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Abstract. In this work, we present HIBE and ABE schemes which are
“unbounded” in the sense that the public parameters do not impose
additional limitations on the functionality of the systems. In all previous
constructions of HIBE in the standard model, a maximum hierarchy
depth had to be fixed at setup. In all previous constructions of ABE in
the standard model, either a small universe size or a bound on the size
of attribute sets had to be fixed at setup. Our constructions avoid these
limitations. We use a nested dual system encryption argument to prove
full security for our HIBE scheme and selective security for our ABE
scheme, both in the standard model and relying on static assumptions.
Our ABE scheme supports LSSS matrices as access structures and also
provides delegation capabilities to users.

1 Introduction

Hierarchical Identity-Based Encryption (HIBE) systems [29, 26] and Attribute-
Based Encryption (ABE) systems [40] offer users more levels of flexibility in shar-
ing and managing sensitive data than are provided by Identity-Based and Pub-
lic Key Encryption systems. In a hierarchical identity-based encryption scheme,
user identities are arranged in an organizational hierarchy. Anyone can encrypt
a message to any identity in the system using the public parameters. An identity
at level k in the hierarchy can use its secret key to delegate secret keys to its
subordinates, but cannot decrypt any messages which are intended for recipients
other than itself and its subordinates. In a Key-Policy Attribute-Based Encryp-
tion (KP-ABE) system [28], users have secret keys which are associated with
access policies over a universe of attributes and ciphertexts are associated with
sets of attributes. A user can decrypt a message encrypted to a set of attributes
S only if S satisfies the access policy of the user’s key.
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Both HIBE and ABE systems are designed to accommodate certain changes
in the needs of users over time, but current constructions have some inherent
limitations. For instance, new users can enter an HIBE system and collect se-
cret keys without requiring any change to the public parameters or the keys of
users already present. However, for all previous constructions in the standard
model, the identities of new users must fit within the hierarchy depth speci-
fied by the public parameters. More precisely, the size of the public parameters
grows linearly with the maximum depth of the hierarchy, and it is impossible
to add new levels to the hierarchy once the public parameters are fixed. In the
ABE setting, the particular access policies and attribute sets employed by users
may change over time, but current constructions in the standard model do not
allow complete versatility in the choice of attributes and policies once the pub-
lic parameters have been set. In “small universe” constructions (e.g. [28, 31]), a
polynomially sized universe of attributes must be fixed at setup, and the size
of the public parameters grows linearly with the size of the chosen attribute
universe. In “large universe” constructions (e.g. [28]), the attribute universe is
exponentially large, but the size of a set S used for encryption is bounded by
a parameter n which is fixed at setup. The size of the public parameters grows
linearly with n.

This places an undesirable burden on someone wishing to deploy an HIBE
or ABE system to be used in practice. If the setup parameters are chosen to be
too small, the system will not achieve the desired longevity and will need to be
completely re-initialized when users exhaust its overly restrictive structure. If
the setup parameters are chosen to be too large, then the public parameters of
the system will be needlessly large and this will cause unnecessary inefficiency.

Removing these restrictions from previous approaches appears to be quite
challenging. For example, many standard model HIBE constructions employ
structures similar to the Boneh-Boyen HIBE in [9] (e.g. [11, 10, 45, 34] fall roughly
into this framework). At a high level, these systems all rely on hash functions
H which map identity vectors to group elements in a particular way. More
specifically, we suppose that a user at level j in the hierarchy is associated
with an identity vector (I1, . . . , Ij). The hash function H uses d fixed group
elements u1, . . . , ud in a bilinear group G of order p (for example). Upon re-
ceiving an identity vector (I1, . . . , Ij) as input, H somehow chooses k vectors
v1 = (v11 , . . . , v
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u
v11
1 · u

v12
2 · · ·u

v1d
d

)
, . . . ,

(
u
vk1
1 · u

vk2
2 · · ·u

vkd
d

)
.

In forming the secret keys or ciphertexts, these group elements are typically each
raised to the same random exponent in Zp.

If we try to apply this approach without bounding the maximum depth of the
hierarchy, then for some identity vectors, we will need to produce ≥ d samples
of the form above, and each will be raised to the same exponent s ∈ Zp. This
causes insecurity - since our vectors v1, . . . ,vk reside in a d-dimensional space,



most collections of d of them will be linearly independent, and will span Zdp. This
will allow an attacker to create a new sample(
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)s
for any vector (v∗1 , . . . , v

∗
d) that it wants, by taking its received samples, raising

them to appropriate powers, and multiplying the results. For this reason, achiev-
ing unbounded HIBE systems by relying on these sorts of hash functions seems
unlikely.

Our Contribution Using new techniques, we obtain “unbounded” HIBE and
ABE schemes. Our HIBE scheme can accommodate arbitrary hierarchy depths
from public parameters which consist of only a constant number of group ele-
ments. This eliminates the need to decide maximum hierarchy depth at setup
and reduces the size of the public parameters. We prove our scheme fully secure
in the standard model, relying on static, generically secure assumptions in com-
posite order bilinear groups. Our ABE scheme has a large attribute universe and
imposes no bound on the size of attribute sets used for encryption. It also has
public parameters which are a constant number of group elements. It supports
LSSS matrices as access structures, and additionally provides delegation capa-
bilities to users. Our ABE scheme is proven selectively secure3 from the same
static, generically secure assumptions in composite order bilinear groups.

Our Techniques We overcome the limitations of previous constructions by em-
ploying a secret-sharing technique and introducing fresh “local” randomness at
each level of the keys and ciphertexts. Thus, instead of needing to create too
many samples from a bounded dimensional vector space with the same random-
ness, we will be creating many samples which each have new randomness. This
avoids the insecurity of the previous approach described above.

To create a secret key for a user in our HIBE and ABE systems, we first split
the master secret into shares that will be associated with the components of the
user’s identity vector or the rows of its access matrix. Each share is then blinded
by randomness which is freshly chosen for each share and links the share to its
corresponding identity or attribute.

The main obstacle to proving the security of our schemes is the low amount of
entropy provided by the short public parameters. This poses a challenge for both
partitioning proof techniques and the more recently introduced technique of dual
system encryption [45]. To successfully execute a partitioning proof, we would
need to program the public parameters to allow cancelations when the simulator
attempts to make a certain key or keys. However, the small number of degrees of
freedom available in the public parameters make it difficult to program in keys
of arbitrary depth. To use a dual system encryption proof, we must execute an
information-theoretic argument in a low entropy context - this is a challenge, but

3 This is a weaker model of security where the attacker must specify what it will be
challenged on before seeing the public parameters.



a surmountable one. We ultimately accomplish this by introducing a nested dual
system encryption approach which allows us to make our information-theoretic
argument in a very localized context, where the limited entropy of the public
parameters is sufficient.

In a dual system encryption scheme, ciphertexts and keys can take two forms:
normal and semi-functional. Normal keys can decrypt both normal and semi-
functional ciphertexts, while semi-functional keys can only decrypt normal ci-
phertexts. Security is proven through a hybrid argument over a sequence of
games, where first the challenge ciphertext is changed to semi-functional, and
then the keys are changed to semi-functional one by one. At the end of this
process, the simulator does not need to produce keys and ciphertexts which
decrypt properly, and now security can be proven directly. However, we must
avoid a potential paradox: at the point in the game sequence where a key is
being changed to semi-functional, the simulator should not be able to test the
nature of the key for itself by testing decryption on a semi-functional ciphertext.
This can be enforced with nominal semi-functionality, meaning that if the sim-
ulator tries to make a semi-functional ciphertext which can be decrypted by the
key of unknown type, then the key, ciphertext pair will actually be correlated
so that decryption will succeed regardless of semi-functionality. In other words,
even if semi-functional terms are present, they will cancel out upon decryption
with the semi-functional ciphertext and hence be undetectable to the simulator.
This nominal semi-functionality should be hidden from an attacker who cannot
request keys capable of decrypting the ciphertext it receives.

The limited entropy of the public parameters in our systems does not enable
us to hide nominal semi-functionality from the attacker if we try to change
a key from normal to semi-functional in a single step. To overcome this, we
introduce the concept of ephemeral semi-functionality for keys and ciphertexts.
Ephemeral semi-functionality for keys is a temporary state which serves as an
intermediate step between normalcy and semi-functionality. Ephemeral semi-
functionality for ciphertexts is a temporary state of enhanced semi-functionality
- ephemeral semi-functional keys can still decrypt semi-functional ciphertexts,
but ephemeral semi-functional ciphertexts can only be decrypted by normal
keys. Our proof employs a nested hybrid structure, where first the ciphertext is
changed to semi-functional, then one key at a time is first changed to ephemeral
semi-functional, then the ciphertext is changed to ephemeral semi-functional,
and then the single key and ciphertext are both changed to semi-functional.

We note that a key first becomes incapable of decrypting ciphertexts when
both are ephemeral semi-functional, and there is only one ephemeral semi-
functional key at a time. This allows us to employ a information-theoretic argu-
ment to hide nominality in a more local context, where we need only be concerned
with a single key. Even with this nested approach, accomplishing the game tran-
sitions with low entropy is still an intricate process - we employ additional inner
hybrid steps to gradually change the distributions of keys and ciphertexts. In
the KP-ABE setting, we also change to the selective security model.



Related Work Identity-Based Encryption was conceived by Shamir in [41] and
first constructed by Boneh and Franklin [12] and Cocks [23]. These were proven
secure in the random oracle model. Canetti, Halevi, and Katz [16] and Boneh
and Boyen [9] then provided systems which were proven selectively secure in the
standard model. Fully secure solutions in the standard model were later provided
by Boneh and Boyen [10] and Waters [44]. The Waters system was efficient and
proven from the well-established decisional Bilinear Diffie-Hellman assumption,
but had public parameters consisting of O(λ) group elements, where λ is the
security parameter. The system provided by Gentry [24] had short public pa-
rameters and was proven secure in the standard model, but relied on a “q-type”
assumption (meaning that the number of terms in the assumption depends on the
number of queries q made by an attacker). Using dual system encryption, Waters
[45] provided an efficient IBE system with short public parameters proven fully
secure under the decisional linear and decisional bilinear Diffie-Hellman assump-
tions. In the random oracle model, additional schemes were provided by Boneh,
Gentry, and Hamburg [13] under the quadratic residuosity assumption and by
Gentry, Peikert, and Vaikuntanathan [25] under lattice-based assumptions.

Hierarchical Identity-Based Encryption was first introduced by Horwitz and
Lynn [29] and constructed by Gentry and Silverberg [26] in the random oracle
model. Selectively-secure constructions in the standard model were then pro-
vided by Boneh and Boyen [9] and Boneh, Boyen, and Goh [11]. The scheme of
Boneh, Boyen, and Goh achieved short ciphertexts (ciphertext size independent
of the hierarchy depth). Gentry and Halevi gave a fully secure construction for
polynomial depth, relying on a complex assumption. Waters [45] provided a fully
secure scheme from the decisional linear and decisional bilinear Diffie-Hellman
assumptions. Lewko and Waters [34] provided a construction with short cipher-
text, also achieving full security from static assumptions. Lattice-based HIBE
systems were constructed by Cash, Hofheinz, Kiltz, and Peikert [17] and Agrawal,
Boneh, and Boyen [1]. Agrawal, Boneh, and Boyen [2] constructed a lattice HIBE
scheme where the dimension of the delegated lattices does not grow with the lev-
els of the hierarchy. The lattice systems are proven either secure in the random
oracle model or selectively secure in the standard model. Chatterjee and Sarkar
[20] defined a couple of new security models for HIBE, and also suggested an
HIBE system in a new, much weaker security model which can support arbitrary
depths (i.e. a maximum depth is not fixed at setup). However, this system does
not achieve even selective security - the authors point out that there is a simple
attack against it in the standard selective security model.

Attribute-Based Encryption was introduced by Sahai and Waters [40]. Sub-
sequently, Goyal, Pandey, Sahai, and Waters [28] defined two forms of ABE:
Key-Policy ABE (where keys are associated with access policies and ciphertexts
are associated with sets of attributes) and Ciphertext-Policy ABE (where ci-
phertexts are associated with access policies and keys are associated with sets
of attributes). Several constructions of selectively secure KP-ABE and CP-ABE
systems followed (e.g. [8, 21, 27, 28, 38, 39, 46]). Fully secure constructions were
recently provided by Lewko, Okamoto, Sahai, Takashima, and Waters [31] and



Okamoto and Takashima [37]. The works of Chase [18] and Chase and Chow [19]
considered the problem of ABE in a setting with multiple authorities. The re-
lated concept of Predicate Encryption was introduced by Katz, Sahai and Waters
[30] and further studied in [31, 36, 37, 42]. Other works have considered related
problems without addressing collusion resistance [3–5, 15, 35, 43].

The methodology of dual system encryption was introduced by Waters [45]
and later used in [34, 31, 37, 22, 32] to obtain adaptive security (and also leakage
resilience in [22, 32]) for IBE, HIBE, and ABE systems. The abstractions we
provide for dual system encryption in the HIBE and ABE settings are similar
to the abstractions provided in [32], except that we do not consider leakage
resilience and also provide only selective security in the ABE case.

2 Dual System Encryption HIBE

We now define a Dual System Encryption HIBE scheme. (This is similar to the
abstraction given in [32], but things are simpler in our case because we do not
consider leakage resilience.) In addition to the five algorithms of a regular HIBE
scheme (Setup, Encrypt, KeyGen, Decrypt, and Delegate), a Dual System En-
cryption HIBE scheme also has algorithms KeyGenSF and EncryptSF, which
produce semi-functional keys and ciphertexts, respectively. Unlike the Setup,
Encrypt, KeyGen, Decrypt, and Delegate algorithms, the KeyGenSF and En-
cryptSF algorithms need not run in polynomial time (given only their input
parameters), since they are used only for the proof of security and are not used
in the normal operation of the system. Notice that decryption will work as be-
fore unless both the secret key and ciphertext are semi-functional, in which case
decryption will always fail.

Setup(λ) → PP,MSK The setup algorithm takes the security parameter λ as
input and outputs the public parameters PP and the master secret key MSK.

Encrypt(M,I,PP) → CT The encryption algorithm takes a message M , an
identity vector I, and the public parameters PP as input and outputs the ci-
phertext CT.

EncryptSF(M,I,PP)→ C̃T The semi-functional encryption algorithm takes a
message M , an identity vector I, and the public parameters PP as input. It
produces a semi-functional ciphertext C̃T.

KeyGen(MSK,I,PP) → SKI The key generation algorithm takes the master
secret key MSK, an identity vector I, and the public parameters as input and
outputs a secret key SKI for that identity vector.

KeyGenSF(MSK,I,PP)→ S̃KI The semi-functional key generation algorithm
takes the master secret key MSK, an identity vector I, and the public parameters
as input. It produces a semi-functional secret key S̃KI for I.



Decrypt(CT,PP,SKI) → M The decryption algorithm takes a ciphertext CT,
the public parameters PP, and a secret key SKI as input. If the identity vector
of the secret key I is a prefix of the identity vector used to encrypt the cipher-
text and the key and ciphertext are not both semi-functional, the decryption
algorithm outputs the message M .

Delegate(SKI , I ′,PP) → SKI:I′ The delegation algorithm takes a secret key
SKI for identity vector I, an identity I ′, and the public parameters PP as input.
It outputs a secret key SKI:I′ for the identity vector I : I ′, which denotes the
concatenation of I and I ′.

2.1 Security Properties for Dual System Encryption HIBE

We define four security properties for a dual system encryption HIBE. We will
show that a system which has these four properties is a secure HIBE. To de-
fine these properties, we define the following variations of the security game for
HIBE, which we call Game HIBE. In this game, the attacker may make Cre-
ate, Delegate, and Reveal queries. In response to Create queries, the challenger
creates the specified key. In response to Delegate queries, the challenger applies
the delegation algorithm to produce the requested key from a specified superior
key. In response to Reveal queries, the challenger gives the requested key to the
attacker. For background on HIBE and its security definition and proofs of the
theorems in this section, see the full version of this paper [33].

We first define Game HIBEWD to be the same as Game HIBE, except with-
out delegation. More precisely, instead of making Create, Delegate, and Reveal
queries, the attacker simply makes KeyGen queries - i.e. it provides the challenger
with an identity vector, the challenger creates a secret key for this identity vec-
tor by calling KeyGen, and then gives the secret key to the attacker. The only
restriction is that no queried identity vectors can be prefixes of the challenge
identity vector provided for the challenge ciphertext.

We next define Game HIBEC to be the same as Game HIBEWD, except that
the challenge ciphertext is generated by a call to EncryptSF instead of Encrypt
(i.e. a semi-functional ciphertext is given to the attacker). We also define Game
HIBESF to be the same as Game HIBEC , except that the challenger replaces all
KeyGen calls with calls to KeyGenSF. In other words, the challenge ciphertext
and all the secret keys given to the attacker will be semi-functional.

Delegation Invariance We say a dual system encryption HIBE scheme ΠD =
(Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has del-
egation invariance if for any PPT algorithm A, there exists another PPT al-
gorithm A′ such that the advantage of A in Game HIBE is negligibly close to
the advantage of A′ in Game HIBEWD. (Here, A makes Create, Delegate, and
Reveal queries, while A′ makes KeyGen queries.) We denote this by:∣∣∣AdvHIBEA (λ)−AdvHIBEWD

A′ (λ)
∣∣∣ = negl(λ).



Semi-functional Ciphertext Invariance We say a dual system encryption HIBE
scheme ΠD = (Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Del-
egate) has semi-functional ciphertext invariance if for any PPT algorithm A, the
advantage of A in Game HIBEWD is negligibly close to its advantage in Game
HIBEC . We denote this by:∣∣∣AdvHIBEWD

A (λ)−AdvHIBEC

A (λ)
∣∣∣ = negl(λ).

Semi-functional Key Invariance We say a dual system encryption HIBE scheme
ΠD = (Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate)
has semi-functional key invariance if for any PPT algorithm A, the advantage
of A in Game HIBEC is negligibly close to its advantage in Game HIBESF . We
denote this by: ∣∣∣AdvHIBEC

A (λ)−AdvHIBESF

A (λ)
∣∣∣ = negl(λ).

Semi-functional Security We say a dual system encryption HIBE scheme ΠD =
(Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has semi-
functional security if for any PPT algorithm A, the advantage of A in Game
HIBESF is negligible. We denote this by:

AdvHIBESF

A (λ) = negl(λ).

Theorem 1. If a dual system encryption HIBE scheme ΠD = (Setup, Encrypt,
EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has delegation invariance,
semi-functional ciphertext invariance, semi-functional key invariance, and semi-
functional security, then Π = (Setup, Encrypt, KeyGen, Decrypt, Delegate) is
a secure HIBE scheme.

2.2 An Alternative Security Property

The semi-functional key invariance property can be difficult to prove directly. For
this reason, we define an alternative property, one semi-functional key invari-
ance, which is more convenient to work with and which implies semi-functional
key invariance through a hybrid argument.

To define one semi-functional key invariance, we must define an additional
game, Game HIBEb (where b represents a bit that can take value 0 or 1). In this
game, when the attacker requests a key, it specifies whether it wants a normal
or semi-functional key. If the attacker requests a normal key, the challenger
makes a call to KeyGen to generate the key and returns it to the attacker.
If the attacker requests a semi-functional key, the challenger makes a call to
KeyGenSF to generate the key and returns it to the attacker. At some point,
the attacker specifies a challenge key. In response, the challenger provides a
normal key if b = 0 and a semi-functional key if b = 1. When the attacker
requests the challenge ciphertext, it is given a semi-functional ciphertext (under
the usual restriction that no key given to the attacker can be for an identity



vector which is a prefix of the identity vector of the ciphertext). Note that the
only difference between Game HIBE0 and Game HIBE1 is the nature of a single
key specified by the attacker.

One Semi-functional Key Invariance We say a dual system encryption HIBE
scheme ΠD = (Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Del-
egate) has one semi-functional key invariance if for any PPT algorithm A, the
advantage of A in Game HIBE0 is negligibly close to its advantage in Game
HIBE1. We denote this by:∣∣∣AdvHIBE0

A (λ)−AdvHIBE1

A (λ)
∣∣∣ = negl(λ).

Theorem 2. If a dual system encryption HIBE scheme ΠD = (Setup, Encrypt,
EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has one semi-functional
key invariance, then it has semi-functional key invariance.

3 Complexity Assumptions

Our construction will use composite order bilinear groups, first introduced in
[14]. Additional background about these groups can be found in the full version.
We let G denote a bilinear group order N = p1p2p3, which is a product of three
distinct primes, and we let e : G×G→ GT denote the bilinear map.

In the assumptions below, we let Gp1 denote the subgroup of order p1 in G,
for example. We note that if gi ∈ Gpi and gj ∈ Gpj for i ̸= j, then e(gi, gj) = 1.

We use the notation X
R←− S to express that X is chosen uniformly randomly

from the finite set S. We note that except for Assumption 2, all of these assump-
tions are special cases of the General Subgroup Decision Assumption defined in
[7]. Informally, the General Subgroup Decision Assumption can be described as
follows: in a bilinear group of order N = p1p2 . . . pn, there is a subgroup of order∏
i∈S pi for each subset S ⊆ {1, . . . , n}. We let S0, S1 denote two such subsets. It

should be hard to distinguish a random element from the subgroup correspond-
ing to S0 from a random element of the subgroup corresponding to S1, even
if one is given random elements from subgroups corresponding to other sets Si
which satisfy either that S0 ∩ Si = ∅ = S1 ∩ Si or S0 ∩ Si ̸= ∅ ̸= S1 ∩ Si. The
formal statements of our precise assumptions are below. Assumption 1 here is
a slightly weaker form of Assumption 1 in [34], and Assumptions 2 and 4 here
also appeared in [34]. In our proofs, we will also invoke Assumption 4 with the
roles of p2 and p3 reversed.

Assumption 1 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g
R←− Gp1 ,

D = (G, g),



T1
R←− Gp1p2 , T2

R←− Gp1 .
We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function

of λ for any PPT algorithm A.

Assumption 2 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g
R←− Gp1 , g2, X2, Y2

R←− Gp2 , g3
R←− Gp3 , α, s

R←− ZN
D = (G, g, g2, g3, gαX2, g

sY2),

T1 = e(g, g)αs, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible function

of λ for any PPT algorithm A.

Assumption 3 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g,X1
R←− Gp1 , g2

R←− Gp2 , X3
R←− Gp3

D = (G, g, g2, X1X3),

T1
R←− Gp1 , T2

R←− Gp1p3 .
We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible function

of λ for any PPT algorithm A.

Assumption 4 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , g3, Y3
R←− Gp3

D = (G, g, g3, X1X2, Y2Y3),

T1
R←− Gp1p3 , T2

R←− G.
We define the advantage of an algorithm A in breaking Assumption 4 to be:

Adv4G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We say that G satisfies Assumption 4 if Adv4G,A(λ) is a negligible function

of λ for any PPT algorithm A.



4 Our HIBE Construction

We now present our dual system encryption HIBE scheme. Our system is con-
structed in a composite order bilinear group whose order N is the product of
three distinct primes. We assume that our identity vectors have components
which are elements of ZN . In the semi-functional algorithms below, we let g2
denote a generator of Gp2 and g3 denote a generator of Gp3 .

We will assume that identity vectors are encoded such that if identity vector
I is not a prefix of identity vector I∗, then the last component of I is not
equal to any component of I∗. In other words, when I = (I1, . . . , Ij) is not
a prefix of I∗ = (I∗1 , . . . , I∗ℓ ), we assume that Ij ̸= I∗k for all k ∈ {1, . . . , ℓ}.
A simple scheme to achieve this encoding is to replace an arbitrary vector of
component identities, (I1, . . . , Ij) by concatenating in each entry with all the
previous entries: (I1, I1||I2, . . . , I1||I2|| · · · ||Ij). This creates entries which grow
in length, but we can avoid this by applying a collision-resistant hash function
to each of them.

The main idea of our construction is to employ a secret-sharing approach
across the levels of our secret keys. A user’s secret key involves a sharing of
the master secret key α as a sum of exponents, where each piece of the sum is
additionally blinded by a random term which is unique to that piece. In other
words, each share of α is blinded by randomness which is “local” to that share.
To successfully decrypt, a user must effectively unblind each share, which can
only be accomplished by a user with a jth level identity vector which matches
the ciphertext identity vector in all of the components one through j. If a user’s
identity vector fails to match in component k ≤ j, then the user will fail to
recover the kth share needed, thus preventing successful decryption. In essence,
each level of the key and ciphertext closely resembles an instance of the Boneh-
Boyen IBE scheme [9] with an added layer of local randomness between the
shares of the master secret key and the terms involving the identities. These
instances share the same public parameters, which we are able to accommodate
by using fresh local randomness in the levels of the key and ciphertext.

4.1 Construction

Setup(λ) → PP,MSK The setup algorithm takes in the security parameter λ
and chooses a bilinear group G of order N = p1p2p3, where p1, p2, p3 are distinct
primes. We let Gpi denote the subgroup of order pi in G. The algorithm then
chooses g, u, h, v, w uniformly randomly from Gp1 , and α uniformly randomly
from ZN . It sets the public parameters as:

PP := {N,G, g, u, h, v, w, e(g, g)α}.

The master secret key is α.

Encrypt(M, (I1, . . . , Ij),PP),→ CT The encryption algorithm chooses s,
t1, . . . , tj uniformly randomly from ZN . It creates the ciphertext as:

C :=Me(g, g)αs, C0 := gs,



Ci,1 := wsvti , Ci,2 := gti , Ci,3 := (uIih)ti ∀i ∈ {1, . . . , j}.

EncryptSF(M, (I1, . . . , Ij),PP) → C̃T The semi-functional encryption algo-
rithm first calls the Encrypt algorithm to obtain a normal ciphertext, CT =
{C ′, C ′

0, C
′
i,1, C

′
i,2, C

′
i,3 ∀i}. It then chooses random values γ, δ ∈ ZN . It forms

the semi-functional ciphertext C̃T as:

C := C ′, C0 := C ′
0 · g

γ
2 ,

Ci,1 := C ′
i,1 · gδ2, Ci,2 := C ′

i,2, Ci,3 := C ′
i,3 ∀i ∈ {1, . . . , j}.

Notice that the additional term gδ2 on Ci,1 is the same for each value of i.

KeyGen((I1, . . . , Ij),MSK,PP) → SKI The key generation algorithm chooses
uniformly random values r1, . . . , rj , y1, . . . , yj from ZN . It also chooses random
values λ1, . . . , λj ∈ ZN subject to the constraint that α = λ1 + λ2 + · · · + λj .
The secret key is created as:

Ki,0 := gλiwyi , Ki,1 := gyi , Ki,2 := vyi(uIih)ri , Ki,3 := gri ∀i ∈ {1, . . . , j}.

KeyGenSF((I1, . . . , Ij),MSK,PP)→ S̃KI The first time this algorithm is called,
it chooses random values σ, ψ ∈ ZN . These values will be stored and used on
each invocation of the algorithm.

To create a semi-functional key, the semi-functional key generation algorithm
first calls the KeyGen algorithm to obtain a normal key,
SKI = {K ′

i,0,K
′
i,1,K

′
i,2,K

′
i,3 ∀i}. It then chooses a random value ỹj ∈ ZN and

creates the semi-functional key as:

Ki,0 := K ′
i,0, Ki,1 := K ′

i,1, Ki,2 := K ′
i,2, Ki,3 := K ′

i,3 ∀i ∈ {1, . . . , j − 1},

Kj,0 := K ′
j,0 · (g2g3)ψỹj , Kj,1 := K ′

j,1 · (g2g3)ỹj ,

Kj,2 := K ′
j,2 · (g2g3)σỹj , Kj,3 := K ′

j,3.

We note that the ỹj terms are chosen to be freshly random for each key,
while the values σ, ψ are shared by all semi-functional keys. We also note that
the exponents modulo p3 here are uncorrelated from the exponents modulo p2
by the Chinese Remainder Theorem. It is also important to observe that the
semi-functional components (the added terms in Gp2 and Gp3) only appear in
the last level of the key.

Delegate(PP,SK, Ij+1)→ SK′ The delegation algorithm takes in a secret key
SK = {Ki,0,Ki,1,Ki,2,Ki,3 ∀i ∈ {1, . . . , j}} for (I1, I2, . . . , Ij) and a level j + 1
identity Ij+1. It produces a secret key SK′ for (I1, . . . , Ij+1) as follows. It chooses
y′1, . . . , y

′
j+1 and r′1, . . . , r

′
j+1 ∈ ZN uniformly at random, λ′1, . . . , λ

′
j+1 ∈ ZN

randomly up to the constraint that λ′1 + · · ·+ λ′j+1 = 0 and computes:

K ′
i,0 := Ki,0 · gλ

′
i · wy

′
i , K ′

i,1 := Ki,1 · gy
′
i , K ′

i,2 := Ki,2 · vy
′
i(uIih)r

′
i ,

K ′
i,3 := Ki,3 · gr

′
i ∀i ∈ {1, . . . , j + 1},

where Kj+1,1,Kj+1,2,Kj+1,3 are defined to be the identity element in G.



Decryption(CT, SK)→M The decryption algorithm takes in a secret key
SK = {Ki,0,Ki,1,Ki,2,Ki,3 ∀i ∈ {1, . . . , j}} for (I1, I2, . . . , Ij) and a ciphertext
CT encrypted to (I1, . . . , Iℓ). Assuming (I1, . . . , Ij) is a prefix of (I1, . . . , Iℓ),
the message is decrypted as follows. The decryption algorithm computes:

B :=

j∏
i=1

e(C0,Ki,0)e(Ci,2,Ki,2)

e(Ci,1,Ki,1)e(Ci,3,Ki,3)
.

The message is then computed as M = C/B.

Correctness We observe that:

B =

j∏
i=1

e(g, g)sλie(g, w)syie(g, v)tiyie(g, uIih)tiri

e(w, g)syie(v, g)tiyie(uIih, g)tiri
,

which is equal to:

=

j∏
i=1

e(g, g)sλi = e(g, g)sα,

since
∑j
i=1 λi = α. Thus, M = C/B.

5 Security

We prove that our dual system encryption HIBE scheme has delegation invari-
ance, semi-functional ciphertext invariance, one semi-functional key invariance,
and semi-functional security. By theorems 1 and 2, this implies that our HIBE
system is secure. More formally, we prove the following theorem:

Theorem 3. Under Assumptions 1-4, our HIBE system is fully secure.

Proving delegation invariance, semi-functional ciphertext invariance, and semi-
functional security is relatively straightforward, and these proofs can be found
in the full version. The truly challenging part of the proof will be proving one
semi-functional key invariance, and this is where we introduce our key technical
innovations.

5.1 One Semi-functional Key Invariance

The primary challenge in proving one semi-functional key invariance for our
system is that the repetition of the same public parameters for each level of the
keys and ciphertexts severely limits our ability to simulate properly distributed
semi-functional keys and ciphertexts as we are changing the form of the challenge
key. In a typical dual system encryption argument, we must ensure as we are
changing the form of one key that the simulator cannot determine the nature of
the key for itself. Since the simulator must be prepared to make a semi-functional



ciphertext for any identity vector and also must be prepared to use any identity
vector for the challenge key, it seems that a simulator could learn for itself
whether or not the challenge key is semi-functional by trying to decrypt a semi-
functional ciphertext. This potential paradox can be avoided by ensuring that a
simulator can only make a nominally semi-functional key, meaning that even if
semi-functional terms are present on the challenge key, they will be correlated
with the semi-functional ciphertext and cancel out upon decryption. We would
then argue that nominality is hidden from an attacker who cannot request keys
capable of decrypting.

If we attempt to change the challenge key in our system from normal to
semi-functional in a single or very small number of steps using generalized sub-
group decision assumptions, then the very limited entropy available in the pub-
lic parameters seems to prevent us from maintaining the proper distributions
of the semi-functional keys and semi-functional ciphertext without revealing
nominality. In other words, it appears to be difficult for the simulator to pre-
vent information-theoretic exposure of unwanted correlations between the semi-
functional components of the keys and ciphertext it creates.

To overcome this difficulty, we employ a nested dual system encryption ap-
proach and introduce the concept of ephemeral semi-functionality4. Instead of
trying to directly change the challenge key from normal to semi-functional, we
will first change it from normal to ephemeral semi-functional. An ephemeral
semi-functional key will come from a new distribution which serves as an inter-
mediary stage between the normal and semi-functional distributions. We note
that an ephemeral semi-functional key can still correctly decrypt semi-functional
ciphertexts, and that its form only differs from a normal key on its last level.

After changing the challenge key from normal to ephemeral semi-functional,
we will then change the ciphertext to also be ephemeral semi-functional. Ephemeral
semi-functional ciphertexts will come from a new distribution of ciphertexts, and
will not be decryptable by ephemeral semi-functional keys. This is where we con-
front the potential paradox of dual system encryption: we will make sure that the
simulator can only make challenge key and ciphertext pairs which are nominally
ephemeral semi-functional, meaning that the distributions of the challenge key
and ciphertext will be correlated so that even if the ephemeral semi-functional
terms are present in both the key and ciphertext, they will cancel out upon de-
cryption. This correlation will be hidden from an attacker who cannot request a
key capable of decrypting the ciphertext.

To accomplish this information-theoretic hiding with such low entropy in our
public parameters, we will make a hybrid argument in which we change the ci-
phertext form one level at a time. Since there are only ephemeral semi-functional
terms on one level of one key, it is now sufficient to hide a correlation between
one level of the ciphertext and one level of one key: this can be accomplished with
the use of a pairwise independent function. Once we have obtained an ephemeral

4 We choose not to include this concept in our abstraction for dual system encryption
HIBE, because its use here is motivated by the particular challenge of short public
parameters and we imagine dual system encryption HIBE as a broader framework.



semi-functional challenge key and an ephemeral semi-functional ciphertext, we
are able to change the challenge key to be semi-functional in the usual sense and
also return the ciphertext to its usual semi-functional state.

Essentially, using ephemeral semi-functionality helps us overcome the chal-
lenge presented by low entropy in the public parameters because it allows us
to move the information-theoretic argument that nominality is hidden from the
attacker to a setting where we are really only concerned with one key. Since the
other semi-functional keys come from a different distribution, we can prevent
them from leaking information about the simulated ephemeral distribution that
would break the information-theoretic argument.

We now define the distributions of ephemeral semi-functional keys and ci-
phertexts. We do this by defining two new algorithms, EncryptESF and Key-
GenESF. Like the algorithms EncryptSF and KeyGenSF, these do not need
to run in polynomial time (given only their input parameters). We note that
the EncryptESF algorithm takes in an additional parameter σ: this is because
the ciphertexts it produces will share the value σ with the semi-functional keys
created by KeyGenSF. As in the original semi-functional algorithms, we let g2
denote a generator of Gp2 and g3 denote a generator of Gp3 .

EncryptESF(M, (I1, . . . , Ij),PP, σ)→ C̃TE The ephemeral semi-functional en-
cryption algorithm first calls the Encrypt algorithm to obtain a normal cipher-
text
CT = {C ′, C ′

0, C
′
i,1, C

′
i,2, C

′
i,3 ∀i ∈ {1, . . . , j}}. It then chooses random values

γ, δ, a′, b′, t1, . . . , tj ∈ ZN and forms the ephemeral semi-functional ciphertext

C̃TE as:
C := C ′, C0 := C ′

0 · g
γ
2 ,

Ci,1 := C ′
i,1 · gδ2 · g

σti
2 , Ci,2 := C ′

i,2 · g
ti
2 , Ci,3 := C ′

i,3 · g
(a′Ii+b

′)ti
2 ∀i ∈ {1, . . . , j}.

KeyGenESF((I1, . . . , Ij),MSK,PP, σ) → S̃KE The ephemeral semi-functional
key generation algorithm first calls the KeyGen algorithm to obtain a normal
key
SK = {K ′

i,0,K
′
i,1,K

′
i,2,K

′
i,3 ∀i ∈ {1, . . . , j}}. It chooses random values r̃1, r̃2 ∈

ZN and forms the ephemeral semi-functional key S̃KE as:

Ki,0 := K ′
i,0, Ki,1 := K ′

i,1, Ki,2 := K ′
i,2, Ki,3 := K ′

i,3 ∀i ∈ {1, . . . , j − 1},

Kj,0 := K ′
j,0, Kj,1 = K ′

j,1, Kj,2 := K ′
j,2 · (g2g3)r̃1 , Kj,3 := K ′

j,3 · (g2g3)r̃2 .
We note that an ephemeral semi-functional key can decrypt a semi-functional

ciphertext, but cannot decrypt an ephemeral semi-functional ciphertext, while
an ephemeral semi-functional ciphertext can only be decrypted by normal keys.

Sequence of Games We prove one semi-functional key invariance of our dual
system encryption HIBE scheme via a hybrid argument over the following se-
quence of games. We begin with Game HIBE0, where the ciphertext is semi-
functional and the challenge key is normal. We will end with Game HIBE1,



where the ciphertext is semi-functional and the challenge key is semi-functional.
We define the following intermediary games. In these games, the distributions
of the challenge key and ciphertext vary, while the distribution of the requested
normal and semi-functional keys are the same as in Games HIBE0 and HIBE1.

Game HIBE′
0 This game is exactly like Game HIBE0, except for the added re-

striction that the last component of the challenge key identity vector cannot be
equal to any of the components of the challenge ciphertext identity vector mod-
ulo p3 (note that we were already requiring this modulo N - now we make the
stronger requirement that the identities must remain unequal when we reduce
modulo p3). (This added restriction will be needed to apply pairwise indepen-
dence arguments in Zp3 .)

Game EK In Game EK, the ciphertext is still semi-functional, and the challenge
key is now ephemeral semi-functional. We retain the added restriction on the
identities modulo p3.

Game EC In Game EC, both the ciphertext and challenge are ephemeral semi-
functional. We retain the added restriction on the identities modulo p3.

Game HIBE′
1 This game is exactly like the Game HIBE1, but with the added

restriction on the identities modulo p3.

In the full version, we prove that we can transition from Game HIBE0 to
Game HIBE′

0, to Game EK, to Game EC, to Game HIBE′
1, and finally to Game

HIBE1 without the attacker’s advantage changing by a non-negligible amount.

6 Key-Policy Attribute-Based Encryption

We now present our construction for KP-ABE. Our public parameters consist
of a constant number of elements from a bilinear group of composite order N ,
while our attribute universe is ZN . Ciphertexts in our system are associated with
sets of attributes, while secret keys are associated with LSSS access matrices.
Our construction is closely related to our HIBE construction. The main changes
are that attributes have now replaced identities, and the master secret key α is
now shared according to the LSSS matrix, instead of as a sum. We follow the
convention that to share a value α, one employs a vector α with first coordinate
equal to α, and the shares are obtained by multiplying the rows of the LSSS
matrix by the sharing vector α. A subset of rows is capable of reconstructing
the shared secret if and only if their span includes the vector (1, 0, . . . , 0).

6.1 Construction

Setup(λ) → PP,MSK The setup algorithm takes in the security parameter λ
and chooses a suitable bilinear group G of order N = p1p2p3, a product of



three distinct primes. It chooses α ∈ ZN uniformly randomly, and also chooses
uniformly random elements g, u, h, v, w from the subgroup Gp1 . It sets the public
parameters as:

PP := {N,G, g, u, h, v, w, e(g, g)α}.

The MSK is α, and the universe U of attributes is ZN .

Encrypt(M,S ⊆ U,PP) → CT The encryption algorithm takes in a message
M , a set of attributes S, and the public parameters. We let ℓ denote the size of
the set S, and we let s1, . . . , sℓ ∈ ZN denote the elements of S. The encryption
algorithm chooses uniformly random values s, t1, . . . , tℓ ∈ ZN and computes the
ciphertext as:

C :=Me(g, g)αs, C0 := gs,

Csi,1 := wsvti , Csi,2 := gti , Csi,3 := (usih)ti ∀i ∈ {1, . . . , ℓ}.

(We also assume the set of S is given as part of the ciphertext.)

KeyGen(MSK,PP, (A, ρ)) → SK The key generation algorithm takes in the
master secret key α, the public parameters, and a LSSS matrix (A, ρ), where
A is an n × m matrix over ZN , and ρ maps each row of A to an attribute in
ZN . The key generation algorithm chooses a random vector α ∈ ZmN with first
coordinate equal to α and random values r1, . . . , rn, y1, . . . , yn ∈ ZN . For each
x ∈ {1, . . . , n}, we let Ax denote the xth row of A, and we let ρ(x) denote that
attribute associated with this row by the mapping ρ. We let λx := Ax ·α denote
the share associated with the row Ax of A. The secret key is formed as5:

Kx,0 := gλxwyx ,Kx,1 := gyx ,Kx,2 := vyx(uρ(x)h)rx ,Kx,3 := grx ∀x ∈ {1, . . . , n}.

Decrypt(SK,CT) → M The decryption algorithm takes in a ciphertext CT for
attribute set S and a secret key SK for access matrix (A, ρ). If the attributes
of the ciphertext satisfy the policy of the secret key, then it will compute the
messageM as follows. First, it computes constants ωx such that

∑
ρ(x)∈S ωxAx =

(1, 0, . . . , 0). It then computes:

B =
∏

ρ(x)∈S

(
e(C0,Kx,0)e(Cρ(x),2,Kx,2)

e(Cρ(x),1,Kx,1)e(Cρ(x),3,Kx,3)

)ωx

, M = C/B.

Correctness We observe that:

B =
∏

ρ(x)∈S

(
e(g, g)sλxe(g, w)syxe(g, v)tρ(x)yxe(g, uρ(x)h)tρ(x)rx

e(w, g)syxe(v, g)tρ(x)yxe(uρ(x)h, g)tρ(x)rx

)ωx

,

=
∏

ρ(x)∈S

(
e(g, g)sλx

)ωx
= e(g, g)sα.

This shows that M = C/B.

5 We also assume the access matrix (A, ρ) is given as part of the key.



6.2 Security

We prove that our system is selectively secure using a similar strategy to our
proof of adaptive security for our HIBE system (the formal definition for se-
lective security in the KP-ABE setting can be found in the full version). We
were able to achieve adaptive security in the HIBE setting because we could
assume that, regardless of what identity vector was chosen for the challenge ci-
phertext, each requested key would have a final identity component which would
not match any components of the challenge ciphertext. This allowed us to put
our semi-functional components only on the last level of the key, which was cru-
cial to preserving the appearance of randomness via our pairwise independence
argument in the middle stages of the proof. In the adaptive KP-ABE setting,
we only know that the policy of a requested key will fail to be satisfied by the
attribute set of the ciphertext, but we do not know how it will fail to be satisfied.
In other words, for keys which are requested by the attacker before the challenge
ciphertext, we do not know which rows of the keys will correspond to attributes
which are not in the challenge ciphertext. This leaves us in a bind - we do not
know where to put the semi-functional terms. If we try to put semi-functional
terms on each row, we will not be able to make the semi-functional terms appear
suitably random in the attacker’s view. If we put the semi-functional terms on
too few rows, we will not achieve a meaningful kind of semi-functionality.

This problem is solved by moving to the selective security model, which
forces the attacker to reveal the attribute set of the challenge ciphertext at the
very start of the game. This means that when the simulator is faced with a
key request, it already knows which rows of the key correspond to attributes
which are absent from the ciphertext, and it can place the semi-functional terms
exactly on these rows. We must add an additional hybrid to our proof strategy
here so that we can change the rows of a key from normal to semi-functional one
at a time. The proof of the following theorem, as well as discussion of delegation
capabilities for our ABE scheme, can be found in the full version.

Theorem 4. Under Assumptions 1-4, our KP-ABE system is selectively secure.
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