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Abstract. Boomerang attacks are extensions of differential attacks, that
make it possible to combine two unrelated differential properties of the
first and second part of a cryptosystem with probabilities p and q into a
new differential-like property of the whole cryptosystem with probability
p2q2 (since each one of the properties has to be satisfied twice). In this
paper we describe a new version of boomerang attacks which uses the
counterintuitive idea of throwing out most of the data in order to force
equalities between certain values on the ciphertext side. In certain cases,
this creates a correlation between the four probabilistic events, which in-
creases the probability of the combined property to p2q and increases the
signal to noise ratio of the resultant distinguisher. We call this variant a
retracing boomerang attack since we make sure that the boomerang we
throw follows the same path on its forward and backward directions.

To demonstrate the power of the new technique, we apply it to the
case of 5-round AES. This version of AES was repeatedly attacked by
a large variety of techniques, but for twenty years its complexity had
remained stuck at 232. At Crypto’18 it was finally reduced to 224 (for
full key recovery), and with our new technique we can further reduce the
complexity of full key recovery to the surprisingly low value of 216.5 (i.e.,
only 90, 000 encryption/decryption operations are required for a full key
recovery on half the rounds of AES).

In addition to improving previous attacks, our new technique unveils a
hidden relationship between boomerang attacks and two other cryptan-
alytic techniques, the yoyo game and the recently introduced mixture
differentials.

1 Introduction

Differential attacks, which were introduced by Biham and Shamir [9] in 1990, use
the evolution of differences between pairs of encryptions in order to construct
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high probability distinguishers. They can concatenate two short differential prop-
erties with probabilities p and q into a longer property with probability pq, but
only when the output difference of the first property is equal to the input differ-
ence of the second property. To overcome this restriction, Wagner [34] introduced
in 1999 the idea of the boomerang attack, which “throws” two plaintexts through
the encryption process, and then watches the two resultant ciphertexts (with
some modifications) return back through the decryption process. This made it
possible to concatenate two arbitrary differential properties whose probabilities
are p and q into a longer property whose probability is p2q2, since it requires
that four probabilistic events will simultaneously happen. This seems to be in-
ferior to plain vanilla differential attacks, but in many cases we can find two
short unrelated differential properties with much higher probabilities p and q,
which more than compensates for their quadratic occurrence in p2q2. A typical
example of the successful application of a boomerang attack is the best known
related-key attack on the full versions of AES-192 and AES-256, presented by
Biryukov and Khovratovich [11]. Consequently, boomerang attacks have become
an essential part of the toolkit of any cryptanalyst, and many variants of this
technique had been developed over the last 20 years.

In this paper we develop a new variant of the boomerang attack. We call
it a retracing boomerang attack, since the boomerang we throw through the en-
cryption not only returns to the plaintext side, but also follows closely related
paths on its forward and backward journey. In certain cases, this makes it pos-
sible to increase the probability of the combined differential property to p2q,
since an event that happened once with probability q will reoccur a second time
with probability 1. This idea had already been used by Biryukov and Khovra-
tovich [11] in 2009 to get an extra free round in the middle of the encryption, but
we use it in a different way which yields better attacks on several AES variants.

The main AES variant we consider in this paper is the 5-round version of
AES. This variant had been repeatedly attacked in many papers by a large
variety of techniques over the last 20 years, but all the published key recovery
attacks had a complexity of 232 or higher. It was only in 2018 that this record had
been broken, when [2] showed how to recover the full secret key6 for this variant
with a complexity of 224. In this paper we use our new retracing boomerang
attack to break the record again, reducing the complexity to 216.5, albeit in the
stronger attack model of adaptive chosen plaintext and ciphertext. This attack
was fully verified experimentally.

Another AES variant we successfully attack is the 5-round version of AES
in which the S-box and the linear mixing operations are secret key-dependent
components of the same general structure as in AES. The best currently known
key-recovery attack on this variant, presented by Tiessen et al. [32] in 2015, had
data and time complexity of 240. In this paper we show how to use our new
techniques in order to reduce this complexity to just 226. A comparison of our

6 Besides the full key recovery attack, the authors of [2] present an attack with com-
plexity of 221.5 that recovers 24 bits of the secret key. Since our attack recovers the
full secret key, we compare it with the full key recovery attack of [2].
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new attacks on 5-round AES and on 5-round AES with a secret S-box with
previous attacks7 is presented in Table 1.

Apart of allowing us to obtain better results in cryptanalysis of specific AES
variants, our new technique unveils a hidden relation between the boomerang
attack and the yoyo tricks with AES, introduced recently by Rønjom et al. [30].
While the ‘yoyo tricks’ differ significantly from classical boomerang attacks, we
show that they fit naturally into the retracing boomerang framework. In a sim-
ilar way, we show that mixture differentials, introduced recently by Grassi [22],
is closely related to a retracing type of the rectangle attack [6,26] (which is the
chosen plaintext version of the boomerang attack). In the case of mixture differ-
entials, the relation between the attacks is even more surprising, and may unveil
additional interesting features of the mixture differential technique.

This paper is organized as follows. In Section 2 we present the previous related
work and introduce our notations. We introduce the retracing boomerang attack
in Section 3. We apply our new attack to 5-round AES and to 5-round AES
with a secret S-box in Sections 4 and 5, respectively. In Section 6 we present the
retracing rectangle attack and show a relation between the mixture differential
technique and the rectangle technique. We summarize the paper in Section 7.

2 Background and Previous Work

The retracing boomerang attack is related to a number of other variants of
the boomerang attack, as well as to several other previously known techniques.
In this section we briefly present the techniques that are most relevant to our
results, while the other techniques are presented in the full version of the paper.

2.1 The boomerang attack

As the boomerang attack builds upon differential cryptanalysis, a short intro-
duction to the latter is due.

Differential cryptanalysis. Introduced by Biham and Shamir [9] in 1990,
differential cryptanalysis is a statistical attack on block ciphers that studies
the development of differences between two encrypted plaintexts through the
encryption process. Assume that we are given an iterative block cipher E :
{0, 1}n × {0, 1}k → {0, 1}n that consists of m (similar) rounds, and denote
the intermediate value at the beginning of the i’th round in the encryption
processes of the plaintexts P and P ′ by Xi and X ′i, respectively. An r-round
differential characteristic with probability p of a cipher is a property of the form

Pr[Xi+r ⊕X ′i+r = ΩO|Xi ⊕X ′i = ΩI ] = p, denoted in short ΩI
p−→ ΩO.

7 We note that [4,15,21,24,25,31] attacked an intermediate variant, in which only the
S-box is key-dependent, while MixColumns is the same one as in AES. The best
currently known attack on this variant, obtained by Bardeh and Rønjom [4], has
complexity of 232. Obviously, our attack applies to this variant as well.
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Attack Data Memory Time
(Chosen plaintexts) (128-bit blocks) (encryptions)

5-Round AES

Square [29] 211 small 245

Partial Sum [33] 28 small 240

Improved Square [20] 233 small 235

Imp. Diff. [7] 233.5 238 235

Mixture Diff. [22] 232 232 234

Yoyo [30] 211.3 ACC small 231

Mixture Diff. [2] 224 † 221.5 224 †

Our Attack (Sect. 4) 29 ACC 29 223

Our Attack (Sect. 4) 215 ACC 29 216.5

5-Round AES with Secret S-boxes

Integral [31] 2128 small 2128

Integral [25] 296 28 296

Imp. Diff. [24] 2102 28 2102

Imp. Diff. [21] 276.4 28 276.4

Mult.-of-n. [21] 253.3 216 253.3

Square‡ [32] 240 236 240

Yoyo [4] 232 ACC small 231

Our Attack‡ (Sect. 5) 217.5 ACC 217 229

Our Attack‡ (Sect. 5) 225.8 ACC 217 225.8

† — the data and time complexity for partial key recovery is 221.5

‡ — the attack applies also when the linear transformation is key-dependent
ACC — Adaptive Chosen Plaintexts and Ciphertexts

Table 1. Attacks on 5-Round AES (full key recovery)

Differential cryptanalysis shows that if there exists a differential characteristic
for most of the rounds of the cipher that holds with a non-negligible probability,
then the cipher can be broken faster than exhaustive search by an attack that
requires O(1/p) chosen plaintexts. Differential cryptanalysis was used to mount
the first attack faster than exhaustive search on the full DES [28], as well as on
many other block ciphers.

The boomerang attack. Introduced by Wagner [34], the boomerang attack
was one of the first techniques to show that non-existence of ‘long’ high-probability
differentials is not sufficient to guarantee security with respect to differential-type
attacks. Suppose that the cipher E can be decomposed as E = E1◦E0, such that

for E0, there exists a differential characteristic α
p−→ β, and for E1, there exists

a differential characteristic γ
q−→ δ, depicted in Fig. 1, where pq � 2−n/2. Then

one can distinguish E from a random permutation, using Algorithm 1 presented
below.
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Algorithm 1 The Boomerang Attack Algorithm

1: Initialize a counter ctr ← 0.
2: Generate (pq)−2 unique plaintext pairs (P1, P2) with input difference α.
3: for all pairs (P1, P2) do
4: Ask for the encryption of (P1, P2) to (C1, C2).
5: Compute C3 = C1 ⊕ δ and C4 = C2 ⊕ δ. . δ-shift
6: Ask for the decryption of (C3, C4) to (P3, P4).
7: if P3 ⊕ P4 = α then
8: Increment ctr
9: if ctr ≥ 1 then

10: return: This is the cipher E.
11: else
12: return: This is a random permutation.

P1

P2

X1

X2

α
β

E0

C1

C2

E1

C4
δ

X4

γ

X3

γ

C3
δ

β

P3

P4

α

Fig. 1. The Boomerang Attack

The theoretical analysis of the algorithm is as follows. Denote the interme-
diate values after the partial encryption by E0 of the plaintext Pj by Xj , for
1 ≤ j ≤ 4. Let (P1, P2) by a plaintext pair such that P1 ⊕ P2 = α. By the
differential characteristic of E0, we have

X1 ⊕X2 = β, (1)

with probability p. On the other side, as the ciphertexts satisfy C1 ⊕ C3 =
C2 ⊕ C4 = δ, by the differential characteristic of E1 we have

(X1 ⊕X3 = γ) ∧ (X2 ⊕X4 = γ), (2)

with probability q2. (We recall that the differential characteristic γ
q−→ δ for E1

is identical to the differential characteristic δ
q−→ γ for E−11 , in the sense that

both count the same set of input/output pairs for E1.) If both Eq. (1) and (2)
hold, then we have

X3 ⊕X4 = (X3 ⊕X1)⊕ (X1 ⊕X2)⊕ (X2 ⊕X4) = γ ⊕ β ⊕ γ = β. (3)
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Therefore, by the differential characteristic of E0, we have P3 ⊕ P4 = α, with
probability p. Hence, assuming (somewhat non-carefully, as discussed in [27])
that all these events are independent, we have

Pr[P3 ⊕ P4 = α|P1 ⊕ P2 = α] = p2q2. (4)

As we take 1/(pq)2 pairs (P1, P2), then with a high probability (= 1 − e−1 ≈
63%),8 for at least one of them we obtain P3⊕P4 = α, and hence, the algorithm
outputs ‘the cipher E’. On the other hand, for a random permutation we have
Pr[P3 ⊕ P4 = α] = 2−n, and hence, the expected number of pairs (P1, P2) for
which P3⊕P4 = α holds is 2−n · (pq)−2 � 1 (as we assumed pq � 2−n/2). Thus,
with an overwhelming probability, the algorithm outputs ‘random permutation’.

Therefore, the above algorithm indeed allows distinguishing E from a random
permutation, using in total 4(pq)−2 adaptively chosen plaintexts and ciphertexts
(in the sequel: ACPC).

2.2 The S-box switch

In [11], Biryukov and Khovratovich showed that in certain cases, the boomerang
attack can be improved significantly by ‘bypassing for free’ some operations in
the middle of the cipher. One of those cases, called S-box switch, is particularly
relevant to our results. Assume that E = E1 ◦E0, where the last operation in E0

is a layer S of S-boxes applied in parallel (which is the usual scenario in SP net-
works, like the AES). That is, S divides the state ρ into ρ = (ρ1, ρ2, . . . , ρt) and
transforms it to S(ρ) = (f1(ρ1)||f2(ρ2)|| . . . ||ft(ρt)), for t independent (keyed)
functions fj . Suppose that the differential characteristics in E0, E1 are such that
in both β and γ, the difference in the part of the intermediate state X that
corresponds to the output of some fj is ∆. In other words, denoting this part of
the intermediate state X by Xj , if both characteristics hold then we have

(X1)j ⊕ (X2)j = (X1)j ⊕ (X3)j = (X2)j ⊕ (X4)j = ∆.

In such a case, we have (X1)j = (X4)j and (X2)j = (X3)j , and hence, if the
differential characteristic in the function (fj)

−1 holds for the pair (X1, X2) then
it must hold for the pair (X3, X4). Thus, the overall probability of the boomerang
distinguisher is increased by a factor of (q′)−1, where q′ is the probability of the
differential characteristic in fj .

This ‘switch’, along with other ‘switches in the middle’, was a key ingredient
in the attack of [11] on the full AES-192 and AES-256. Later on, some of these
switches were generalized in the Sandwich attack of [19] for the case of a prob-
abilistic transition in the middle layer and used to attack KASUMI, the cipher
of 3G cellular networks. Recently, a more complete and rigorous analysis of the
transition between E0 and E1 was suggested, using the Boomerang Connectivity
Table [14] that covers these and related ideas. These developments are described
in more detail in the full version of the paper.

8 The success probability of the attack can be increased by slightly enlarging the data
complexity. If we start with c/(pq)2 pairs, then the success probability is 1− e−c.
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2.3 The yoyo game and mixture differentials

In addition to the classical boomerang attack, two more techniques – the yoyo
game and mixture differentials – are closely related to our attacks. We describe
them very briefly below, but in more detail in the sequel. Our new type of
boomerang attacks allows us to unveil a close relation of these two techniques
to the boomerang and rectangle techniques, respectively.

The yoyo game. The yoyo technique was introduced by Biham et al. [5] in 1998.
Like the boomerang attack, the yoyo game is based on encrypting a pair of plain-
texts (P1, P2), modifying the corresponding ciphertexts (C1, C2) into (C3, C4),
and decrypting them. However, while the boomerang distinguisher just checks
whether the resulting plaintexts (P3, P4) satisfy some property, in the yoyo game
the process continues: (P3, P4) are modified into (P5, P6) which are encrypted
into (C5, C6), those in turn are modified into (C7, C8) which are decrypted into
(P7, P8), etc. The process satisfies the property that all pairs of intermediate
values (X2`+1, X2`+2) at some specific point of the encryption process satisfy
some property (e.g., zero difference in some part of the state). Since for a ran-
dom permutation, the probability that such a property is satisfied by a sequence
of pairs (X2`+1, X2`+2) is extremely low, this property can theoretically be used
for distinguishing the cipher from a random permutation. Practically, exploiting
this property is not so easy, as the adversary does not see the intermediate values
(X2`+1, X2`+2). Nevertheless, Biham et al. showed that in some specific cases,
such a distinguishing is possible and even allows for key recovery [5].

Biham et al. [5] applied the yoyo technique to a 16-round variant of the block
cipher Skipjack. Biryukov et al. [12] applied it to attack generic 5-round Feistel
constructions, and Rønjom et al. [30] used it to attack reduced-round AES with
at most 5 rounds. As the attack of Rønjom et al. [30] is a central ingredient in
our attacks on 5-round AES, it is presented in detail in Sect. 4.

Mixture differentials. The mixture differential technique was presented by
Grassi [22]. The technique works in the following setting. Assume that the ci-
pher E can be decomposed as E = E1 ◦ E0, where E0 can be considered as a
concatenation of several permutations, i.e., P = (ρ1, ρ2, . . . , ρt) and E0(P ) =
f1(ρ1)||f2(ρ2)|| . . . ||ft(ρt)), for t independent functions fj . A well known exam-
ple of such E0 is 1.5 rounds of AES, that can be treated as four parallel super
S-boxes (see [16]).

Definition 1. Given a plaintext pair (P 1, P 2), where P 1 = (ρ11, . . . , ρ
1
t ) and

P 2 = (ρ21, . . . , ρ
2
t ) we say that (P 3, P 4), where P 3 = (ρ31, . . . , ρ

3
t ) and P 4 =

(ρ41, . . . , ρ
4
t ) is a mixture counterpart of (P 1, P 2) if for each 1 ≤ j ≤ t, the quartet

(ρ1j , ρ
2
j , ρ

3
j , ρ

4
j ) consists of two pairs of equal values or of four equal values. The

quartet (P 1, P 2, P 3, P 4) is called a mixture.

The main observation behind the mixture differential technique is that if (P 1, P 2,
P 3, P 4) is a mixture then the XOR of the corresponding intermediate values
(X1, X2, X3, X4) is zero. Indeed, for each j, as (ρ1j , ρ

2
j , ρ

3
j , ρ

4
j ) consists of two pairs
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of equal values, then the same holds for (fj(ρ
1
j ), fj(ρ

2
j ), fj(ρ

3
j ), fj(ρ

4
j )) as well. In

particular, fj(ρ
1
j )⊕fj(ρ2j )⊕fj(ρ3j )⊕fj(ρ4j )) = 0. As a result, if we have X1⊕X3 =

γ, then X2⊕X4 = γ holds as well. Now, if there exists a differential characteristic

γ
q−→ δ for E1, then with probability q2, the corresponding ciphertexts satisfy

C1 ⊕ C3 = C2 ⊕ C4 = δ.
Grassi [22,23] applied the technique to mount several attacks on AES with

up to 6 rounds. The 5-round attack of Grassi was recently improved in [2] into an
attack with overall complexity of 224 for full key-recovery (or 221.5 for recovering
24 bits of the secret key), that is significantly faster than all other known attacks
on 5-round AES.

3 The Retracing Boomerang Attack

Our new retracing boomerang framework contains two attack types – a shifting
type and a mixing type. In this section we present these two types and discuss
their advantages over the standard boomerang attack and their relation to previ-
ous works. In the following sections and in the appendix we present applications
of the new techniques, along with a few variants and extensions.

3.1 The shifting retracing attack

Assumptions. Suppose that the block cipher E can be decomposed as E =
E12 ◦ E11 ◦ E0, where E12 consists of dividing the state into two parts (a left
part of b bits and a right part of n− b bits) and applying to them the functions
EL

12, E
R
12, respectively. Furthermore, suppose that for E0, there exists a differ-

ential characteristic α
p−→ β, for E11, there exists a differential characteristic

γ
q1−→ (µL, µR), for EL

12, there exists a differential characteristic µL
qL2−−→ δL, and

for ER
12, there exists a differential characteristic µR

qR2−−→ δR (see Fig. 2).9

In other words, we make the same assumptions as in the boomerang attack,
with the additional assumption that E1 can be further decomposed into two
sub-ciphers, and that the second sub-cipher has a specific structure. While this
additional assumption may look very restrictive, it applies for a wide class of
block ciphers. For example, if E is a SASAS construction [13], then E12 can be
taken to be the last S layer; a specific such example is AES [29], where E12 can
be taken to be the last 1.5 rounds.

The attack procedure and its analysis. Assuming that pq1q
L
2 q

R
2 � 2−n/2,

the standard boomerang attack can be used to distinguish E from a random
permutation, with data complexity of 4(pq1q

L
2 q

R
2 )−2.

The basic idea of the retracing boomerang attack is to add an artificial (b−1)-
bit filtering in the middle of the attack procedure. Namely, after encrypting

9 A variant of the attack that is applicable when the top part of the cipher can be
further decomposed into two sub-ciphers, is presented in the full version of the paper.
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Fig. 2. The Retracing Boomerang Framework

(P1, P2) into (C1, C2), we first check whether

CL
1 ⊕ CL

2 = 0 or δL. (5)

Only if there is equality, we continue with the boomerang process. Otherwise,
we simply discard the pair (P1, P2). See Fig. 3 for the process.
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12 ER
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2 CR
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3 CR
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Y L
3 Y R
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4 CR
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Y L
4 Y R
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12 ER

12

⊕
0?

CL
1 CR

1

Y L
1 Y R
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12 ER

12
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2 CR

2

Y L
2 Y R

2
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EL
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3

Y L
3 Y R

3
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12 ER

12

CL
4 CR

4

Y L
4 Y R

4

C4 ← C2 ⊕ δ

EL
12 ER

12

⊕
δL?

Fig. 3. A Shifted Quartet (dashed line means equality)

This is a surprising move, as the discarded pair may actually be a right pair
with respect to the differential characteristic α → β (i.e., a pair that satisfies
the characteristic). Hence, a natural question arises: What do we gain from this
filtering?
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Note that for any value of δL, if Eq. (5) holds then the two unordered pairs
(CL

1 , C
L
3 ) and (CL

2 , C
L
4 ) are identical. Hence, if one of these pairs satisfies the

differential characteristic δL
qL2−−→ µL, then the other one must satisfy it as well.

As a result, the probability of the boomerang distinguisher among the examined
pairs is increased by a factor of (qL2 )−1 from (pq1q

L
2 q

R
2 )2 to (pq1q

R
2 )2qL2 .

Advantages of the new technique. At first glance, our new variant of the
boomerang attack seems completely odd and useless. Note that as the block size
of EL

12 is b bits, then any possible differential characteristic of EL
12 has probability

of at least 2−b+1, and so, the overall probability of the boomerang distinguisher
is increased by a factor of at most 2b−1. On the other hand, our filtering leaves
only 2−b+1 of the pairs, so we either gain nothing (if qL2 = 2−b+1) or even lose
(otherwise)!

It turns out that there are several advantages to this approach:

1. Improving the signal to noise ratio. Recall that the ordinary boomerang attack
applies if pq1q

L
2 q

R
2 � 2−n/2, as otherwise, the probability that P3⊕P4 = α holds

for E is not larger than the respective probability for a random permutation. In
the retracing boomerang attack, the probability that P3 ⊕ P4 = α holds among
the examined pairs is increased by a factor of (qL2 )−1, while the probability for
a random permutation remains unchanged. As a result, the attack can succeed
in cases where the ordinary boomerang attack fails due to insufficient filtering.

Furthermore, the adversary can use the increased gap between the probabil-
ities of the checked event for E and for a random permutation to replace the

differential characteristic β
p−→ α used for the pair (X3, X4) in the backward

direction with a truncated differential characteristic. β
p′−→ α′ of a higher proba-

bility p′ in which α′ specifies the difference in only some part of the bits, while
still having a larger probability of the event P3 ⊕ P4 = α′ for E than for a ran-
dom permutation. An example of this advantage is demonstrated in the attack
on 5-round AES presented in the full version of the paper.

2. Reducing the data complexity. The new attack saves data complexity on the
decryption side. Indeed, as decryption is performed only to the pairs that sat-
isfy the filtering condition, the number of decryptions is reduced by a factor of
2b−1. While usually, the effect of this reduction is not significant as then the en-
cryptions dominate the overall complexity, there are cases in which more queries
are made on the decryption side, and in such cases, the data complexity may
be reduced significantly. This advantage (like the previous one) is demonstrated
in the attack on 5-round AES in the full version of the paper. 3. Reducing the

time complexity. The smaller number of pairs on the decryption side may affect
also the time complexity of the attack. This effect is not significant when the
attack complexity is dominated by encryption/decryption of the data. However,
in many cases (e.g., where a round is added before the distinguisher and the
adversary has to guess some key material in the added round and check whether
the condition P3 ⊕ P4 = α holds), the complexity of the attack is dominated by
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analysis of the pairs (P3, P4). In such cases, the time complexity may be reduced
by a factor of (qL2 )−1, as the number of pairs (P3, P4) is reduced by this ratio.

Relation to previous works. Our new technique uses several ideas that al-
ready appeared in previous works in different contexts. Those include:

– Discarding part of the data before the analysis. The counter-intuitive idea of
neglecting part of the data appears in various previous works, e.g., in the
context of time-memory tradeoff attacks on stream ciphers [18], and in the
context of conditional linear attacks on DES [8].

– Increasing the probability of the boomerang attack by exploiting dependency
between differentials. As we mentioned above, several previous works on the
boomerang attack used dependency between differentials, and in particular,
situations in which the four inputs to some function in the encryption process
are composed of two pairs of equal values, to increase the probability of the
boomerang distinguisher (see, e.g., [10,11,14,19]). The closest to our attack
is the S-box switch of Biryukov and Khovratovich [11] described in Sect. 2. In
all these attacks, the gain is obtained in the transition between the two sub-
ciphers E0, E1. In contrast, the retracing boomerang exploits dependency
between the two differentials in the same sub-cipher (by forcing dependency
via the artificial filtering).

– Increasing the probability of the boomerang attack by exploiting representa-
tion of a sub-cipher as two (or more) functions applied in parallel. Such a
probability increase was obtained by Biryukov and Khovratovich [11] in the
ladder switch technique, which exploits a subdivision into multiple functions
(e.g., a layer of S-boxes) along with dependency between differentials, to
increase the probability of the transition between the two sub-ciphers.

– Using quartets of the form (x, x, y, y) to force dependency. This idea was
recently used by Grassi in [22, Theorem 4], in the context of the mixture
differential attack described in Sect. 2.

3.2 The mixing retracing attack

The attack setting. Recall that the shifting retracing boomerang attack in-
creases the probability of the boomerang distinguisher by forcing equality be-
tween the unordered pairs (CL

1 , C
L
2 ) and (CL

3 , C
L
4 ) that enter (EL

12)−1. Such an
equality can be forced in an alternative way, without inserting an artificial fil-
tering.

Instead of working with the same shift δ for all ciphertexts, one may shift
each ciphertext pair (C1, C2) by (CL

1 ⊕ CL
2 , 0), thus obtaining the ciphertexts

C3 = (CL
3 , C

R
3 ) =

(
CL

1 ⊕ (CL
1 ⊕ CL

2 ), CR
1 ⊕ 0

)
= (CL

2 , C
R
1 ),

and (similarly) C4 = (CL
1 , C

R
2 ), see Fig. 4. In such a case, the unordered pairs

(CL
1 , C

L
3 ) and (CL

2 , C
L
4 ) are equal, and hence, we gain a factor of (qL2 )−1, like in

the shifting retracing attack. Furthermore, in the right part we have CR
1 = CR

3
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and CR
2 = CR

4 , and thus, we gain also a factor of (qR2 )−2 (as both charac-
teristics in ER

12 hold trivially with probability 1). This results in a total gain
of (qL2 )−1(qR2 )−2.

CL
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1

Y L
1 Y R

1
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12 ER
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2

Y L
2 Y R
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12
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3 Y R
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12
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)
(
= Y R

1
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(
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1 =

)
(
= Y R

2

)

Fig. 4. A Mixture Quartet of Ciphertexts (a dashed line means equality)

Relation to ‘yoyo tricks with AES’. Interestingly, in the special case of the
AES, the mixing described here is exactly the core step of the yoyo attack of
Rønjom et al. [30] (presented in detail in Sect. 4). Hence, this type of retrac-
ing boomerang is not entirely novel, but rather generalizes and presents a new
viewpoint on the yoyo attack of Rønjom et al.

Comparison between the two types of retracing boomerang. At first
glance, it seems that the mixing retracing attack is clearly better than the shifting
retracing attack presented above. Indeed, it obtains an even larger gain in the
probability of the distinguisher, while not discarding ciphertext pairs! However,
there are several advantages of the shifting variant that make it more beneficiary
in various scenarios:

– Using structures. A central technique for extending the basic boomerang
attack is adding a round at the top of the distinguisher, using structures.
This technique can be combined with the shifting retracing technique, as
follows. First, the adversary performs the ordinary boomerang attack with
structures (i.e., encrypts structures of plaintexts, shifts all ciphertexts by δ
and decrypts the resulting ciphertexts), and then she checks the artificial
filtering together with the condition on P3, P4, since both can be checked
simultaneously using a hash table. As a result, the data complexity remains
the same as in the ordinary boomerang attack (with structures!), while the
retracing boomerang leads to an improvement in the signal to noise ratio,
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which can be translated to a reduction in the data complexity, as described
above.

For mixing retracing, such a combination is impossible, since each ciphertext
pair (C1, C2) has to be modified by its own shift (CL

1 ⊕ CL
2 , 0), and so, one

cannot shift entire structures as a single block. Therefore, the reduction of
data complexity by using structures cannot be obtained.

A similar advantage of the shifting variant is the ability to combine it with
extension of the boomerang attack by adding a round at the bottom, as we
demonstrate in our attack on 6-round AES in the full version of the paper.

– Combination with E11. In the mixing variant, since the output difference for
(EL

12)−1 (namely, (C1)L ⊕ (C2)L), is arbitrary and changes between differ-
ent pairs, in most cases there is no good combination between differential
characteristics of (EL

12)−1 that can be used and differential characteristics of
(E11)−1. Indeed, in the yoyo attack of [30] on 5-round AES, this part of the
attack succeeds simply because E11 is empty. It seems that while the mixing
retracing technique can be applied also in cases where E11 is non-linear (and,
in particular, non-empty), it will usually (or even almost always) be inferior
to the shifting retracing boomerang in such cases.

– Construction of ‘friend pairs’. An important ingredient in many boomerang
attacks is ‘friend pairs’, which are pairs that are attached to given pairs in
such a way that if some pair satisfies a desired property then all its ‘friend
pairs’ satisfy the same property as well (such pairs are used in most attacks
in this paper). While both types of the retracing boomerang attack allow
constructing several ‘friend pairs’ for each pair, the number of pairs in the
shifting variant is significantly larger, which makes it advantageous in some
cases.

The names of the attacks. The shifting type of the retracing boomerang is
named this way since it preserves the δ-shift of the original boomerang attack,
and uses the filtering to enhance the probability of the original boomerang pro-
cess. The mixing type is named this way since it replaces the δ-shift by a mixing
procedure, like the one used in mixture differentials [22].

4 Retracing Boomerang Attack on 5-round AES

Our first application of the retracing boomerang framework is an improved at-
tack on 5-round AES, which allows recovering the full secret key with data
complexity of 215, time complexity of 216.5, and memory complexity of 29. The
attack was fully implemented experimentally. Since our attack is based on cen-
tral components of the yoyo attack of Rønjom et al. [30] on 5-round AES (which
can be seen as a mixing retracing boomerang attack, as was shown in Sect. 3.2),
we begin this section with describing the structure of the AES and presenting
the attack of [30]. Then we present our attack, its analysis, and its experimental
verification.
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Fig. 5. An AES Round

4.1 Brief description of the AES and notations

The Advanced Encryption Standard (AES) [29] is a substitution-permutation
(SP) network which has 128-bit plaintexts and 128, 192, or 256-bit keys. Since
the descriptions of all attacks we present in this paper are independent of the
key schedule, we do not differentiate between these variants.

The 128-bit internal state of AES is treated as a byte matrix of size 4x4,
where each byte represents a value in GF (28). An AES round (described in
Fig. 5) applies four operations to this state matrix:

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times
in parallel on each byte of the state,

– ShiftRows (SR) — cyclically shifting the i’th row by i bytes to the left,
– MixColumns (MC) — multiplication of each column by a constant 4x4 ma-

trix over the field GF (28), and
– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.

An additional AddRoundKey operation is applied before the first round, and in
the last round the MixColumns operation is omitted. The number of rounds is
between 10 and 14, depending on the key length. We omit the key schedule, as
it does not affect the description of our attacks.

The bytes of each state of AES are numbered 0, 1, . . . , 15, where for 0 ≤ i, j ≤
3, the j’th byte in the i’th row is numbered i + 4j (see the state after SB in
Fig. 5). We always consider 5-round AES, where the MixColumns operation in
the last round in omitted. The rounds are numbered 0, 1, 2, 3, 4. The subkeys are
numbered k−1, k0, . . . , k4, where k−1 is the secret key XORed to the plaintext
at the beginning of the encryption process. We denote by W,Z, and X the
intermediate states before the MixColumns operation of round 0, at the input
to round 1 and before the MixColumns operation of round 2, respectively. The
j’th byte of a state or a key Xi is denoted by Xi,j or by (Xi)j . When several
bytes j1, . . . , j` are considered simultaneously, they are denoted by Xi,{j1,...,j`}
or by (Xi){j1,...,j`}.

The term ‘`’th shifted column’ (resp. ‘`’th inverse shifted column’) refers to
the result of application of SR (resp., SR−1) to the `’th column. For example,
the 0’th shifted column consists of bytes 0, 7, 10, 13, and the 0’th inverse shifted
columns consists of bytes 0, 5, 10, 15. We also denote by SR(j) (resp., SR−1(j))
the byte position to which byte j is transformed by SR (resp., SR−1).

When considering differences between the encryption processes of a pair of
plaintexts, we say that a component (e.g., byte or column) at some stage of
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the encryption process is active if the difference in that component is non-zero.
Otherwise, we call the component passive. Finally, we say that some values
x1, x2, . . . , xm ‘sum up to zero’ if x1 ⊕ x2 ⊕ . . .⊕ xm = 0.

4.2 The yoyo attack of Rønjom et al. on 5-round AES

The idea behind the attack. The attack decomposes 5-round AES as E =
E12 ◦E11 ◦E0, where E0 consists of the first 2.5 rounds, E11 is the MC operation
of round 2, and E12 consists of rounds 3 and 4. For E0 in the forward direction,
the adversary uses a truncated differential characteristic whose input difference
is zero in three inverse shifted columns, and whose output difference is zero in
a single shifted column. The probability of the characteristic is 4 · 2−8 = 2−6,
since it holds if and only if the output difference of the active column in round 0
is zero in at least one byte. For E12 in the backward direction, recall that 1.5
rounds of AES can be represented as four 32-bit to 32-bit super S-boxes applied
in parallel (see [16]). For each ciphertext pair (C1, C2), the adversary modifies
it into one of its mixture counterparts (see Definition 1) with respect to the
division into super S-boxes, calls the new ciphertext pair (C3, C4), and asks for
its decryption. Due to the mixture construction, the four outputs of each super S-
box are composed of two pairs of equal values, and hence, the four corresponding
inputs to the super S-boxes sum up to 0. As MC is a linear operation, this implies
that X1 ⊕ X2 ⊕ X3 ⊕ X4 = 0. Therefore, with probability 2−6, the difference
X3⊕X4 equals zero in a shifted column. This, in turn, implies that the difference
Z3 ⊕ Z4 equals zero in an inverse shifted column (i.e., one of the four quartets
of bytes: (0, 5, 10, 15), (1, 4, 11, 14), (2, 5, 8, 15), (3, 6, 9, 12)).

At this point, the adversary would like to attack bytes 0, 5, 10, 15 of the
subkey k−1, using the fact that in one of the bytes of the first column, we have
Z3 ⊕ Z4 = 0. However, this information provides only an 8-bit filtering, while
32 subkey bits are involved. In order to improve the filtering, the authors of [30]
construct ‘friend pairs’ of the pair (Z3, Z4), such that if we have Z3 ⊕Z4 = 0 in
byte `, then the same holds for all friend pairs. The resulting attack algorithm
(of [30]) is given in Alg. 2.

Analysis of the attack. The data complexity of the attack is about 29, since for
each of 26 pairs (P1, P2), the adversary decrypts four ciphertext pairs (Cj

3 , C
j
4).

The time and memory complexities are dominated by the attack on k−1 in Step 7.
In a naive application, this attack requires about 232 operations for each pair
(P1, P2) and each value of ` ∈ {0, 1, 2, 3}, and thus, the overall time complexity
of the attack is about 232 · 26 · 4 = 240. The authors of [30] managed to improve
the overall complexity to 231, using a careful analysis of round 0, including
exploitation of the specific matrix used in MC. We do not present this part of
the attack, as it can be replaced by a simpler and stronger tool, as we describe
below. To summarize, the data complexity of the attack is 29 adaptively chosen
plaintexts and ciphertexts, the memory complexity is 29 and the time complexity
is 231 encryptions.
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Algorithm 2 Rønjom et al.’s Yoyo Attack on 5-Round AES

1: Ask for the encryption of 26 pairs (P1, P2) of chosen plaintexts that have non-zero
difference only in bytes 0,5,10,15.

2: for all corresponding ciphertext pairs (C1, C2) do
3: Define four modified ciphertext pairs (Cj

3 , C
j
4) (j = 1, 2, 3, 4) to be mixture

counterparts of the pair (C1, C2).
4: Ask for the decryption of the ciphertext pairs and consider the pairs of inter-

mediate values after round 0, (Zj
3 , Z

j
4).

5: for all ` ∈ {0, 1, 2, 3} do
6: Assume that all four pairs (Zj

3 , Z
j
4) and the pair (Z1, Z2) have zero difference

in byte `.
7: Use the assumption to extract bytes 0, 5, 10, 15 of k−1.
8: if a contradiction is reached then
9: Increment `

10: if ` > 3 then
11: Discard the pair

12: else
13: Use the fact that Zj

3⊕Z
j
4 = 0 in the entire `’th inverse shifted column to

attack the three remaining columns of round 0 (sequentially) and thus to deduce
the rest of k−1.

4.3 A simple improvement of the yoyo attack on 5-round AES

A simple improvement of the attack of Rønjom et al. is to use a meet-in-the-
middle (MITM) procedure to attack bytes 0, 5, 10, 15 of k−1 in Step 7.

Denote the intermediate value in byte m before the MC operation of round 0
in the encryption of a plaintext P by Wm. W.l.o.g. we consider the case ` = 0,
and recall that by the structure of AES, byte 0 in the input to round 1 satisfies

Z0 = 02x ·W0 ⊕ 03x ·W1 ⊕ 01x ·W2 ⊕ 01x ·W3. (6)

In the MITM procedure, the adversary guesses bytes 0, 5 of k−1, computes the
value

02x · (W j
3 )0 ⊕ 03x · (W j

3 )1 ⊕ 02x · (W j
4 )0 ⊕ 03x · (W j

4 )1 (7)

for j = 1, 2, 3, and stores the concatenation of these values (i.e., a 24-bit value)
in a sorted table. Then she guesses bytes 10, 15 of k−1, computes the value

01x · (W j
3 )2 ⊕ 01x · (W j

3 )3 ⊕ 01x · (W j
4 )2 ⊕ 01x · (W j

4 )3 (8)

for j = 1, 2, 3, and checks for a match in the table (which is, of course, equivalent
to the condition (Zj

3)0 = (Zj
4)0 for j = 1, 2, 3). As this condition is a 24-bit

filtering, about 232 · 2−24 = 28 suggestions for bytes 0, 5, 10, 15 of k−1 remain,
and those can be checked using the conditions (Z4

3 )0 = (Z4
4 )0 and (Z1)0 = (Z2)0.

The data complexity of the attack remains 29. The time complexity is reduced
to 26 · 4 · 216 = 224 operations, where each operation is roughly equivalent to a
computation of one AES round in a single column for 6 plaintexts, or a total of
less than 223 encryptions.
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It seems that the use of MITM increases the memory complexity of the attack
to about 216. However, one can maintain the memory at 29 using the dissection
technique [17] (see, e.g., [2] for similar applications of dissection). Therefore, the
time complexity of the attack is reduced to 223 encryptions, while the data and
memory complexities remain unchanged at 29.

4.4 An attack on 5-round AES with overall complexity of 216.5

We now show how one can reduce the time complexity of the attack described
above to 216.5, at the expense of increasing the data complexity to about 215.

The idea behind the attack is to enhance the MITM procedure, such that on
each of the two sides, the number of possible key values is reduced to 28 (instead
of 216). The reduction is obtained using two methods:

Constructing an extra equation by a specific choice of plaintexts. In order to
reduce the number of possible values of k−1,{0,5}, we choose plaintext pairs with
non-zero difference only in bytes 0, 5. For such pairs, the condition (Z1)0 = (Z2)0
simplifies into

02x · (W1)0 ⊕ 03x · (W1)1 ⊕ 02x · (W2)0 ⊕ 03x · (W2)1, (9)

as bytes 2, 3 of W cancel out. This equation depends only on the plaintexts and
on bytes 0, 5 of k−1, and since it is an 8-bit filtering, it leaves only 28 possible
values of k−1,{0,5}. In order to detect these 28 candidates efficiently, we make
our choice of plaintexts even more specific.

We choose only pairs of plaintexts (P1, P2) that satisfy (P1)5 ⊕ (P2)5 = 01x.
In addition, as a precomputation phase we compute the row of the Difference
Distribution Table (DDT) of the AES S-box that corresponds to input difference
01x and store it in memory, where each output difference is stored along with
the value(s) that lead to it.10

As a result, for each pair (P1, P2) and for each guess of k−1,0, we can use
Eq. (9) to compute the output difference of the SB operation in byte 5. As the
input difference is fixed to be 01x, we can use the precomputed row of the DDT
to find the inputs to that SB operation by a single table lookup, and hence, to
retrieve instantly the possible value(s) of k−1,5 that correspond to the guessed
value of k−1,0.

This process allows us to compute the 28 possible values of k−1,{0,5} in about
28 simple operations for each pair.

Eliminating a key byte from the equation by using multiple ‘friend pairs’. In order
to reduce the number of possible values of k−1,{10,15}, we attach to each plaintext
pair (P1, P2) multiple ‘friend pairs’, such that if (P1, P2) satisfies the differential
characteristic of E0, then all friend pairs satisfy the same characteristic as well.
We perform the boomerang process for all friend pairs together with the original

10 Constructing this row takes 29 simple operations, and storing it takes much less than
29 128-bit cells of memory.
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pairs, obtaining many pairs (P j
3 , P

j
4 ). We choose one such pair for which we have

(P j
3 )10 ⊕ (P j

4 )10 = 0 or (P j
3 )15 ⊕ (P j

4 )15 = 0. (10)

Assume w.l.o.g. that the equality holds in byte 10. We perform the MITM pro-
cedure presented above with the single pair (P j

3 , P
j
4 ). Note that the first step

provided us with 28 possible values for k−1,{0,5}. Hence, in the MITM attack
there are only 28 possible values for the expression (7). On the other hand, by
the choice of the pair, there is zero difference in byte 2 before the MC operation,
and thus, the subkey byte k−1,10 cancels out from the expression (8). As a re-
sult, this expression depends on a single key byte, and thus, has only 28 possible
values, just like Eq. (7). Thus, the MITM procedure requires about 29 simple
operations and (as the data provides an 8-bit filtering) leaves 28 suggestions for
subkey bytes k−1,{0,5,15}. Finally, we can take any other couple of ‘friend pairs’
and recover the unique value of k−1,{0,5,10,15} by another MITM procedure in
which one side computes the contribution of bytes 0, 1, 3 to Eq. (9) (applied for
the difference (Z3)0 ⊕ (Z4)0) and the other side computes the contribution of
byte 2, as on each side there are about 28 possible values.

Therefore, the complexity of the MITM attack on k−1,{0,5,10,15} is reduced to
about 28 operations for each pair (P1, P2) and each value of `, or a total of about
216 operations. As for the data complexity, in order to have a friend pair that
satisfies Eq. (10) with a high probability, we have to take about 27 friend pairs
for each of the 26 pairs (P1, P2). Hence, the total data complexity is increased
to about 215. A more precise analysis is given below.

Attack algorithm. The algorithm of our improved attack on 5-round AES is
as follows.

1. Precomputation: Compute the row of the DDT of the AES S-box that
corresponds to input difference 01x, along with the actual values.

2. Online phase: Take 64 pairs (P1, P2) of plaintexts such that in each pair,
we have (P1)5 = 00x and (P2)5 = 01x, in byte 0 the values (P1, P2) are
distinct, and in all other bytes, the values (P1, P2) are equal.

3. To each plaintext pair (P1, P2), attach 27 ‘friend pairs’ (P j
1 , P

j
2 ), such that

for each j we have (P j
1 ⊕P j

2 ) = P1⊕P2, and (P j
1 ){0,5,10,15} = (P1){0,5,10,15}.

4. Do the following for each plaintext pair (P1, P2), and for each ` ∈ {0, 1, 2, 3}:
[we present the operations for ` = 0, the other cases are similar.]
(a) For each guess of byte k−1,0, partially encrypt (P1, P2) through the SB

operation in byte 0 of round 0 to find its output difference. Then, as-
suming that the pair (P1, P2) satisfies the characteristic of E0 with ` = 0
(i.e., that (Z1)0 = (Z2)0), use Eq. (9) to find the output difference of the
SB operation in byte 5 of round 0. Then use the precomputed DDT to
deduce the actual inputs to that SB operation, and deduce from them
the value of subkey byte k−1,5. Store in a table the 28 possible values
k−1,{0,5}.

(b) Ask for the encryption of (P1, P2) and of its 27 ‘friend pairs’ (P j
1 , P

j
2 ).

For each ciphertext pair (C1, C2) or (Cj
1 , C

j
2) we obtain, replace it by
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one of its mixture counterparts, which we denote by (C3, C4) or (Cj
3 , C

j
4)

(respectively), and ask for its decryption. Denote the resulting plaintext
pairs by (P3, P4) and (P j

3 , P
j
4 ).

(c) Find a value j for which the pair (P j
3 , P

j
4 ) satisfies Eq. (10). [In the follow-

ing steps we assume w.l.o.g. that the condition yields equality in byte 10.
If the equality is in byte 15, the steps should be modified accordingly.]

(d) Perform a MITM attack on Column 0 of round 0, using the plaintext pair
(P j

3 , P
j
4 ). Specifically, use the 28 possible values for k−1,{0,5} computed

in Step 4(a) to obtain 28 possible values for (7) and store them in a table.
Then, for each guess of subkey byte k−1,15, compute (8) and check in
the table for a collision. Each collision provides us with a possible value
of k−1,{0,5,15}.

(e) Perform a MITM attack on Column 0 of round 0, using two other

plaintext pairs (P j′

3 , P
j′

4 ). Specifically, use the 28 possible values for
k−1,{0,5,15} computed in the previous step to obtain the contribution
of bytes 0, 1, 3 to Eq. (6) (applied for the difference (Z3)0 ⊕ (Z4)0, for
both pairs) and store it in a table. Then, for each guess of subkey byte
k−1,10, compute the contribution of byte 2 to Eq. (6) and check in the
table for a collision. (Each collision provides us with a possible value of
k−1,{0,5,10,15}, along with a filtering for wrong pairs.) If a contradiction
is reached, move to the next value of `; if contradiction is reached for all
values of `, discard the pair (P1, P2) and move to the next pair.

5. Using a pair (P1, P2) for which no contradiction occurred in Step 4 and its
‘friend pairs’, perform MITM attacks on Columns 1, 2, and 3 of round 0
(sequentially), exploiting the fact that Z3⊕Z4 equals zero in the `’th inverse
shifted column (e.g., for ` = 0 this column consists of bytes 0, 5, 10, 15), to
recover the rest of the subkey k−1.

Attack analysis. The attack succeeds if the data contains a pair that satisfies
the truncated differential characteristic of E0 (i.e., leads to a zero difference in
at least one byte in the active column in round 0), and in addition, for one of
the ‘friend pairs’ of that pair, the corresponding plaintext pair (P j

3 , P
j
4 ) has zero

difference in either byte 10 or 15. With 64 plaintext pairs and 128 ‘friend pairs’
for each pair, each of these events occurs with probability of about 1−e−1 ≈ 0.63,
and hence, under standard randomness assumptions, the success probability of
the attack is about 0.632 ≈ 0.4. This probability can be increased significantly
by increasing the number of pairs we start with and the number of their ‘friend
pairs’. For example, with 128 plaintext pairs and 128 friend pairs for each of
them, the expected success probability is (1− e−2)(1− e−1) ≈ 0.54.

We note that the success probability can be increased further by exploiting
other ways to cancel terms in Eq. (8). For example, if for some j, j′, the unordered

pairs {(P j
3 )10, (P

j
4 )10} and {(P j′

3 )10, (P
j′

4 , )10} are equal, then we can use the
XOR of Eq. (8) for both pairs to cancel out the effect of subkey byte k−1,10 on
the equation. This allows us to apply the efficient MITM attack described above
also in cases where no ‘friend pair’ of (P1, P2) satisfies Eq. (10), thus increasing
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the success probability of the attack. Our analysis shows that under standard
randomness assumptions, for the same amount of 64 initial pairs and 128 ‘friend
pairs’ for each pair considered above, this improvement increases the success
probability of the attack from 0.4 to about 0.5.

The data complexity of the attack, for the success probability 0.4 computed
above, is 2 ·26 ·27 = 214 chosen plaintexts and 214 adaptively chosen ciphertexts.
We note that the amount of chosen plaintexts can be reduced by considering
two structures of 8 plaintexts each (where in the first structure we have (P1)5 =
00x and (P1)0 assumes 8 different values, and in the second structure we have
(P2)5 = 01x and (P2)0 assumes 8 different values) and taking the 64 pairs (P1, P2)
composed of one plaintext in each structure. (In such a case, the ‘friend pairs’ are
also taken in structures obtained by XORing the same value to all elements in the
two initial structures.) This reduces the data complexity to slightly more than
214 adaptively chosen plaintexts and ciphertexts (as the number of encrypted
plaintexts is negligible with respect to the number of decrypted ciphertexts).
On the other hand, this slightly reduces the success probability of the attack,
due to dependencies between the examined pairs (P1, P2), as demonstrated in
the next subsection. To conclude, with data complexity of 215 adaptively chosen
plaintexts and ciphertexts we obtain success probability of more than 50%.

The memory complexity of the attack is no more than 29 128-bit memory
cells, like in the yoyo attack of Rønjom et al. [30].

As for the time complexity, it is dominated by several steps that consist of
about 216 simple operations each. The comparison of these operations to AES
encryptions is problematic, and hence, we adopt a common strategy of counting
the number of S-box applications and dividing it by 80, which is the number of
S-boxes in 5-round AES. The number we obtain (divided by 216), in addition to
the 214 + 211 full encryptions of Step 4(b), is: negligible for Steps 1 and 4(c), 2
for Step 4(a), 6 for Step 4(d), 8 for Step 4(e), and 24 · 3 = 72 for Step 5. Hence,
the total complexity is less than 216.5 full encryptions.

We conclude that our 5-round attack requires 215 adaptively chosen plain-
texts and ciphertexts, 29 memory and 216.5 time, and recovers the full secret key
with success probability of more than 50%.

4.5 Experimental verification

To verify the success probability of our attack computed above, we implemented
two variants of the 5-round attack. The first variant uses up to 128 independent
plaintext pairs. The second variant uses two structures, one of 8 plaintexts and
another of 16 plaintexts, to create a total of 128 plaintext pairs. For each pair
(P1, P2), we generated 128 friend pairs. We ran the attack on 500 different ran-
domly generated keys. For each success of the attack, we saved the number of
pairs we had to try before finding the key. Then we extracted from this data the
success probability of the attack, as a function of the amount of available data.
Fig. 6 shows this success probability, as a function of the number of plaintext
pairs, up to a maximum of 128 pairs.
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Fig. 6. Attack Success Probability

It can be seen that the success probability is slightly lower than the probabil-
ity predicted by the above analysis. In particular, for 64 initial pairs, the success
probability is slightly higher than 0.3 (rather than the predicted 0.4). We conjec-
ture that the deviation from the theoretical estimate occurs due to dependency
issues, but leave this small discrepancy for further research. Anyway, for data
complexity of 215, the experimental success probability is well above 50%.

The source code used in the experiments, along with the raw data, is included
as a supplementary material, and will be made public together with the online
version of the paper.

5 Improved Attack on 5-round AES with a Secret S-box

In [32], Tiessen et al. initiated the study of AES with a secret S-box, namely a
variant of AES in which the SB operation is replaced by a key-dependent S-box.
They showed that 5 rounds of the new variant can be broken with complexity
of 240 and 6 rounds can be broken with complexity of 290, using variants of the
Square attack on AES [29]. In the last four years, six more papers analyzed 5-
round variants of AES with a secret S-box: in [15,25,31] using the Square attack,
in [24,25] using impossible differentials, in [21] using impossible differentials and
the multiple-of-n property, and in [4] using the yoyo technique. The best cur-
rently known result was obtained by Bardeh and Rønjom [4] – data complexity
of 232 adaptively chosen plaintexts and ciphertexts and time complexity of 231

operations (in addition to generating the data).

In this section we use the retracing boomerang technique to devise an attack
on 5-round AES with a secret S-box with a complexity of 225.8 in the adaptively
chosen plaintext and ciphertext model. Like the attacks of [4,21,24,25,31], our
attack recovers the secret key, without fully recovering the secret S-box. (Actu-
ally, we recover the S-box up to an invertible affine transformation in (GF (2))8;
as our attack is of a differential nature, it cannot distinguish between secret
S-boxes that differ by such transformation.) On the other hand, it applies even
against a stronger variant in which MC is also replaced by a key-dependent MDS
transformation (see [16]) applied on each column. Among the previous attacks,
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only the Square attack of Tiessen et al. [32] applies to this variant and can break
it with complexity of 240.

Our attack uses the same retracing boomerang framework as our attack on 5-
round AES. Namely, we start with plaintext pairs (P1, P2) with difference only in
bytes 0, 5, 10, 15, and for each such pair, we modify the corresponding ciphertext
pair (C1, C2) into one of its mixture counterparts, which we denote by (C3, C4),
and ask for its decryption. We know that with probability 2−6, the corresponding
pair (Z3, Z4) of intermediate values at the input of round 1 has zero difference
in an inverse shifted column (e.g., in bytes 0, 5, 10, 15). (Note that this part does
not use the specific structure of SB or of MC, and hence, can be applied also to
a variant of AES with key-dependent SB and MC operations). Our goal now is
to use this knowledge to attack round 0, as the attack we used for 5-round AES
heavily relies on the fact that the S-box is known to the adversary.

Partial recovery of the secret S-box. To attack round 0, we use the strategy
proposed in the structural attack of Biryukov and Shamir on SASAS [13], that
was already used against AES with a secret S-box in [32], albeit inside the frame-
work of the Square attack. Assume w.l.o.g. that the retracing boomerang predicts
zero difference in byte 0 of the state Z, i.e., yields the equation (Z3)0⊕(Z4)0 = 0.
(In the actual attack, if the procedure with byte 0 leads to a contradiction, the
adversary has to perform it again with bytes 1, 2, 3.) By Eq. (6), we can rewrite
this equation as

0 = (Z3)0 ⊕ (Z4)0 =02x · ((W3)0 ⊕ (W4)0)⊕ 03x · ((W3)1 ⊕ (W4)1)

⊕ 01x · ((W3)2 ⊕ (W4)2)⊕ 01x · ((W3)3 ⊕ (W4)3).
(11)

Note that each of the values (W3)j has the form SB(P3 ⊕ k−1,j′), where for
j = 0, 1, 2, 3, j′ = SR−1(j) takes the value 0, 5, 10, 15, respectively. Therefore, if
we define 4 · 256 = 1024 variables xm,j = SB(m⊕ k−1,j′) (for m = 0, 1, . . . , 255
and j′ = 0, 1, 2, 3), then each plaintext pair (P1, P2) for which the corresponding
intermediate values (Z3, Z4) satisfy

(Z3)0 ⊕ (Z4)0 = 0, (12)

provides us with a linear equation in the variables {xm,j}.
In order to recover the variables {xm,j} by solving a system of linear equa-

tions, we need many pairs (Z3, Z4) that satisfy Eq. (12) simultaneously. We
obtain these pairs by attaching about 210 ‘friend pairs’ to each original pair
(P1, P2), like we did in the attack on 5-round AES in Sect. 4. Hence, we start
with 26 pairs (P1, P2), and for each pair and about 210 friend pairs we perform
the mixing retracing boomerang process and use each of the pairs to obtain a lin-
ear equation in the variables {xm,j}. (This part of the attack has to be repeated
for ` = 0, 1, 2, 3, as each value of ` leads to different equations. The equations
presented above correspond to ` = 0.) Then, we recover as many as we can of the
variables {xm,j} by solving a system of linear equations. We take a bit more than
210 friend pairs for each pair in order to obtain extra filtering, which allows us
to efficiently discard pairs (P1, P2) that do not satisfy the boomerang property.
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As was shown in [32], the equations do not allow determining the variables
{xm,j} (and thus, the secret S-box) completely. Indeed, as our basic Eq. (11)
represents differences and not actual values, it is invariant under composition of
the secret S-box with an invertible linear transformation over (GF (2))8. Thus,
the best we can obtain at this stage is four functions S0, S1, S2, S3, such that

Sj(x) = L0(SB(x⊕ k−1,j′)),

for some unknown invertible linear transformation L0. In addition, by repeating
the attack for three other columns in round 0 (using the fact that for a pair
(P1, P2) that satisfies the boomerang property, an entire inverse shifted column
of Z3 ⊕ Z4 equals zero), we obtain the S-boxes Sj(x) for all j ∈ {0, 1, . . . , 15},
albeit with multiplication by a different matrix Lt in all the S-boxes of (inverse
shifted) Column(t).

Recovering the secret key. While this information does not recover the S-
box completely, it does allow us to recover the secret key k−1, up to 256 possible
values. This is done in two steps.

First, for each j′ ∈ {1, 2, 3} we can easily recover k̄j′ = k−1,0⊕ k−1,j′ in time
28, as k̄j′ is the unique value of c such that Sj(x) = S0(x⊕c) for all x. In a similar
way, we can recover each inverse shifted column of k−1 up to 256 possible values
(e.g., to find the values k−1,1⊕ k−1,s for s ∈ {6, 11, 12} by attacking Column 3).
This already reduces the number of possible values of k−1 to 232.

Second, we find the differences k−1,0 ⊕ k−1,j for j = 1, 2, 3 by taking several
quartets of values (x1, x2, x3, x4) such that S0(x1)⊕S0(x2)⊕S0(x3)⊕S0(x4) = 0
and finding the unique value of cj such that

Sj(cj ⊕ x1)⊕ Sj(cj ⊕ x2)⊕ Sj(cj ⊕ x3)⊕ Sj(cj ⊕ x4) = 0.

(The quartets are used to eliminate the effect of the difference between the linear
transformations L0 and Lj in the definitions of S0 and Sj .) Thus, in about 212

operations we recover the entire secret key k−1, up to the value of a single
byte k−1,0. Assuming that the secret S-boxes are determined by the secret key,
the attack can be completed by exhaustive search over the 28 remaining key
possibilities. The resulting attack algorithm is given in Alg. 3.

Attack analysis. The data complexity of the attack is 26 · 2 · 210 = 217 chosen
plaintexts and 217 adaptively chosen ciphertexts. Like in the attack on 5-round
AES presented in Section 4, we can reduce the required amount of chosen plain-
texts to about 214 using structures, and so the overall data complexity is less
than 217.5 adaptively chosen plaintexts and ciphertexts.

The time complexity is dominated by solving a system of 1034 equations
in 1024 variables in Step 10, that has to be performed for each of the 26 pairs
(P1, P2) and for ` = 0, 1, 2, 3. Using the Four Russians Algorithm ([1]; see [3]
for the motivation for choosing it), each solution of the system takes about
(210)3/ log(210) ≈ 227 simple operations, that are equivalent to about 227/80 ≈
221 encryptions. Hence, the time complexity of the attack is 229. (Note that the
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Algorithm 3 Attack on 5-Round AES with Secret S-Box and MixColumns

1: Ask for the encryption of 26 pairs (P1, P2) of chosen plaintexts that have non-zero
difference only in bytes 0,5,10,15.

2: for all Plaintext pairs (P1, P2) do
3: Generate 210 + 10 ‘friend pairs’ (P j

1 , P
j
2 ), such that for each j: (P j

1 ⊕ P
j
2 ) =

P1 ⊕ P2, and (P j
1 ){0,5,10,15} = (P1){0,5,10,15}.

4: Ask for the encryption of all ‘friend pairs’ (P j
1 , P

j
2 )

5: for all pairs (P1, P2) and for each ` ∈ {0, 1, 2, 3} do . We present the case of
` = 0, the other cases are similar.

6: for all m ∈ {0, 1, . . . , 255} and j ∈ {0, 1, 2, 3} do
7: Define xm,j = SB(m⊕ k−1,SR−1(j))

8: Assume that Eq. (11) is satisfied for all Zj
3 , Z

j
4 of the ‘friend pairs’ (P j

1 , P
j
2 )

9: Obtain the corresponding linear system of equations in xm,j

10: Solve the system of 1034 linear equations in 1024 variables
11: if a contradiction is reached then
12: Increment `
13: if ` > 3 then
14: Discard the pair

15: else
16: The solution yields four functions Sj(x) = L0(SB(x ⊕ k−1,SR−1(j))), for

some unknown invertible linear transformation L0.

17: Repeat the attack on the other three columns with (P1, P2) to obtain Sj(x) for
j = 4, 5, . . . , 15.

18: Find the rest of the secret key by exhaustive key search (assuming the secret S-box
depends on the master 128-bit key k−1)

solution of a system of equations in Step 17 is much cheaper, as it has to be
performed only for a single pair (P1, P2).)

The memory complexity is dominated by the memory required for solving
the system of equations, which is less than 217 128-bit blocks. (There is no need
to store the plaintext/ciphertext pairs, as they can be analyzed ‘on the fly’.)

We conclude that the data complexity of the attack is 217.5 adaptively cho-
sen plaintexts and ciphertexts, the time complexity is 229 encryptions, and the
memory complexity is 217 128-bit blocks.

Improving the overall complexity by applying a distinguisher before
the attack. Note that in the attack, we have to apply the equation-solving step
28 times, since we do not know which pair (P1, P2) and which value of ` satisfies
the boomerang property. Hence, if we can obtain this information in some other
way, this will speedup the attack considerably.

A possible way to find a pair that satisfies the boomerang condition is to
apply the yoyo distinguishing attack on 5-round AES of Rønjom et al. [30],
which does not depend on knowledge of the S-box, and thus, can be applied in
the secret S-box setting. (Note however that this attack depends on the MDS
property of MC (see [16]). Hence, unlike the attack described above which applies
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when MC is replaced by an arbitrary invertible linear transformation, this attack
applies only if the transformation is assumed to satisfy the MDS property.)
The attack of [30] requires 225.8 adaptively chosen plaintexts and ciphertexts,
and in addition to distinguishing 5-round AES from a random permutation, it
finds a pair (P1, P2) with non-zero difference only in bytes 0, 5, 10, 15, such that
the corresponding intermediate values (Z1, Z2) have non-zero difference in only
two bytes. This pair satisfies our boomerang property, and thus, can be used
(along with 1034 friend pairs) in the attack described above. This reduces the
complexity of each equation-solving step to 221, and thus, the overall complexity
of the attack is dominated by the complexity of Rønjom et al.’s attack. We
conclude that this variant of the attack has data and time complexities of 225.8

and memory complexity of 217.

6 The Retracing Rectangle Attack – Connection to
Mixture Differentials

In this section we present the retracing rectangle attack, which is the retrac-
ing variant of the rectangle attack [6]. First we recall the amplified boomerang
(a.k.a. rectangle) attack, then we present and analyze the new retracing rect-
angle attack, and then we use our new framework to expose a relation of the
recently introduced mixture differential attack [22] to the rectangle attack.

6.1 The amplified boomerang (a.k.a. rectangle) attack

An apparent drawback of the boomerang attack is the need to use adaptively
chosen plaintexts and ciphertexts – a very strong ability for the attacker. In [26],
Kelsey et al. presented the amplified boomerang attack, which imitates the pro-
cedure of the boomerang attack using only chosen plaintexts. In the attack,
the adversary considers pairs of pairs of plaintexts ((P1, P2), (P3, P4)) such that
P1⊕P2 = P3⊕P4 = α, and for each of them, she checks whether the correspond-
ing quartet of ciphertexts ((C1, C2), (C3, C4)) satisfies C1 ⊕ C3 = C2 ⊕ C4 = δ.
For the analysis of the attack, we refer the reader to [26].

Kelsey et al. applied the amplified boomerang attack to the AES’ candidates
MARS and SERPENT. In a subsequent work, Biham et al. [6] presented several
enhancements of the attack, and gave it the name rectangle attack, which is the
currently more commonly-used name.

6.2 The retracing rectangle attack

The transformation from the retracing boomerang attack to the retracing rectan-
gle attack is similar to the transformation from the (classical) boomerang attack
to the rectangle attack.
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The attack setting. We assume that E can be decomposed as E = E1 ◦E02 ◦
E01, where E01 consists of dividing the state into two parts (a left part of b bits
and a right part of n − b bits) and applying to them the functions EL

01, E
R
01.

Furthermore, we suppose that for EL
01, there exists a differential characteristic

αL
pL
1−−→ µL, for ER

01, there exists a differential characteristic αR
pR
1−−→ µR, for

E02, there exists a differential characteristic µ
p2−→ β, and for E1, there exists a

differential characteristic γ
q−→ δ (see Fig. 7).
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Fig. 7. The Retracing Rectangle Setting

Assuming that pR1 p
L
1 p2q � 2−n/2, the rectangle attack can be used to distin-

guish E from a random permutation, with data complexity of O((pR1 p
L
1 p2q)

−1 ·
2n/2) chosen plaintexts. Recall that in the standard rectangle attack, we con-
sider quartets of plaintexts ((P1, P2), (P3, P4)) such that P1⊕P2 = P3⊕P4 = α,
and check whether the corresponding quartets of ciphertexts ((C1, C2), (C3, C4))
satisfy C1 ⊕ C3 = C2 ⊕ C4 = δ. In the retracing rectangle attack, we consider
only quartets of plaintexts that satisfy

(P1 ⊕ P2 = α) ∧ (P3 ⊕ P4 = α) ∧ ((P1)L ⊕ (P3)L = 0 or αL). (13)

As a result, the two unordered pairs (PL
1 , P

L
2 ) and (PL

3 , P
L
4 ) are identical, and

hence, if one of them satisfies the differential characteristic of EL
10, then so does

the other. Thus, the probability of the rectangle distinguisher is improved by a
factor of (pL1 )−1.

Advantages. Unlike the shifting retracing boomerang attack, here we obtain
an improvement in the probability of the distinguisher without a need to discard
some part of the data. (This holds since the adversary can choose the plaintexts
as she wishes, and in particular, can force the additional restriction (PL

1 ⊕PL
3 =

0 or αL) ‘for free’.) In addition, the signal to noise ratio is improved, like in the
retracing boomerang attack.
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It should however be noted that in most applications of the rectangle attack,
the adversary starts with structures S of pairs with input difference α, such that
each pair-of-pairs within the same structure satisfies the initial condition of the
rectangle distinguisher. Then, for each structure, the adversary uses a hash table
to check all these

(|S|
2

)
quartets in time |S|. In the retracing rectangle attack,

one has to either give up the structures and work with each pair-of-pairs that
satisfies Eq. (13) separately, or else perform the ordinary rectangle attack and
then check the additional condition (PL

1 ⊕ PL
3 = 0 or αL) simultaneously with

the condition C1⊕C3 = C2⊕C4 = δ (which can be done using a hash table). In
either case, the overall data complexity of the attack is not reduced, compared
to the rectangle attack with structures, and thus, improvement of the signal to
noise ratio is the main advantage of the retracing rectangle technique.

A mixing variant – relation to mixture differentials. Like in the mix-
ing retracing boomerang attack, the adversary can force equality between the
unordered pairs (PL

1 , P
L
2 ), (PL

3 , P
L
4 ) by choosing P3 = (PL

2 , P
R
1 ) and P4 =

(PL
1 , P

R
2 ), or in other words, by taking the pair (P3, P4) to be the mixture

counterpart of the pair (P1, P2). As this choice also forces equality between the
pairs (PR

1 , P
R
2 ) and (PR

3 , P
R
4 ), the probability of the rectangle distinguisher is

increased by a factor of (pL1 p
R
1 )−1.

Interestingly, it turns out that the core step of the mixture differential attack
of Grassi [22] on 5-round AES fits into the mixture retracing rectangle attack
framework.

Specifically, the core of [22]’s result is a chosen plaintext distinguishing attack
on a 3.5-round variant of AES. In this attack, 3.5-round AES is decomposed as
E1 ◦E02 ◦E01, where E01 consists of the first 1.5 rounds, E02 consists of a single
MC layer, and E1 is composed of the last 1.5 rounds. The attack uses quartets
of plaintexts (P1, P2, P3, P4) constructed by a mixing procedure, as described
in Definition 1, and considers the corresponding quartets (X1, X2, X3, X4) and
(Y1, Y2, Y3, Y4) of intermediate values after E01 and E02, respectively. The repre-
sentation of 1.5-round AES as four Super-S-boxes applied in parallel [16] allows
deducing that X1⊕X2⊕X3⊕X4 = 0 holds with probability 1. As E02 is linear,
the same holds for Y1, Y2, Y3, Y4. Finally, the attack uses a truncated differen-
tial characteristic of E1 with probability 1 that starts with difference 0 in an
inverse shifted column (e.g., bytes 0, 5, 10, 15) and ends with difference 0 in a
shifted column (e.g., bytes 0, 7, 10, 13). (This characteristic also follows from the
Super-S-boxes representation of 1.5-round AES.) If the pair (Y1, Y3) satisfies the
input difference of this characteristic – an event that occurs with probability of
2−32 – then (Y2, Y4) satisfies the input difference as well, and then we know for
sure that both (C1, C3) and (C2, C4) have zero difference in bytes 0, 7, 10, 13.
This provides a 64-bit filtering, that is exploited in [22] to obtain a key recovery
attack on 5-round AES.

While this may not be apparent at a first glance, this attack is indeed a
variant of the mixing retracing rectangle attack described above. The choice of
plaintext quartets is exactly the same, and so is the treatment of E1 (taking
note that the differential characteristics used in a boomerang/rectangle attack
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may be truncated, as mentioned above). The only seeming difference is E0,
where instead of considering a specific differential characteristic we only make
sure that the four outputs sum up to zero. However, this is actually the same
as using all possible differential characteristics simultaneously, as is commonly
done in boomerang/rectangle attacks.

7 Summary and Open Problems

In this paper we introduced a new version of boomerang attacks called a retrac-
ing boomerang attack, and used it to significantly improve the best known key
recovery attacks on 5 rounds of AES (both in its standard form and when the
S-box and the linear transformation are secret key-dependent components). The
most interesting problems left open in this paper are:

– Find additional applications of the new technique.
– Find other types of correlations which can further increase the probability

of the combined differential property.
– Create a “grand unified theory” of boomerang-like attacks which will explore

their hidden relationships and treat them rigorously.
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