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Abstract. We exhibit a hash-based storage auditing scheme which is
provably secure in the random-oracle model (ROM), but easily broken
when one instead uses typical indifferentiable hash constructions. This
contradicts the widely accepted belief that the indifferentiability compo-
sition theorem from [27] applies to any cryptosystem. We characterize
the uncovered limitations of indifferentiability by showing that the for-
malizations used thus far implicitly exclude security notions captured
by experiments that have multiple, disjoint adversarial stages. Exam-
ples include deterministic public-key encryption (PKE), password-based
cryptography, hash function nonmalleability, and more. We formalize a
stronger notion, reset indifferentiability, that enables a composition theo-
rem covering such multi-stage security notions, but our results show that
practical hash constructions cannot be reset indifferentiable. We finish
by giving direct security proofs for several important PKE schemes.

1 Introduction

The indifferentiability framework of Maurer, Renner, and Holenstein (MRH) [27]
supports modular proofs of security for cryptosystems. A crucial application of
the framework has been to allow proofs in the random oracle model (ROM) [8]
to be transferred to other idealized models of computation, where a monolithic
random oracle is replaced by a hash function constructed from (say) an ideal
compression function. This happens via an elegant composition theorem, the
usual interpretation of which is: A proof of security for an arbitrary cryptosys-
tem using functionality F (e.g., a random oracle) continues to hold when the
cryptosystem instead uses a second functionality F ′ (e.g., a hash function built
from an ideal compression function), so long as F ′ is indifferentiable from F .

In this paper, we show that this interpretation is too generous. We uncover an
application (in the context of secure distributed storage) for which composition
fails completely. For this application there is a simple scheme provably secure
in the ROM, and yet easily broken when using typical indifferentiable hash
constructions. We then begin an exploration of the fall out.

Random oracles and indifferentiability. Let us give a bit more back-
ground on why indifferentiability has proved so useful. A wide range of practical,



in-use cryptographic schemes enjoy proofs of security in the ROM [8]; for some
schemes, ROM proofs are the only ones known. But most in-use hash-function
constructions are not suitable for modeling as a RO, even when assuming the
primitive underlying the hash function is ideal (e.g., an ideal compression func-
tion), because they admit length-extension attacks [32]. These attacks abuse the
structure of the iterative modes-of-operation underlying hash functions such as
MD5, SHA-1, and SHA-2. And the weakness they expose has led to practical
insecurities [18]. Of course, we can build hash functions that resist known length-
extension attacks, but it remains unclear whether the resulting functions would
also prevent other, unforeseen structure-abusing attacks.

Coron et al. [15] instead suggest an approach to design hash functions that
“behave like” random oracles in a provable sense. Specifically, this requires that
a hash function will provide security anywhere a random oracle would. The MRH
composition theorem seems to give exactly this, taking F = RO and F ′ = Hf ,
the latter being a hash function constructed from an (ideal) primitive f . Thus the
needed hash function property is that Hf be indifferentiable from a RO. Impor-
tantly, this approach preserves proofs of security as well: the MRH theorem trans-
ports a cryptosystem’s proof of security in the ROM to a proof of security when
using an indifferentiable hash function. A number of recent works prove construc-
tions to be indifferentiable from a RO (e.g., [1, 7, 10, 14, 16, 17, 21]), including
many candidates for the NIST SHA-3 competition. Given all this, the consensus
opinion appears to be that indifferentiability exactly captures “behaving like” a
RO, rules out structure-abusing attacks, and that once a cryptosystem is proven
in the ROM it is secure using any compatible indifferentiable hash construction.

Hash-based storage auditing. We now describe an application that shows
this consensus opinion to be wrong. In the design of secure distributed systems,
the following important problem arises: How can parties in a system verify that
a storage server is actually storing the files that it should be? A malicious server
might tamper arbitrarily with the data entrusted to it; a rational one might
discard the file to save space if detection is unlikely. This problem has received
much attention since being formalized in 2007 [2, 22]. The particular example
we consider in this paper is inspired by a proof-of-storage challenge-response
protocol proposed as part of an earlier system, SafeStore [23]. Consider the
following protocol. The client sends a random challenge C to the server; the
server proves possession of the file M by computing Z ← Hash(M ‖ C) using a
cryptographic hash function Hash and sending Z to the client, who performs the
same computation using her copy of M and compares the result to that sent by
the server.

Suppose, for simplicity, that both the file M and the challenge C are d bits
long, and consider the case that Hash = Hf , where f is an ideal compression
function outputting strings of length n < d bits and H returns the first n/2
bits of f(f(IV,M), C). (IV is a fixed constant string.) This construction was
shown indifferentiable from a RO in [15]. Thus, the MRH composition theorem
combined with the fact that the protocol is secure in the ROM assuredly proves
that the protocol is secure when using Hf . Quite baffling, then, is the observation



that the server can cheat! The server simply computes Y ← f(IV,M) when
it first gets M , and then deletes M and stores the (shorter) Y . To answer a
challenge C, the server computes Z ← f(Y,C) and returns the first half of Z as
its response. The client’s check will succeed even though M is not stored.

The attack abuses a structural feature of typical hash functions that we call
online computability. A hash function has this property when it can process
its input in successive blocks, storing only a small amount of internal state
between blocks. This property is desirable in practice and all indifferentiable hash
constructions suggested for practical use have it (see, e.g., [1, 7, 10, 14, 16, 21]).
As our example shows, however, online computability can be abused.

Let us pause to take stock of the situation. In Section 4 we prove that the
SafeStore-inspired auditing scheme is, indeed, secure in the ROM. The proof of
indifferentiability for our Hash = Hf provided by Coron et al. [15] and the proof
of the MRH composition theorem are also both correct. But the server is still
somehow able to abuse the structure of Hf . So what is going on here?

Characterizing the problem. The gap is that the MRH theorem does not ap-
ply. The problem is subtle. Carefully revisiting the MRH theorem and its proof,
we find that (loosely speaking) they only apply when a cryptosystem’s security is
measured relative to a security game using a single, stateful adversary. For exam-
ple, left-or-right indistinguishability [19] for encryption schemes and unforgeabil-
ity under chosen message attacks [20] each use just a single, stateful adversary.
But the security of the challenge-response auditing protocol we just described is
fundamentally two-stage. In the first stage, the adversary (the server) receives the
message M , derives from M some state st that is smaller than the size of M , and
forgets M . In a second stage it attempts to answer challenges using just st. This
is an example of what we call a multi-stage game, a notion we will make formal.

In prior treatments of indifferentiability, the restriction to single-stage games
is implicit in the underlying formalization of cryptosystems and adversaries.
This restriction has not been mentioned in the literature, and our sense is that
no researchers (until now) realized it. For completeness, we restate the MRH
indifferentiability composition theorem and give its proof for single-stage games
(see Section 3).

Repercussions. We do not necessarily expect that practitioners would (or have)
deployed the hash-based auditing scheme above. One can simply use Hf (C ‖M)
to achieve (provable) security, and in fact this is the actual protocol used in Safe-
Store [23]. But the flaw this example uncovers is that the common interpretation
of composition actually encourages use of an insecure auditing mechanism. This
is exactly the opposite of how provable security should guide protocol design.

All of this casts doubt on the security of any scheme relative to a multistage
game. The scheme may well have provable security in the ROM, but this does not
imply the inexistence of dangerous structure-abusing attacks, even when using
indifferentiable hash constructions. And unfortunately the danger is widespread.
The recent security notions for deterministic [3, 5, 12], hedged [4], and efficiently
searchable [3] public-key encryption (PKE) are all multi-stage. When formalizing



password-based cryptography (e.g. [6, 33]) to allow arbitrary, hash-dependent
password sampling algorithms, one uses multi-stage games. A recently proposed
hash function nonmalleability security notion [11] is multi-stage. Interestingly,
this is the only notion (we are aware of) that formalizes security against length-
extension attacks, and so although we expect them to, we do not have proof that
current indifferentiable hash constructions resist length-extension attacks.

So, we cannot generically use indifferentiability-based composition to mod-
ularly argue security in the context of multi-stage games. But it could be that
indifferentiability remains a sufficient property to establish security in settings
beyond hash-based challenge-response auditing. One might hope to prove, with-
out relying on the MRH composition theorem, that a ROM proof of (say) a
deterministic PKE scheme holds still when using any indifferentiable hash con-
struction. This seems reasonable since for the applications just listed, online
computability of the hash function does not obviously compromise security.

Yet we prove that such proofs do not exist. Namely, we show in Section 5 that
indifferentiability does not imply security in the multi-stage settings mentioned
above.

Reset indifferentiability. We present a new notion, reset indifferentiability,
that does admit a composition theorem covering both single-stage and multi-
stage games. In the indifferentiability framework, functionalities have both an
honest and an adversarial interface, e.g. F.hon, F.adv and F ′.hon, F ′.adv. Func-
tionality F ′ is indifferentiable from F if there exists a simulator S such that
no distinguisher can determine when it has access to oracles F.hon and F.adv
or to F ′.hon and SF ′.adv. Reset indifferentiability asks that no distinguisher
can differentiate those two sets of oracles, but when the distinguisher can reset
the simulator to its initial state at arbitrary times. Randomized simulators use
freshly-chosen coins after each reset.

The inability to distinguish when resets are allowed enables proving a compo-
sition theorem for multi-stage games because the resets allow one to restart the
simulator for each stage. However, it is easy to see that reset indifferentiability is
a strong property. While constructions that only require stateless, deterministic
simulators can be easily shown to achieve reset indifferentiability, it is unclear if
any non-trivial constructions requiring randomized, stateful simulators can meet
it. Moreover, there is clear intuition that typical hash constructions are unlikely
to be reset indifferentiable — they have the property of online computability.
Still, that leaves open if other efficient constructions perform better. We answer
this question in the negative, proving that a wide class of single-pass hash func-
tion domain extension constructions cannot be shown reset indifferentiable. We
leave open the problem of proving the existence (or inexistence) of a domain
extender, even an impractical one (i.e., one that makes two or more passes over
the message), that is reset indifferentiable.

Direct proofs. Having lost the MRH composition as a general way to trans-
port ROM proofs of security for multi-stage games to the setting where one uses
a hash constructed from an ideal primitive, we take up consideration of a specific



security goal from public-key encryption. We prove a theorem establishing the
chosen-distribution attack (CDA) security for a number of related, ROM-secure,
PKE schemes when these are used with any indifferentiable hash function built
according to a design paradigm introduced by Dodis, Ristenpart and Shrimp-
ton [17]. The CDA security notion [4] captures message privacy of a PKE scheme
when messages and randomness are (jointly) unpredictable, but otherwise ad-
versarially controlled. In particular, this notion is the goal in the context of
deterministic PKE [3, 5, 12], hedged PKE (which provides message privacy even
in the face of poor randomness) [4, 31], and efficiently searchable encryption (an
extension of deterministic PKE) [3]. As expected, this direct proof of security
is complex because we have to work directly in the model of the ideal primitive
underlying the hash function. This case study shows that direct security results
are possible, restoring confidence that in some multi-stage settings security holds
with proposed indifferentiable hash constructions.

Other limitations. In the course of understanding the hash-based auditing
counter-example, we uncovered other subtle ways in which composition may fail
to help one establish security; a discussion of these appears in the full version [29].

Universal composability. Our results have analogous repercussions for com-
position frameworks similar to indifferentiability, such as universal composabil-
ity [13]. We discuss other frameworks in the full version [29].

Discussion. We emphasize that we are not recommending that indifferentiabil-
ity be dropped as a target of hash function design. The class of single-stage games
includes many very important ones, and even after our results indifferentiability-
based composition remains an elegant way to analyze security for these cases.
Instead, we stress that one must be careful when using composition to perform
a security analysis, ensuring that it does in fact apply as expected.

2 Preliminaries

A code-based games framework. We formalize a version of the code-based
games framework of Bellare and Rogaway [9] for representing security exper-
iments, indifferentiability, and the like. We find code-based games useful for
formalizing security definitions, in particular, because they allow us to specify
execution semantics (i.e. what runs what, and in what order). Here we give only
the most important details, deferring others to the full version of this paper. A
procedure is a sequence of statements together with zero or more inputs (vari-
ables) and zero or more outputs (variables). An unspecified procedure is one
whose pseudocode, inputs, and outputs are understood from context. An adver-
sary is an example of an unspecified procedure. Calling a procedure P means
providing it with inputs and running its sequence of statements. During its exe-
cution P may itself call other procedures. Say that the code of P expects to be
able to call k distinct procedures. We will write PQ1,Q2,...,Qk to denote that these
calls are handled by Q1, Q2, . . . , Qk. Procedures P1 and P2 are said to export the



proc. RO.hon(x):

If T[x] 6= ⊥ then
T[x]←$ {0, 1}r

Ret T[x]

proc. RO.adv(x):

Ret RO.hon(x)
proc. IP.hon(x):

Ret HP.hon(x)

proc. IP.adv(x):

Ret P.adv(x)

Fig. 1. Procedures implementing the functionality of the random oracle model (ROM)
(left) and the ideal primitive model (IPM) (right). The number r is set as appropriate
for a given context.

same interface if their inputs and outputs agree in number and type. This will
typically be clear from context.

A main procedure is a distinguished procedure that takes no inputs and has
some output. We mark it by main. No procedure may call main, and main
can access all variables of other specified procedures. (But not other unspecified
procedures.)

Variables are implicitly set initially to default values, i.e. integer variables are
set to 0, arrays are everywhere ⊥, etc. Variables are by default local, meaning
they can only be used within a single procedure. The variables used within
a procedure maintain their state between calls. A collection of procedures is
a set of one or more procedures that may instead share their variables. We
denote a collection of procedures by using a common prefix ending with a period,
e.g. (P.x, P.y, . . .) and we use the common prefix P to refer to the collection. We
will sometimes refer to the unique suffixes, e.g. x, y, as interfaces of P .

Collections of procedures will sometimes implement particular abstract func-
tionalities, for example that of some idealized primitive (e.g. a random oracle).
A functionality is a collection F = (F.hon, F.adv); the names of these interfaces,
hon and adv are suggestive as we will see in a moment. When games and ad-
versaries are given access to a functionality a model of computation is induced,
for example when the functionality is that of a random oracle, we have the
random-oracle model. Thus one can think of functionalities and models some-
what interchangeably. For this work we specifically designate two models. First
RO = (RO.hon,RO.adv), shown on the left-hand side of Figure 1, implements
a random oracle (with two interfaces) and will give rise to the random-oracle
model. Second, let P = (P.hon, P.adv) implement some (ideal) primitive that
underlies some understood construction H. Then IP = (IP.hon, IP.adv) shown
on the right-side of Figure 1 gives rise to an (ideal) primitive model. For nota-
tional compactness, each time we use IP we will specify a construction H and a
primitive P and assume these are the ones referred to in Figure 1.

For any two functionalities F1, F2, we denote by (F1, F2) the functionality
that exposes a procedure that allows querying (F1.hon, F2.hon) and a procedure
that gives access to (F1.adv, F2.adv).

A game G consists of a single main procedure, denoted “main G”, together
with a set of zero or more other specified procedures. (See for example Figure 2.)
A game can make use of a functionality F and a number of adversarial pro-
cedures A1, . . . ,Am together referred to as the adversary. We denote this by



GF,A1,...,Am . We fix the convention that the main and specified procedures of G
can call F.hon and A1, . . . ,Am (but may not call F.adv) while the adversarial
procedures may call F.adv (but may not call F.hon). Thus F.adv is the adversar-
ial interface of F , and F.hon is the honest interface. For any F1,A1, . . . ,Am and
F ′1,A′1, . . . ,A′m such that F1.hon, F2.hon are interface compatible and Ai,A′i are
interface compatible for 1 ≤ i ≤ m, we can write GF1,A1,...,Am to mean running
game G with one set of external procedures and GF2,A′1,...,A

′
m to mean running

the same game but now with the second set of external procedures. Running
a game GF,A1,...,Am means executing the sequence of statements of the game’s
main procedure and the output of G is the value returned by main. We de-
note by GF,A1,...,Am ⇒ y the event that the game’s output is y, taken over the
probability space defined by the coins used to execute G and the coins used in
each invocation of the procedures F.hon, F.adv,A1, . . . ,Am. Should G and the
adversary not use F.hon, F.adv then we instead write GA1,...,Am ⇒ y. As exam-
ples, games that do not use a functionality F are given in Figure 2 while games
that do are given in Figures 3 and 4.

For any fixed functionality F and adversary A1, . . . ,Am, two games G and H
are equivalent if Pr

[
GFA1,...,Am ⇒ y

]
= Pr

[
HF,A1,...,Am ⇒ y

]
for all values y.

Resources. For simplicity, we fix the convention that each statement of a pro-
cedure runs in unit time. The running time of a procedure, then, is the maximum
number of statements executed, where the maximum is taken over all possible
inputs and over all coins used by the procedure. The number of queries of a
procedure is the maximum number of procedure calls it makes in one execution,
again with the maximum taken over all possible inputs and all possible coins
used by the procedure.

3 Indifferentiability Framework for Single-Stage Games

We describe the indifferentiablity framework [27] using games, unlike prior treat-
ments that used random systems [26, 27] or interactive Turing machines [15]. We
feel that using explicit code-based games makes understanding the limitations
of indifferentiability easier, because it will enable expressing these limitations as
syntactic conditions on the class of games considered. In addition to defining
indifferentiability, we will provide a concrete version of the composition theorem
given in [27] and characterize its limitations.

Indifferentiability. Fix two functionalities F1 and F2. When thinking of
indifferentiability from random oracles, for example, we use F1 = IP (for some
understood H,P ) and F2 = RO. A distinguisher D is an adversary that outputs
a bit. A simulator is a procedure, usually denoted S. Figure 2 defines two games
Real and Ideal. Fix some value y (e.g., y = 1). The indifferentiability advantage
of D is defined as

Advindiff
F1,F2,S(D) = Pr

[
RealF1,D ⇒ y

]
− Pr

[
IdealF2,D

S ⇒ y
]
.

We use a concrete security approach, i.e. not providing a strict definition of
achieving indifferentiability. However, informally we will say that a functionality



main Real

b′←$DFunc,Prim

Ret b′

proc. Func(m):

Ret F1.hon(m)

proc. Prim(u):

Ret F1.adv(u)

main IdealS

b′←$DFunc,Prim

Ret b′

proc. Func(m):

Ret F2.hon(m)

proc. Prim(u):

Ret SF2.adv(u)

Fig. 2. The games that define indifferentiability. Adversary D and functionali-
ties F1, F2 are unspecified. The simulator S is a parameter of the game.

F1 is indifferentiable from a functionality F2 if for any “reasonable” adversary D
there exists an “efficient” simulator S such that Advindiff

F1,F2,S(D) is “small”. The
meanings of “reasonable”, “efficient”, and “small” will be clear from context.

To get an asymptotic notion, we can assume an implicit security parame-
ter k throughout, and then use the definition of [15]: F1 is indifferentiable from
F2 if there exists a PT simulator S such that for any PT D it is the case that
Advindiff

F1,F2,S(D) is negligible in the security parameter. Note that in [27] a dif-
ferent quantifier ordering was used. It said that for all PT D there must exist a
PT simulator S such that Advindiff

F1,F2,S(D) is negligible in the security parameter.
We refer to the [27] notion as weak indifferentiability and to the [15] notion as
strong indifferentiability. We will focus on strong indifferentiability here since it
implies weak.

Composition. One goal of indifferentiability is to allow the security analysis of a
cryptographic scheme when using one functionality to imply security holds when
using another. This is enabled by the following, which is a concrete security ver-
sion of the original composition theorem of Maurer, Renner, and Holenstein [27].

Theorem 1. Let G be a game expecting access to a functionality and a single
adversarial procedure. Let F1, F2 be two functionalities with compatible honest in-
terfaces. Let A be an adversary with one oracle. Let S be a simulator that exports
the same interface as F1.adv. Then there exist adversary B and distinguisher D
such that for all values y

Pr
[
GF1,A ⇒ y

]
≤ Pr

[
GF2,B ⇒ y

]
+ Advindiff

F1,F2,S(D) .

Moreover: tB ≤ tA + qA · tS , qB ≤ qA · qS , tD ≤ tG + qG,1 · tA, and qD ≤
qG,0+qG,1·qA, where tA, tB, tD are the maximum running times of A,B,D; qA, qB
are the maximum number of queries made by A and B in a single execution; and
qG,0, qG,1 are the maximum number of queries made by G to the honest interface
and to the adversarial procedure. �

The proof of Theorem 1 is readily established by adapting the proof of [27,
Th. 1]. We provide a proof here to help support our upcoming discussion.

Proof. Fix any value y. Let F = (F.hon, F.adv) be some unspecified functionality
that export the same interface as (F1.hon, F1.adv). Let indifferentiability adver-
sary D be defined as follows. Adversary D runs game G. Whenever G calls its



honest interface, adversary D queries F.hon and returns the result. Whenever G
calls A, adversary D runs A for G using F.adv to answer any queries made by A.
Finally D outputs whatever G outputs. Then by construction qD ≤ qG,0+qG,1qA;
tD ≤ tG + qG,1tA; and

Pr
[

RealD ⇒ y
]

= Pr
[
GF1,A ⇒ y

]
(1)

in the case that F = F1. Now we define adversary B as follows. Adversary B
runs A. When A queries its oracle, adversary B runs S using its F2.adv oracle
to answer any queries S makes. Adversary B outputs whatever A outputs. By
construction, then, we have that qB ≤ qA ·qS ; tB ≤ tA + qA ·tS ; and

Pr
[

IdealDS ⇒ y
]

= Pr
[
GF2,AS ⇒ y

]
= Pr

[
GF2,B ⇒ y

]
(2)

in the case that F = F2. By substituting according to Equations 1 and 2 into
the definition of indifferentiability advantage we derive the advantage relation
of the theorem statement.

Single-stage games. The theorem above explicitly restricts attention to games
that only use a single adversarial procedure. At first glance, this restriction
may seem artificial. Suppose a game G expects access to adversarial procedures
A1, . . . ,Am and now consider generalizing Theorem 1 to account for G. Recall
that these adversarial procedures do not share state. In the proof, a key step is
defining the adversary B. Following that proof, for this generalization we could
define adversarial procedures B1, . . . ,Bm by Bi = ASi for all i. One may think
a proof has been arrived at. However S is only guaranteed to simulate properly
when it maintains its state across all invocations throughout the course of the
indifferentiability game. Technically, then, the problem is that the analogue of
equation (2) for this proof attempt would fail:

Pr
[
GF2,B1,...,Bm ⇒ y

]
= Pr

[
GF2,AS1 ,...,A

S
m ⇒ y

]
6= Pr

[
IdealDS ⇒ y

]
.

This is true regardless of how we define D. In the next section, we provide a
counterexample showing that there is no hope of a proof for this generalization.

All this means that indifferentiability-based composition can only apply to
security notions defined via single-stage games, which we now define. Consider a
game that has m procedures. We say that a game is stage minimal if all games G′

that are equivalent to G use the same number of adversarial procedures. We now
restrict attention to stage minimal games. Then, an m-stage game is one that
has m stages. A single-stage game is one for which m = 1 and a multi-stage
game is one for which m > 1. Let SG be the set of all single-stage games. Note
that SG includes the games defining indifferentiability above, the classic notions
of encryption security such as IND-CPA [19] or IND-CCA [28], unforgeability
under chosen message attack UF-CMA [20], and many others.

If G is the set of all games, then we letMG = G\SG be the set of games that
are not single stage. We call any game in MG a multi-stage game. Examples
of multi-stage games include chosen distribution attack security for public-key
encryption [4] (see Figure 4), non-malleability of hash functions [11], password-
based key exchange [6], and others.



Discussion. A game that uses multiple adversarial procedures, but is equivalent
to a game with a single adversarial procedure, is not considered multi-stage by
our definition above. Many experiments are formalized with multiple adversarial
procedures, but the game forwards arbitrary adversarial state from one proce-
dure to the next. It is clear such games are actually equivalent to one with a
single adversarial procedure. Some games allow a small amount of state to be
passed directly from one adversarial procedure to the next. See for example the
hash auditing security property formalized in Figure 3. Here, however, the state
is not arbitrary —its length is a fixed constant— and so this game cannot be
written with a single adversarial procedure.

We do note, however, that we may extend Theorem 1 to cover multi-stage
games that directly share some limited amount of state, but an amount suffi-
cient to enable composition. That is, the shared state must be large enough to
transport the state of S between Bi calls (in addition to whatever other state
an adversary might use). We do not know of any examples of such multi-stage
games, and so do not spell out the details of such an extension.

Note that there are other subtleties of composition that might lead to erro-
neous beliefs and claims. We provide a detailed discussion of these in the full
version.

4 A Practically Motivated Counterexample

In this section we define a simple hash function property that is met by a RO,
but not met by a broad class of hash functions proven to be indifferentiable
from a RO. Together these results give a counterexample disproving the desired
generalization of Theorem 1 to multi-stage games.

Hash-based storage auditing. The property we study, denoted CRP, is
motivated by challenge-response auditing protocols for secure distributed stor-
age [23]. Consider that a client wishes to store some data M on a remote server.
It will later verify that M is in fact being stored by sending a random chal-
lenge C to the server, and then checking that the server’s response matches the
hash H(M ‖ C). Intuitively, if H is a random oracle, there is no way for the
server to “cheat”: It must actually store M , or guess the challenge in advance, if
it is to respond correctly. (Drawing the challenges from a sufficiently large space
or repeating the protocol will make the chance that the server guesses the chal-
lenges arbitrarily small.) In particular, if the server stores some state st instead
of M , and |st| � |M |, then we expect the server will fail to respond properly.
The CRP experiment in Figure 3 captures a slightly simplified version of this
example.

Informally, a CRP-secure hash function H should not admit the storage of a
short string (much shorter than the file M) that later allows the server to answer
auditing challenges C, except with negligible probability. This guarantees that
a rational server interested in saving storage space but subject to auditing will
not store some short digest in place of the file.



main CRPF,A1,A2
p,n,s

M ←$ {0, 1}p

st←$AF.adv
1 (M)

If |st| > n then Ret false

C←$ {0, 1}s

Z←$AF.adv
2 (st, C)

Ret
`
Z = F.hon(M ‖ C)

´
Fig. 3. Game capturing our challenge-response hash function property.

The following theorem shows that, as expected, a random oracle possesses
property CRP. The proof appears in the full version.

Theorem 2. Fix p, n, s > 0. Let A = (A1,A2) be an adversary that makes a
total of q calls. Then

Pr
[

CRPRO,A1,A2
p,n,s ⇒ true

]
≤ q

2p−n
+

1
2r

+
q

2s

where RO provides the functionality of a random oracle with range {0, 1}r. �

Online computability and CRP. We now define a structural property of
hash functions, which we refer to as online computability. Consider a hash
function Hf : {0, 1}∗ → {0, 1}r using some underlying primitive f . Then we
say that Hf is (p, n, s)-online computable if for p, n, s > 0 there exist func-
tions Hf

1 : {0, 1}p → {0, 1}n and Hf
2 : {0, 1}n × {0, 1}s → {0, 1}r such that

Hf (M1 ‖M2) = Hf
2 (Hf

1 (M1),M2)) for any (M1,M2) ∈ {0, 1}p × {0, 1}s. More-
over, we require that the time to compute Hf

1 and Hf
2 is within a small, absolute

constant of the time to compute Hf . In words, the hash function Hf can be com-
puted in two stages, processing M1 and then M2 sequentially.

We note that most iterative hash function constructions are online com-
putable for a variety of values p, n, s. For example, the so-called NMAC con-
struction from [15]. It uses two underlying ideal objects f : {0, 1}2n → {0, 1}n
and g : {0, 1}n → {0, 1}n. Let f+ : ({0, 1}n)+ → {0, 1}n be the mapping de-
fined as follows: on input M = M1 ‖ . . . ‖Mb, for each i ∈ {1, . . . , b} compute
Vi = f(Vi−1 ‖ Mi), where V0 is some fixed n-bit string, and return Vb. Now,
let Hf,g(M) = g(f+(M)), where the domain is ({0, 1}n)+. This construction is
(p, n, s)-online computable for any p and s that are multiples of n. Say p = in for
any i and s = n. Then let Hf

1 (M1) = f+(M1) and Hf
2 (V,M2) = g(f(V,M2)).

Similarly, many other iterative constructions are online computable for such
parameters, for example EMD [7], MDP [21], the Chop and so-called HMAC
constructions [15], and numerous SHA-3 candidates.

It is clear to see that any (p, n, s)-online computable hash function cannot
be CRP for those same parameters. For the NMAC example above, let A1 out-
put st = Hf

1 (M) = f+(M). Let A2 output H2(st, C) = g(f(st, C)). The adver-
sary wins with probability 1.



SafeStore and storage auditing in practice. The SafeStore protocol
used exactly the opposite ordering of N and M , specifying that audit responses
be computed by Hf (N ‖M). This construction does indeed have CRP (though
one cannot use composition to establish it). The point is that indifferentiability
appears to imply that N ‖ M and M ‖ N are equivalently secure. Given the
widespread use of hash functions as random oracles in practice (implicitly or
explicitly), we must be careful to assess each application’s security starting from
the ideal primitive underneath the hash function and only use indifferentiability-
based composition when it is truly applicable.

5 Indifferentiability Fails for Multi-stage Games

In the last section we saw how indifferentiability-based composition fails for a
particular game, this being the CRP game. Here we extend that negative result to
show how indifferentiability-based composition fails for many multi-stage games,
including ones covering security of password-based key exchange, deterministic
public-key encryption, non-malleability of hash functions, and more. To do so,
we give a general method to show that indifferentiability does not imply security
for games G ∈MG.

Our approach will be to show that one can augment any ideal primitive
to include a storage interface. This will simply take (key,value) pairs from the
adversary and allow retrieving values by looking up a key. This augmentation
does not affect any existing indifferentiability results involving the primitive — as
we show below, a simulator for the original ideal primitive is easily converted to a
simulator for the augmented primitive. Finally, we will show how cryptosystems
cannot meet some multi-stage notions of security in the augmented primitive
model.

Formally, let F1 be a functionality. Let St be the procedure that exposes a
hash table T. That is, on input a pair of strings (X,Y ), it sets T[X] ← Y and
returns nothing. On input a string (X,⊥) it outputs T[X], which is ⊥ if T[X]
has yet to be set to another value. Then the storage-augmented functionality
F ∗1 = (F1.hon, F

∗
1 .adv) has the same honest interface as F1 but F ∗1 .adv exposes

both F1.adv and St. That is, F ∗1 .adv = (F1.adv, St).
The following theorem states that if F1 is indifferentiable from some func-

tionality F2, then F ∗1 is also indifferentiable from F2. Its proof is straightforward
and appears in the full version.

Theorem 3. Let F1, F2 be functionalities and F ∗1 be the storage-augmented ver-
sion of F1. Let SB be a simulator. Then there exists a simulator SA such that
for all distinguishers A there exists a distinguisher B such that

Advindiff
F∗1 ,F2,SA(A) = Advindiff

F1,F2,SB(B)

B runs in time that of A and uses the same number of queries; SA runs in time
that of SB plus a small constant and uses the same number of queries. �

What Theorem 3 shows is that, as far as indifferentiability is concerned,
it does not matter if some portion of the distinguisher’s state is exported to



an oracle. The intuition behind this result is straightforward: distinguishers in
indifferentiability maintain state throughout the experiment and so it hardly
matters whether one stores its state in an oracle or locally. But the ability
to store data in an oracle obviates security for many multi-stage games. Here
are some examples of cryptographic security goals that are not achievable in a
storage-augmented primitive model. Note that all these are feasible in the ROM.

Example: CDA security for public-key encryption. Public-key encryption (PKE)
and the chosen-distribution attack (CDA) security goal are defined in Section 7.
CDA generalizes deterministic PKE security notions [3, 5, 12], and CDA-secure
PKE is useful for efficiently search over encrypted data [3] and defense-in-depth
against randomness failures [31]. It is easy to see that if one is working in the
F ∗1 model, this being a storage-augmented primitive model, then the security
notion is unachievable. To attack any scheme, a first-stage adversary A1 picks
(m0,m1, r) uniformly, and queries St(0, (m0,m1, r)). The second-stage adversary
A2 queries St(0,⊥) to retrieve (m0,m1, r), encrypts both messages under r,
compares the results with the challenge ciphertext, and outputs the appropriate
bit. This adversary wins with probability one.

In the full version, we give analogous results for nonmalleability of hash
functions [11], password-based authenticated key exchange [6], and others. In-
terestingly, the hash function nonmalleability notion is the only formal notion
that captures resistance to length-extension attacks. This is especially troubling
because provable resistance to length extension attacks was a primary motivation
for building indifferentiable hash constructions [15].

Discussion. The negative results presented in this section rely on augmenting
primitives to incorporate a storage procedure. Of course in the context of hash
function design, no one would consider using such a primitive (nor would there
necessarily be any way to instantiate one!). Rather these results are used to show
that indifferentiability cannot imply security in the context of the multi-stage
games considered.

6 Indifferentiability with Simulator Resets

We initiate the exploration of strengthenings of indifferentiability that support
composition for multi-stage games. The counter-example of Section 4 indicates
that typical indifferentiable hash constructions cannot enjoy such a notion. In-
deed, no online computable hash function can meet a strengthening whose asso-
ciated composition theorem covers the CRP game. Nevertheless, we may hope
to design new hash functions that do meet stronger notions.

We propose a strengthening of indifferentiability, called reset indifferentiabil-
ity, that immediately admits a composition theorem covering multi-stage games.

Reset indifferentiability. We define a version of indifferentiability that re-
quires simulators function even under resets. For any simulator S we define
the procedure pair

x
S = (

x
S.S,

x
S.Rst). The former procedure is simply a re-

naming of S. The latter procedure that takes no input and when run reini-



tializes all of
x
S.S’s internal variables to their initial values. Likewise, let F =

(F.hon, F.adv) be any functionality. Let functionality
−→
F = (

−→
F .hon,

−→
F .adv) =

(F.hon, (F.adv, nop)) where the procedure pair
−→
F .adv = (F.adv, nop) includes

a procedure nop that takes no input and does nothing. Let F1 and F2 be func-
tionalities. Let D be an adversary that outputs a bit (the distinguisher). Let S
be a simulator. Then we define the reset indifferentiability advantage of D as

Advreset-indiff
F1,F2,S (D) = Pr

[
Real

−→
F 1,D ⇒ y

]
− Pr

[
IdealF2,D

x
S

⇒ y
]
.

For consistency with our definition of the games Real and Ideal (Figure 2), we
implicitly assume there is some distinguished symbol that, when received as
input by the procedure Prim, causes the execution of nop or

x
S.Rst, respectively.

We have the following composition theorem.

Theorem 4. Let G ∈ G. Let F1 and F2 be functionalities. Let A1, . . . ,Am be
an adversary and let SF2.adv be a simulator that exports the same interface as
F1.adv. Then there exist an adversary B1, . . . ,Bm and distinguisher D such that
for all values y

Pr
[
GF1,A1,...,Am ⇒ y

]
≤ Pr

[
GF2,B1,...,Bm ⇒ y

]
+ Advreset-indiff

F1,F2,S (D) .

Moreover: tBi ≤ tAi + qAitS , qBi ≤ qAi ·qS , tD ≤ m + tG +
∑m
i=1 qG,i ·tAi , and

qD ≤ qG,0 +
∑m
i=1 qG,i ·qAi

, where tA, tB, tD are the maximum running times of
A,B,D; qA, qB are the maximum number of queries made by A and B in a single
execution; and qG,0, qG,i are the maximum number of queries made by G to the
honest interface and the ith adversarial procedure (respectively). �

The proof of the above is readily established by adapting the proof of The-
orem 1. For 1 ≤ i ≤ m, let BF2.adv

i = ASF2.adv

i . This means in particular that
a separate instance of S is used in each procedure Bi. Then define the distin-
guisher D, for any compatible functionality F = (F.hon, F.adv), by modifying
DF.hon,F.adv = GF,A1,...,Am so that a reset call immediately precedes each Ai
call.

Reset indifferentiability can be achieved when one establishes (conventional)
indifferentiability using a stateless and deterministic simulator. This is because
it is clear resetting such a simulator does not affect its subsequent behavior.
Unfortunately it seems challenging to achieve reset indifferentiability for all but
trivial constructions, and we will show negative results for efficient constructions
below. We leave finding non-trivial constructions, even inefficient ones, as an
open question.

On practical domain extension under resets. As mentioned above, on-
line computable hash functions cannot be reset indifferentiable. This is because
the composition theorem would then imply such a hash function met the CRP
property and the results of Section 4 rule this out. But some efficient hash con-
structions do meet the CRP property, and so the question remains if any effi-
cient construction meets reset indifferentiability. We answer this question in the
negative, ruling out a large class of “efficient” constructions from being reset
indifferentiable from a RO.



Fix some p, n, s, r > 0 such that p > n and let N = p + s. Let P be an
arbitrary ideal primitive. We restrict our attention to domain-extension con-
structions Hf : {0, 1}N → {0, 1}r that can be written as HP (〈M1,M2〉) =
HP

2 (HP
1 (M1) ‖M2) for any (M1,M2) ∈ {0, 1}p × {0, 1}s. Here 〈M1,M2〉 repre-

sents a unique encoding of M1,M2 into an N -bit string; H1 : {0, 1}p → {0, 1}n;
and H2 : {0, 1}n × {0, 1}s → {0, 1}r. Importantly, that p > n means that H1

is compressing. We require that the time to compute one each of the encoding,
H1, and H2 is within a small, absolute constant of the time to compute HP .
As concrete examples, all online computable functions are trivially included by
setting 〈M1,M2〉 = M1 ‖M2. But the flexibility endowed by the arbitrary en-
coding also means we encompass a wider range of H that do not allow online
computing. For example, any single pass hash function that can be written in
the form above. On the other hand, constructions such as the zipper hash [25]
(which makes two passes over a message) are not considered.

The following theorem below shows that no construction fitting the form
above is reset indifferentiable, no matter what underlying primitive P is used.
Its proof appears in the full version.

Theorem 5. Let integers p, n, s, r,N , functionality P , and construction HP be
as just described. Let functionality RO implement a random oracle with range
{0, 1}r. There exists a reset-indifferentiability adversary D such that for all sim-
ulators S asking at most q queries,

Advreset-indiff
IP,RO,S (D) ≥ 1−

(
q

2s
+

q

2p−n
+

1
2r

)
. �

7 Deterministic, Hedged, and Efficiently-Searchable
Encryption

The results thus far reveal that schemes proven secure in the ROM may not
be secure when using practical hash function constructions, when security is
measured by a multi-stage game. As seen in Section 5 this includes numerous
important cryptographic tasks. As a first step, we here take one example, that of
deterministic, hedged, or efficiently-searchable public-key encryption, and pro-
vide a proof of security when using any one of a number of indifferentiable hash
constructions. We choose this example due to the extensive use of the ROM in
prior results and the practical importance of the schemes [3, 4, 31]. Of course
we cannot rely on Theorem 1, so our proof is done directly in the ideal primi-
tive model. Nevertheless, our main result covers a broad mix of PKE and hash
functions.

We focus on the hash construction from [17], which composes a preimage-
aware function (see below) with a fixed-input-length RO. While we can do anal-
ysis without relying on preimage-awareness, doing so simplifies and modularizes
our result. Let hf : {0, 1}∗ → {0, 1}n be a function using some underlying prim-
itive f . Let g : {0, 1}n → {0, 1}n be a function. Let Hf,g : {0, 1}∗ → {0, 1}n
be defined by Hf,g(M) = g(hf (M)). We point out that many hash functions



main CDAF,A1,A2
AE

b←$ {0, 1}
(pk, sk)←$K
(m0,m1, r)←$AF.adv

1

c← EF.hon(pk,mb ; r)
b′←$AF.adv

2 (pk, c)
Ret (b = b′)

main IND-SIMF,A
AE,S

b←$ {0, 1}
(pk, sk)←$K
b′ ← ARoS,F.adv(pk)
Ret (b = b′)

proc. RoS(m, r):

If b = 1 then
Ret EF.hon(pk,m ; r)

Ret SF.hon(pk, |m|)

main PrAF,A
H,X

x←$APrim,Ext

z ← HF.hon(x)

Ret (x 6= V[z]∧Q[z] = 1)

proc. Prim(m):

c← F.adv(m)

α← α ‖ (m, c)

Ret c

proc. Ext(z):

Q[z]← 1

V[z]← X (z, α)

Ret V[z]

Fig. 4. (Left) The non-adaptive CDA game. (Right) The IND-SIM and PrA
games.

fall into this form, including the so-called NMAC construction [15], MCM [30],
NIRP [24], and various SHA-3 competitors.

Public-key encryption. Recall that a public-key encryption (PKE) scheme
AE = (K, E ,D) consists of three algorithms. Key generation K outputs a pub-
lic key, secret key pair. Encryption E takes a public key, a message m, and
randomness r and outputs a ciphertext. Decryption D takes a secret key, a ci-
phertext, and outputs a plaintext or a distinguished symbol ⊥. Following [3],
we define for any scheme AE the maximum public-key collision probability by
maxpkAE = maxw∈{0,1}∗ Pr [ pk = w : (pk, sk)←$K ].

CDA security. In Figure 4 we detail the security game for (non-adaptive)
chosen-distribution attacks [4]. This notion, orthogonal to the traditional notion
of IND-CPA, captures the security of a PKE scheme when the randomness r
used may not be a (sufficiently long) string of uniform bits. For the remainder
of this section, fix a randomness length ρ ≥ 0 and a message length ω > 0. An
(µ, ν)-mmr-sourceM is a randomized algorithm that outputs a triple of vectors
(m0,m1, r) such that |m0| = |m0| = |r| = ν, all components of m0 and m1

are bit strings of length ω, all components of r are bit strings of length ρ, and
(mb[i], r[i]) 6= (mb[j], r[j]) for all 1 ≤ i < j ≤ ν and all b ∈ {0, 1}. Moreover, the
source has min-entropy µ, meaning

Pr [ (mb[i], r[i]) = (m′, r′) | (m0,m1, r)←$M ] ≤ 2−µ

for all b ∈ {0, 1}, all 1 ≤ i ≤ ν, and all (m′, r′).
A CDA adversary A1,A2 is a pair of procedures, the first of which is a (µ, ν)-

mmr-source. The CDA advantage for an CDA adversary A1,A2 against scheme
AE is defined by

Advcda
AE,F (A1,A2) = 2 · Pr

[
CDAF,A1,A2

AE ⇒ true
]
− 1 .

Preimage awareness. Dodis, Ristenpart, and Shrimpton’s preimage awareness
notion [17] generalizes collision resistance to include extractability. Game PrA is



defined in Figure 4. We associate to any functionality F , hash construction H,
extractor X , and adversary A the PrA advantage defined by

Advpra
H,F,X (A) = Pr

[
PrAF,A

H,X ⇒ true
]
.

We point out that the game PrA does not abide by our convention that only the
adversary queries F.adv. Thus Theorems 1 and 4 do not apply when G = PrA.
This is not a problem for past results or for our results below, both of which do
not attempt to conclude PrA via indifferentiability-based composition.

IND-SIM security. We define a new notion of encryption scheme security that
is of technical interest because it is as an intermediate step in proving Theorem 6,
shown below. An encryption simulator for a scheme AE = (K, E ,D) is a pro-
cedure S that takes as input a public key and a message length and outputs a
ciphertext. Game IND-SIMAE,S is shown in Figure 4. A IND-SIM adversary A
can make multiple queries, but cannot repeat any queries. It measures the ability
of an adversary to distinguish between encryptions of a chosen message under
chosen randomness and the output of a simulator S. We define the IND-SIM
advantage of an adversary A by

Advind-sim
AE,S (A) = 2 · Pr

[
IND-SIMAAE,S ⇒ true

]
− 1 .

Note that the adversary can choose the message and also the randomness used to
encrypt it. In the standard model this security goal is unachievable if E uses no
further randomness beyond that input. However, we will use IND-SIM security
in the ROM when the adversary does not make any RO queries. In the full
version we show that for a variety of encryption schemes, IND-SIM security in
the ROM against adversaries who do not query the RO is implied by IND-CPA
security of an underlying (randomized) scheme.

CDA security for PKE. Theorem 6 below establishes CDA security of PKE
schemes that, during encryption, apply g(hf (M)) once to hash an M including
an encoding of the public key, as long as the scheme meets the IND-SIM notion
above (in the ROM). The ROM schemes for deterministic, hedged, or efficiently-
searchable encryption from [3, 4, 31] are of this form and have IND-SIM implied
by the IND-CPA security of an underlying randomized encryption scheme. We
make no assumptions about f , so the result applies both to hash functions based
on an ideal cipher and ideal compression function.

We provide some brief intuition regarding the proof. The PrA security of f+

means that, to learn anything about the value g(f+(M)), the adversary must
query f in order to compute f+(M). But the inclusion of the public key in the
message hashed by E means that the source A1 is unlikely to be able to query
any of the messages used in computing the challenge ciphertexts. Essentially
this means that E gets randomness via queries to g(f+(M)) that is hidden from
the adversary, and this allows one to use the IND-SIM property of AE to show
that ciphertexts leak no information about the challenge message, randomness
pairs. This means that A2 learns nothing about the coins used by A1, and so
the min-entropy of A1 implies that A2 has little chance of learning g(f+(M))



outputs for M ’s used in computing the challenges. The full proof appears in the
full version.

Theorem 6. Let f be a functionality and g be a FIL RO. Let Hf,g(M) =
g(hf (M)) for some procedure h. Let AE be a PKE scheme that queries Hf,g on
a single message per E invocation, that message including (an encoding of) the
public key. Let A1,A2 be a CDA adversary making at most qf queries to f and
qg queries to g and where A1 is a (µ, ν)-mmr-source. Then for any encryption
simulator S and PrA extractor X there exists an IND-SIM adversary B and a
PrA adversary C such that.

Advcda
AE,(f,g)(A1,A2) ≤ 4·Advind-sim

AE,RO,S(B)+4·Advpra
h,f,X (C)+

2νqg
2µ

+2qg·maxpkAE

B makes no random oracle queries, makes ν RoS-queries, and runs in time that
of (A1,A2). C makes at most qf primitive queries and runs in time at most that
of (A1,A2). �
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