
Double-Base Chains for Scalar Multiplications on
Elliptic Curves

Wei Yu1,2, Saud Al Musa3, and Bao Li1,4

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

{yuwei,libao}@iie.ac.cn
2 Data Assurance and Communications Security Research Center, Chinese Academy of

Sciences, Beijing 100093, China
yuwei_1_yw@163.com

3 College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia
smusa@taibahu.edu.sa

4 School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. Double-base chains (DBCs) are widely used to speed up scalar
multiplications on elliptic curves. We present three results of DBCs. First, we
display a structure of the set containing all DBCs and propose an iterative
algorithm to compute the number of DBCs for a positive integer. This is
the first polynomial time algorithm to compute the number of DBCs for
positive integers. Secondly, we present an asymptotic lower bound on average

Hamming weights of DBCs
logn
8.25 for a positive integer n. This result answers

an open question about the Hamming weights of DBCs. Thirdly, we propose
a new algorithm to generate an optimal DBC for any positive integer. The

time complexity of this algorithm is O
((

logn
)2 loglogn

)
bit operations and

the space complexity is O
((

logn
)2

)
bits of memory. This algorithm accelerates

the recoding procedure by more than 6 times compared to the state-of-the-
art Bernstein, Chuengsatiansup, and Lange’s work. The Hamming weights of
optimal DBCs are over 60% smaller than those of NAFs. Scalar multiplication
using our optimal DBC is about 13% faster than that using non-adjacent form
on elliptic curves over large prime fields.

Keywords: Elliptic curve cryptography, Scalar multiplication, Double-base
chain, Hamming weight

1 Introduction

A double-base chain (DBC), as a particular double-base number system (DBNS)
representation, represents an integer n as

∑l
i=1 ci 2bi 3ti where ci ∈ {±1}, bi , ti are

non-increasing sequences. It is called an unsigned DBC when ci ∈ {1}. A DBC was
first used in elliptic curve cryptography for its sparseness by Dimitrov, Imbert, and
Mishra [1], and Ciet, Joye, Lauter, and Montgomery [2]. Scalar multiplication is
the core operation in elliptic curve cryptosystems. A DBC allows one to represent
an integer in a Horner-like fashion to calculate scalar multiplication such that all

2 W. Yu et al.

partial results can be reused. In the last decade, DBCs were widely investigated to
speed up scalar multiplications [3–5] and pairings [6,7]. The generalizations of DBCs
were also applied to the arithmetics of elliptic curves. The generalizations include
simultaneously representing a pair of numbers to accelerate multi-scalar multipli-
cations [8–10], using double-base representation to speed up scalar multiplication
on Koblitz curves [11], and representing an integer in a multi-base number system
to promote scalar multiplications [12–14].

Dimitrov, Imbert, and Mishra pointed out that DBC is highly redundant, and
counting the exact number of DBCs is useful to generate optimal DBCs [1]. A precise
estimate of the number of unsigned DBNS representation of a given positive integer
was presented in [15]. 100 has exactly 402 unsigned DBNS representations and
1000 has 1295579 unsigned DBNS representations. For unsigned DBC, Imbert and
Philippe [4] introduced an efficient algorithm to compute the number of unsigned
DBCs for a given integer. By their algorithm, 100 has 7 unsigned DBCs and 1000
has 30 unsigned DBCs. DBCs are more redundant than unsigned DBCs. For a given
integer n, Doche [16] proposed a recursion algorithm to calculate the number of
DBCs with a leading term dividing 2b3t . His algorithm is efficient to find the number
of DBCs with a leading term dividing 2b3t for integers less than 270 and b, t < 70.
But it does not work for calculating the number of DBCs of a positive integer used in
elliptic curve cryptography. We will show how to calculate the number of DBCs of a
256−bit integer or even a larger integer.

The Hamming weight is one of the most important factors that affect the effi-
ciency of scalar multiplications. Dimitrov, Imbert, and Mishra proved an asymptotic

upper bound O
(

logn
loglogn

)
on the Hamming weight of DBNS representation by a greedy

approach [15]. Every integer n has a DBC with Hamming weight O
(
logn

)
. The

upper bounds of DBNS representations and DBCs have been well investigated, in
contrast, the precise lower bounds of DBCs can not be found in any literature. Doche
and Habsieger [3] showed that the DBCs produced by the tree approach is shorter
than those produced by greedy approach [1] for integers with several hundreds of
bits experimentally. They observed that the average Hamming weight of the DBCs

produced by the tree approach is logn
4.6419 . They also posed an open question that the

average Hamming weight of DBCs generated by the greedy approach may be not

O
(

logn
loglogn

)
. We will give affirmation to this question.

Canonic DBCs are the DBCs with the lowest Hamming weight for a positive
integer and were introduced by Dimitrov, Imbert, and Mishra [1]. Several algorithms
were designed to produce near canonic DBCs such as greedy algorithm [1], bi-
nary/ternary approach [2], multi-base non-adjacent form (mbNAF) [13], and tree
approach [3]. In Asiacrypt 2014, Doche proposed an algorithm to produce a canonic
DBC [16] . As Doche’s algorithm was in exponential time, Capuñay and Thériault [7]
improved Doche’s algorithm to generate a canonic DBC or an optimal DBC. This
is the first algorithm to generate an optimal DBC in polynomial time, explicitly

O
((

logn
)4

)
bit operations and O

((
logn

)3
)

bits of memory. Bernstein, Chuengsa-

tiansup, and Lange [17] presented a directed acyclic graph algorithm (DAG) to

produce a canonic DBC or an optimal DBC. Their algorithm takes time O
((

logn
)2.5

)

Double-Base Chains for Scalar Multiplications on Elliptic Curves 3

bit operations and O
((

logn
)2.5

)
bits of memory. As scalar multiplication requires

O
((

logn
)2 loglogn

)
when field multiplications use FFTs, we will focus on producing

a canonic DBC or an optimal DBC in the same order of magnitude.

In this paper, we are concerned with the theoretical aspects of DBCs arising from
their study to speed up scalar multiplication and producing a canonic DBC or an
optimal DBC efficiently. The main contributions are detailed as follows.

1. As Doche’s algorithm is in exponential time to compute the number of DBCs
with a leading term dividing 2b3t [16], we propose an iterative algorithm in

O
((

logn
)3

)
bit operations and in O

((
logn

)2
)

bits of memory. Our algorithm

is based on our new structure of the set containing all DBCs. It requires 10
milliseconds for 256-bit integers and 360 milliseconds for 1024-bit integers.
Using the iterative algorithm, 100 has 2590 DBCs with a leading term dividing
23034 and 1000 has 28364 DBCs with a leading term dividing 23036. These results
show that DBCs are redundant. We show that the number of DBCs with a leading
term dividing 2b3t is the same when t ≥ tτ for some tτ. The number of DBCs with
a leading term dividing 2b3t minus the number of DBCs with a leading term
dividing 2bτ3t is (b −bτ)Cτ when b ≥ bτ for some bτ and Cτ. We also present
that the number of DBCs with a leading term dividing 2b3t is O

(
logn

)−bit when
both b and t are O

(
logn

)
.

2. Doche and Habsieger posed an open question to decide whether the average

Hamming weight of DBCs produced by the greedy approach is O
(

logn
loglogn

)
or not

[3]. We show that an asymptotic lower bound of the average Hamming weight

of the DBCs returned by any algorithm for a positive integer n is logn
8.25 . This

theoretical result answers their open question. Experimental results show that
the Hamming weight of canonic DBCs is 0.179822logn for 3000-bit integers. It
still has a distance from the theoretical bound.

3. We propose a dynamic programming algorithm to generate an optimal DBC.
We introduce an equivalent representative for large integers to improve the
efficiency of the dynamic programming algorithm. Our dynamic programming

algorithm using equivalent representatives requires O
((

logn
)2 loglogn

)
bit op-

erations and O
((

logn
)2

)
bits of memory. It accelerates the recoding procedure by

over 6 times compared to Bernstein, Chuengsatiansup, and Lange’s algorithm.
Many researches [1–3, 6, 7, 16, 17] indicate that the leading term of an optimal
DBC is greater than n

2 and less than 2n. We will prove it in this work.

4. Capuñay and Thériault’s algorithm [7], Bernstein, Chuengsatiansup, and Lange’s
DAG algorithm [17], and our algorithms (Algorithms 2 − 4) can generate the
same optimal DBC for a given integer. Using optimal DBCs to speed up pairing
computations has been fully investigated by Capuñay and Thériault’s algorithm
in [7]. Using optimal DBCs to speed up scalar multiplication on Edwards curves
has been studied by Bernstein, Chuengsatiansup, and Lange in [17]. We will
study scalar multiplication on Weierstrass curves using optimal DBCs. Over large
prime fields, both theoretical analyses and experimental results show that scalar

4 W. Yu et al.

multiplication protecting against simple side-channel attack using our optimal
DBC is about 13% faster than that using NAF.

This paper is organized as follows. In Section 2, we present background of
elliptic curves and DBCs. In Section 3, we show the structure of the set containing
all DBCs, and give an iterative algorithm to compute the number of DBCs. In
Section 4, we show an asymptotic lower bound of the average Hamming weights
of DBCs. Section 5 shows a dynamic programming algorithm. Section 6 presents
equivalent representatives for large numbers to improve our dynamic programming
algorithm and presents the comparisons of several algorithms. Section 7 gives some
comparisons of scalar multiplications. Finally, we conclude this work in Section 8.

2 Preliminaries

We give some basics about elliptic curves and DBCs.

2.1 Elliptic Curves

In what follows, point doubling (2P), tripling (3P), and mixed addition [18] (P +Q)
are denoted by D , T , and A respectively where P and Q are rational points on an
elliptic curve. Cost of scalar multiplications are expressed in terms of field multipli-
cations (M) and field squarings (S). To allow easy comparisons, we disregard field
additions/subtractions and multiplications/divisions by small constants. Moreover,
we assume that S = 0.8M as customary of software implementation (different CPU
architectures usually imply different S and M ration) and that S = M in the case
of implementations on a hardware platform or protecting scalar multiplications
against some simple side channel attack by side-channel atomicity [19].

Let EW be an elliptic curve over a large prime field Fp defined by the Weierstrass
equation in Jacobian projective coordinate: Y 2 = X 3 + aX Z 4 +bZ 6, where a = −3,
b ∈ Fp , and 4a3 +27b2 6= 0. The respective cost of a doubling, a mixed addition, and
a tripling are 3M+5S, 7M+4S, and 7M+7S on EW respectively [20, 21]. More about
Weierstrass elliptic curves please refer to [22].

The cost of point operations on EW are summarized in Table 1. EW with S= 0.8M
and EW with S=M are denoted by EW 0.8 and EW 1 respectively.

Table 1. Cost of elliptic curve point operations

operation EW 0.8 EW 1

A 7M+4S(10.2M) 11M

D 3M+5S(7M) 8M

T 7M+7S(12.6M) 14M

2.2 DBCs

DBNS represents an integer as
∑l

i=1 ci 2bi 3ti where ci ∈ {±1}, and bi , ti are non-
negative integers. It was first used in elliptic curve cryptography by Dimitrov, Im-
bert, and Mishra [1]. Meloni and Hasan proposed new algorithms using DBNS

Double-Base Chains for Scalar Multiplications on Elliptic Curves 5

representation to speed up scalar multiplications [23, 24]. The drawback of DB-
NS representation to compute scalar multiplication is that it requires many pre-
computations and space to compute scalar multiplication. A DBC is a special case
of DBNS representations. It allows us to represent n in a Horner-like fashion such
that all partial results can be reused. It is defined as follows.

Definition 1 (DBC [1]) A DBC represents an integer n as
∑l

i=1 ci 2bi 3ti where ci ∈C =
{±1},bl ≥ bl−1 ≥ . . . ≥ b1 ≥ 0 and tl ≥ tl−1 ≥ . . . ≥ t1 ≥ 0. We call 2bi 3ti a term of the
DBC, 2bl 3tl the leading term of the DBC, and l the Hamming weight of the DBC.

If C = {1}, the DBC is called an unsigned DBC. Since computing the negative of a
point P can be done virtually at no cost, we usually set C = {±1}. The leading term of
a DBC encapsulates the total number of point doublings and that of point triplings
necessary to compute scalar multiplication nP whose total cost is (l −1) · A+bl ·D +
tl ·T .

The number 0 has only one DBC that is 0. If a DBC does not exist, we denote it by
NULL. We set the Hamming weight of 0 as 0 and that of NULL as a negative integer. A
DBC for a negative integer is the negative of the DBC of its absolute value. Therefore,
we usually investigate the DBCs of a positive integer.

Some properties of DBCs are useful. Let n = ∑l
i=1 ci 2bi 3ti be a DBC with ci ∈

{±1},bl ≥ bl−1 ≥ . . . ≥ b1 and tl ≥ tl−1 ≥ . . . ≥ t1. We have

1. 2bk 3tk is a factor of
l0∑

i=k
ci 2bi 3ti , when k ≤ l0 ≤ l ;

2.
l0∑

i=k
ci 2bi 3ti is not equal to 0 when 0 < k ≤ l0 ≤ l ;

3. 2bk+ς3tk+ς
2ς−1 >

k∑
i=1

ci 2bi 3ti >− 2bk+ς3tk+ς
2ς−1 , when 1 ≤ ς≤ l −k;

4. 2bl 3tl > n
2 [25];

5.
∑ς

i=1 ci 2bi 3ti > 0 if and only if cς = 1, when 1 ≤ ς≤ l .

Following from Dimitrov, Imbert, and Mishra’s definition of canonic DBC,

Definition 2 (Canonic DBC [15]) The canonic DBCs of a positive integer n are the
ones with minimal Hamming weight.

The canonic DBCs of a positive integer have the same Hamming weight. When we
perform scalar multiplication using a DBC, its Hamming weight is not the only factor
affecting the efficiency of scalar multiplication. The cost of point operations should
also be considered. The works in [7,16,17] indicate the definition of an optimal DBC
as follows.

Definition 3 (Optimal DBC) Let w be a DBC of a positive integer n whose leading
term is 2bl 3tl and its Hamming weight is l , and the value function of w is defined
by val(w) = (l − 1) · A + bl ·D + tl ·T for given numbers A > 0, D ≥ 0, and T ≥ 0. An
optimal DBC of n is the DBC with the smallest value in the set {val(w)|w ∈ X } where X
is the set containing all DBCs of n.

6 W. Yu et al.

Let minL{w1,w2, . . . ,wm} be a DBC with the smallest Hamming weight among
these DBCs. If the Hamming weight of w is the smallest in a corresponding set, we
say w is “minimal”. Let minV{w1,w2, . . . ,wm} be a DBC with the smallest val(wi) in
the set {val(w1), val(w2), . . . ,val(wm)}. If more than one DBC has the same Hamming
weight or the same value of its value function, we choose the one with the smallest
position index i where i is the position index of wi in the set of {w1,w2, . . . ,wm}. minL
is used to generate canonic DBCs, and minV is used to generate optimal DBCs.

An optimal DBC is associated with an elliptic curve. Let log denote binary
logarithm. If the value of T

D is log3, then the optimal DBC is a canonic DBC. In this
case, we usually set D = T = 0. For canonic DBCs of a positive integer, our concern is
their Hamming weight.

3 The Number of DBCs

DBCs are special cases of DBNS representations. In 2008, Dimitrov, Imbert, and
Mishra showed an accurate estimate of the number of unsigned DBNS representa-
tions for a given positive integer [15]. The number of signed DBNS representation is
still an open question.

Dimitrov, Imbert, and Mishra pointed out that counting the exact number of
DBCs is useful to show DBC is redundant [1] and to generate an optimal DBC.
Dimitrov, Imbert, and Mishra [1] and Imbert and Philippe [4] both noticed that each
positive integer has at least one DBC such as binary representation. Imbert and
Philippe [4] proposed an elegant algorithm to compute the number of unsigned
DBCs for a given integer and presented the first 400 values. These values behave
rather irregularly. To determine the precise number of DBCs for a positive integer
is usually hard, but we are convinced that this number is infinity. The number of
DBCs with a leading term dividing 2b3t for a positive integer was first investigated by
Doche [16]. His algorithm is very efficient for less than 70−bit integers with a leading
term dividing 2b3t for the most b and t . The algorithm requires exponential time.
Before we present a polynomial time algorithm to calculate the number of DBCs of
large integers, a structure of the set containing all DBCs is introduced.

3.1 The Structure of the Set Containing All DBCs

Let Φ(b, t ,n) be the set containing all DBCs of an integer n ≥ 0 with a leading term
strictly dividing 2b3t . “Strictly” indicates that the leading term of a DBC 2bl 3tl divides
2b3t but is not equal to 2b3t . Let Φ̄(b, t ,n) be the set containing all DBCs of an
integer n ≤ 0 with a leading term strictly dividing 2b3t . Both definitions of Φ(b, t ,n)
and Φ̄(b, t ,n) arise from Imbert and Philippe’s structure of unsigned DBCs [4] and
Capuñay and Thériault’s definition of the set containing all DBCs (see Definition 5
of [7]).

Let z be 2b′
3t ′ or −2b′

3t ′ with integers b′ ≥ 0 and t ′ ≥ 0. The set {w+ z| w ∈Φ} is
denoted by zΦ (the similar is for Φ̄). zΦ is inspired by Imbert and Philippe’s mark [4].
If 2b3t |z, zΦ(b, t ,n) are the DBCs of n + z. Let z1,z2Φ = z1 (z2Φ). Take Φ(1,4,100) =
{34 +33 −32 +1} for example, 2·34

Φ(1,4,100) = {2 ·34 +34 +33 −32 +1}.
Some properties ofΦ and Φ̄ are given.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 7

1. IfΦ=;, then zΦ=;; if Φ̄=;, then zΦ̄=;.
2. IfΦ= {0}, then zΦ= {z}; if Φ̄= {0}, then zΦ̄= {z}.
3. If n < 0 or n ≥ 2b3t or b < 0 or t < 0, thenΦ(b, t ,n) = Φ̄(b, t ,−n) =;.
4. Φ(0,0,0) = Φ̄(0,0,0) = {0}.
5. A DBC 0 plus z equals to z.
6. A DBC NULL plus z equals to NULL.

Imbert and Philippe’s structure of the set containing unsigned DBCs [4] can be
used to calculate the number of unsigned DBCs. Since the terms of DBCs of n may
be larger than n, calculating the number of DBCs is usually difficult. Following from
Capuñay and Thériault’s definition [7],

nb,t ≡ n (mod 2b3t) where 0 ≤ nb,t < 2b3t .

We redefine
n̄b,t = nb,t −2b3t .

To calculate the number of DBCs, Φ(b, t) and Φ̄(b, t) are introduced to describe
the structure of the set containing DBCs shown as Lemma 1 whereΦ(b, t) and Φ̄(b, t)
representΦ(b, t ,nb,t) and Φ̄(b, t , n̄b,t) respectively.

Lemma 1 Let n be a positive integer, b ≥ 0, t ≥ 0, and b+ t > 0. The structure ofΦ(b, t)
and that of Φ̄(b, t) are described as follows.

1. If nb,t < 2b3t−1, i.e., nb,t = nb−1,t = nb,t−1, then

Φ(b, t) =Φ(b −1, t)
⋃(

2b−13t
Φ̄(b −1, t)

)⋃
Φ(b, t −1)

⋃(
2b 3t−1

Φ̄(b, t −1)
)

,

Φ̄(b, t) =
(
−2b−13t

Φ̄(b −1, t)
)

.

2. If 2b3t−1 ≤ nb,t < 2b−13t , i.e., nb,t = nb−1,t = nb,t−1 +2b3t−1, then

Φ(b, t) =Φ(b −1, t)
⋃(

2b−13t
Φ̄(b −1, t)

)⋃(
2b 3t−1

Φ(b, t −1)
)

,

Φ̄(b, t) =
(
−2b−13t

Φ̄(b −1, t)
)⋃(

−2b 3t−1
Φ̄(b, t −1)

)
.

3. If 2b−13t ≤ nb,t < 2 ·2b3t−1, i.e., nb,t = nb−1,t +2b−13t = nb,t−1 +2b3t−1, then

Φ(b, t) =
(

2b−13t
Φ(b −1, t)

)⋃(
2b 3t−1

Φ(b, t −1)
)

,

Φ̄(b, t) =
(
−2b−13t

Φ(b −1, t)
)⋃

Φ̄(b −1, t)
⋃(

−2b 3t−1
Φ̄(b, t −1)

)
.

4. If nb,t ≥ 2 ·2b3t−1, i.e., nb,t = nb−1,t +2b−13t = nb,t−1 +2×2b3t−1, then

Φ(b, t) =
(

2b−13t
Φ(b −1, t)

)
,

Φ̄(b, t ,) =
(
−2b−13t

Φ(b −1, t)
)⋃

Φ̄(b −1, t)
⋃(

−2b 3t−1
Φ(b, t −1)

)⋃
Φ̄(b, t −1).

8 W. Yu et al.

The proofs, examples, and remarks can be found in the full version of this paper [26].
The definitions of nb,t and n̄b,t indicate that both nb,t = nb−1,t = nb,t−1+2b+13t−1

and nb,t = nb−1,t +2b−13t = nb,t−1 are impossible. From Lemma 1,Φ(b, t) and Φ̄(b, t)
only rely onΦ(b−1, t), Φ̄(b−1, t),Φ(b, t −1) and Φ̄(b, t −1). By the definitions of nb,t

and n̄b,t , the structure of Φ(b, t) and that of Φ̄(b, t) still work for nb,t = 0 in Case 1,
nb,t = 2b3t−1 in Case 2, nb,t = 2b−13t in Case 3, and nb,t = 2 ·2b3t−1 in Case 4.

This is the first structure of the set containing all DBCs with a leading term strictly
dividing 2b3t in the literature. Based on this structure, we will show the number of
DBCs with a leading term dividing 2b3t for a positive integer n.

3.2 The Number of DBCs

Let |S | be the cardinality of the set S . The number of DBCs with a leading term
dividing 2b3t for representing nb,t is |Φ(b, t)|+ |Φ̄(b, t)|. We will provide some initial
values of |Φ| and |Φ̄|. If n < 0 or n ≥ 2b3t or b < 0 or t < 0, |Φ(b, t ,n)| = |Φ̄(b, t ,−n)| = 0.
|Φ(0,0,0)| = |Φ̄(0,0,0)| = 1.

Based on Lemma 1, the cardinality of Φ(b, t) and that of Φ̄(b, t) are shown as
Theorem 1.

Theorem 1 Let n be a positive integer, b ≥ 0, t ≥ 0, and b + t > 0. We have

1. If nb,t < 2b−13t−1, then

|Φ(b, t)| =|Φ(b −1, t)|+ |Φ̄(b −1, t)|+ |Φ(b, t −1)|+ |Φ̄(b, t −1)|
− |Φ(b −1, t −1)|− |Φ̄(b −1, t −1)|,

|Φ̄(b, t)| =|Φ̄(b −1, t)|.
2. If 2b−13t−1 ≤ nb,t < 2b3t−1, then

|Φ(b, t)| =|Φ(b −1, t)|+ |Φ̄(b −1, t)|+ |Φ(b, t −1)|
+ |Φ̄(b, t −1)|− |Φ(b −1, t −1)|,

|Φ̄(b, t)| =|Φ̄(b −1, t)|.
3. If 2b3t−1 ≤ nb,t < 2b−13t , then

|Φ(b, t)| =|Φ(b −1, t)|+ |Φ̄(b −1, t)|+ |Φ(b, t −1)|,
|Φ̄(b, t)| =|Φ̄(b −1, t)|+ |Φ̄(b, t −1)|.

4. If 2b−13t ≤ nb,t < 2 ·2b3t−1, then

|Φ(b, t)| =|Φ(b −1, t)|+ |Φ(b, t −1)|,
|Φ̄(b, t)| =|Φ(b −1, t)|+ |Φ̄(b −1, t)|+ |Φ̄(b, t −1)|.

5. If 2 ·2b3t−1 ≤ nb,t < 5 ·2b−13t−1, then

|Φ(b, t)| =|Φ(b −1, t)|,
|Φ̄(b, t)| =|Φ(b −1, t)|+ |Φ̄(b −1, t)|+ |Φ(b, t −1)|

+ |Φ̄(b, t −1)|− |Φ̄(b −1, t −1)|.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 9

6. If nb,t ≥ 5 ·2b−13t−1, then

|Φ(b, t)| =|Φ(b −1, t)|,
|Φ̄(b, t)| =|Φ(b −1, t)|+ |Φ̄(b −1, t)+|Φ(b, t −1)|

+ |Φ̄(b, t −1)|− |Φ̄(b −1, t −1)|− |Φ(b −1, t −1)|.

Based on Theorem 1, we have

Corollary 1 1. If b ≥ 0 and t ≥ 0, then |Φ(b, t)| ≥ |Φ(b −1, t)|, |Φ(b, t)| ≥ |Φ(b, t −1)|,
|Φ̄(b, t)| ≥ |Φ̄(b −1, t)|, and |Φ̄(b, t)| ≥ |Φ̄(b, t −1)|.

2. If b ≥ 0 and t ≥ 0, then |Φ(b, t)| ≤ 4b+t and |Φ̄(b, t)| ≤ 4b+t .

By Corollary 1, |Φ(b, t)| and |Φ̄(b, t)| are both O (logn)-bit integers when both b
and t are O (logn).

Based on Theorem 1, we employ an iterative algorithm to compute the number of
DBCs with a leading term strictly dividing 2b3t for nb,t and n̄b,t shown as Algorithm
1. The number of DBCs with a leading term dividing 2b3t for n is

1. |Φ(b, t)|+ |Φ̄(b, t)| when 2b3t > n;
2. |Φ(b, t)| when n

2 < 2b3t ≤ n;

3. 0 when 2b3t ≤ n
2 .

Algorithm 1 Iterative algorithm to compute the number of DBCs
Input: A positive integer n, b ≥ 0, and t ≥ 0
Output: The number of DBCs with a leading term strictly dividing 2b 3t for nb,t and n̄b,t
1. |Φ(0,0)|← 1, |Φ̄(0,0)|← 0
2. For i from 0 to b, |Φ(i ,−1)| = |Φ̄(i ,−1)|← 0
3. For j from 0 to t , |Φ(−1, j)| = |Φ̄(−1, j)|← 0
4. For j from 0 to t
5. For i from 0 to b
6. If i + j > 0, using Theorem 1 to compute |Φ(i , j)| and |Φ̄(i , j)|
7. return |Φ(b, t)|, |Φ̄(b, t)|

Algorithm 1 terminates in O
((

logn
)3

)
bit operations and O

((
logn

)2
)

bits of

memory when b and t are both in O
(
logn

)
.

Miracl lib [27] is used to implement big number arithmetic. Our experiments
in this paper are compiled and executed on Intelr CoreTM i7−6567U 3.3 GHZ
with Skylake architecture (our algorithms may have different running time on other
architectures). Algorithm 1 requires 34, 177, 551, and 1184 million cpu cycles (10,
50, 170, and 360 milliseconds) for 256−bit, 512−bit, 768−bit, and 1024−bit integers
respectively. The details are shown in Table 2.

By Algorithm 1, the number of DBCs of
⌊
π×10120

⌋
with a leading term dividing

22403120 is 405694512689803328570475272448020332384436179545046727328115784

10 W. Yu et al.

Table 2. Cost of Algorithm 1

bits of n 256 512 768 1024

b, t 128,81 256,161 384,242 512,323

cost(million cpu cycles) 34 177 551 1184

3672719846213086211542270726702592261797036105303878574879. The number of
DBCs with a leading term dividing 2b3t for 100 when b < 50 and t < 50 is shown as
Table 3. There exist 405 DBCs with a leading term dividing 2734 for representing 100.
These results all show a redundance of DBCs for a positive integer. The number of
DBCs with a leading term dividing 2b3t of 100 is the same for 4 ≤ t < 50. For the same
b, we guess the number is the same when t ≥ 50. For each 8 ≤ b < 50, the number
of DBCs with a leading term dividing 2b3t of 100 minus the number of DBCs with a
leading term dividing 2b−13t of 100 is 7. We guess this result is still true for b ≥ 50.

Table 3. Number of DBCs with a leading term dividing 2b 3t for 100

t = 0 t = 1 t = 2 t = 3 t < 50

b = 0 0 0 0 0 1

b = 1 0 0 0 0 7

b = 2 0 0 0 11 24

b = 3 0 0 18 51 70

b = 4 0 0 57 112 137

b = 5 0 13 111 188 219

b = 6 3 35 174 273 310

b = 7 10 61 241 362 405

b < 50 10+7∗ (b −7) 61+26∗ (b −7) 241+67∗ (b −7) 362+89∗ (b −7) 405+95∗ (b −7)

3.3 The Number of DBCs for Large b or t

If b or t is large, the number of DBCs are shown as Corollary 2.

Corollary 2 Let n be a given positive integer, tτ be a positive integer satisfying 3tτ−1 >
n and 3tτ−2 ≤ n, and bτ be a positive integer satisfying 2bτ > 3n and 2bτ−1 ≤ 3n. Then

1. If t ≥ tτ and b ∈Z, then |Φ(b, t)| = |Φ(b, tτ)|.
2. If b ≥ bτ and t ∈Z, then |Φ(b, t)| = |Φ(bτ, t)|+(b−bτ)Cτ where Cτ =∑t

i=0 |Φ̄(bτ, i)|.
3. If b ≥ bτ and t ≥ tτ, then |Φ(b, t)| = |Φ(bτ, t)|+(b−bτ)Cτ where Cτ =∑tτ

i=0 |Φ̄(bτ, i)|.

These three properties of Corollary 2 are used to compute the number of DBCs
with a leading term dividing 2b3t for some large b and t . The number of DBCs with
a leading term dividing 2b3t is a constant when t > tτ. The number of DBCs with a
leading term dividing 2b3t adds a constant

∑t
i=0 |Φ̄(bτ, i)| is the number of DBCs with

a leading term dividing 2b+13t when b > bτ. Take 100 for example, 100 has 137 DBCs
with a leading term dividing 243t for each t ≥ tτ, and has 405+95∗ (b−7) DBCs with
a leading term dividing 2b3t for each b ≥ 9 and t ≥ 6. These results may be associated
with that 1 = 2b −∑b−1

i=0 2i as b becomes larger and that 1 = 30 can not be represented
as other ternary representation with its coefficients in {±1}.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 11

4 Hamming Weight of DBCs

For a positive integer n, Chalermsook, Imai, and Suppakitpaisarn [28] showed that
the Hamming weight of unsigned DBNS representations obtained from the greedy

approach proposed by Dimitrov, Imbert, and Mishra [1] is θ
(

logn
loglogn

)
. And they

showed that the Hamming weight of unsigned DBCs produced by greedy approach
[1] is θ

(
logn

)
.

For the Hamming weights of (signed) DBNS representations and DBCs, Dimitrov,
Imbert, and Mishra [1] showed that every integer n has a DBNS representation

with Hamming weight O
(

logn
loglogn

)
. Every integer n has a DBC with Hamming weight

O (logn). These are upper bounds on the Hamming weight of DBNS representations
and DBCs. The number of DBCs of a positive integer is infinite and the leading term
of its DBC may be infinite. The range of the leading term of canonic DBCs is useful
to show the lower bounds of the Hamming weight of DBCs.

4.1 The Range of the Leading Term of Optimal DBCs and Canonic DBCs

Doche [16] proved that a DBC with leading term 2b3t belongs to the interval
[

3t+1
2 ,

2b+13t − 3t+1
2

]
. His result showed the range of integers for a leading term. The leading

term of a DBC 2bl 3tl for a positive integer does not have an upper bound for 1 =
2bl −2bl−1− . . .−2−1 where bl is an arbitrary positive integer. We will show the range
of the leading term of optimal DBCs and that of canonic DBCs for a given integer in
Lemma 2.

Lemma 2 Let n be a positive integer represented as w :
∑l

i=1 ci 2bi 3ti , cl = 1,ci ∈ {±1}

for 1 ≤ i ≤ l−1. Then n
2 < 2bl 3tl < 2n when w is an optimal DBC, and 16n

21 < 2bl 3tl < 9n
7

when w is a canonic DBC.

The range of the leading term of optimal DBCs is useful to prove that the DBC
produced by Capuñay and Thériault’s algorithm [7] and that produced by Bernstein,
Chuengsatiansup, and Lange’s algorithm [17] both are optimal DBCs. The leading
term of canonic DBCs of n is in the interval

(16n
21 , 9n

7

)
. It is useful to prove that

the DBCs generated by Doche’s algorithm is a canonic DBC [16], and to prove the
asymptotic lower bound on the Hamming weights of DBCs in the following.

4.2 A Lower Bound on the Hamming Weights of DBCs

Dimitrov and Howe proved that there exist infinitely many integers n whose shortest

DBNS representations have Hamming weights Ω
(

logn
loglogn logloglogn

)
[29]. The mini-

mum Hamming weight of DBCs for a positive integer n is also called Kolmogorov
complexity [30] of a DBC of n, i.e., the Hamming weight of canonic DBCs of n.
Lou, Sun, and Tartary [5] proved a similar result for DBCs: there exists at least
one

⌊
logn

⌋−bit integer such that any DBC representing this integer needs at least
Ω

(⌊
logn

⌋)
terms. We will give a stronger result in Lemma 3.

12 W. Yu et al.

Lemma 3 For arbitrary α ∈ (0,1) and 0 <C < α2

8.25 , more than n −nα integers in [1,n]
satisfy that the Hamming weight of the canonic DBCs of each integer is greater than
C logn when n > N (N is some constant shown as Claim 1).

For convenience, we first give some conventions and definitions. s(m) denotes
the Hamming weight of canonic DBCs of m, and e is the base of the natural
logarithm. Let ϕl be the number of DBCs

∑l
i=1 ci 2bi 3ti with 2bl 3tl < 9n

7 ,ci ∈ {±1},
and cl = 1.

Definition 4 (ϕ(L)) For a given positive integer n and a constant L, ϕ(L) = ∑L
l=1ϕl ,

i.e., ϕ(L) is the number of DBCs
∑l

i=1 ci 2bi 3ti with 2bl 3tl < 9n
7 ,1 ≤ l ≤ L.

By Lemma 2, in a canonic DBC, 16n
21 < 2bl 3tl < 9n

7 . Then, the number of integers
of m in [1,n] represented as a canonic DBC with Hamming weight no greater than L
is not more than the number of integers of m in [1,n] represented as a DBC with
a leading term dividing 2bl 3tl < 9n

7 , l ≤ L. Since every DBC corresponds to only
one integer and each integer has at least one DBC, the number of integers in [1,n]
represented as a canonic DBC with Hamming weight no greater than L is no greater
than ϕ(L).

An outline of the proof of Lemma 3 is as follows. The number of integers of m in
[1,n] can not be represented as a DBC of Hamming weight j , 0 < j ≤ L is equal to n
minus the number of integers of m in [1,n] represented in that way. There are at least
n −ϕ(L) integers of m in [1,n] can not be represented as a DBC of Hamming weight
j with 2b j 3t j ≤ 9n

7 , 0 < j ≤ L. Thus there are at least n −ϕ(L) integers of m in [1,n]
satisfying s(m) > L. Hence, ϕ(C logn) < nα is enough to prove Lemma 3.

Since ϕ j where 0 < j ≤C logn is the number of DBCs of Hamming weight j with
2bl 3tl < 9n

7 , we have

ϕ j ≤ 2 j−1
∑

α+γ log3<log 9n
7

(
α+ j

j −1

)(
γ+ j

j −1

)
.

Then

ϕ(C logn) =
C logn∑

j=1
ϕ j ≤

C logn∑
j=1

2 j−1
∑

α+γ log3<log 9n
7

(
α+ j

j −1

)(
γ+ j

j −1

) . (1)

For this estimate ofϕ(C logn) is too complex to be dealt with, we simplify its estimate
by Claim 1 and its proof requires the tools of Pascal’s triangle and Stirling’s formula.

Claim 1 For any 0 < C < 1, when n > N where N satisfies that N > 210000·(3−0.5log3 7)

and log N < 1.0001C log N ,

C logn∑
j=1

2 j−1
∑

α+γ log2 3<log 9n
7

(
α+ j

j −1

)(
γ+ j

j −1

)< n
C log

(
2.0002e2(0.5001log3 2+C)2

C 2

)
.

According to Equation (1) and Claim 1, we have

ϕ(C logn) < n
C log

(
2.0002e2 log3·(0.5001log3 2+C)2

C 2

)
.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 13

For some larger N , the coefficients of log3 2 and e2 will be smaller than 0.50001 and
2.0002 respectively in this inequation, and for some smaller N , the coefficients of
log3 2 and e2 will be larger than 0.50001 and 2.0002. The proof of Lemma 3 is as
follows.

Proof. To prove Lemma 3, it is sufficient to show that the number of integers of m in
[1,n], represented as a DBC of Hamming weight j with j ≤C logn and 2b j 3t j < 9n

7 , is
no greater than nα.

The number of integers of m in [1,n] can be represented as DBCs of Hamming
weight j with 2b j 3t j < 9n

7 , 0 < j ≤ C logn is no greater than ϕ(C logn). This result is
sufficient to show that ϕ(C logn) < nα, i.e., the number of DBCs of Hamming weight
j with j ≤C logn is less than nα.

Since ϕ(C logn) < n
C log

(
2.0002e2 log3·(0.5001log3 2+C)2

C 2

)
, then

n
C log

(
2.0002e2 log3·(0.5001log3 2+C)2

C 2

)
< nα. We have

2.0002e2 log3 · (0.5001log3 2+C)2

C 2 < 2
α
C .

When 0 <C < α2

8.25 , this inequality holds.

Thus, for any real numbers α and C with 0 <α< 1 and 0 <C < α2

8.25 , when n > N ,
at least n −nα integers of m in [1,n] satisfy s(m) >C logn.

As a corollary of Lemma 3, for any given positive number α < 1, there exist two
efficiently computable constants C and N , such that when n > N , there are at least
n −nα integers m in [1,n] satisfying s(m) > C logn > C logm. This result is easy to
understand and more advanced than Lou, Sun, and Tartary’s result [5].

Doche and Habsieger [3] showed that the DBC produced by the tree approach
is shorter than that produced by greedy approach experimentally. The average

Hamming weight of the DBCs produced by the tree approach is logn
4.6419 . Then they

posed an open question that the average Hamming weight of DBCs generated by the

greedy approach may be not O
(

logn
loglogn

)
. Lemma 3 is sufficient to solve this question.

The average Hamming weight of DBCs of (logn)−bit integers is the average value
of the Hamming weights of the DBCs of all (logn)−bit integers where we choose one
DBC for each integer. An asymptotic lower bound of the Hamming weights of DBCs
is shown in Theorem 2.

Theorem 2 An asymptotic lower bound of the average Hamming weights of canonic

DBCs for (logn)−bit integers is logn
8.25 .

All existing algorithms confirm the asymptotic lower bound of Theorem 2. The

average Hamming weight of binary representation is 0.5logn, that of NAF is logn
3 ,

that of the DBC produced by binary/ternary approach is 0.2284logn [2], and that of
the DBC produced by tree approach is 0.2154logn [3]. The Hamming weights of the

DBCs produced by these algorithms are still a long way from the lower bound logn
8.25 in

Theorem 2.

14 W. Yu et al.

Fig. 1. The Hamming weight of canonic DBCs of integers

0 100 200 300 400 500 600 700 800 900 1,000
0.18

0.19

0.2

bits of integers (logn)

H
am

m
in

g
w

ei
gh

td
iv

id
ed

b
y

lo
g

n

The average Hamming weight of canonic DBCs of integers is shown as Figure
1. The data is gained by Algorithm 3 which will be given in Section 6 for 1000
random integers for each size. It is 0.19713logn for 100−bit integers, 0.190165logn
for 200−bit integers, 0.18773logn for 300−bit integers, 0.186158logn for 400−bit
integers, 0.185124logn for 500−bit integers, 0.184568logn for 600−bit integers,
0.183913logn for 700−bit integers, 0.183579logn for 800−bit integers, 0.183153logn
for 900−bit integers, 0.182887logn for 1000−bit integers, 0.181867logn for 1500−bit
integers, 0.181101logn for 2000−bit integers, 0.180495logn for 2500−bit integers,
and 0.179822logn for 3000−bit integers. This value of the Hamming weight given
for 3000−bit integers still has a distance from the lower bound given in Theorem 2.
The Hamming weight divided by logn is decreased as the integers become larger.

Our method of calculating the asymptotic lower bound of the average Hamming
weight of DBCs may be useful to calculate the asymptotic lower bound of the average
Hamming weight of extended DBCs [31] where C = {±1,±3, . . .}.

We will propose an efficient algorithm to generate optimal DBCs.

5 Dynamic Programming Algorithm to Produce Optimal DBCs

Several algorithms were designed to produce near optimal DBCs such as greedy
approach [1], binary/ternary approach [2], tree approach [3], and mbNAF [13].
Doche [16] generalized Erdös and Loxton’s recursive equation of the number of
unsigned chain partition [32] and presented an algorithm to produce a canonic DBC.
As Doche’s algorithm requires exponential time, in 2015, Capuñay and Thériault [7]
generalized tree approach and improved Doche’s algorithm to produce a canonic

DBC or an optimal DBC in polynomial time, explicitly in O
((

logn
)4

)
bit operations

Double-Base Chains for Scalar Multiplications on Elliptic Curves 15

and O
((

logn
)3

)
bits of memory. This is the first polynomial algorithm to compute

an optimal DBC. In 2017, Bernstein, Chuengsatiansup, and Lange [17] presented

a DAG algorithm to produce an optimal DBC in O
((

logn
)2.5

)
bit operations and

O
((

logn
)2.5

)
bits of memory. Bernstein, Chuengsatiansup, and Lange’s algorithm

was the state-of-the-art.
We will employ dynamic programming [33] to produce an optimal DBC.

5.1 Basics for Dynamic Programming Algorithm

Dynamic programming [33] solves problems by combining the solutions of subprob-
lems. Optimal substructure and overlapping subproblems are two key characteristics
that a problem must have for dynamic programming to be a viable solution tech-
nique.

Optimal Substructure We will show our problem has optimal substructure, i.e., an
optimal solution to a problem contains optimal solutions to subproblems. First, we
define sub-chain.

Definition 5 (Sub-chain) A DBC
l∑

i=1
ci 2bi 3ti is a sub-chain of a DBC

l0∑
j=1

a j 2d j 3e j , if

it satisfies both of the following conditions:

1. bl ≤ dl0 , tl ≤ el0 , and l ≤ l0;
2. For each i satisfies 1 ≤ i ≤ l , there exists one j satisfying ci = a j ,bi = d j , and

ti = e j .

Let w(b, t) (resp. w̄(b, t)) be one of the DBCs in Φ(b, t) (resp. Φ̄(b, t)) with the
smallest Hamming weight. The optimal substructure of the problem of finding
w(b, t) (resp. w̄(b, t)) is shown in Lemma 4.

Lemma 4 Let w(b, t) be a minimal chain for nb,t in Φ(b, t) and w̄(b, t) be a minimal
chain for n̄b,t in Φ̄(b, t). If w(b, t) or w̄(b, t) contains a sub-chain w(i , j) for ni , j , then
w(i , j) is minimal for ni , j inΦ(i , j); If w(b, t) or w̄(b, t) contains a sub-chain w̄(i , j) for
n̄i , j , then w̄(i , j) is minimal for n̄i , j in Φ̄(i , j).

Lemma 4 shows that the problem of finding a minimal chain has optimal
substructure. We can partition this problem into subproblems. These subproblems
may share the same new problems. For example, subproblems for nb,t−1 and sub-
problems for nb−1,t share the same problems for nb−1,t−1 and for n̄b−1,t−1.

Overlapping Subproblems When a recursive algorithm revisits the same problem
over and over again rather than always generating new problems, we say that
the optimization problem has overlapping subproblems. Dynamic programming
algorithms typically take advantage of overlapping subproblems by solving each
subproblem once and then storing the solution in a table where it can be looked
up when needed.

16 W. Yu et al.

Based on Lemma 1, using the range of the leading term of a canonic DBC in
Lemma 2, we simplify the possible sources of w(b, t) and w̄(b, t) shown as Lemma
5.

Lemma 5 Let n be a positive integer, b ≥ 0, t ≥ 0, and b + t > 0.

1. If
nb,t

2b−13t−1 < 2, then

w(b, t) =minL
{

w(b −1, t),w(b, t −1),2b3t−1 + w̄(b, t −1)
}

,

w̄(b, t) =−2b−13t + w̄(b −1, t).

2. If 2 ≤ nb,t

2b−13t−1 < 3, then

w(b, t) =minL
{

w(b −1, t),2b−13t + w̄(b −1, t),2b3t−1 +w(b, t −1)
}

,

w̄(b, t) =−2b−13t + w̄(b −1, t).

3. If 3 ≤ nb,t

2b−13t−1 < 4, then

w(b, t) =2b−13t +w(b −1, t),

w̄(b, t) =minL
{
−2b−13t +w(b −1, t), w̄(b −1, t),−2b3t−1 + w̄(b, t −1)

}
.

4. If
nb,t

2b−13t−1 ≥ 4, then

w(b, t) =2b−13t +w(b −1, t),

w̄(b, t) =minL
{

w̄(b −1, t),−2b3t−1 +w(b, t −1),w̄(b, t −1)
}

.

We give some conventions for initial values of w(b, t) and w̄(b, t). If b < 0 or t < 0,
w(b, t) = w̄(b, t) = NULL. If b ≥ 0, t ≥ 0, and nb,t = 0, then w(b, t) = {0} and w̄(b, t) =
NULL.

Lemma 5 reveals the relationship between problems of finding w(b, t) and w̄(b, t)
and problems of finding their subproblems. Dynamic programming is efficient when
a given subproblem may arise from more than one partial set of choices. Each
problem of finding w(b, t) and w̄(b, t) has at most 4 partial sets of choices. The
key technique in the overlapping subproblems is to store the solution of each such
subproblem in case it should reappear.

5.2 Dynamic Programming to Compute an Optimal DBC

The main blueprint of our dynamic programming algorithm to produce an optimal
DBC contains four steps.

1. Characterize the structure of an optimal solution whose two key ingredients are
optimal substructure and overlapping subproblems.

2. Recursively define the value of an optimal solution by minL.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 17

3. Compute a DBC with the smallest Hamming weight and its leading term dividing
2b3t for each nb,t and n̄b,t in a bottom-up fashion.

4. Construct an optimal DBC from computed information.

The dynamic programming algorithm to compute an optimal DBC is shown as
Algorithm 2. In Algorithm 2, set B = 2n in general cases, and set B = 9n

7 in the case
D = T = 0 by Lemma 2.

Algorithm 2 Dynamic programming to compute an optimal DBC
Input: a positive integer n, its binary representation nbinary, three non-negative constants
A > 0,D ≥ 0,T ≥ 0
Output: an optimal DBC for n
1. If D = 0 and T = 0, B ← 9n

7 , else B ← 2n. w(0,0) ← 0, w̄(0,0) ← NULL, wmin ← nbinary

2. For b from 0 to
⌊

logB
⌋

, w(b,−1) ← NULL, w̄(b,−1) ← NULL

3. For t from 0 to
⌊

log3 B
⌋

, w(−1, t) ← NULL, w̄(−1, t) ← NULL, bBound[t] ←
⌊

log B
3t

⌋
4. For t from 0 to

⌊
log3 B

⌋
5. For b from 0 to bBound[t]
6. If b + t > 0, compute w(b, t) and w̄(b, t) using Lemma 5

7. If n > nb,t , wmin ← minV
{

2b 3t +w(b, t),wmin

}
8. else if n = nb,t , wmin ← minV

{
w(b, t),2b 3t + w̄(b, t),wmin

}
9. return wmin

In Lines 1−3 of Algorithm 2, the initial values of w(0,0), w̄(0,0), wmin, w(b,−1),
w̄(b,−1), w(−1, t) and w̄(−1, t) are given. wmin stores the resulting DBC for n whose
initial value is nbinary, i.e., the binary representation of n.

In the Lines 4− 8 of Algorithm 2, a two-layer cycle computes a DBC wmin. Line
6 shows that the problem of computing w(b, t) and w̄(b, t) are partitioned into
subproblems of computing w(b − 1, t), w̄(b − 1, t), w(b, t − 1), and w̄(b, t − 1) using
Lemma 5. This is a bottom-up fashion. For the same t , we compute w(0, t) (the same
for w̄(0, t)); next, compute w(1, t), . . ., w

(⌊
log B

3t

⌋
, t

)
. Since w(b, t −1) and w̄(b, t − 1)

have been computed by Lines 4 and 6 in the last loop of t and w(b−1, t) and w̄(b−1, t)
have been computed by Lines 5 and 6 in the last loop of b, we compute w(b, t) and
w̄(b, t) successfully. Using these results to solve the subproblems recursively, we can
avoid calculating a problem twice or more.

By Lemma 4 and the bottom-up fashion, w(b, t) and w̄(b, t) have been computed
by Algorithm 2 for all b and t satisfying 2b3t < B . We will show that the DBC returned
by Algorithm 2 is an optimal DBC in Theorem 3.

Theorem 3 Algorithm 2 produces a canonic DBC when D = T = 0, and an optimal
DBC when D +T > 0.

If one wants to generate a different optimal DBC or canonic DBC, one possibility
is to adjust the function minL and minV when two or more DBCs have the same
value. Doing this, we can favor doubling or tripling. In our algorithm, we favor
tripling.

18 W. Yu et al.

Optimal DBCs are usually varied with Hamming weight by different costs of point
operations. Canonic DBCs returned by Algorithm 2 are with the same Hamming
weight and are not affected by the cost of point operations. Take a positive integer⌊
π×1020

⌋ = 314159265358979323846 for example. Its optimal DBC returned by
Algorithm 2 is 23033+22832+22032−21731−21630−2830+2330−2030 with Hamming
weight 8 for EW 0.8. The value of the cost of this DBC is 319.2. Its optimal DBC
returned by Algorithm 2 is 219310 + 213310 − 21238 + 2936 + 2635 + 2332 − 2030 with
Hamming weight 7 for EW 1. The value of the cost of this DBC is 358. This DBC with
Hamming weight 7 is one of the canonic DBCs of

⌊
π×1020

⌋
.

5.3 The Time Complexity and Space Complexity of Algorithm 2

The running time of a dynamic programming algorithm depends on the product of
two factors: the number of subproblems overall and how many choices we look at
for each subproblem. Our dynamic programming algorithm has (logn+1)(log3 n+1)
subproblems. If we store the value of nb,t and n/(2b3t) for the use of next cycle, each

subproblems requires O
(
logn

)
bit operations. Algorithm 2 terminates in O

((
logn

)3
)

bit operations. The details are illustrated by Figure 2. Each node (b, t) of computing⌊
nb,t

2b−13t−1

⌋
, w(b, t), and w̄(b, t) requires O

(
logn

)
bit operations.

Fig. 2. The procedure of our dynamic programming algorithm

b

t

1

2

3

...

log3 n −1

log3 n

log3 n +1

0 1 2 3 4 5 6 7 8 . . .
logn

b + log3 · t = logB

requires O
(
logn

)
bit operations

If the powers of 2 and 3 are recorded by their differences as Remark 5 of Capuñay

and Thériault’s work [6], our algorithm terminates in O
((

logn
)2

)
bits of memory.

The details are shown as follows. The term ci 2bi 3ti in the chain is stored as the
pair (ci ,bi , ti). For example, 1000 = 210 −25 +23 is recorded as (1,3,0), (−1,2,0), and
(1,5,0). If DBCs are recorded as their difference with the previous term, then the

memory requirement per chain is O
(
logn

)
. Thus, Algorithm 2 requires O

((
logn

)2
)

bits of memory.
We will focus on improving the time complexity of Algorithm 2.

Double-Base Chains for Scalar Multiplications on Elliptic Curves 19

6 Equivalent Representatives for Large Numbers

The most time-consuming part of Lemma 5 is to compute
nb,t

2b−13t−1 . It can be
improved by reduced representatives for large numbers [17]. Bernstein, Chuengsa-
tiansup, and Lange [17] noticed that arbitrary divisions of O

(
logn

)−bit numbers

take time
(
logn

)1+o(1) shown in pages 81−86 of “on the minimum computation time
of functions” by Cook [34]. Based on this novel representative, the time complexity
of dynamic programming algorithm is shown as Figure 3. In Figure 3, α′ = (logB)0.5

and β′ = (log3 B)0.5. Each node (b, t) satisfyingα′|b or β′|t is named a boundary node
in Figure 3. Each boundary node requires logn bit operations and each of the other

nodes requires
(
logn

)0.5 bit operations. Then Algorithm 2 terminates in O
((

logn
)2.5

)
bit operations using reduced representatives.

Fig. 3. The procedure of our dynamic programming algorithm using the trick in [17]

b

t

0

1

...

β′−1

β′
β′+1

...

2β′−1

2β′
2β′+1

...

log3 n

log3 n +1

1 2 . . .α′ −2 α′ −1 α′ α′ +1 α′ +2 . . . 2α′ −1 2α′ 2α′ +1 . . . logn

b + log3 · t = logB

requires O
(
logn

)
bit operations requires O

((
logn

)0.5
)

bit operations

Motivated by their reduced representatives for large numbers, we will give a new
representative named equivalent representative.

Definition 6 (Equivalent representative) If one expression of an integer n′ is equal

to the value of
⌊

nb,t

2b−13t−1

⌋
in Lemma 5, then n′ is an equivalent representative of n.

Our equivalent representative is a generalization of Bernstein, Chuengsatiansup,
and Lange’s reduced representative. Reduced representatives for large numbers do
not work for logn+ log3 n boundary nodes. Our equivalent representatives will solve
this problem.

20 W. Yu et al.

6.1 Use Equivalent Representatives in Algorithm 2

We employ equivalent representatives to improve the recode procedure of Algorithm
2 shown as Algorithm 3. n1 is an equivalent representative in Algorithm 3 shown by
Claim 2.

Claim 2 Let n1
′ =

⌊
6·n

2ii1 ·α2
1 3jj1 ·β2

1

⌋
%

(
2α

2
1+13β

2
1+1

)
, n1 =

⌊
n1

′
2i1 ·α1 3 j1 ·β1

⌋
%

(
2α1+13β1+1

)
,α1 =⌊(

logB
) 1

3

⌋
, β1 =

⌊(
logB

) 1
3

⌋
, b = ii1 ·α2

1 + i1 ·α1 + i , t = jj1 ·β2
1 + j1 ·β1 + j , i1 ≥ 0, j1 ≥ 0,

0 ≤ i <α, 0 ≤ j <β shown as Algorithm 3. Then
(⌊

n1
2i 3 j

⌋
%6

)
=

⌊
nb,t

2b−13t−1

⌋
.

Algorithm 3 Dynamic programming to compute an optimal DBC using equivalent
representatives once
Input: a positive integer n and its binary representation nbinary, three non-negative constants
A > 0,D ≥ 0,T ≥ 0
Output: an optimal DBC for n
1. Lines 1−3 of Algorithm 2

2. α0 ← ⌊
logB

⌋
, β0 ← ⌊

log3 B
⌋

, α1 ←
⌊(

logB
) 1

3
⌋

, β1 ←
⌊(

logB
) 1

3
⌋

3. For jj1 from 0 to
⌊

log3 B
β2

1

⌋
+1

4. For ii1 from 0 to
⌊

bBound[j ·β2
1]

α2
1

⌋
+1

5. n1
′ ←

⌊
6·n

2ii1 ·α2
1 3jj1 ·β2

1

⌋
%

(
2α

2
1+13β

2
1+1

)
6. For j1 from 0 to β1 −1
7. For i1 from 0 toα1 −1

8. n1 ←
⌊

n1
′

2i1 ·α1 3 j1 ·β1

⌋
%

(
2α1+13β1+1

)
9. For j from 0 to β1 −1
10. For i from 0 toα1 −1
11. t ← jj1 ·β2

1 + j1 ·β1 + j ,b ← ii1 ·α2
1 + i1 ·α1 + i

12. If b + t > 0& b <bBound[t]& t ≤ ⌊
log3 B

⌋
13. compute w(b, t), w̄(b, t) using Lemma 5

.
⌊

nb,t

2b−13t−1

⌋
is calculated by

(⌊
n1

2i 3 j

⌋
%6

)
14. else if b = bBound[t] & t ≤ ⌊

log3 B
⌋

, Lines 7,8 of Algorithm 2
15. return wmin

Notice that t = jj1 ·β2
1 + j1 ·β1 + j , b = ii1 ·α2

1 + i1 ·α1 + i in Line 11 of Algorithm 3.
Algorithm 3 is similar as Algorithm 2 whose total cycles are at most logB log3 B .

Algorithm 3 uses a trick of an equivalence representative n1. The middle variable
n′

1 is used to calculate the equivalent representative n1. Each n′
1 is a O

(
α2

1

)
-bit

integers shown as Algorithm 3. There are at most

(⌊
log3 B

β2
1

⌋
+1

)(⌊
logB
α2

1

⌋
+1

)
such

Double-Base Chains for Scalar Multiplications on Elliptic Curves 21

numbers n′
1, i.e., O

(
α2

1

)
. Calculating each n′

1 requires O
(
logn

)
bit operations. Calcu-

lating all n′
1 requires O

((
logn

) 5
3

)
bit operations. Calculating each representative n1

requires O
(
α2

1

)
bit operations. Then calculating equivalent representatives requires

O
((

logn
)2

)
bit operations.

Based on equivalent representatives, each node (b, t) requires O (α1) bit opera-

tions.
(
logB

)·(log3 B
)

nodes requiring O
((

logn
) 7

3

)
bit operations. The time complex-

ity of Algorithm 3 is shown in Lemma 6.

Lemma 6 Algorithm 3 terminates in O
((

logn
)2+ 1

3

)
bit operations.

The details of the time cost of Algorithm 3 are shown as Figure 4.

Fig. 4. The procedure of Algorithm 3 using equivalent representatives

b

t

0

1

...

β1 −1

β1

β1 +1

...

β2
1 −1

β2
1

β2
1 +1

...

log3 n

log3 n +1

...
...

. . .

. . .

1 2 . . . α1 −2 α1 −1 α1 α1 +1 α1 +2 . . .
α2

1 −2 α2
1 −1 α2

1
α2

1 +1 α2
1 +2

. . .
logn

b + log3 · t = logB

requires O (logn) bit operations requires O
((

logn
)2/3

)
bit operations requires O

((
logn

)1/3
)

bit operations

Based on Algorithm 3, we will use equivalent representatives repeatedly.

6.2 Dynamic Programming using Equivalent Representatives k-th

We generate Algorithm 3 and use equivalent representatives k-th in Algorithm 2

shown as Algorithm 4.
⌊

nb,t

2b−13t−1

⌋
in Lemma 5 is calculated by

(⌊
nk

2i 3 j

⌋
%6

)
. Algorithm

3 is a special case of Algorithm 4 with k = 1.
The time complexity of Algorithm 4 is shown in Theorem 4.

Theorem 4 Algorithm 4 terminates in O
((

logn
)2

((
logn

) 1
3k +k + loglogn

))
bit oper-

ations. It requires O
((

logn
)2 loglogn

)
bit operations when k = log3 logn.

Notice that α2 ≤ 7 when n < 2134217728. Then k in Algorithm 4 is usually 1 or 2.
Algorithms 2, 3, and 4 generate the same DBC with the same A, D , T , and n.

22 W. Yu et al.

Algorithm 4 Dynamic programming to compute an optimal DBC using equivalent
representatives k-th
Input: a positive integer n, a positive integer k, and its binary representation nbinary, three
non-negative constants A > 0,D ≥ 0,T ≥ 0
Output: an optimal DBC for n
1. Lines 1−3 of Algorithm 2, n0 ← 6 ·n

2. For y from 0 to k, αy ←
⌊(

logB
) 1

3y
⌋

,βy ←
⌊(

log3 B
) 1

3y
⌋

3. For jjy from 0 to
⌊
βy−1

β2
y

⌋
+1

4. For iiy from 0 to
⌊
αy−1

α2
y

⌋
+1

5. ny
′ ←

⌊
ny−1

2
iiy ·α2

y 3
jjy ·β2

y

⌋
%

(
2α

2
y+13β

2
y+1

)
6. For jy from 0 to βy −1
7. For i y from 0 toαy −1

8. ny ←
⌊

ny
′

2i y ·αy 3 jy ·βy

⌋
%

(
2αy+13βy+1

)
. For each y from 1 to k, Lines 3-8 are repeatedly as y is outer loop and y +1 is inner loop
9. For j from 0 to βk −1
10. For i from 0 toαk −1

11. t ←∑k
y=1

(
jjy ·β2

y + jy ·βy

)
+ j ,b ←∑k

y=1

(
iiy ·α2

y + i y ·αy

)
+ i

12. If b + t > 0& b < bBound[t]& t ≤ ⌊
log3 B

⌋
13. compute w(b, t), w̄(b, t) using Lemma 5

.
⌊

nb,t

2b−13t−1

⌋
is calculated by

(⌊
nk

2i 3 j

⌋
%6

)
14. else if b = bBound[t] & t ≤ ⌊

log3 B
⌋

, Lines 7,8 of Algorithm 2
15. return wmin

6.3 Comparison of These Algorithms

The time complexity, space complexity, and method of Doche’s algorithm [16],
Capuñay and Thériault’s algorithm [7], Bernstein , Chuengsatiansup, and Lange’s
algorithm [17], and Algorithms 2− 4 are summarized in Table 4. Table 4 shows the
advantage of our dynamic programming algorithms.

Table 4. Comparison of algorithms to generate optimal DBCs

algorithm time complexity (O) space complexity (O) method

Doche [16] exponential
(
logn

)2 enumeration

CT [7]
(
logn

)4 (
logn

)3 two cycles

BCL [17]
(
logn

)2.5 (
logn

)2.5 DAG

Algorithm 2 (new)
(
logn

)3 (
logn

)2 dynamic programming

Algorithm 3 (new)
(
logn

)2+ 1
3

(
logn

)2 using equivalent representatives

Algorithm 4 (new)
(
logn

)2 loglogn
(
logn

)2 using equivalent representatives (log3 logn)−th

From the time costs of different algorithms to generate optimal DBCs in Table 5,
Algorithm 4 is about 20,25,28,32, and 40 times faster than Capuñay and Thériault’s

Double-Base Chains for Scalar Multiplications on Elliptic Curves 23

algorithm and 6.1,6.6,7.7,8.7, and 9.3 times faster than Bernstein, Chuengsatiansup
and Lange’s algorithm for each size ranges in 256,384,512,640, and 768 respectively.
As the integer becomes larger, Algorithm 4 will gain more compared to Bernstein,
Chuengsatiansup and Lange’s algorithm.

Table 5. Time Costs of different algorithms to generate optimal DBCs in million cpu cycles for
integers with different size

256−bit 384−bit 512−bit 640−bit 768−bit

CT [7] 41.9 106 217 386 645

BCL [17] 12.1 28.9 60.1 108 164

Algorithm 4 (new) 1.98 4.32 7.72 11.8 18.0

6.4 The Hamming Weights and Leading Terms of Canonic DBCs and Optimal
DBCs

The Hamming weights and leading terms of the DBC produced by greedy ap-
proach [1] (greedy-DBC), canonic DBCs, and optimal DBCs are shown in Table 6

for the same 1000 integers by Algorithm 3. The Hamming weight of NAF is logn
3 .

The Hamming weight of mbNAF, that of the DBC produced by binary/ternary
approach(bt-DBC), and that of the DBC produced by tree approach (tree-DBC) are
0.2637logn, 0.2284logn, and 0.2154logn respectively and the leading terms are
20.791logn30.1318logn , 20.4569logn30.3427logn , and 20.5569logn30.2796logn respectively. The
Hamming weights of canonic DBCs are usually smaller than those of optimal DBCs.
By Table 6, the Hamming weights of optimal DBCs are over 60% smaller than those
of NAFs. As the integer becomes larger, the Hamming weight dividing logn will be
smaller with a limitation 1

8.25 by Theorem 2. Please refer to Figure 1 to get more details
of the Hamming weight of canonic DBCs.

Table 6. Hamming weights and leading terms of optimal DBCs on elliptic curves with different
size

256−bit 384−bit 512−bit 640−bit 768−bit

Hamming weight 62.784 94.175 125.48 155.307 188.764
greedy-DBC [1]

leading term(bl , tl) 124.282,82.168 183.256,125.779 258.908,159.309 314.954,204.158 384.604,240.957

Hamming weight 48.319 71.572 94.75 118.108 141.097
canonic DBC

leading term(bl , tl) 128.275,80.316 197.183,117.582 261.227,157.903 328.541,196.231 396.162,234.330

optimal DBC Hamming weight 50.027 74.163 98.234 122.544 146.493

EW 0.8 leading term(bl , tl) 176.675,49.750 265.369,74.549 353.175,99.895 444.538,123.015 532.690,148.162

optimal DBC Hamming weight 49.393 73.210 96.993 121.134 144.684

EW 1 leading term(bl , tl) 169.026,54.578 253.989,81.731 338.509,109.154 426.218,134.577 509.540,162.764

We will discuss scalar multiplications using our optimal DBCs.

7 Comparison of Scalar Multiplications

The scalar multiplication algorithm using a DBC is a Horner-like scheme for the
evaluation of nP utilizing the DBC of n = ∑l

i=1 ci 2bi 3ti as nP = ∑l
i=1 ci 2bi 3ti P .

24 W. Yu et al.

Theoretical cost of scalar multiplications on elliptic curves using NAF, greedy-DBC,
bt-DBC, mbNAF, tree-DBC, canonic DBC, and optimal DBC on EW 0.8 and EW 1 are
shown in Table 7.

Table 7 shows that scalar multiplication using an optimal DBC is more efficient
than that using a canonic DBC. Scalar multiplication using an optimal DBC on EW 0.8
and EW 1 is about 13% and 13% faster than that using NAF, 7.5% and 7.1% faster than
that using greedy-DBC, 6.5% and 6% faster than that using bt-DBC, 7% and 7% faster
than that using mbNAF, 4% and 4% faster than that using a tree-DBC, and 0.9% and
0.7% faster than that using a canonic DBC respectively. Scalar multiplication using
an optimal DBC is usually faster than that using a canonic DBC. Take

⌊
π×10240

⌋
on

EW 1 for example, scalar multiplication using our optimal DBC is 14% faster and 3.8%
faster than that using NAF and tree-DBC respectively.

Table 7. Theoretical costs of scalar multiplications on elliptic curves using optimal DBC,
canonic DBC, tree-DBC, and NAF in M

bits of n representation 256−bit 384−bit 512−bit 640−bit 768−bit

NAF 2652 3983 5315 6646 7977

greedy-DBC [1] 2535 3818 5089 6351 7643

bt-DBC [2] 2510 3771 5031 6291 7552

EW 0.8 mbNAF [13] 2521 3787 5052 6318 7583

tree-DBC [3] 2452 3683 4914 6146 7377

canonic DBC(this work) 2393 3582 4774 5967 7155

optimal DBC(this work) 2364 3543 4722 5902 7080

NAF 2976 4469 5962 7456 8949

greedy-DBC [1] 2824 4252 5671 7075 8516

bt-DBC [2] 2796 4200 5603 7007 8410

EW 1 mbNAF [13] 2824 4241 5659 7076 8494

tree-DBC [3] 2738 4113 5488 6862 8237

canonic DBC(this work) 2671 4000 5332 6664 7991

optimal DBC(this work) 2649 3970 5292 6615 7936

In Table 7, the value of T
D on EW 0.8 is greater than that on EW 1. The ratio of

the cost of scalar multiplication using an optimal DBC to that using NAF on EW

0.8 is greater than that on EW 1 for integers of each size in Table 7. The ratio of
the improvement of scalar multiplication using an optimal DBC compared to NAF
is increasing as the value of T

D becomes larger.
A constant-time software implementation is used to protect the scalar multipli-

cation algorithms for avoiding some side-channel attacks by side channel atomicity.
Multiplication and squaring are both executed by one multiplication and two addi-
tions. For each size ranges in 256,384,512,640, and 768, we generate a prime number
p with the same size and create a random curve for EW over a finite field Fp . Scalar
multiplications using NAF, greedy-DBC, bt-DBC, mbNAF, tree-DBC, canonic DBC,
and optimal DBC are shown in Table 8.

Experimental results show that scalar multiplication using an optimal DBC is
13% faster than that using NAF, 7% faster than that using greedy-DBC, 6% faster
than that using bt-DBC, 7% faster than that using mbNAF, and 4.1% faster than that
using a tree-DBC on EW respectively. Within the bounds of the errors, the practical
implementations are consistent with these theoretical analyses. The theoretical

Double-Base Chains for Scalar Multiplications on Elliptic Curves 25

Table 8. Experimental cost of scalar multiplications on elliptic curves using optimal DBC,
canonic DBC, tree-DBC, and NAF on EW in million cpu cycles

representation 256−bit 384−bit 512−bit 640−bit 768−bit

NAF 4.038 8.151 13.94 22.34 34.05

greedy-DBC [1] 3.836 7.751 13.27 21.23 32.43

bt-DBC [2] 3.798 7.656 13.12 21.02 32.03

mbNAF [13] 3.837 7.731 13.25 21.23 32.35

tree-DBC [3] 3.734 7.575 12.92 20.68 31.54

canonic DBC(this work) 3.624 7.279 12.44 19.95 30.35

optimal DBC(this work) 3.594 7.168 12.37 19.83 30.17

analyses and practical implementations both show that the Hamming weight is
not the only factor affecting the efficiency of scalar multiplications and that scalar
multiplications using optimal DBCs are the fastest.

Those computations do not take the time of producing the expansions into
account. The recoding of our optimal DBC takes up a small amount of time to

compute scalar multiplication where both take time O
((

logn
)2 loglogn

)
when field

multiplications use FFTs. It can’t be ignored. Optimal DBCs are suitable for comput-
ing scalar multiplications when the multiplier n is fixed.

8 Conclusion

We first proposed a polynomial time algorithm to compute the number of DBCs
for a positive integer with a leading term dividing 2b3t . We showed theoretical
results of the number of DBCs for large b and t and gave an estimate of this
number. The asymptotic lower bound of the Hamming weights of DBCs produced

by any algorithm for n is linear logn
8.25 . This result changed the traditional idea that

the asymptotic lower bound of the Hamming weight of a DBC produced by any

algorithm may be sub-linear logn
loglogn . The time complexity and the space complexity

of our dynamic programming algorithm to produce an optimal DBC were both the
state-of-the-art. The recoding procedure of our algorithm was more than 20 times
faster than Capuñay and Thériault’s algorithm and more than 6 times faster than
Bernstein, Chuengsatiansup, and Lange’s algorithm.

Let S(i) denote the smallest positive integer whose Hamming weight of its
canonic DBCs is i . Our dynamic programming algorithm allowed us to find S(i)
for i ≤ 12 immediately where S(1) = 1, S(2) = 5, S(3) = 29, S(4) = 173, S(5) = 2093,
S(6) = 14515, S(7) = 87091, S(8) = 597197, S(9) = 3583181, S(10) = 34936013, S(11) =
263363789, and S(12) = 1580182733. This numerical fact provides a good impression
about the sparseness of DBCs.

The cost function in this study was associated with P +Q, 2P , and 3P for scalar
multiplications. A direct promotion of the cost function is defined by P +Q, P −Q,
2P , 2P +Q, 3P , and 3P +Q. As the cost function is defined more precisely, an optimal
DBC will improve scalar multiplications more. The optimal DBC can be directly
generalized to a DBC with a large coefficient set of integers. Algorithm 1 can be
generated to calculate the number of triple-base chains, and Algorithms 2− 4 can
be extended to produce optimal extended DBCs and optimal triple-base chains.

26 W. Yu et al.

Acknowledgments

The authors would like to thank the anonymous reviewers for many helpful com-
ments and thank Guangwu Xu, Kunpeng Wang, Song Tian and Bei Liang for their
helpful suggestions, especially for Guangwu Xu’s suggestions on the parts of "Ab-
stract" and "Introduction". This work is supported by the National Natural Science
Foundation of China (Grants 61872442, 61502487, and 61772515) and the National
Cryptography Development Fund (No. MMJJ20180216). W. Yu is supported by China
Scholarship Council (No. 201804910201).

References

1. Dimitrov V., Imbert L., Mishra P.K.: Efficient and secure elliptic curve point multiplication
using double-base chains, ASIACRYPT 2005, LNCS 3788, Springer, pp. 59-78, 2005. 1, 3,
2.2, 1, 3, 4, 5, 6.4, 6, 7, 8

2. Ciet M., Joye M., Lauter K., Montgomery P.L.: Trading inversions for multiplications in
elliptic curve cryptography, Designs, codes and cryptography 39(6), pp. 189-206, 2006. 1,
3, 4.2, 5, 7, 8

3. Doche C., Habsieger L.: A tree-based approach for computing double-base chains, ACISP
2008, LNCS 5107, Springer, pp. 433-446, 2008. 1, 2, 3, 4.2, 4.2, 5, 7, 8

4. Imbert L., Philippe F.: strictly chained (p, q)−ary partitions, Contibutions to Discrete
Matheimatics 2010, pp.119-136, 2010. 1, 3, 3.1, 3.1

5. Lou T., Sun X., Tartary C.: Bounds and trade-offs for double-base number systems,
Information Processing Letters, vol. 111, no. 10, pp. 488-493, 2011. 1, 4.2, 4.2

6. Zhao C.A., Zhang F.G., Huang J.W.: Efficient Tate pairing computation using double-base
chains, Sci. China Ser. F 51 , no. 8, pp. 1096-1105, 2008. 1, 3, 5.3

7. Capuñay A., Thériault N.: Computing optimal 2-3 chains for pairings. LATINCRYPT 2015,
Springer, volume 9230, pp. 225-244, 2015. 1, 3, 4, 2.2, 3.1, 3.1, 4.1, 5, 6.3, 4, 5

8. Doche C., Kohel D., Sica F.: Double base number system for multi-scalar multiplications,
EUROCRYPT 2009, LNCS 5479, Springer, pp. 502-519, 2009. 1

9. Adikari J., Dimitrov V.S., Imbert L.: Hybrid binary ternary number system for elliptic curve
cryptosystems, IEEE Trans. Computers, vol. 60, pp. 254-265, Feb. 2011. 1

10. Doche C., Sutantyo D.: New and improved methods to analyze and compute double-
scalar multiplications, IEEE Trans. Computers, 63(1), pp. 230-242, 2014. 1

11. Avanzi R.M., Dimitrov V.S., Doche C., Sica F.: Extending scalar multiplication using double
bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 130-144. Springer,
Heidelberg, 2006. 1

12. Mishra P.K., Dimitrov V.S.: Efficient quintuple formulas for elliptic curves and efficient
scalar multiplication using multibase number representation, ISC 2007, Springer-Verlag,
volume 4779, pp. 390-406, 2007. 1

13. Longa P., Gebotys C.: Fast multibase methods and other several optimizations for elliptic
curve scalar multiplication, PKC 2009: Proceedings of Public Key Cryptography, LNCS
5443, Springer, pp. 443-462, 2009. 1, 5, 7, 8

14. Yu W., Wang K., Li B., Tian S.: Triple-base number system for scalar multiplications,
AFRICACRYPT 2013, LNCS 7918, Springer, pp. 433-451, 2013. 1

15. Dimitrov V.S., Imbert L., Mishra P.K.: The double-base number system and its application
to elliptic curve cryptography, Math. Comp. 77, no. 262, pp. 1075-1104, 2008. 1, 2, 3

16. Doche C.: On the enumeration of double-base chains with applications to elliptic curve
cryptography, ASIACRYPT 2014, LNCS 8873, Springer, pp. 297-316, 2014. 1, 1, 3, 2.2, 3, 4.1,
4.1, 5, 6.3, 4

Double-Base Chains for Scalar Multiplications on Elliptic Curves 27

17. Bernstein D.J., Chuengsatiansup C., Lange T.: Double-base scalar multiplication revisited.
http://eprint.iacr.org/2017/037 1, 3, 4, 2.2, 4.1, 5, 6, 3, 6.3, 4, 5

18. Cohen H., Miyaji A., Ono T.: Efficient elliptic curve exponentiation using mixed
coordinates, ASIACRYPT 1998, LNCS 1514, Springer, pp.51-65, 1998. 2.1

19. Chevallier-Mames B., Ciet M., Joye M.: Low-cost solutions for preventing simple side-
channel analysis: side-channel atomicity, IEEE Trans. Computers, vol. 53, no. 6, pp. 760-
768, June 2004. 2.1

20. Longa P., Miri A.: Fast and flexible elliptic curve point arithmetic over prime fields, IEEE
Trans. Computers, VOL. 57, NO. 3, pp. 289-302, March 2008. 2.1

21. Bernstein D.J., Lange T.: Explicit-formulas database, http://www.hyperelliptic.org/
EFD/ 2.1

22. Renes J., Costello C., Batina L.: Complete addition formulas for prime order elliptic curves.
Advances in Cryptology - EUROCRYPT 2016, Springer, pp. 403-428. 2016. 2.1

23. Meloni N., Hasan M.: Elliptic curve scalar multiplication combining Yao’s algorithm and
double Bases. CHES 2009, LNCS 5747, Springer, pp. 304-316, 2009. 2.2

24. Meloni N., Hasan M.: Efficient double bases for scalar multiplication. IEEE Trans.
Computers, 64(8), pp. 2204-2212, 2015. 2.2

25. Disanto F., Imbert L., Philippe F.: On the maximal weight of (p,q)-ary chain partitions with
bounded parts. https://www.emis.de/journals/INTEGERS/vol14.html 4

26. Yu W., Musa S., and Li B.: Double-base chains for scalar multiplications on elliptic curves.
http://eprint.iacr.org/2020/144 3.1

27. Scott M.: MIRACL-multiprecision integer and rational arithmetic cryptographic library,
C/C++ Library, ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip 3.2

28. Chalermsook P., Imai H., Suppakitpaisarn V.: Two lower bounds for shortest double-base
number system. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, Vol.E98-A, No.6, pp.1310-1312, 2015 4

29. Dimitrov V.S., Howe E.W.: Lower bounds on the lengths of double-base representations,
Proceedings of the American mathematical society, vol. 139, Number 10, October,
pp.3423-3430, 2011. 4.2

30. Kolmogorov A.N.: On tables of random numbers. Theoretical Computer Science 207, pp.
387-395, 1998. 4.2

31. Doche C., Imbert L.: Extended double-base number system with applications to elliptic
curve cryptography. INDOCRYPT 2006, LNCS 4329, Springer, pp. 335-348, 2006. 4.2

32. Erdös P., Loxton J.H.: Some problems in partitio numerorum. J. Austral. Math. Soc. Ser. A
27(3), pp. 319-331, 1979. 5

33. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Introduction to algorithms, third
edition. The MIT Press, Cambridge, Massachusetts London, England, 2009. 5, 5.1

34. Cook S.A.: On the minimum computation time of functions, Ph.D. thesis, Depatment of
Mathematics, Harvard University, 1966. URL: https://cr.yp.to/bib/1966/cook.html. 6

http://eprint.iacr.org/2017/037
http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/
http://eprint.iacr.org/2020/144
ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip

	 Double-Base Chains for Scalar Multiplications on Elliptic Curves

