
Concurrent composition in the

bounded quantum storage model

Dominique Unruh

Saarland University

Abstract. We define the BQS-UC model, a variant of the UC model, that deals
with protocols in the bounded quantum storage model. We present a statisti-
cally secure commitment protocol in the BQS-UC model that composes con-
currently with other protocols and an (a-priori) polynomially-bounded number
of instances of itself. Our protocol has an efficient simulator which is important
if one wishes to compose our protocol with protocols that are only computa-
tionally secure. Combining our result with prior results, we get a statistically
BQS-UC secure constant-round protocol for general two-party computation
without the need for any setup assumption.

Keywords: Bounded quantum storage, composability, two-party computa-
tion.

1 Introduction

Since the inception of quantum key distribution by Bennett and Brassard [2], it
has been known that quantum communication permits to achieve protocol tasks
that are impossible given only a classical channel. For example, a quantum key
distribution scheme [2] permits to agree on a secret key that is statistically se-
cret, using only an authenticated but not secret channel. (By statistical security
we mean security against computationally unbounded adversaries, also known
as information-theoretical security.) In contrast, when using only classical com-
munication, it is easy to see that such a secret key can always be extracted by a
computationally sufficiently powerful adversary. In light of this result, one might
hope that quantum cryptography allows to circumvent other classical impossibil-
ity results, possibly even allowing for statistically secure multi-party computation
protocols. Yet, Mayers [13] showed that also in the quantum setting, even statis-
tically secure commitment schemes are impossible, let alone general multi-party
computation. This is unfortunate, because from commitments one can build OT
(Bennett, Brassard, Crépeau, and Skubiszewska [3]), and from OT general multi-
party computation (Kilian [11]). A way to work around this impossibility was
found by Damgård, Fehr, Salvail, and Schaffner [6]. They showed that if we as-
sume that the quantum memory available to the adversary is bounded (we speak
of bounded quantum storage (BQS)), we can construct statistically secure com-
mitment and OT schemes. Although such a result is not truly unconditional, it
avoids hard-to-justify complexity-theoretic assumptions. Also, it achieves long-
term security: even if the adversary can surpass the memory bound after the
protocol execution, this will not allow him to retroactively break the protocol.

Yet, we still have not reached the goal of statistically secure multi-party
computation. Although we have protocols for commitment and OT, we cannot
simply plug them into the protocols by Bennett et al. [3] and by Kilian [11]. The
reason is that it is not clear under which circumstances protocols in the BQS
model may be composed. For example, Dziembowski and Maurer [7] constructed
a protocol that is secure in the classical bounded storage model, but that looses
security when composed with a computationally secure protocol. To overcome
this remaining difficulty, works by Wehner and Wullschleger [17] and by Fehr
and Schaffner [8] give security definitions in the BQS model that enable secure
sequential composition. Both works also present secure OT protocols in their
respective settings. Based on these, we can construct secure multi-party compu-
tation protocols in the BQS model. There are, however, a few limitations. First,
since only sequential composition is supported, all instances of the OT proto-
col used by the multi-party computation need to be executed one after another,
leading to a high round-complexity. Second, interactive functionalities such as
a commitment are difficult to use: the restriction to sequential composability
requires that we have to commit and immediately open a commitment before
being allowed to execute the next commitment. Third, the security proof of their
OT protocols uses a computationally unlimited simulator. As discussed in [15],
a protocol with an unlimited simulator cannot be composed with a computation-
ally secure protocol. Fourth, since we have no concurrent composability, it is not
clear what happens if the protocols are executed in an environment where we do
not have total control about which protocols are executed at what time.

To overcome the limitations of sequential composition in the classical setting,
Canetti [4] introduced the Universal Composability (UC) model. In this model,
protocols can be arbitrarily composed, even concurrently with other protocols
and with copies of themselves. The UC model has been adapted to the quantum
setting by Ben-Or and Mayers [1] and by Unruh [14,15]. In light of the success
of the UC model, it seems natural to combine the ideas of the UC model with
those of the BQS model in order to allow for concurrent composition.

1.1 Our contribution.

We define the notion of BQS-UC-security, which is an extension of quantum-
UC-security [15]. We have composability in the following sense: If π is a secure
realization of a functionality F , and σF securely realizes G by using one instance
of F , then σπ, the result of replacing F by π, still securely realizes G. In contrast
to quantum-UC-security, however, BQS-UC-security does not allow for concur-
rent self-composition: if π is secure, this does not automatically imply that two
concurrent instances of π are secure.1

1 The reader may wonder how it can be that σ and π may compose in general while π
and π do not. Might not σ and π be the same protocol? The reason lies in the exact
conditions of the composition theorem: In order to compose, σ needs to be secure
against adversaries with a higher quantum memory bound than π tolerates. Thus σ
and π cannot be the same protocol.

In order to get protocols that even self-compose concurrently, we design a
commitment scheme πCOM such that n concurrent instances of πCOM securely
realize n instances of the commitment functionality in the presence of a-memory
bounded adversaries. Here a and n are arbitrary (polynomially-bounded), but
the protocol depends on a and n.

The challenging part in the construction of πCOM is that BQS-UC-security
requires the following: There must be an efficient simulator (which is allowed to
have more quantum memory than the adversary) that can extract the committed
value (extractability) or change it after the commit phase (equivocality). Prior
constructions of commitment schemes in the BQS model required computation-
ally unbounded simulators. Also, the fact that we directly analyze the concurrent
composition of several instances of πCOM requires care: In the proof, we have
hybrid networks in which instances of both πCOM and of the simulator occur.
Since the simulator uses more quantum memory than πCOM tolerates, one needs
to ensure that the simulator cannot be (mis)used by the adversary to break the
commitment.

Finally, using the composition theorem and πCOM, for any two-party func-
tionality G, we get a statistically secure protocol π realizing G in the BQS model.2

The protocol is secure even when running n concurrent instances of the protocol.
(Again, this holds for any n and any memory bound, but the protocol depends on
n and the memory-bound.) The protocol is constant-round. It does not use any
quantum memory or quantum computation and thus is in the reach of today’s
technology.

A full version of this paper with complete proofs and details can be found
at [16].

2 Bounded quantum storage UC

2.1 The BQS-UC model

To understand the definition of BQS-UC-security, we first have to understand the
idea underlying UC security. In the UC model, a protocol π emulates (realizes,
implements, is as secure as) another protocol ρ if any attack on π can also happen
on ρ. Thus, if ρ is secure by definition (e.g., because it contains only one trusted
machine, a so-called ideal functionality), π must also be secure. To formalize this,
we introduce the concept of an adversary and a simulator. We require that for
any adversary attacking π (real model), there is a simulator attacking ρ (ideal
model) such that the real and the ideal model are indistinguishable. To define
indistinguishability, we introduce another machine, the environment. Its task is
to try and distinguish between the real and the ideal model. The environment
provides the inputs to the protocol parties, gets their outputs, and may talk to
the adversary/simulator. We then get the following definition: π UC-emulates ρ

2 We are restricted to two-party functionalities because our construction uses a sub-
protocol by Wolf and Wullschleger [18,19] to reverse the direction of an OT; this
protocol only makes sense in a two-party setting.

if for any adversary Adv there is a simulator Sim such that for all environments
Z, the probability that Z outputs 1 is approximately the same in the networks
π,Adv,Z and ρ, Sim,Z.

To translate this to the quantum setting, we only need to change the ma-
chine model to allow for quantum machines instead of classical machines. Given
networks S, S′ of quantum machines with Z ∈ S, S′, we say that S and S′ are ε-
close if |P −P ′| ≤ ε where P is the probability that Z outputs 1 in an execution
of S, and P ′ is defined analogously. Networks are negligible-close if ε is negligible,
and perfectly close if ε = 0. We call a machine M a-memory bounded if it keeps
at most a qubits of quantum memory between activations. (An activation is the
computation performed by a machine between receiving a message and sending
the immediate response.) We do not impose any limitations on the computation-
time or memory-use during a single activation of M . We write QM(M) for the
memory bound of M (i.e., QM(M) is the smallest a such that M is a-memory
bounded). A protocol π is a network not containing adversary, simulator, or
environment. The set of corruptible protocol parties is denoted partiesπ. Given
C ⊆ partiesπ, we denote by πC the protocol where all parties in C have been
replaced by corruption parties which are controlled by the adversary. For details
on the machine and the network model, we refer to the full version [16] or to [15].

We can now formulate BQS-UC-security. Intuitively, a protocol is BQS-UC-
secure if it is UC-secure for memory-bounded adversaries. To formulate this, we
need to explicitly parametrize the definition over a memory bound a. Then we
require that the total quantum memory used by environment and adversary is
bounded by a. The reason why we include the environment’s memory is that
the latter can be involved in the actual attack: If only the adversary’s memory
was bounded, the adversary could use the environment as an external storage to
perform the attack (see also our discussion on page 5).3

It remains to decide whether the simulator should be memory bounded. If
we allow the simulator to be unbounded, composition becomes difficult: In some
cases, the simulator of one protocol plays the role of the adversary of a second
protocol. Thus, if simulators where not memory bounded, the second protocol
would have to be secure against unbounded adversaries. However, if we require
the simulator to be a-memory bounded, we will not be able to construct non-
trivial protocols: In order to perform a simulation, the simulator needs to have
some advantage over an honest protocol participant (in the computational UC
setting, e.g., this is usually the knowledge of some trapdoor). In our setting, the
advantage of the simulator will be that he has more quantum memory than the
adversary. Thus we introduce a second parameter s which specifies the amount
of quantum memory the simulator may use for the simulation. More precisely,
we allow the simulator to use s + QM(Adv) qubits because the simulator will
usually internally simulate the adversary Adv as a black-box and therefore have
to additionally reserve sufficient quantum memory to store the adversary’s state.

3 This is captured more formally by the completeness of the so-called dummy-
adversary (see the full version [16]), which shows that one can even shift the complete
attack into the environment.

Definition 1 (BQS-UC-security). Fix protocols π and ρ. Let a, s ∈ N0 ∪
{∞} (possibly depending on the security parameter). We say π (a, s)-BQS-UC-
emulates4 ρ iff for every set C ⊆ partiesπ and for every adversary Adv there is a
simulator Sim with QM(Sim) ≤ s+QM(Adv) such that for every environment Z
with QM(Z)+QM(Adv) ≤ a, the networks πC∪{Adv,Z} (called the real model)
and ρC ∪ {Sim,Z} (called the ideal model) are negligible-close. We furthermore
require that if Adv is quantum-polynomial-time, so is Sim.

In most cases, the behavior of the ideal protocol ρ is described by a single
machine F , the so-called ideal functionality. We can think of this functionality
as a trusted third party that perfectly implements the desired protocol behavior.
In order to apply Definition 1 to ideal functionalities (e.g., π BQS-UC-emulates
F) we have to be able to consider an ideal functionality as a protocol. Following
[4,15], we do this by introducing dummy-parties. That is, the protocol F consists
of the functionality F together with a dummy-party Ã for every party A. The
dummy-parties just forward inputs/outputs between the functionality F and
the environment. They can, however, be corrupted by the adversary/simulator.
This allows the adversary/simulator to control the inputs/outputs of that party.
When we write π BQS-UC-emulatesF , we always assume the presence of dummy-
parties in the ideal model. For details, we refer to the full version [16] or to [15].

On the memory bound of the environment. In Definition 1, we impose the
memory bound on both the adversary and the environment. In this, we differ
from the modeling by Wehner and Wullschleger [17]. In their definition, the
environment (which is implicit in the definition of the indistinguishability ≡ε of
quantum channels) provides the input state to protocol and adversary, then gets
the outputs of protocol and adversary, and finally the environment has to guess
whether it interacted with the real or the ideal model. During the interaction
of the protocol, the environment is not allowed to communicate with any other
machine. Between its two activations, the environment is allowed to keep an
arbitrarily large quantum state.5 The interesting point here is that, in contrast to
our Definition 1, Wehner and Wullschleger do not impose the memory bound on
the environment, only on the adversary. They motivate unlimited environments
by pointing out that it is more realistic to assume that a particular memory
bound (say, 100 qubits) applies to a particular adversary (e.g., a smart card) than
to the whole environment (i.e., all computers world-wide). We believe, however,
that this reasoning has to be applied with care: Only when we have the guarantee

4 Since we only consider statistical security in this work, we omit the qualifier “statisti-
cal”. Similarly, when we speak about classical-UC-security and quantum-UC-security,
we mean the statistical variant of that notion.

5 Note that strictly speaking, the formalism of [17, full version] does not model an
environment with quantum memory: For quantum channels Λ,Λ′ they define Λ ≡ε Λ′

iff for all quantum states ρ, the trace distance between Λ(ρ) and Λ′(ρ) is at most ε.
To model environments with quantum memory, we should instead require that for all
Hilbert spaces H and all quantum states ρ, the trace distance between (Λ⊗ idH)(ρ)
and (Λ′⊗ idH)(ρ) is at most ε. We believe that the latter was the intended meaning
of ≡ε.

that the adversary (e.g., the smart card) cannot communicate with any other
machines can we assume a smart card is limited to 100 qubits. Otherwise, we
have to assume that the smart card effectively has (in the worst case) access
to all the quantum memory of the environment. Thus, except in very specific
cases, the memory bound we assume needs to be large enough to encompass
the environment’s memory as a whole. Thus, the bound we assume not to be
surpassed by the adversary’s memory needs to be large enough that it makes
sense to assume that the environment does not surpass this bound either. But in
this case, we can safely assume in Definition 1 that the environment is restricted
by that memory bound.

We stress that even if our environment is memory bounded, we do take
into account the fact that an environment can have a quantum state that is
entangled with that of the adversary; we just limit this quantum state to the
memory bound.

We get, however, an interesting variant of our model if we follow the approach
of Wehner and Wullschleger as follows. We call a machine a-⋄-memory-bounded6

if its state between activations consists of two registers A and B. The register
A contains at most a qubits, and register B is unlimited but is only accessed
in the first and the last activation of B. We denote by QM⋄(Z) the ⋄-memory
bound of Z. We define (a, s)-⋄-BQS-UC-emulation like (a, s)-BQS-UC-emulation
(Definition 1), except that we use QM⋄(Z) instead of QM(Z). (But we still
use QM(Adv) and QM(Sim).) We stress that our techniques also work for this
definition. All results of this section still hold with essentially unmodified proofs
(except that we always have to refer to the ⋄-memory bound of the environment
instead memory bound). The results from Section 3 (BQS-UC commitments)
are based on the existence of certain commitment schemes that are hiding with
respect to memory bounded adversaries. We use the commitment scheme from
[12] (see Theorem 6). To extend the results from Section 3 to ⋄-BQS-UC, we
need schemes that are hiding with respect to ⋄-memory bounded adversaries
instead. Besides that, the proofs of the results in Section 3 stay essentially the
same (except for using ⋄-memory bounds instead of memory bounds).

2.2 Composition

For some protocol σ, and some protocol π, by σπ we denote the protocol where
σ invokes (up to polynomially many) instances of π. That is, in σπ the machines
from σ and from π run together in one network, and the machines from σ access
the inputs and outputs of π. (That is, σ plays the role of the environment from
the point of view of π. In particular, Z then talks only to σ and not to the sub-
protocol π directly.) A typical situation would be that σF is some protocol that
makes use of some ideal functionality F , say a commitment functionality, and
then σπ would be the protocol resulting from implementing that functionality
with some protocol π, say a commitment protocol. One would hope that such

6 We use the symbol ⋄ because ⋄-memory-bounded environments essentially model
indistinguishability with respect to the so-called ⋄-norm.

an implementation results in a secure protocol σπ. That is, we hope that if π
BQS-UC-emulates F and σF BQS-UC-emulates G, then σπ BQS-UC-emulates
G. Fortunately, this is the case, as long as we pick the memory bounds in the
right way:

Theorem 2 (Composition Theorem). Let π and σ be quantum-polynomial-
time protocols and F and G be quantum-polynomial-time functionalities. Assume
that σ invokes at most one subprotocol instance. Assume that π (a, s)-BQS-UC-
emulates F and that σF (a − QM(σ) + s, s′)-BQS-UC-emulates G. Then σπ

(a−QM(σ), s+ s′)-BQS-UC-emulates G.

The proof of this theorem is very similar to that in [15], except that we have
to keep track of the quantum memory used by various machines constructed in
the proof.

Notice that in this composition theorem, the outer protocol σ is only allowed
to invoke one instance of the subprotocol π. This stands in contrast to the
universal composition theorem for classical-UC [4] and for quantum-UC [15]
where any polynomially-bounded number of concurrent instances of π is allowed.
In fact, this is not just a limitation of our proof technique.7 For example, assume
a protocol πA→B

COM that (a, s)-BQS-UC-emulates the commitment functionality
FA→B

COM with sender A and recipient B. Assume further that πA→B
COM does not use

any functionalities as setup. As we will see later, such a protocol exists. Now let
πB→A
COM be the protocol that results from exchanging the roles of A and B. Then

πB→A
COM (a, s)-BQS-UC-emulates FB→A

COM . Consider the concurrent composition of
πA→B
COM and πB→A

COM . In this protocol, a corrupted Bob may reroute all messages
between the Alice in the first protocol and Alice in the second protocol. Thus,
if Alice commits to a random value v in the first protocol, Bob commits to
the same value v in the second protocol without knowing it. It is easy to see
that in a concurrent composition of FA→B

COM and FB→A
COM , this is not possible.

Thus the composition of πA→B
COM and πB→A

COM does not (a′, s′)-BQS-UC-emulate
the composition of FA→B

COM and FB→A
COM (for any parameters a′, s′). To convert

this into an example of a protocol that does not even compose with itself, just
consider the protocol πA↔B

COM in which Bob may choose whether FA→B
COM or FB→A

COM

should be executed. It might be possible to make πA↔B
COM self-composable by

adding suitable tags inside the messages, but the definition of BQS-UC-security
does not enforce this.

Although BQS-UC-security does not guarantee for concurrent self-
composability, individual protocols may have this property. In order to formulate
this, we introduce the concept of the multi-session variant of a protocol. Given a
protocol π and a polynomially-bounded n, we define πn to be the protocol that
executes n instances of π concurrently.

Then, from Theorem 2, we immediately get the following corollary:

7 In the proof, the difficulty arises from a hybrid argument where the protocol π is ex-
ecuted together in one network with the protocol ρ and the corresponding simulator.
Since the simulator may use more quantum memory than π is resistant against, we
cannot guarantee security of π in this hybrid setting and the proof cannot proceed.

Corollary 3. Let π and σ be quantum-polynomial-time protocols and F and G
be quantum-polynomial-time functionalities. Let n,m ≥ 0 be integers (depend-
ing on the security parameter). Assume that σ invokes at most m subproto-
col instances. Assume that πnm (a, s)-BQS-UC-emulates Fnm and that (σF)n

(a − nQM(σ) + s, s′)-BQS-UC-emulates Gn. Then (σπ)n (a − nQM(σ), s + s′)-
BQS-UC-emulates Gn.

3 Commitments

3.1 Extractable commitments

In this section, we present the notion of online-extractable commitments in the
BQS model. These will be used as a building block for constructing BQS-UC
commitments in the next section.

Definition 4 ((ε, a)-BQS-hiding). Given a commitment protocol π with
sender Alice and recipient Bob, and an adversary B′ corrupting Bob, we de-
note with 〈A(m), B′〉B′ the output of B′ in an interaction between Alice and B′

where Alice commits to m.
We call π (ε, a)-BQS-hiding iff for all a-memory bounded B′ and all m1,m2 ∈

M , we have that
∣

∣Pr[〈A(m1), B
′〉B′ = 1]− Pr[〈A(m2), B

′〉B′ = 1]
∣

∣ ≤ ε. Here M
is the message space of the commitment scheme.

Instead of the binding property, we will need a stronger property: online-
extractability. This property guarantees that there is a machine (the extractor)
that, when running as the recipient of the commit protocol, is able to output
the committed value V already after the commit phase. This extractor should
be indistinguishable from an honest recipient. Note that this does not contradict
(ε, a)-BQS-hiding since we allow the extractor’s quantum memory to contain
more than a qubits. For our purposes, we will only need a definition of online-
extractability that does not impose a memory bound on the adversary. We do,
however, make the memory bound s of the extractor explicit.

Definition 5 ((ε, s)-online-extractable). Given a commitment protocol π
with sender Alice and recipient Bob, an extractor is a machine BS that, af-
ter the commit phase, gives an output V ′ and then executes the (honest) code
of Bob for the open phase and outputs a value V (the accepted value). (In par-
ticular, BS needs to provide an initial state for the program of the open phase
of Bob that matches the interaction so far.) We write V = ⊥ if the open phase
fails.

For an adversary A′, we denote with 〈A′, B〉A′ (〈A′, BS〉A′) the output of A′

in an interaction between A′ and Bob (BS) where A′ is given V after Bob (BS)
terminates.

We call π (ε, s)-online-extractable iff there exists an s-memory bounded
quantum-polynomial-time extractor BS such that for all adversaries A′, we have
that

∣

∣Pr[〈A′, B〉A′ = 1] − Pr[〈A′, BS〉A′ = 1]
∣

∣ ≤ ε and in an interaction of A′

and BS, we have Pr[V /∈ {V ′,⊥}] ≤ ε.

Theorem 6 (Online-extractable commitments). For any polynomially-
bounded integers a and ℓ, there is a constant-round 0-memory bounded
(ε, a)-BQS-hiding (ε, s)-online-extractable commitment scheme π for some
exponentially-small ε and some polynomially-bounded s. The message space of π
is M = {0, 1}ℓ.

A protocol with the properties from Theorem 6 was constructed in [12]. They
did not, however, show that it is online-extractable. In the full version [16]
we show how their proof of the binding property can be extended to online-
extractability.

3.2 BQS-UC commitments

In this section, we present a commitment scheme πCOM that is BQS-UC-secure
for memory bound a and for n concurrent instances of πCOM. The parameters
a and n can be arbitrary, but πCOM depends on them. To state our result, we
first define the ideal functionality for commitments.

Definition 7 (Commitment). Let A and B be two parties. The functionality

FA→B,ℓ
COM behaves as follows: Upon (the first) input (commit, x) with x ∈ {0, 1}ℓ(k)

from A, store x and send committed to B. Upon (the first) input open from A
send (open, x) to B (unless x is still undefined). All communication/input/output
is classical. We call A the sender and B the recipient.

Note that this definition also defined the behavior of the functionality in the
case where A or B is corrupted. In this case, the adversary (or simulator) is
allowed to send/receive the inputs/outputs in the name of A or B, respectively.
For example, if A is corrupted, the adversary can decide when to commit to
what message and when to open.

Intuition. The protocol πCOM is depicted in Figure 1. Before we prove its se-
curity, we first explain the underlying intuition. In order to prove the BQS-UC-
security of πCOM, it is necessary to construct a simulator (that may use more
quantum memory than the adversary) that achieves the following: When being
in the role of the recipient, the simulator is able to extract the commitment after
the commit phase. When being in the role of the sender, the simulator should be
able to open the commitment to any value of his choosing (equivocality). The
first requirement can easily be achieved by using the online-extractable commit-
ment scheme from Theorem 6. That scheme, however, is not equivocal. In order
to make our protocol equivocal, we intentionally weaken the binding property of
the commitment. Instead of committing to a single value v, the sender commits
using a commitment scheme C2 to random values R := R1, . . . , Rm. Then he
sends v⊕F (R) with F being a universal hash function and sends the syndrome
σ of R with respect to a suitable linear code. In the open phase, the sender does
not open all commitments Ri, but instead just sends R to the recipient. The
recipient chooses a test set T , and the sender opens Ri for i ∈ T . The modi-
fied scheme is still binding: Assume the sender wishes to be able to open the

Parameters: Integers ℓ (the length of the committed value), m, c < m, b, d, κ < m.
A b-block (m,κ, d)-linear code8 where S(ω) ∈ {0, 1}(m−κ)b denotes the syndrome of a
codeword ω ∈ {0, 1}mb. A family F of strongly universal hash functions F : {0, 1}mb →
{0, 1}ℓ. All parameters may depend on the security parameter k.
Subprotocols: A commitment scheme C1 with sender Bob, and a commitment scheme
C2 with sender Alice, both 0-memory bounded (not using quantum memory).9

Parties: The sender Alice A and the recipient Bob B.
Inputs: In the commit phase, Alice gets (commit, v) with v ∈ {0, 1}ℓ. In the open
phase, Alice gets open. Bob gets no inputs.
Commit phase:
C1. Bob picks a random T ⊆ {1, . . . ,m} with #T = c. Then Bob commits to T

using C1. (We assume some encoding of sets T that does not allow to encode sets
with #T 6= c.)

C2. Alice picks R1, . . . , Rm ∈ {0, 1}
b. For each i, Alice commits to Ri using C2. (The

commitments may be performed concurrently.)
C3. Alice picks a hash function F ← F, computes p := v ⊕ F (R1‖ . . . ‖Rm), computes

the syndrome σ := S(R1‖ . . . ‖Rm), and sends (F, σ, p) to Bob. (This may be done
concurrently with the commitments to Ri.)

C4. Bob outputs committed.
Open phase:
O1. Alice sends R1‖ . . . ‖Rm to Bob.
O2. Bob opens T using C1.
O3. For each i ∈ T , Alice opens Ri using C2. (The open phases may be executed

concurrently.)
O4. Bob checks that the values Ri sent by Alice match the values Ri opened by Alice

for all i ∈ T , and that σ = S(R1‖ . . . ‖Rm).
O5. Bob computes v := p ⊕ F (R1‖ . . . ‖Rm) and outputs (open, v). (I.e., Bob accepts

the opened value v.)

Fig. 1. Our commitment protocol πCOM.

commitment with two different values. Then he has to find values R′ 6= R that
both pass the recipients checks in the open phase. If R′ differs from R in many
blocks Ri, with high probability the verifier will require that one of these Ri is
opened and the sender will be caught. If R′ and R differs in only few blocks, then
R− R′ has a low Hamming weight and is not in the code. Hence the syndrome
of R − R′ is not zero, and, since the code is linear, the syndromes of R′ and R
cannot both equal σ. Thus the sender is caught, too. Furthermore, our scheme
is online-extractable if C2 is online-extractable since the simulator can extract
the committed values R. However, we have not yet achieved the equivocality. In
order to open the commitment to a different value, the sender needs to know T
before sending R′. To achieve this, the recipient commits to T before the commit
phase (using an online-extractable commitment scheme C2). A simulator wishing
to change the value of the commitment simply extracts T . Then he knows which
Ri can be changed without being detected and can thus change F (R1, . . . , Rm)
to any value he wishes.

Difficulties with concurrent composition. The main difficulty in showing
the BQC-UC-security of πCOM lies in coping with the fact that several (say n)
instances of πCOM might run concurrently. Consider for example the case that
Alice is corrupted. In this case, the adversary may produce the C2-commitments
to R1, . . . , Rm in n instances of Alice. The simulator needs to run the nm extrac-
tors to extract these commitments. Each of these extractors needs some quantum
memory s2. Thus our simulator needs nms2 bits of quantum memory. On the
other hand, we need to make sure that the C1-commitments to T , produced by
the simulator, are hiding. C1 needs to be hiding against a1-bounded adversaries
with a1 > nms2 ≥ s2 (because we cannot be sure that the memory used by the
simulator is not misused by the adversary). But then the extractor for C1 needs
to use s1 > a1 qubits; otherwise the adversary could run the extractor to break
the protocol. Similarly, we can see that when Bob is corrupted, C2 needs to be
hiding against a2-memory bounded adversaries with a2 > ns1 ≥ s1, and s2 > a2.
Thus we need a1 > s2 > a2 > s1 > a1 which is impossible.

Solving the difficulties. The way out is to carefully track the memory used
by the simulators; it turns out that in the proof of security against corrupted
Alice, we can make sure that the adversary is not able to “misuse” the memory
of the simulator. When Alice is corrupted, we need to construct a simulator that
extracts the values v of n concurrent commitments produced by Alice, while
being indistinguishable from an execution of the honest recipient Bob. More
precisely, we show that the simulator is indistinguishable if C1 is a1-BQS-hiding
and C2 is s2-online-extractable and environment and adversary are a1-memory-
bounded. We do not require that a1 > s2, thus breaking the above-mentioned
circularity in the choices of a1, s1, a2, s2.

Let B∗ be defined like the honest Bob, except that instead of honestly running
the recipient’s code for C2, B∗ runs the extractor BS for C2 to extract the
committed values R in the C2-commitments. From R, B∗ computes a guess v′

for the committed value v. B∗ does not, however, use this guess at any point.

First, note that B∗ is indistinguishable from honest Bob: This follows from
the fact that the extractor for C2 is indistinguishable from the recipient for C2.
Furthermore, as discussed in the section “Intuition” above, extracting v will be
successful as long as Alice does not learn anything about T , i.e., as long as C1

is hiding. But C1 is only a1-BQS-hiding. And B∗ uses ms2 qubits to run the
extractors for C2, so the total memory used in the network is a1 + ms2 which
is beyond the memory bound tolerated by C1. Fortunately, however, honest
Bob runs the recipient of C2 after the end of the commit phase and before the
beginning of the open phase of C1. Thus, from the point of view of C1, the
extractors are executed within a single atomic computation. And we defined
BQS-hiding to hold even if the adversary uses unlimited memory within a single

8 That is, a code where the code words consist of m blocks of b bit, that contains 2bκ

codewords, and where every non-zero codeword contains at least d nonzero blocks.
9 Note that this does not refer to the memory bound of the adversary. We only state

that honest Alice and Bob do not need to use quantum memory in C1 and C2.

activation. Thus the ms2 qubits used by the extractors do not break the hiding
property, and we get that B∗ guesses the right v′ with overwhelming probability.

This argument does, however, only work when a single instance of B∗ is
executed. If several instances of B∗ are executed, one instance may run the
commit or open phase of C1 concurrently with another instance’s extractors. Two
show that n concurrent instances of B∗ extract successfully, we use the following
argument: For each j, we have that if only the j-th Bob instance is replaced by
B∗, then B∗ extracts correctly. Furthermore, Bob and B∗ are indistinguishable,
thus if we replace all the other instances of Bob by B∗, the j-th instance still
extracts correctly. Thus, for any j, if there are n instances of B∗, then the j-th
instance extracts correctly. Thus all instances of B∗ extract correctly. And the
instances of B∗ are indistinguishable from the instances of Bob.

Finally, we can construct a simulator that runs B∗ instead of Bob and uses
the value v′ extracted by B∗ as input to the commitment functionality. Since
v = v′ with overwhelming probability, this simulator is successful.

Thus we have shown that a1 can be chosen independently of s2. This allows
to break the circularity in the choices of a1, s1, a2, s2: We first start with an arbi-
trary a = a1. Then we pick an arbitrary a1-BQS-hiding and s1-online-extractable
C1, and then an arbitrary a2 := a + ns1-BQS-hiding and s2-online-extractable
commitment C2. For the case of corrupted Bob, we then construct a simula-
tor that uses ns1 qubits and is secure against a = a2 − ns1-memory bounded
environments and adversaries. And for the case of corrupted Alice, using the
argument above, we get a simulator that uses nms2 qubits and is secure against
a = a1-bounded environments and adversaries.

The analysis. We proceed with the formal analysis of πCOM. We first consider
the case where the recipient is corrupted.

Lemma 8. Assume that ε, δ are negligible, n, c are polynomially-bounded, and
2κb − mb − 2cb − ℓ is superlogarithmic (in the security parameter k). Assume
that C1 is (ε, s1)-online-extractable and C2 is (δ, a+ ns1)-BQS-hiding. Assume
that F is a family of affine strongly universal hash functions.

Then πn
COM (a, ns1)-BQS-UC-emulates (FA→B,ℓ

COM)n for corrupted recipient B.

Proof. First, we describe the structure of the real and ideal model in the case
that the party B (Bob) is corrupted:

In the real model, we have the environment Z, the adversary Adv, the honest
party A (Alice), the corruption party BC . The adversary controls the corruption
party BC , so effectively he controls the communication between Alice and Bob.
The environment provides Alice’s inputs (commit, v) and open. See Figure 2 (a).

In the ideal model, we have the environment Z, the simulator Sim (to be de-
fined below), the dummy-party Ã, the corruption party BC , and the commitment
functionality FCOM. The inputs (commit, v) and open of FCOM are provided by
the dummy-party B̃ and thus effectively by the environment Z. The simulator
Sim controls the corruption party BC and hence gets the outputs committed

and (open, v) of FCOM. See Figure 2 (b).

(a)

Z A BC Adv
(commit,v)

open

(b)

Z Ã FCOM BC Sim
(commit,v)

open

(commit,v)

open

committed

(open,v)

committed

(open,v)

Fig. 2. Networks occurring in the proof of Lemma 8.

Fix an adversary Adv. To show Lemma 8, we need to find a simulator
Sim with QM(Sim) ≤ ns1 such that, for any environment Z with QM(Z) +
QM(Adv) ≤ a, the real model and the ideal model are negligible-close. This
simulator is described in Figure 3. We use the abbreviations R := R1‖ . . . ‖Rm

and R′ := R′
1‖ . . . ‖R

′
m.

To show that the real and the ideal model are negligible-close, we start with
the real model, and change the machines in the real model step-by-step until we
end up with the ideal model. In each step, we show that the network before and
after that step are negligible-close.

Game 1. We change the machine A as follows: Instead of executing the program
of the honest recipient of C1, A executes the extractor AS . ⋄

Let T ′ denote the extracted value. The modified A does not use T ′. Since
there are up to n copies of A, and since C1 is (ε, s1)-online-extractable, the real
model and Game 1 are nε-close.

Game 2. We change the machine A to abort if the opening of T succeeds and
reveals a value T 6= T ′. ⋄

Since C1 is (ε, s1)-online-extractable, in each instance of A, this happens with
probability at most ε, thus Game 1 and Game 2 are nε-close.

Notice that the only machines that use quantum memory in Game 2 are
Z, Adv, and n copies of AS . Since AS is s1-memory bounded, and QM(Z) +
QM(Adv) ≤ a we have that the total amount of quantum memory used in
Game 2 is bounded by a+ ns1.

Game 3. We change the machine A to commit to 0b instead of Ri for each
i /∈ T ′. ⋄

To see that Game 2 and Game 3 are negligible-close, we introduce an inter-
mediate hybrid game, Game 3j , in which only the first j of the commitments
to Ri, i /∈ T are replaced by commitments to 0b. Since at most a + ns1 qubits
of quantum memory are used in Game 2 and therefore also in Game 3j , and
since the C2-commitments to Ri, i /∈ T are never opened, from the fact that
C2 is (δ, a + ns1)-BQS-hiding it follows that Game 3j and Game 3j+1 are δ-
close. Note that there are, in the whole game, up to n copies of A and thus

Commit phase (on input committed):
- When Bob commits to T using C1, the simulator runs the extractor AS for C1 instead

of the honest recipient’s program. (Since C1 has recipient Alice, we write AS, not
BS .) Let T ′ denote the value extracted by AS.

- The simulator picks R1, . . . , Rm ∈ {0, 1}
b. For each i, Sim commits (honestly) to Ri

(if i ∈ T) or to 0b (if i /∈ T) using C2.

- Sim picks a hash function F
R
← F, picks a random p

R
← {0, 1}ℓ, computes the

syndrome σ := S(R), and sends (F, σ, p) to Bob.
Open phase (on input (open, v) with v ∈ {0, 1}ℓ):
- Sim picks R′ ∈ {R′ : ∀i ∈ T ′.Ri = R′

i, σ = S(R′), p⊕ F (R′) = v} uniformly.10

- Sim sends R′ to Bob.
- Sim waits for Bob to open T using C1. If T 6= T ′, Sim aborts.
- For each i ∈ T ′, Sim (honestly) opens Ri using C2.

Fig. 3. Simulator Sim for the case of corrupted Bob. The program described in this
figure is executed for each instance of the n instances of πCOM. Communication with
Bob is sent to an internally simulated instance of the adversary Adv.

up to nc C2-commitments to some Ri, i /∈ T . Thus Game 2 = Game 30 and
Game 3 = Game 3nc are ncδ-close.

Game 4. We modify A to set R′ := R and to send R′ instead of R to Bob in
step O1. ⋄

This modification is for notational purposes only, Game 3 and Game 4 are
perfectly close.

Game 5. We modify the way A chooses F,R,R′, σ, p: In Game 4, we have F
R
← F,

R
R
← {0, 1}mb, σ := S(R), p := v⊕F (R), R′ := R. (We call this distribution D1.)

In Game 5 we use F
R
← F, R

R
← {0, 1}mb, p

R
← {0, 1}ℓ, σ := S(R), R′ R

← {R′ :
∀i ∈ T ′.Ri = R′

i, σ = S(R′), p⊕F (R′) = v} =: RF,R,p. (We call this distribution
D2.) ⋄

To show that Game 4 and Game 5 are negligible-close, we use the following
claim:

Claim 1 Let RT := (Ri)i∈T . For any v ∈ {0, 1}ℓ, the statistical distance between
(F,RT , R

′, σ, p) chosen according to D1 and (F,RT , R
′, σ, p) chosen according to

D2 is at most 2cb+mb/2+ℓ/2−κb−1.

The proof of this claim uses the fact that p is the result of applying F to a
random variable R with high min-entropy. Due to the leftover-hash-lemma [9],
p is indistinguishable from randomness. We refer to the full version [16] for the
proof. Using Claim 1 and the fact that we have n instances of A, we immediately

10 Note R′ can be sampled efficiently since the conditions ∀i ∈ T ′.Ri = R′

i, σ = S(R′),
and p⊕F (R′) = v are a system of linear equations. This uses that S is the syndrome
of a linear code, and that F is a family of affine functions.

(a)

Adv AC B Z
committed

(open,v)

(b)

Sim AC FCOM B̃ Z
(commit,v)

open

(commit,v)

open

committed

(open,v)

committed

(open,v)

Fig. 4. Networks occurring in the proof of Lemma 9.

get that Game 4 and Game 5 are n(2cb+mb/2+ℓ/2−κb−1)-close because the values
(Ri)i/∈T are never used by A (except indirectly through R′, σ, and p).

Finally, note that by construction of Sim, Game 5 and the ideal model are
perfectly close. Thus the real and the ideal model are γ-close with γ := 2nε +
ncδ + n(2cb+mb/2+ℓ/2−κb−1). Since ε, δ are negligible, and n, c are polynomially-
bounded, and 2κb−mb−2cb− ℓ is superlogarithmic, we have that γ is negligible.
Thus πn

COM (a, ns1)-BQS-UC-emulates (FA→B,ℓ
COM)n in the case of corrupted Bob.

⊓⊔

Lemma 9. Assume that ε, δ are negligible, n is polynomially-bounded, and
(1 − d

m)c is negligible (in the security parameter k). Assume that C1 is (ε, a)-
BQS-hiding and that C2 is (δ, s2)-online-extractable. Assume that the code with
syndrome S has efficient error-correction.

Then πn
COM (a, nms2)-BQS-UC-emulates (FA→B,ℓ

COM)n for corrupted sender A.

Proof. First, we describe the structure of the real and the ideal model in the
case that the party A (Alice) is corrupted:

In the real model, we have the environment Z, the adversary Adv, the cor-
ruption party AC , and the honest party B (Bob). The adversary controls the
corruption party AC , so effectively he controls the communication between Al-
ice and Bob. The environment gets Bob’s outputs committed and (open, v). See
Figure 4 (a).

In the ideal model, we have the environment Z, the simulator Sim (to be
defined below), the corruption party AC , the dummy-party B̃, and the com-
mitment functionality FCOM. The inputs (commit, v) and open of FCOM are
provided by the corruption party AC and thus effectively by the simulator Sim.
The environment Z controls the dummy-party B̃ and hence gets the outputs
committed and (open, v) of FCOM. See Figure 4 (b).

Fix an adversary Adv. To show Lemma 9, we need to find a quantum-
polynomial-time simulator Sim with QM(Sim) ≤ nms2 such that, for any en-
vironment Z with QM(Z) + QM(Adv) ≤ a, the real model and the ideal
model are negligible-close. This simulator is described in Figure 5. Note that
Sim is quantum-polynomial-time: The extractor BS is quantum-polynomial-time

Commit phase:
- Sim picks a random T ⊆ {1, . . . ,m} with #T = c. Then Sim (honestly) commits to
T using C1.

- When Alice commits to R1, . . . , Rm, the simulator runs the extractor BS for C2 in-
stead of the honest recipient’s program. Let R′

1, . . . , R
′
m denote the extracted values.

- Sim waits for (F, σ, p) from Alice.
- Sim computes an R∗ ∈ {0, 1}mb with S(R∗) = σ and ω(R′, R∗) ≤ (d− 1)/2 (remem-

ber that ω is the block-wise Hamming distance), computes v′ := p ⊕ F (R∗), and
sends (commit, v′) to FCOM. (If no such R∗ exists, we set v′ := ⊥.)

Open phase:
- Sim waits for R from Alice.
- Sim (honestly) opens T using C1.
- For each i ∈ T , Sim waits for Alice to open Ri using C2.
- Sim checks that the values Ri sent by Alice match the values Ri opened by Alice

for all i ∈ T , and that σ = S(R1‖ . . . ‖Rm).
- Sim sends open to FCOM.

Fig. 5. Simulator Sim for the case of corrupted Alice. The program described in this
figure is executed for each instance of the n instances of πCOM. Communication with
Alice is sent to an internally simulated instance of the adversary Adv.

by definition, and computing R∗ is possible in polynomial-time because the
code with syndrome S has efficient error-correction. Since C2 is (δ, s2)-online-
extractable and Sim uses m instances of BS per copy of B, QM(Sim) ≤ nms2.
We use the abbreviations R := R1‖ . . . Rm and similarly for R′ and R∗.

Before we proceed, we introduce two variants of the honest recipient B. The
machine B∗ behaves like B, but when Alice commits to R1, . . . , Rm using C2,
B∗ runs the extractor BS for C2 instead of the honest recipient’s program. Call
the extracted values R′

1, . . . , R
′
m. Further, B∗ computes an R∗ with S(R∗) = σ

and ω(R′, R∗) ≤ (d − 1)/2 and then computes v′ := p⊕ F (R∗). (If no such R∗

exists, v′ := ⊥.) In the open phase, B∗ behaves like B. In particular, B∗ outputs
(open, v), not (open, v′). That is, v′ is computed but never used.

The machine B+ behaves like B∗, but outputs (open, v′) instead of (open, v).
By definition of online-extractability, and since B∗ does not use the value

extracted by BS , we have that B and B∗ are δ-indistinguishable. More precisely,
for any network S, we have that S ∪ {B} and S ∪ {B∗} are δ-close. Since online-
extractability was defined with respect to non-memory bounded adversaries, this
holds even if S is not memory bounded.

As in Lemma 8, we proceed by investigating a sequence of games.

Game 1. In the game Game 1j, the j-th instance of B is replaced by an instance
of B∗. (Note: only one instance is replaced, not the first j instances.) ⋄

We use the following claim:

Claim 2 Let S be an a-memory bounded network. In an execution of S ∪ {B∗},
let v, v′ denote the values v, v′ computed by B∗. Then Pr[v /∈ {v′,⊥}] ≤ ε+ (1−
d
m)c := η.

We prove this claim below. Since C1 and C2 are 0-memory bounded, we have
that the machine B is 0-memory bounded. QM(Z) + QM(Adv) ≤ a. Thus we
can apply Claim 2 to Game 1j . Hence in Game 1j , Pr[vj /∈ {v′j,⊥}] ≤ η where
vj , v

′
j are the values v, v′ computed by B∗. We write vj := ⊥ if the open phase

fails or does not take place (and hence vj is not computed by B∗).

Game 2. This game is defined like the real model, except that we use n instances
of B∗ instead of the n instances of B. ⋄

Using the fact that B and B∗ are δ-indistinguishable, we get that the real
model and Game 2 are nδ-close.

Again using that B and B∗ are δ-indistinguishable, we get that
∣

∣Pr[vj /∈

{v′j ,⊥} : Game 1j] − Pr[vj /∈ {v′j ,⊥} : Game 2]
∣

∣ ≤ (n − 1)δ. Thus Pr[vj /∈
{v′j ,⊥} : Game 2] ≤ η + (n− 1)δ. Since this holds for all j = 1, . . . , n, we get:

Pr[∃j. vj /∈ {v′j ,⊥} : Game 2] ≤ nη + n(n− 1)δ. (1)

Game 3. This game is defined like the real model, except that we use n instances
of B+ instead of the n instances of B. ⋄

Notice that Game 2 and Game 3 only differ in the fact that in Game 2 we use
instances of B∗ and in Game 3 instances of B+. By definition, B∗ and B+ only
differ in the value they output: B∗ outputs (open, v) and B+ outputs (open, v′).
By (1), the probability that the values v, v′ are different in some instance of B∗ is
bounded by nη+n(n−1)δ. Hence Game 2 and Game 3 are (nη+n(n−1)δ)-close.

Finally, note that by construction of Sim, Game 3 and the ideal model are
perfectly close. Thus the real and the ideal model are γ-close with γ := nδ+nη+
n(n − 1)δ = n2δ + nε + n(1 − d

m)c. Since δ, ε are negligible, n is polynomially-

bounded, and (1 − d
m)c is negligible, we have that γ is negligible. Thus πn

COM

(a, nms2)-BQS-UC-emulates (FA→B,ℓ
COM)n in the case of corrupted Alice.

Proof of Claim 2. Let R, R′, R∗ and T denote the corresponding values as
computed by B∗. We abbreviate RT := (Ri)i∈T and R′

T := (R′
i)i∈T . By Bad we

denote the event that RT = R′
T and S(R) = σ and R 6= R∗. By construction of

B∗, v 6= ⊥ implies RT = R′
T and S(R) = σ. And v /∈ {v′,⊥} implies R 6= R∗.

Thus v /∈ {v′,⊥} implies Bad . Therefore, to show Claim 2, it is sufficient to show
Pr[Bad] ≤ η in S ∪ {B∗}. To show this, we again proceed using a sequence of
games:

Game 4. An execution of S ∪ {B∗}. ⋄

Game 5. We change B∗ to halt after receiving R from Alice. ⋄

Then Pr[Bad : Game 4] = Pr[Bad : Game 5].

Game 6. We change B∗ to commit to some (arbitrary) fixed value T0 instead
of committing to T . ⋄

We wish to apply the (ε, a)-BQS-hiding property of C1 in order to show that
∣

∣Pr[Bad : Game 5] − Pr[Bad : Game 6]
∣

∣ ≤ ε. Let B1 denote the sender in the

commitment scheme C1. By definition, to commit to T (or T0), B
∗ internally

runs B1. We construct an adversary A′
1 that interacts with B1. This adversary

simulates S∪{B∗} (with B∗ as in Game 5) except for the machine B1 inside B∗.
Note that in Game 5, only the commit phase of C1 is executed. We let A′

1 output
1 iff Bad happens. We define B̂1 like B1, except that B̂1 ignores its input and
commits to T0. Let P be the probability that A′

1 outputs 1 when running with
B1, and let P̂ be the probability that A′

1 outputs 1 when running with B̂1. By
construction, P = Pr[Bad : Game 5] and P̂ = Pr[Bad : Game 6]. Thus we only
have to show that |P − P̂ | ≤ ε. To apply the (ε, a)-BQS-hiding property of C1 we
have to check that A′

1 is a-memory bounded. A′
1 simulates Z, Adv, and B∗. We

have QM(Z)+QM(Adv) ≤ a by assumption. But B∗ contains the extractor BS

for C2 which uses additional s2 qubits of quantum memory. Yet, BS is executed
after the end of the commit phase of C1. That is, B∗ is executed within a single
activation of A′

1 (since B1 is not activated any more after the commit phase).
Note that, although A′

1 might use more than a qubits during the activation in
which B∗ is simulated, it stores at most a qubits between activations. Thus A′

1

is a-memory bounded (remember that our definition of “a-memory bounded” on
page 4 only requires that the memory bound holds between activations). Hence
|P − P̂ | ≤ ε and thus

∣

∣Pr[Bad : Game 5]− Pr[Bad : Game 6]
∣

∣ ≤ ε.

Game 7. We change B∗ to choose T only after receiving R′. ⋄

Since T is not used earlier by B∗, Pr[Bad : Game 6] = Pr[Bad : Game 7].
Fix values R, R′ and σ with S(R) = σ. We distinguish two cases, depending
on whether there exists an R∗ with S(R∗) = σ and ω(R∗, R′) ≤ (d − 1)/2.
Case “R∗ exists”: Since S is the syndrome of a b-block (m,κ, d)-linear code,
S(R − R∗) = 0, hence R − R∗ is a codeword. Hence R = R∗ or ω(R,R∗) ≥ d.
Using the triangle inequality and ω(R∗, R′) ≤ (d − 1)/2, we get that R = R∗

or ω(R,R′) ≥ d− (d − 1)/2 ≥ d/2. Case “R∗ does not exist”: Since no R∗ with
S(R∗) = σ and ω(R∗, R′) ≤ (d− 1)/2 exists, and since S(R) = σ, we have that
ω(R,R′) > (d− 1)/2. Hence ω(R,R′) ≥ d/2.

Thus, for any fixed choice of R,R′, σ, we have S(R) 6= σ or R = R∗ or
ω(R,R′) ≥ d/2.

If R = R∗ or if S(R) 6= σ, the event Bad does not occur by definition.

If ω(R,R′) ≥ d/2, we bound the probability of Bad occurring as follows:
Let D := {i : Ri 6= R′

i}. Then, for random T ⊆ [m] with #T = c, we have
Pr[Bad] ≤ Pr[RT = R′

T] = Pr[T ∩D = ∅] ≤ (1 − #D
m)c ≤ (1− d

m)c.

Thus for any fixed R,R′, σ we have Pr[Bad] ≤ (1 − d
m)c. By averaging over

the choice of R,R′, σ, we get Pr[Bad : Game 7] ≤ (1− d
m)c.

Summarizing, we have Pr[Bad : Game 4] ≤ ε+(1− d
m)c = η. This shows Claim 2.

⊓⊔

Using Reed-Solomon codes for S, and the extractable commitments from
Theorem 6 for C1 and C2, we can instantiate the parameters of πCOM to satisfy
the conditions of Lemmas 8 and 9. Thus we get the following theorem:

Theorem 10. Let ℓ, n, and a be polynomially-bounded. Then there are choices
for the parameters of πCOM and a polynomially-bounded integer s such that
πCOM is polynomial-time, constant-round and πn

COM (a, s)-BQS-UC-emulates

(FA→B,ℓ
COM)n.

General two-party computation. By combining known results [19,10,15], we
get a constant-round protocol that quantum-UC-emulates any two-party func-
tionality and uses only commitments from Alice to Bob. Combining this with
our protocol πCOM, we get our final result (for details see the full version [16]):

Theorem 11 (BQS two-party computation). Let G be a classical
well-formed 11 probabilistic-polynomial-time functionality. Let n and a be
polynomially-bounded. Then there is a polynomially-bounded s and a constant-
round 0-memory bounded protocol πbqs2pc not invoking any functionality such
that πn

bqs2pc (a, s)-BQS-UC-emulates Gn.

Acknowledgements. We thank Christian Schaffner and Jürg Wullschleger for
valuable discussions. This work was funded by the Cluster of Excellence “Multi-
modal Computing and Interaction”.

References

1. Ben-Or, M., Mayers, D.: General security definition and composability for quantum
& classical protocols (Sep 2004), online available at http://xxx.lanl.gov/abs/

quant-ph/0409062
2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and

coin tossing. In: IEEE International Conference on Computers, Systems and Signal
Processing 1984. pp. 175–179. IEEE Computer Society (1984)

3. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.H.: Practical quantum
oblivious transfer. In: Crypto ’91. LNCS, vol. 576, pp. 351–366. Springer (1991)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001. pp. 136–145. IEEE Computer Society (2001), full and
revised version is [5]

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. IACR ePrint Archive (Jan 2005), full and revised version of [4], online
available at http://eprint.iacr.org/2000/067.ps

6. Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded
quantum-storage model. In: FOCS 2005. pp. 449–458 (2005), a full version is avail-
able at http://arxiv.org/abs/quant-ph/0508222

7. Dziembowski, S., Maurer, U.: On generating the initial key in the bounded-storage
model. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology, Proceedings
of EUROCRYPT ’04. Lecture Notes in Computer Science, vol. 3027, pp. 126–137.
Springer-Verlag (2004), online available at ftp://ftp.inf.ethz.ch/pub/crypto/

publications/DziMau04b.pdf

11 Well-formedness describes certain technical restrictions stemming from the proof by
Ishai et al. [10]: Whenever the functionality gets an input, the adversary is informed
about the length of that input. Whenever the functionality makes an output, the
adversary is informed about the length of that output and may decide when this
output is to be scheduled.

http://xxx.lanl.gov/abs/quant-ph/0409062
http://eprint.iacr.org/2000/067.ps
http://arxiv.org/abs/quant-ph/0508222
ftp://ftp.inf.ethz.ch/pub/crypto/publications/DziMau04b.pdf

8. Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment.
In: TCC 2009. LNCS, vol. 5444, pp. 350–367. Springer (2009)

9. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from
any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999), full
version online available at http://www.icsi.berkeley.edu/~luby/PAPERS/hill.

ps

10. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer (2008),
http://www.springerlink.com/content/0l5v1l524816u652/

11. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC 1988. pp. 20–31.
ACM (1988)

12. König, R., Wehner, S., Wullschleger, J.: Unconditional security from noisy quantum
storage. arXiv:0906.1030v2 [quant-ph] (Jun 2009)

13. Mayers, D.: Unconditionally Secure Quantum Bit Commitment is Impossible. Phys-
ical Review Letters 78(17), 3414–3417 (1997), online available at http://arxiv.

org/abs/quant-ph/9605044

14. Unruh, D.: Simulatable security for quantum protocols (Sep 2004), online available
at http://arxiv.org/ps/quant-ph/0409125

15. Unruh, D.: Universally composable quantum multi-party computation. In: EU-
ROCRYPT 2010. LNCS, Springer (2010), to appear, preprint on arXiv:0910.2912
[quant-ph]

16. Unruh, D.: Concurrent composition in the bounded quantum storage model. IACR
ePrint 2010/229 (Feb 2011), full version of this paper

17. Wehner, S., Wullschleger, J.: Composable security in the bounded-quantum-storage
model. In: ICALP 2008, track C. pp. 604–615. LNCS, Springer (2008), full version
available at http://arxiv.org/abs/0709.0492v1

18. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp. 222–232.
Springer (2006)

19. Wullschleger, J.: Oblivious-Transfer Amplification. Ph.D. thesis, ETH Zurich
(March 2007), arXiv:cs/0608076v3 [cs.CR]

http://www.icsi.berkeley.edu/~luby/PAPERS/hill.ps
http://www.springerlink.com/content/0l5v1l524816u652/
http://arxiv.org/abs/quant-ph/9605044
http://arxiv.org/ps/quant-ph/0409125
http://arxiv.org/abs/0709.0492v1

	Concurrent composition in thebounded quantum storage model

