an encryption of the challenge under a different public key pk2 in the
CRS. As above, in the simulation the simulator can choose the public-key so
that it knows the corresponding private key, enabling it to extract the challenge
from the verifier. Once it has extracted the challenge, it can run the simulator
for the Sigma protocol which is perfect and straight line once given the verifier
challenge. Although intuitively appealing, this is problematic because soundness
of this transformation from a Sigma protocol to a zero-knowledge proof can only
be proven if the commitment is perfectly hiding. But this then clashes with the

requirement to have the commitment be extractable. We solve this efficiently
by using a dual mode cryptosystem Edual, as introduced by [22],2 although we
only need a simpler version. Such a cryptosystem has a regular key generation
algorithm and an alternative one, and has the property that it behaves as a reg-
ular public-key encryption scheme when a regular key is generated, but perfectly
hides the encrypted value when an alternative key is generated. Furthermore,
the regular and alternative keys are indistinguishable. As we will see in the
proof, this suffices for proving soundness, because at the point where soundness
is needed we no longer need to be able to extract the verifier’s challenge and
thus can replace the key in the common reference string by an alternative one.
Note that a regular key for Edual is used in a real protocol execution, and the
ability to generate an alternative key is used within the proof of security. (Note
also that we cannot use this method for the actual UC commitment because we
need to simultaneously extract and equivocate.)

The above yields the following template for UC commitments:

PROTOCOL 1 (UC-commitment template)

Common reference string: (pk1, pk2) where pk1 is the public-key of a
CCA2-secure encryption scheme, and pk2 is the public-key of a dual mode
cryptosystem, as described above.

The commit phase:

1. The committer commits to x by encrypting it under pk1 and sending the
ciphertext c = Ecca

pk1
(x; r) to the receiver (i.e., it encrypts x using random

coins r).
(Actually, x is encrypted together with a unique session identifier and the
identities of the parties, but we ignore these details here.)

The decommitment phase:

1. The committer sends x to the receiver (without revealing r)
2. Let (α, ε, z) denote the message of a Sigma protocol for proving that c is

an encryption of x (using witness r).
(a) The receiver sends c′ = Edual

pk2
(ε; r′)

(b) The committer sends α
(c) The receiver decommits to ε by sending ε and r′

(d) The committer checks that c′ = Edual
pk2

(ε; r′) and if yes, computes the
reply z for the Sigma protocol, based on (α, ε)

(e) The receiver outputs x as the decommitted value if and only if (α, ε, z)
is an accepting Sigma-protocol transcript

Before proceeding, we explain why the value x is committed to by encrypting
it under an encryption scheme that is secure under adaptive chosen-ciphertext
attacks (CCA2 secure). Specifically, we have already discussed why some no-
tion of non-malleability is needed, but CCA2-security is stronger than NM-CPA

2 We use the formulation as it appears in [22], although the idea of having alternative
keys that provide perfect hiding or regular encryption goes back earlier. Two exam-
ples of where similar notions were defined are in [11, 14]. In fact, our construction of
dual encryption is exactly the same as the ambiguous commitment used in [11].

(non-malleability under chosen plaintext attacks). In order to understand why
we nevertheless need CCA2 security, recall that a simulator must equivocate.
Specifically, in the simulation in the ideal model, the simulator receives commit-
ment receipts that contain no information about the committed value. However,
in the real world, the adversary receives encryptions of the actual committed
value. Thus, whenever it receives a commitment receipt, the simulator encrypts 0
and hands it to the real-world adversary. Later, when the commitment is opened
and the simulator learns that it was to a value x, it cheats in the Sigma protocol
and “proves” that the encryption of 0 was actually an encryption of x. In order
to prove that encrypting 0 (as the simulator does) and encrypting x (as an hon-
est party does) makes no difference, it is necessary to reduce this to the security
of the encryption scheme. In such a reduction, an adversary attacking the en-
cryption scheme simulates the UC commitment execution such that if it received
encryptions of 0 then the result should be the same as the ideal simulation, and
if it received encryptions of real values x then the result should be the same as
a real execution with honest parties and the real adversary. To be more exact,
this reduction is carried out by running the simulator for the UC commitment
scheme and using challenge ciphertexts obtained in the encryption game instead
of the simulator generating commitments itself. Of course, in this reduction the
simulator does not choose the CCA2-secure public key to place in the CRS but
rather places the public-key that it receives as part of the encryption distin-
guishing game. However, as we have already discussed, the simulator must also
be able to extract committed values generated by the adversary by decrypting,
at the same time as we carry out this reduction. This brings us to the crux of the
problem which is that it can only carry out this decryption because it knows the
private key, and so it cannot decrypt when proving the reduction. This problem
is solved by using CCA2-secure encryption because now in the distinguishing
game the adversary is allowed to ask for decryptions of ciphertexts, and so the
simulator can decrypt the commitments from the adversary, as required.

Efficient implementations. It remains to describe how all of the elements
of the protocol can be efficiently implemented. First, we use the Cramer-Shoup
(CS) encryption scheme [7] as the CCA2-secure encryption scheme. This scheme
is defined as follows:
– CS key generation: Let (G, q, g1, g2) be such that G is a group of order

q and g1, g2 are two distinct generators. Choose x1, x2, y1, y2, z ∈R Zq at
random and compute c = gx1

1 gx2
2 , d = gy1

1 gy2

2 and h = gz1 . The public key is
(G, q, g1, g2, c, d, h) and the secret key is (x1, x2, y1, y2, z).

– CS encryption: Let m ∈ G. Then, in order to encrypt m, choose a random
r ∈R Zq, compute u1 = gr1, u2 = gr2, e = hr · m, ω = H(u1, u2, e) where
H is a collision-resistant hash function, and v = (c · dω)r. The ciphertext is
(u1, u2, e, v).

– CS decryption: Compute ω = H(u1, u2, e). If u
x1
1 · ux2

2 · (uy1

1 · uy2

2)ω = v,
then output m = e/(uz

1).

The crucial observation that we make is that in order to verify that a ciphertext
(u1, u2, e, v) is a valid encryption of a message m, it suffices to prove that there

exists a value r ∈ Zq such that

u1 = gr1, u2 = gr2,
e

m
= hr, and v = (cdω)r.

Furthermore, since ω can be computed publicly from the public-key and cipher-
text, all the values except for r are public. Thus, we have that in order to prove
that a ciphertext encrypts some given value m, we just need to run a proof that
4 values have the same discrete log with respect to their respective bases. Highly
efficient Sigma protocols exist for this task (this is the same as proving that a
tuple is of the Diffie-Hellman form). Thus, the CCA2-secure encryption scheme
together with the required proof can both be implemented very efficiently.

It remains to show how a dual-model encryption scheme can be efficiently
implemented. We essentially use the construction of [22], but we need only their
basic cryptosystem and not their full dual-mode one. Specifically, we need the
ability to construct a fake public-key that is indistinguishable from a regular
one, so that if encryption is carried out under this key, then the encrypted value
is perfectly hidden. Such an encryption scheme can be constructed at double the
cost of El Gamal as follows:

– Dual regular key generation: Let (G, q, g1, g2) be as above. Choose ρ ∈R

Zq and compute h1 = gρ1 and h2 = gρ2 . The public key is (G, q, g1, g2, h1, h2),
and the private key is ρ.

– Dual alternative key generation: As above, except choose ρ1, ρ2 ∈R Zq

with ρ1 ̸= ρ2 and compute h1 = gρ1

1 and h2 = gρ2

2 .

– Dual encryption: To encrypt m ∈ G, choose random R,S ∈ Zq and com-
pute u = gR1 · gS2 and v = hR

1 · hS
2 ·m. The ciphertext is c = (u, v).

– Dual decryption: To decrypt (u, v), compute m = v/uρ.

In order to see that this scheme has the desired properties, observe that decryp-
tion works as in El Gamal, an alternative key is indistinguishable from a real one
by the DDH assumption, and encryption under an alternative key is perfectly
hiding since when ρ1 ̸= ρ2 the values u and v are independent.

Naively, the cost of encryption is 4 exponentiations which is twice that of
El Gamal. However, using the method of simultaneous multiple exponentiations
in [18, Sec. 14.6], we have that u and v can be computed at the equivalent cost
of 1 1

3 exponentiations each. Thus, the cost is 22
3 exponentiations.

3.2 The Actual Protocol

The full specification of our commitment scheme appears in Protocol 2. The
proof carried out in the decommitment phase is based on a Sigma protocol for
Diffie-Hellman tuples. Regarding completeness of this proof, observe that if Pi

is honest, then gz1 = gs+εr
1 = gs1 · (gr1)ε = α · uε

1, g
z
2 = gs+εr

2 = gs2 · (gr2)ε = β · uε
2,

hz = hs+εr = hs · (hr)ε = γ ·
(

e
m

)ε
, and

(cdω)z = (cdω)s+εr = (cdω)s · ((cdω)r)ε = (cdω)s · (crdrω)ε = δ · vε.

PROTOCOL 2 (UC-Secure Commitment Protocol)

Common reference string: (G, q, g1, g2, c, d, h, h1, h2) where G is a group
of order q with generators g1, g2, and c, d, h ∈R G are random elements of G,
and h1 = gρ1 , h2 = gρ2 for a random ρ ∈R Zq. (Note that (G, q, g1, g2, c, d, h) is
a Cramer-Shoup public key, and (G, q, g1, g2, h1, h2) is the regular public key
of a dual-mode encryption scheme.)
Let G(y) be a mapping of a string y ∈ {0, 1}n to G, and assume that G−1 is
also efficiently computable.

The commit phase: Upon input (commit, sid, ssid, Pi, Pj , x) where x ∈
{0, 1}n−log2 n and sid, ssid ∈ {0, 1}log

2 n/4, party Pi works as follows:

1. Pi computes m = G(x, sid, ssid, i, j). (The identities i, j can be mapped

to {0, 1}log
2 n/4 and so overall (x, sid, ssid, i, j) is an n-bit string.)

2. Pi chooses a random r ∈R Zq, computes u1 = gr1 , u2 = gr2 , e = hr · m,
ω = H(u1, u2, e) and v = cr · drω, where H is a collision-resistant hash
function (formally, the key for the hash function can appear in the CRS;
we ignore this for simplicity).

3. Pi sets c = (u1, u2, e, v), and sends (sid, ssid, c) to Pj .
4. Pj stores (sid, ssid, Pi, Pj , c) and outputs (receipt, sid, ssid, Pi, Pj). Pj ig-

nores any later commitment messages with the same (sid, ssid) from Pi.

The decommit phase:

1. Upon input (reveal, sid, ssid, Pi, Pj), party Pi sends (sid, ssid, x) to Pj

2. Pj computes m = G(x, sid, ssid, i, j)
3. Proof of committed value: Pi proves to Pj that m is the encrypted value.

This is equivalent to Pi proving that there exists a value r such that

u1 = gr1 , u2 = gr2 ,
e

m
= hr, and v = (cdω)r

The proof is carried out as follows:
(a) Pj sends (sid, ssid, c′) to Pi, where c′ = (gR1 · gS2 , hR

1 · hS
2 · G(ε)) is a

commitment to a random challenge ε ∈R {0, 1}n, and R,S ∈R Zq.
(b) Pi computes α = gs1, β = gs2, γ = hs and δ = (cdω)s, and sends

(sid, ssid, α, β, γ, δ) to Pj .
(c) Pj sends the decommitment (sid, ssid,R, S, ε) to the challenge to Pi.
(d) Pi verifies that c

′ = (gR1 ·gS2 , hR
1 ·hS

2 ·G(ε)). If no, Pi aborts. Otherwise,
Pi computes z = s+ εr and sends (sid, ssid, z) to Pj .

(e) Pj outputs (reveal, sid, ssid, Pi, Pj , x) if and only if

gz1 = α · uε
1, gz2 = β · uε

2, hz = γ ·
(e

m

)ε

, and (cdω)z = δ · vε

Concrete efficiency: The cost of the protocol in the number of exponentiations
(all other operations are insignificant) is as follows:

1. Pi computes 5 exponentiations in order to generate the commitment, and 8
exponentiations in the decommit phase (note that 4 of these exponentiations
are in order to verify the challenge ε from Pj , and since cdω was already
computed in the commit stage only a single exponentiation is needed for δ).

2. Pj computes 0 exponentiations in the commit phase, and 13 exponentiations
in the decommit phase.

Overall, the parties compute 26 exponentiations. Observe that Pi can preprocess
all but 6 of its exponentiations. This is because it can compute gr1, g

r
2, h

r, cr, dr

and gs1, g
s
2, h

s, cs, ds before m and thus ω is known. Once (x, sid, ssid, Pi, Pj) is
given and thus m can be computed, Pi just needs to compute (dr)ω to finish
the commitment and (ds)ω to finish the first message of the decommit stage.
Finally, it needs 4 more exponentiation to verify the ε sent by Pj Likewise, Pj can
preprocess 4 of its exponentiations by generating c′ ahead of time. We conclude
that the protocol requires 26 exponentiations overall, but using preprocessing the
committer Pi needs to compute only 6 exponentiations and the receiver Pj needs
to compute only 9 exponentiations. In addition, the computations gR1 · gS2 and
hR
1 ·hS

2 needed for computing and verifying the encryption of ε can be computed
at the cost of 1 1

3 exponentiations each, using the optimization appearing in [18,
Sec. 14.6]. Thus, the effective number of exponentiations can be reduced to 231

3 .

3.3 Proof of Security

Theorem 1 Assuming that the DDH assumption holds in the group G, Proto-
col 2 UC-securely realizes the Fmcom functionality in the Fcrs-hybrid model, in
the presence of static adversaries.

Proof: The intuition behind the proof of security already appears in Section 3.1.
We therefore proceed directly to the description of the simulator and the proof
of security.

The simulator S:
– Initialization step: S chooses a public-key/private-key pair for the Cramer-

Shoup cryptosystem; let (G, q, g1, g2, c, d, h) be the public-key. In addition,
S chooses a random ρ and computes h1 = gρ1 and h2 = gρ2 . S sets the CRS
to be (G, q, g1, g2, c, d, h, h1, h2).

– Simulating the communication with Z: Every input value that S re-
ceives from Z is written on A’s input tape (as if coming from Z) and vice
versa.

– Simulating the commit stage when the committer Pi is corrupted
and the receiver Pj is honest: Upon receiving (sid, ssid, c) from A as
it intends to send from Pi to Pj , the simulator S uses its knowledge of the
Cramer-Shoup secret key to decrypt c. Let m = G(x, sid′, ssid′, i′, j′) be
the result. If (sid′, ssid′, i′, j′) ̸= (sid, ssid, i, j) or the decryption is invalid,
then S sends a dummy commitment (commit, sid, ssid, Pi, Pj , 0) to Fmcom.
Otherwise, S sends (commit, sid, ssid, Pi, Pj , x) to Fmcom.

– Simulating the decommit stage when Pi is corrupted and Pj is
honest: S runs the honest strategy of Pj with A controlling Pi. If Pj would
output (reveal, sid, ssid, Pi, Pj , x), then S sends (reveal, sid, ssid, Pi, Pj) to
Fmcom. Otherwise, it does nothing.

– Simulating the commit stage when Pi is honest and Pj is corrupted:
Upon receiving (receipt, sid, ssid, Pi, Pj) from Fmcom, the simulator S com-
putes a Cramer-Shoup encryption c of 0, and hands (sid, ssid, c) to A, as it
expects to receive from Pi.

– Simulating the decommit stage when Pi is honest and Pj is cor-
rupted: Upon receiving (reveal, sid, ssid, Pi, Pj , x) from Fmcom, S works as
follows:
1. S hands (sid, ssid, x) to A, as it expects to receive from Pi.
2. S receives c′ from A and uses its knowledge of the discrete log ρ of h1, h2

(in the CRS) in order to decrypt the encryption c′ of G(ε) and obtain ε.
3. Let c = (u1, u2, e, v) be as computed by S in the commit stage. S chooses

a random z ∈R Zq and computes α = gz1/u
ε
1, β = gz2/u

ε
2, γ = hz/(e/m)ε

and δ = (cdω)z/vε, and hands (α, β, γ, δ) to A.
4. S receives (R′, S′, ε′) from A. If c′ ̸= (gR

′

1 · gS′

2 , hR′

1 · hS′

2 · G(ε′)) then S
simulates Pi aborting the decommitment. Otherwise, ε′ = ε (this must
be the case because when the regular public-key of the dual encryption
scheme is used the encryption is perfectly binding), and S hands z to A.

Simulation in the cases that both Pi and Pj are honest is straightforward.
This is due to the fact that when both parties are honest, the simulator can
choose the value ε itself and generate a valid proof for any value needed.

Analysis of the simulation: Denoting Protocol 2 by π and recalling that it
runs in the Fcrs-hybrid model, we need to prove that for every A and every Z,{

idealFmcom,SA,Z(n, z)
}
n∈N;z∈{0,1}∗

c≡
{
hybridFcrs

π,A,Z(n, z)
}
n∈N;z∈{0,1}∗

.

We prove this via a series of hybrid games.

Hybrid game hyb-game1: In this game, the ideal functionality gives the sim-
ulator S1 the value x committed to by an honest Pi together with the regular
(receipt, sid, ssid, Pi, Pj) message. S1 works in exactly the same way as S except
that when simulating the commit stage when Pi is honest and Pj is corrupted,
it computes c as an encryption of m = G(x, sid, ssid, i, j) as an honest Pi would.
Otherwise, it behaves exactly as S in the simulation. In order to show that the
output of Z in hyb-game1 is indistinguishable from its output in ideal, we
need to reduce the difference to the security of the encryption scheme. However,
S and S1 need to decrypt in the simulation of the commit stage when the com-
mitter Pi is corrupted and Pj is honest (see the simulator description). S and S1

can carry out this decryption because they know the Cramer-Shoup secret-key.
But, this means that security cannot be reduced to this scheme. We solve this
problem by using the fact that the Cramer-Shoup encryption scheme is CCA2-
secure. Thus, S and S1 can decrypt by using their decryption oracle. We use
the LR-formulation of CCA2-security [1]. In this formulation a bit b is randomly
chosen and the adversary can ask for many encryption challenges. Each query
consists of a pair (m0,m1) and the adversary receives back an encryption of mb

(always with the same b). The aim of the adversary is to guess the bit b. Of
course, given that this is a CCA2 game, the adversary can ask for a decryption
of any ciphertext that was not received as an encryption of one of the pairs.

Formally, we construct a CCA2 adversary Acs attacking the Cramer-Shoup
scheme as follows. Let (G, q, g1, g2, c, d, h) be the public-key given to Acs. Adver-
saryAcs chooses ρ ∈R Zq, computes h1 = gρ1 and h2 = gρ2 , and sets the CRS to be

(G, q, g1, g2, c, d, h, h1, h2). Then Acs simulates an execution of idealFmcom,SA,Z
with the following differences:

1. Whenever an honest Pi commits to a value x, instead of S encrypting 0 (or
S1 encrypting x), Acs generates the encryption in the ciphertext by asking
for an encryption challenge of the pair (0, G(x, sid, ssid, i, j)). The ciphertext
c received back is sent as the commitment. (Note that Acs knows x because
it runs Z and so knows the inputs handed to the honest parties.)

2. Whenever a corrupted Pi sends a commitment value (sid, ssid, c) and the
simulator needs to decrypt c, Acs queries its decryption oracle with c. If
c was received as a ciphertext challenge then Acs has the simulator send a
dummy commitment (commit, sid, ssid, Pi, Pj , 0) to Fmcom as in the case that
(sid′, ssid′, i′, j′) ̸= (sid, ssid, i, j) in the simulation. Since c was received as a
ciphertext challenge, indeed it holds that (sid′, ssid′, i′, j′) ̸= (sid, ssid, i, j)
and so this is the same.

Finally, Acs outputs whatever Z outputs.
Now, if b = 0 in the CCA2 game, then all of the commitments c generated

when the committer Pi is honest are to 0. Thus, the simulation is exactly like S
and the output of Acs is exactly that of idealFmcom,SA,Z(n, z). (Note that all
other instructions are carried out identically to S.) In contrast, if b = 1, then
the commitments generated are to the correct values x and so the simulation is
exactly like S1. Thus, the output of Acs is exactly that of hyb-game1SA

1 ,Z(n, z).

We conclude that{
hyb-game1Fmcom,SA

1 ,Z(n, z)
}
n;z

c≡
{
idealFmcom,SA,Z(n, z)

}
n;z

,

by the fact that the Cramer-Shoup encryption scheme is CCA2-secure.

Hybrid game hyb-game2: In this game, the simulator S2 works in exactly the
same way as S1, except that when simulating the decommitment phase when
Pi is honest and Pj is corrupted, it computes the messages (α, β, γ, δ) and z in
the proof exactly as an honest Pi would. It can do this because the commitment
c sent in the commitment phase is to the correct value m = G(x, sid, ssid, i, j)
and so it can play the honest prover. The output distribution of this game is
identical to hyb-game1 by the perfect simulation property of the proof of the
decommitment phase. This proof is based on a standard Sigma protocol that
a tuple is a Diffie-Hellman tuple and it is straightforward to verify that the
distributions are identical. We therefore have that: We conclude that{

hyb-game2Fmcom,SA
2 ,Z(n, z)

}
n;z

≡
{
hyb-game1Fmcom,SA

1 ,Z(n, z)
}
n;z

.

Completing the proof: It remains to show that the output of Z after an exe-
cution of π in the hybridFcrs model is indistinguishable from its output after
the hyb-game2 game. First, observe that the commitment and decommitment
messages in the case of an honest committer Pi are identical in both hyb-game2

and a real protocol execution in the hybridFcrs model. Thus, the only difference
between the output of Z in both cases can be due to the value x output by an
honest receiver Pj after a decommit from a corrupted sender Pi. This is due to the

fact that in hyb-game2, the value x output by an honest Pj is the value sent by
S2 to Fmcom after decrypting the associated ciphertext in the commit stage using
the Cramer-Shoup secret-key. In contrast, in hybridFcrs the value x output by
an honest party is that sent by A in the first step of the decommitment stage (as
long as the proof passes). These values can only be different if A can convince an
honest Pj to output x in the decommitment phase, even though the encrypted
value c sent in the commitment phase is not to m = G(x, sid, ssid, i, j). Thus,
this difference reduces to the soundness of the proof in the decommitment phase.
Recall that by the special soundness property of Sigma protocols, in the case
that c is not an encryption of m = G(x, sid, ssid, i, j), for every first message
(α, β, γ, δ) there is only a single ε for which there exists a convincing answer z.

It is tempting to conclude that since the encryption of ε is semantically
secure, the adversary cannot cheat in the Sigma protocol. However, this requires
a reduction and such a reduction cannot be carried out because the adversary
does not “reveal” to us whether it succeeds in the proof until we decrypt ε. Thus,
one cannot reduce the ability of the adversary to cheat to the hiding of ε (in such
a reduction, one cannot reveal ε together with the randomness used to encrypt).
However, it is possible to replace the values h1, h2 where h1 = gρ1 and h2 = gρ2
with values h1 = gρ1

1 and h2 = gρ2

2 for ρ1, ρ2 ∈R Zq. In such a case, as we have
discussed, the encryption c′ perfectly hides the value ε. Furthermore, there is no
need to ever decrypt c′ here (the simulator S2 in hyb-game2 does not decrypt
these values). Thus, there is no problem replacing h1, h2 in this way. Finally,
recall that the alternative key h1, h2 is indistinguishable from the regular one.
Thus, defining hyb-game3 to be the same as hyb-game2 except that the keys
h1, h2 are different as described, and letting S3 = S2 (except again for how h1, h2

are chosen), we have{
hyb-game3Fmcom,SA

3 ,Z(n, z)
}
n;z

c≡
{
hyb-game2Fmcom,SA

2 ,Z(n, z)
}
n;z

.

We are now ready to conclude the proof. Since the encryption c′ perfectly hides
the challenge ε, the probability that A successfully proves an incorrect statement
in the decommitment stage is at most 2−n (recall that there is exactly one ε
that it can answer). Thus, the value sent by S3 to Fmcom is the same value as
that output by an honest Pj , except with negligible probability. The only other
difference is that in hyb-game3 an alternative public-key for the dual mode
cryptosystem is used, whereas in hybrid a regular one is used. Recalling that
these keys are computationally indistinguishable, we conclude that{
hybridFcrs

π,A,Z(n, z)
}
n∈N;z∈{0,1}∗

c≡
{
hyb-game3Fmcom,SA

2 ,Z(n, z)
}
n∈N;z∈{0,1}∗

.

Combining all of the above, we have that the output of Z with A after an
execution of π in the Fcrs-hybrid model is computationally indistinguishable
from its output after an execution with SA and Fmcom in the ideal model, and
so Protocol 2 is UC-secure in the presence of static adversaries, as required.

4 Adaptive Adversaries with Erasures

4.1 Background and Outline of Solution

In the setting of adaptive corruptions, the adversary can corrupt parties through-
out the computation. Upon corruption, it receives the local state of the parties,
including randomness it has used and so on. In the model with erasures, a pro-
tocol can instruct a party to erase some of its state (e.g., old keys), and in such
a case the adversary does not obtain the erased state upon corruption. Adaptive
corruptions accurately models the realistic setting where parties can be “hacked”
during a computation. As such, it is desirable to have protocols that are secure
in this model.

This model introduces significant difficulties when proving security. Specifi-
cally, observe that Protocol 2 is not secure in the presence of adaptive adversaries,
even with erasures, because the committer must store the randomness r used to
commit to x in order to run the decommitment stage. Now, in our simulation,
the simulator commits to 0, even when the commitment is really to x. However,
upon corruption in the real world, the adversary obtains r and x such that c
is encryption of x using randomness r. In the simulation, such randomness can
never be produced because c is an encryption of 0 and not of x (there does not
exist an r′ that can explain c as an encryption of x ̸= 0).

Achieving adaptive security. Our protocol can be modified so that it achieves
adaptive security with erasures, with little additional cost. Interestingly, the only
modifications necessary are a change in the order of operations and 1 additional
Pedersen commitment. In order to see this, recall that the problem with achiev-
ing adaptive security is that the committer cannot erase r before sending c in
the commit phase, because then it will not be able to prove the proof in the
decommit phase. However, it is possible for the parties to run most of the proof
already in the commit phase, before the commitment is even sent (actually, the
ciphertext c is committed to equivocally, but not yet revealed). That is, the com-
mitter and receiver run the zero-knowledge protocol before c is sent, without the
committer sending the last message z. In addition, the committer commits to its
first message (α, β, γ, δ) of the protocol instead of sending it in the clear. (Thus,
the receiver sends a commitment to ε; the committer sends a commitment to
(α, β, γ, δ); the receiver decommits revealing ε; finally, the committer prepares
z based on ε without sending it.) Following this preamble, the committer erases
all of its randomness, except for that needed to decommit to the first message of
the zero-knowledge protocol, and only then reveals c. This completes the com-
mit phase. The decommit phase simply consists of the committer sending the
decommitment to (α, β, γ, δ) and the message z (which has already been pre-
pared), and the receiver verifies the decommitment and that ((α, β, γ, δ), ε, z)
constitutes an accepting transcript.

Observe that before the committer sends c, nothing has actually been re-
vealed; the committer only sent a commitment to (α, β, γ, δ). Thus, this does
not affect the hiding property of the original commitment scheme. Furthermore,
the committer erases all secret state before sending c, and in particular erases the

random coins used to generate c. Thus adaptive corruptions make no difference
because the committer has no secret state once c is sent, and has revealed no
information before c is sent. In actuality, in order to achieve this property that
all messages sent before c are independent of x, we have to have the committer
commit to the first message of the proof using a perfectly hiding commitment
scheme. Furthermore, it needs to be adaptively secure in that upon corruption,
the prover can open it to anything that it wishes. Fortunately, this can be easily
achieved by using a Pedersen commitment Com(x) = gr · ĥx with a value ĥ that

appears in the CRS.3 (Note that given the discrete log ρ̂ of ĥ it is possible to
decommit to any value desired. Specifically, commit by computing c = ga for a
known a. Now, given x we wish to find r such that c = ga = gr · ĥx. Given that
ĥ = gρ̂ this means that we need to find r such that ga = gr+ρ̂x, or equivalently
r such that a = r + ρ̂x mod q. Thus, just take r = a − ρ̂x mod q.) We remark
that although the above works, it introduces an additional difficulty because the
soundness of the Sigma protocol now also rests on the hardness of finding the
discrete log of ĥ. This requires an additional reduction; see the proof for details.
See Protocol 3 for the outline of the modified protocol.

PROTOCOL 3 (UC-commitment template for adaptive security)

Common reference string: (pk1, pk2,G, q, g, ĥ) where pk1 is the public-
key of a CCA2-secure encryption scheme, pk2 is the public-key of a dual mode
cryptosystem, and (G, q, g, ĥ) are parameters for the Pedersen commitment
scheme.

The commit phase:

1. The committer computes a commitment to x as c = Ecca
pk1

(x; r), and sends

a Pedersen commitment of c to the receiver, using (g, ĥ).
2. The receiver sends c′ = Edual

pk2
(ε; r′); its commitment to the first message

of the proof.
3. The committer sends a Pedersen commitment to the first prover message

α to the receiver, computed from the ciphertext c (observe that c has not
yet been revealed).

4. The receiver decommits to ε by sending ε and r′

5. The committer checks that c′ = Edual
pk2

(ε; r′) and if yes, it computes the
reply z for the Sigma protocol, based on (α, ε).

6. The committer now erases r and the randomness used to generate α and
z, stores α, z and the randomness used to generate the Pedersen commit-
ments, and finally sends c and its decommitment to the receiver.

The decommitment phase:

1. The committer sends x, (α, z), and the randomness used to generate the
Pedersen commitment to α to the receiver.

2. The receiver outputs x as the decommitted value if and only if the Ped-
ersen commitment was to α and (α, ε, z) is an accepting Sigma-protocol
transcript.

3 We note that such a commitment is not extractable but we do not need it to be.

4.2 The Adaptive Protocol

The scheme that is adaptively secure with erasures appears in Protocol 4.

PROTOCOL 4 (UC-Secure Commitment – Adaptive with Erasures)

Common reference string: (G, q, g1, g2, c, d, h, h1, h2, ĥ) where all pa-
rameters are as in Protocol 2, and (G, q, g1, ĥ) are parameters for Pedersen
commitments.)

The commit phase: Upon input (commit, sid, ssid, Pi, Pj , x) where x ∈
{0, 1}n−log2 n and sid, ssid ∈ {0, 1}log

2 n/4, party Pi works as follows:

1. Pi computes m = G(x, sid, ssid, i, j). (The identities i, j can be mapped

to {0, 1}log
2 n/4 and so overall (x, sid, ssid, i, j) is an n-bit string.)

2. Pi chooses a random r ∈R Zq, computes u1 = gr1 , u2 = gr2 , e = hr · m,
ω = H(u1, u2, e) and v = cr · drω, where H is a collision-resistant hash
function (formally, the key for the hash function can appear in the CRS;
we ignore this for simplicity). Pi sets c = (u1, u2, e, v).

3. Pi chooses κ1 ∈R Zq, computes c1ped = gκ1
1 · ĥH(c), and sends c1ped to Pj .

4. Pj sends c′ = (gR1 · gS2 , hR
1 · hS

2 · G(ε)) to Pi, where ε ∈R {0, 1}n and
R,S ∈R Zq.

5. Pi computes α = gs1, β = gs2, γ = hs and δ = (cdω)s, and computes a
Pedersen commitment c2ped = gκ2

1 · ĥH(α,β,γ,δ), where κ2 ∈R Zq. Pi sends
c2ped to Pj .

6. Pj sends (R,S, ε) to Pi.
7. Pi verifies that c

′ = (gR1 · gS2 , hR
1 ·hS

2 ·G(ε)). If no, it aborts. Otherwise, Pi

computes z = s+ εr.
8. Pi erases r and s, and stores (x, α, β, γ, δ, κ2, z). Pi sends (κ1, c) to Pj .
9. Pj verifies that c

1
ped = gκ1

1 ·ĥH(c). If yes, it stores (sid, ssid, Pi, Pj , c, ε, c
2
ped)

and outputs (receipt, sid, ssid, Pi, Pj). Pj ignores any later commitment
messages with the same (sid, ssid) from Pi.

The decommit phase:

1. Upon input (reveal, sid, ssid, Pi, Pj), Pi sends (x, α, β, γ, δ, κ2, z) to Pj .
2. Pj sets m = G(x, sid, ssid, i, j) and outputs (reveal, sid, ssid, Pi, Pj , x) if

and only if

c2ped = gκ2
1 ·ĥH(α,β,γ,δ), gz1 = α·uε

1, g
z
2 = β·uε

2, h
z = γ·

(e

m

)ε

, (cdω)z = δ·vε

We note one difference between the actual protocol and the intuitive expla-
nation above, regarding the Pedersen commitments. We use these commitments
to commit to group elements in G. However, the input of a Pedersen commit-
ment is in Zq and not G. One solution to this is to break the elements up into
pieces and separately commit to each piece. We use a different solution which is
to compute Com(m) = gr · ĥH(m) where H is a collision-resistant hash function.
The commitment is still perfectly hiding and can be opened to any value. The
only difference is that the binding property relies now both on the hardness of
the discrete log problem (as in the standard case) and on the collision resis-
tance of H. By convention, in Protocol 4, all messages are sent together with
(sid, ssid).

Efficiency. The complexity of Protocol 4 is the same as the static version
(Protocol 2) plus two additional Pedersen commitment that must be computed
and verified. Naively, this costs an additional 8 exponentiations overall. However,
again using the multiexponentiation optimization, these can be computed at
the effective cost of 5 1

3 exponentiations. Thus, we have an overall cost of 282
3

exponentiations.

4.3 Proof of Security

Theorem 2 Assuming that the DDH assumption holds in the group G, Proto-
col 4 UC-securely realizes the Fmcom functionality in the Fcrs-hybrid model, in
the presence of adaptive adversaries with erasures.

Proof: The proof of security is very similar to the static case, with the addition
of how to deal with adaptive corruptions. We remark that we follow the con-
vention where the only part of the commitment message not seen by the ideal
adversary is the commitment value [6]. Thus, when an honest Pi sends a mes-
sage to the Fmcom functionality, the adaptive ideal adversary knows what type
of message it is and who the intended recipient is.

Due to lack of space in this extended abstract, we sketch the main difference
between the proof here, and the proof in the static case. The main observation is
that if a committing party is corrupted before the commitment stage is finished,
then no meaningful information has been given away. This is due to the use of
Pedersen commitments and the fact that the simulator can open them to any
way it wishes by choosing ĥ so that it knows its discrete log. Furthermore, if
a committing party is corrupted after the commitment phase is finished, then
the randomness used to generate the Cramer-Shoup encryption and the Sigma
protocol prover messages has already been erased. Thus, all the simulator has
to do is to run the Sigma-protocol simulator using the proof statement based
on the commitment value obtained, and this will look exactly like an honestly
generated commitment.

Due to the above, the simulation and proof in this case of adaptive cor-
ruptions is very similar to the case of static corruptions. However, there is one
major difference regarding the last step where we must prove the soundness of
the proofs provided by corrupted parties. Specifically, we need to claim that a
corrupted party can prove an incorrect statement with probability that is at
most negligible. In order to prove this, we first replace the dual mode public
key with the alternative one, as in the proof of the case of static corruptions.
However, this does not yet suffice because the adversary may be able to prove an
incorrect claim by breaking the computational binding of the Pedersen commit-
ments (recall that the last message of the proof is decommitted to only after the
challenge ε is revealed). Despite this, we use the fact that the ability to decom-

mit to two different values is equivalent to find the discrete log of ĥ. Specifically,
given cped together with (κ,m) ̸= (κ′,m′) such that cped = gκ1 · ĥm = gκ

′

1 · ĥm′
, it

holds that ĥ = g
(κ−κ′)(m′−m)−1

1 and so the discrete log of ĥ is κ−κ′

m′−m which can
be efficiently computed.

We therefore prove soundness as follows. Assume that there exists an envi-
ronment Z, adversary A, and an input z to Z such that for infinitely many n’s,
A succeeds in proving an incorrect statement with non-negligible probability. In
this case, A will succeed in proving an incorrect statement with non-negligible
probability also in hyb-game3. (We remark that it is possible to detect this event
because we can decrypt the Cramer-Shoup encryption and see what value was
actually encrypted.) Now, let (G, q, g1, ĥ) be parameters for a Pedersen commit-
ment. An adversary Aped attempting to break the commitment scheme receives
the parameters and works as follows. It chooses all of the values in the common
reference string like S (based on (G, q, g1)) and then simulates the hyb-game3

experiment running Z with input z and A. If A proves an incorrect statement,
then Aped rewinds the entire execution (including Z) until the point that A sent
c2ped. Aped then sends a different decommitment (R′, S′, ε′) to a fresh random
ε′. Note that since at this point the public key for the dual-mode cryptosystem
is the alternative one, and Aped knows the discrete logs ρ1, ρ2 of h1, h2, it can
efficiently find (R′, S′, ε′) such that c′ = (gR1 · gS2 , hR

1 · hS
2 ·G(ε)) even though c′

was originally generated as an encryption of some ε ̸= ε′. (In order to do this,
Aped also needs to know the discrete logs of g2 and G(ε), G(ε′) relative to g1, but
these value can be chosen in that way. See the explanation of the concrete dual-
mode cryptosystem at the end of Section 3.1 in order to see what equations Aped

needs to solve.) Aped then continues the execution until the point that A decom-
mits to the transcript. If it is accepting, then A must have opened the Pedersen
commitment c2ped differently (because A can only answer one ε if the statement

is incorrect). In this case Aped has found the discrete log of ĥ and halts. Other-
wise, Aped repeatedly rewinds until A does provide an accepting transcript. This
yields an expected polynomial-time adversary Aped; a strict polynomial-time ad-
versary can be derived by just truncating the execution after enough time. We
remark that although we are working in the UC framework, Aped is allowed to
rewind in the reduction because this has nothing to do with the simulation, and
we are reducing the difference between hyb-game3 and hybrid to the hardness
of finding the discrete log of ĥ.

Acknowledgements

We thank Ran Canetti and Benny Pinkas for helpful discussions.

References
1. M. Bellare and P. Rogaway. Introduction to Modern Cryptography, Chapter 7

(course notes), 2007.
2. A. Ben-David, N. Nisan and B. Pinkas. FairplayMP: a System for Secure Multi-

Party Computation. In the 15th ACM CCS, pages 257–266, 2008.
3. R. Canetti. Universally Composable Security: A New Paradigm for Crypto-

graphic Protocols. In 42nd FOCS, pages 136–145, 2001. Full version available
at http://eprint.iacr.org/2000/067.

4. R. Canetti and M. Fischlin. Universally Composable Commitments. In
CRYPTO 2001, Springer (LNCS 2139), pages 19–40, 2001.

5. R. Canetti and H. Krawczyk. Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol. In CRYPTO 2002, Springer (LNCS 2442), 143–161, 2002.

6. R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable
Two-Party and Multi-Party Computation. In 34th STOC, pages 494–503, 2002.
Full version available at http://eprint.iacr.org/2002/140.

7. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Se-
cure Against Adaptive Chosen Ciphertext Attack. In CRYPTO 1998, Springer
(LNCS 1462), pages 13–25, 1998.

8. I. Damg̊ard. On Σ Protocols. http://www.daimi.au.dk/∼ivan/Sigma.pdf.
9. I. Damgard and J. Nielsen. Perfect Hiding and Perfect Binding Universally Com-

posable Commitment Schemes with Constant Expansion Factor. In CRYPTO
2002, Springer-Verlag (LNCS 2442), pages 581–596, 2002.

10. C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols – Techniques
and Constructions. Springer, October 2010.

11. C. Hazay, J. Katz, C.Y. Koo and Y. Lindell. Concurrently-Secure Blind Signa-
tures without Random Oracles or Setup Assumptions. In the 5th TCC, Springer
(LNCS 4392), pages 323–341, 2007.

12. C. Hazay and K. Nissim. Efficient Set Operations in the Presence of Malicious
Adversaries. In PKC 2010, Springer (LNCS 6056), pages 312–331, 2010. Full
version in the Cryptology ePrint Archive, report 2009/594.

13. J. Kelsey, B. Schneier and D. Wagner. Protocol Interactions and the Chosen
Protocol Attack. In the 5th International Security Protocols Workshop, Springer
(LNCS 1361), pages 91–104, 1998.

14. G. Kol and M. Naor. Cryptography and Game Theory: Designing Protocols for
Exchanging Information. In 5th TCC, Springer (LNCS 4948), 320–339, 2008.

15. H. Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In
CRYPTO 2005, Springer (LNCS 3621), pages 546–566, 2005.

16. Y. Lindell and B. Pinkas. Secure Two-Party Computation via Cut-and-Choose
Oblivious Transfer. In the 8th TCC, Springer (LNCS 6597), pages 329-346, 2011.

17. Y. Lindell, B. Pinkas and N.P. Smart. Implementing Two-Party Computation
Efficiently with Security Against Malicious Adversaries. In the 6th SCN, pages
2–20, 2008.

18. A. Menezes, P. Van Oorschot and S. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1997.

19. T. Moran and T. Moore. The Phish-Market Protocol: Securely Sharing At-
tack Data between Competitors. 14th Financial Cryptography, Springer (LNCS
6052), pages 222–237, 2010.

20. M. Osadchy, B. Pinkas, A. Jarrous and B. Moskovich. SCiFI - A System for Se-
cure Face Identification. In the 31st IEEE Symposium on Security and Privacy,
pages 239–254, 2010.

21. P. Paillier. Public-key Cryptosystems Based on Composite Degree Residuosity
Classes. In EUROCRYPT ’99, Springer (LNCS 1592), pages 223–238, 1999.

22. C. Peikert, V. Vaikuntanathan and B. Waters. A Framework for Efficient and
Composable Oblivious Transfer. In CRYPTO’08, Springer (LNCS 5157), pages
554–571, 2008.

23. B. Pinkas, T. Schneider, N.P. Smart and S.C. Williams. Secure Two-Party Com-
putation Is Practical. In ASIACRYPT 2009, Springer (LNCS 5912), pages 250–
267, 2009.

24. S. Vanstone. Deployments of Elliptic Curve Cryptography. In the 9th Workshop
on Elliptic Curve Cryptography (ECC), 2005.

25. The Crypto++ Library, http://www.cryptopp.com.

