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Abstract. The k-xor or Generalized Birthday Problem aims at finding,
given k lists of bit-strings, a k-tuple among them XORing to 0. If the
lists are unbounded, the best classical (exponential) time complexity has
withstood since Wagner’s CRYPTO 2002 paper. If the lists are bounded
(of the same size) and such that there is a single solution, the dissection
algorithms of Dinur et al. (CRYPTO 2012) improve the memory usage
over a simple meet-in-the-middle.
In this paper, we study quantum algorithms for the k-xor problem. With
unbounded lists and quantum access, we improve previous work by Grassi
et al. (ASIACRYPT 2018) for almost all k. Next, we extend our study
to lists of any size and with classical access only.
We define a set of “merging trees” which represent the best known strate-
gies for quantum and classical merging in k-xor algorithms, and prove
that our method is optimal among these. Our complexities are confirmed
by a Mixed Integer Linear Program that computes the best strategy for
a given k-xor problem. All our algorithms apply also when considering
modular additions instead of bitwise xors.
This framework enables us to give new improved quantum k-xor algo-
rithms for all k and list sizes. Applications include the subset-sum prob-
lem, LPN with limited memory and the multiple-encryption problem.

Keywords: Generalized Birthday Problem, quantum cryptanalysis, list-merging
algorithms, k-list problems, approximate k-list problem, multiple encryption,
MILP, LPN, subset-sum.

1 Introduction

As constant progress is being made in the direction of quantum computing de-
vices with practical applications, the inherent threat to cryptography has led to
massive amounts of research in designing secure post-quantum primitives. To de-
sign these cryptosystems and justify their parameters, one must rely on generic
levels of quantum security. Therefore a precise study of the query and time com-
plexities of quantum algorithms for relevant problems is needed. Furthermore,
improved quantum algorithms may increase the vulnerabilities of some cryp-
tosystems. In this work, we study, from a quantum point of view, an ubiquitous
generic problem with many variants and applications: the Generalized Birthday
Problem, or k-xor problem.



Generalized Birthday Problem. The birthday problem, or collision problem, may
be formulated as the following: given a random oracle H : {0, 1}n → {0, 1}n,
find a collision pair, i.e. x, y ∈ {0, 1}n such that H(x) = H(y). It is well-known
that Ω(2n/2) classical queries are necessary and sufficient. In a seminal paper,
Wagner [32] generalized a method credited to Camion and Patarin [15] to solve
a variant of this problem for k-tuples:

Given some lists L1, . . . , Lk of n-bit strings, find a k-tuple x1, . . . , xk
of L1 × . . .× Lk such that x1 ⊕ x2 ⊕ . . .⊕ xk = 0.

Although Wagner studied the case of unbounded lists, many cryptographic
applications are concerned with lists of limited size. For example, if the lists (of
uniformly random n-bit strings) have size 2bn/kc, we expect a single solution with
constant probability. The best classical algorithms for this case are given in [18],
and apply e.g. to the multiple-encryption or subset-sums problems. Alternatively,
if the lists have size 2bn/(k−1)c we may want to find all the expected 2bn/(k−1)c

solutions.

Extension to Other Operations. We choose to focus on the bitwise XOR oper-
ation ⊕ for simplicity. In all algorithms studied throughout this paper, it can
be replaced by modular additions. We provide more details in the full version of
the paper [28].

Classical Complexity of k-xor. Intuitively, increasing k can only make the prob-
lem easier on average, since new degrees of freedom are available. The optimal
query complexity of k-xor is Ω̃(2n/k) queries: with them it is possible to build
O (2n) k-tuples, and retrieve a XOR to zero with constant probability. The main
contribution of Wagner in [32] is to give an algorithm which, although far from
optimal in queries, reaches an efficient time complexity for any k. Its time com-
plexity is Õ

(
2n/(blog2(k)c+1)

)
, using k lists of size 2n/(blog2(k)c+1).

Quantum Complexity. The optimal quantum query complexity of k-xor is known
to be Ω

(
2n/(k+1)

)
[5]. In [20] some quantum algorithms for solving the k-xor

problem with quantum oracle access are given. For a general k, a time complexity
of Õ

(
2n/(blog2(k)c+2)

)
is obtained in the MNRS quantum walk framework [26]. As

for Wagner’s algorithm, the exponent decreases only at powers of 2. However, the
authors also observed an exponential separation between the quantum collision
and 3-xor time complexities. While collision search requires provably Ω(2n/3)
quantum queries, they present a 3-xor algorithm running in time O

(
23n/10

)
. A

natural question is whether this extends to all k.
Furthermore, this previous work for general k covers only the case of un-

bounded lists. As highlighted above, in many applications we would like to con-
sider a general k and lists of bounded size, as in [18,27].

This paper. In this work, we first answer the open questions stated in [20], which
were far from intuitive or trivial as explained in section 3. We introduce for this
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the “merging trees”, that describe in a systematic way merging strategies to
solve the quantum k-xor problem. This enables us to reach better exponential
time complexities than [20], with exponents that decrease strictly at each new
value of k. With poly(n) qubits and without qRAM, we give quantum speedups
for half of the values of k. We prove that our results are optimal among all
merging trees.

While [20] studied the problem with quantum oracle access, we extend our
framework to classically given lists and lists of limited size, up to the case where
k lists of size only 2n/k are given as input, improving the best algorithms for
most values of k. We give the first quantum k-list algorithms applicable for
all bicomposite problems as defined in [18]. We obtain also the first quantum
time-memory product below 2n/2 for a generic k-list problem with lists of size
2n/k.

We provide several applications of these algorithms, improving the best known
quantum algorithms for subset sums, the BKW algorithm, multiple-encryption
and the approximate k-list problem.

Outline. In Section 2, we recall some preliminaries of quantum computing, state
the different problems that we will solve and recall previous results. Section 3
summarizes our main algorithmic results. Sections 4 and 5 concern the case of
unbounded lists. In Section 4, we present Wagner’s algorithm and show how to
generalize its idea with the concept of merging trees, which can be adapted to
the quantum setting. These strategies cover all the previously known quantum
algorithms for k-xor and the new ones in this paper. Our results were first
obtained experimentally with the help of Mixed Integer Linear Programming, as
the complexity of a merging tree appears naturally as the solution to a simple
linear optimization problem. This is why our definition focuses on variables and
constraints. In Section 5, we give the optimal merging trees for quantum k-
xor and prove their optimality among all strategies of our framework. We also
compare our new results with the ones from [20]. Next, in Section 6, we extend
to limited input domains, i.e. smaller lists. Finally, in Section 7, we give some
applications, using our new k-list algorithms as black boxes: subset-sums, LPN,
the approximate k-list and multiple-encryption problems. We conclude the paper
with some open questions.

2 Preliminaries

In this section we introduce the problems under study, cover some basic required
notions of quantum computing and summarize the state-of-the-art of algorithms
for these k-xor problems.

2.1 Variants of the k-xor Problem

All algorithms in this paper have exponential time complexities in n, written
Õ (2αkn) for some αk depending only on k. We consider k as a constant and
neglect the multiplicative factors in k and n.
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The k-xor problem has two main variants: the input data can be accessed via
input lists or via an oracle. Classically, this does not make any (more than con-
stant in k) difference. Quantumly, it implicitly determines whether we authorize
quantum access or only classical access to the data.

Problem 1 (k-xor with lists). Given L1, . . . Lk lists of uniformly random n-bit
strings, find x1, . . . , xk ∈ L1 × . . . × Lk such that x1 ⊕ . . . ⊕ xk = 0 in minimal
time.

Problem 1 is the original problem solved by Wagner in [32], in which the sizes
of the lists is arbitrary, and not a concern. In that case, there exists an optimal
list size, which is exponential in n (otherwise we wouldn’t expect a solution) and
the same for all lists (otherwise we could increase the size of the non-maximal
lists and simply drop the additional elements). The oracle version of this problem
is as follows.

Problem 2 (k-xor with an oracle). Given oracle access to a random n-bit to n-bit
function H, find x1, . . . , xk ∈ L1 × . . .× Lk such that H(x1)⊕ . . .⊕H(xk) = 0.

Alternatively, one can define Problem 2 with k different random functions,
or Problem 1 with a single input list. These formulations are equivalent up to a
constant factor in k and both will be used in the rest of this paper.

Problem 2 is the one studied in [20], when quantum oracle access to H is
allowed. In that case, instead of querying H for a fixed input x, we are allowed
superposition queries to a quantum oracle OH . This models a situation in which
the production of the lists is entirely controlled by the adversary, and can be
easily implemented on a quantum computer.

Finally, we will allow a limitation of the domain of H, or alternatively, of the
sizes of the lists Li. The limit case happens when there is on average a single
k-tuple with a XOR to zero. We name these problems “unique k-xor”.

Problem 3 (Unique k-xor with an oracle). Given query access to a random dn/ke-
bit to n-bit function H, expecting that there exists a single k-tuple x1, . . . , xk
such that H(x1)⊕H(x2)⊕ . . .⊕H(xk) = 0, find it.

Although we choose to focus on these limit cases, our framework will encom-
pass all intermediate cases where the domain size of H (or the size of Li) is
restricted to 2d with

⌈
n
k

⌉
≤ d ≤ n.

Problem 4 (Unique k-xor with lists). Given classical data as k lists L1, . . . ,
Lk of uniformly random n-bit strings, of size 2n/k, find a k-tuple x1, . . . , xk ∈
L1 × . . .× Lk such that x1 ⊕ . . .⊕ xk = 0, if it exists.

2.2 Quantum Computing Model and Preliminaries

We use the quantum circuit model. However, as we are only interested in expo-
nential time complexities, we allow ourselves a level of abstraction which should
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make our algorithms and complexities understandable even for a non-expert au-
dience. For the interested reader, a thorough introduction to quantum computing
can be found in [29].

The quantum circuit model is a universal way of describing a quantum com-
putation. We compute with a set of qubits, which are two-dimensional quantum
systems. Their state is described by a vector in a Hilbert space H, of the form
α |0〉+β |1〉, where |0〉 , |1〉 is the canonical basis of H (named the computational
basis), α, β are complex numbers and |α|2 + |β|2 = 1. A quantum circuit starts
with a system of (possibly many) qubits in the state |0〉; then a sequence of
unitary operators (formed of operators known as quantum gates), possibly in-
terleaved with oracle calls, is applied. At the end of the computation, the qubits
are measured.

A widely known example of quantum algorithm is Grover’s algorithm [21].
From a uniform superposition over a search space X, it creates the superposition
over the subset G = {x ∈ X, f(x) = 1} for some function f , assuming that a
superposition oracle for f is given: Of (|x〉 |b〉) = |x〉 |b⊕ f(x)〉. As this procedure

consists in iterating
√
|X|2−t times the same unitary, we speak of “iterations”.

Grover search is known to be optimal when the test f is a black-box oracle [6].

Lemma 1 (Grover Search, from [21]). Let X be a search space, whose ele-
ments are represented on dlog2(|X|)e qubits, such that the uniform superposition

1√
|X|

∑
x∈X |x〉 is computable in Õ (1) time. Assume that we can implement

a superposition oracle Of for f in Õ (1) time. Let G = {x ∈ X, f(x) = 1}.
Then there exists a quantum algorithm using dlog2(|X|)e qubits, running in time

Õ(
√
|X|/|G|) that returns some x ∈ G. In particular, if |G| = 1, the running

time is Õ(
√
|X|).

Amplitude Amplification. A generalization of Grover search given in [12] enables
to run a search with a structured search space: if there are 2t partial solutions
amongst the search space X, and if the superposition of elements of X can be
constructed with a quantum algorithm A of complexity |A|, we can recover the

superposition of all preimages of 1 with total time Õ
(√
|X|2−t(|A|+ |Of |)

)
.

In the rest of this paper, we use Grover search as a subroutine. We perform
sequences of Grover searches, and also, nested instances, using Amplitude Am-
plification. We do the complexity estimates as if Grover’s algorithm ran in exact
time

√
|X|/|G| and with success probability 1. More justification is provided in

the full version of the paper [28].

Benchmarking. We focus on the single-processor model, and count the asymp-
totic quantum time complexity (the number of gates in the circuit), quantum
space complexity (the number of qubits in the circuit) and, when necessary,
classical time and space. This is contrary to works which focus primarily on
quantum query complexity (e.g. [23]), or detailed quantum gate counts.When an
oracle is given, we consider oracle calls in time O (1) and suppose a constant
quantum space overhead. Asymptotically, we consider that one quantum gate
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is equivalent to one classical gate. In practice, there should be a massive (but
constant) factor in-between.

qRAM Models. Classical random-access memory authorizes a constant-time ac-
cess to memory cell whose indices are known only at runtime. However, during
a quantum computation, the index register of such a query, since it depends
on previous computations, is likely to be in superposition. This is why many
quantum algorithms require quantum RAM.

A qRAM authorizes superposition access to its contents, using so-called
“qRAM gates”, an add-on to a traditional universal gate set. Assume that the
quantum circuit holds qubit registers x0 . . . x2n−1 . Then on input: ⊗

j∈{0,1}n
|xj〉

⊗ |i〉 |0〉 we compute

 ⊗
j∈{0,1}n

|xj〉

⊗ |i〉 |xi〉
in a single time step, realizing superposition access to the qubit registers. Using
qRAM gates, it is possible to obtain quantum data structures with fast lookups
(for example the combination of a skip list and a hash table in [2] or the radix
trees of [7]). The access time is generally logarithmic and often neglected as a
global multiplicative factor.

In this paper, we will extensively refer to three settings.

• “Low-qubits”: the quantum computation uses only O (n) qubits and there
are no qRAM gates. The quantum computer can still make use of a classical
memory of exponential size, by performing classically controlled operations.
This model was already considered in [20] and [16].

• QACM (quantum-accessible classical memory): there are qRAM gates, but
the data accessed must be classical. This is the model required by the
collision-finding algorithm of [13] or the QBKW algorithm of [19]. Some
authors [25] consider it more relevant than the QAQM model.

• QAQM (quantum-accessible quantum memory): the quantum computation
can use as many qubits as needed. The data accessed in superposition can be
quantum. This model is obviously the most powerful. The unique collision-
finding algorithm of [2] and the quantum algorithms for subset-sum of [7,22]
require QAQM, as do all cryptographic applications of the MNRS quantum
walk framework [26].

2.3 Overview of Previous Related Work

Classical Algorithms for the k-xor Problem. In Section 4, we will describe
in detail Wagner’s algorithm [32], that provides the current best classical expo-

nential time complexity of Õ
(
2n/(blog2(k)c+1)

)
for any k (there are logarithmic

improvements for non-powers of 2). Many subsequent works have improved the
memory consumption and given new trade-offs [8,30].

Minder and Sinclair [27] study the success probability and limit the sizes of
the lists at the first level of Wagner’s k-tree. This corresponds to taking an oracle

6



H : {0, 1}dn → {0, 1}n with d < 1. The authors use MILP to derive the optimal
list sizes depending on the domain restriction. Their optimal algorithms roughly
run in two steps: in the first levels of the binary tree, all pairs of elements are
produced, increasing the list sizes; after that, classical merging is used. They also
perform a precise estimation of the success probability of Wagner’s algorithm.

In [18], the authors study a family of bicomposite problems with a single
solution, which include hard knapsacks, multiple-encryption, and k-xor with a
single solution. They generalize the technique of Schroeppel and Shamir [31]
to improve the memory complexity of these problems. Their method consists
in guessing some intermediate values, then producing efficiently lists of partial
guesses, before matching them. A bigger meet-in-the-middle instance is broken
down into smaller ones.

Later on, more generalized frameworks have appeared, like [3] in the context
of the Short Integer Solution problem, or [17], in which Dinur gives a memory
improvement for some values of k and better time-memory tradeoffs in gen-
eral, by combining parallel collision search, which is used in [30], with dissec-
tion [31,18]. Although we have considered various potential improvements, our
best algorithms for k-xor combine merging (as done by Wagner in [32]) and
guessing intermediate values (as done in [18]), which is why we focus only on
these techniques.

Quantum Algorithms for k = 2. The first algorithm to find quantum colli-
sions was found by Brassard, Høyer and Tapp in 1998 [14,13]. With a two-to-one

function H : {0, 1}n → {0, 1}n, it runs in time Õ
(
2n/3

)
, using as much quantum

queries. The bound Ω
(
2n/3

)
was later proven to be optimal [1] and extended to

random functions [33]. This corresponds to the 2-xor problem with no bound on
the list size. This algorithm also requires a QACM of size 2n/3.

When all 2n outputs of H are distinct, except two of them, Ambainis’ cele-
brated algorithm [2], based on a quantum walk, finds the pair in time Õ

(
22n/3

)
using 22n/3 QAQM. This corresponds to the 2-xor problem with a single solu-
tion. In the QACM model, there is, to date, no quantum algorithm with better
time than the classical meet-in-the-middle.

Chailloux et al. [16] showed that the unbounded 2-xor problem could be
solved in quantum time O

(
22n/5

)
in the low-qubits setting. The uses a classical

memory of size 2n/5. Indeed, a superposition query to a QACM of size 2n/5 can
be emulated by 2n/5 sequential quantum computations. The cost of these queries
is mitigated by the fact that the algorithm makes only 2n/5 of them.

Quantum Algorithms for bigger k. Given a random function H : {0, 1}n →
{0, 1}n, the classical (information-theoretic) query lower bound of the k-xor
problem is Ω(2n/k). The quantum query lower bound is Ω(2n/(k+1)) [5].

Unbounded Domain Size. Grassi et al. [20] proposed quantum algorithms for
solving the k-xor problem with a quantum oracle for a random function H :
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{0, 1}n → {0, 1}n, hence in the case of unbounded lists, as in [32]. They proposed
a quantum analogue of Wagner’s algorithm based on a quantum walk, running

in the QAQM model, in time Õ
(

2
n 1

2+blog2 kc
)

and obtained some quantum time

speedups in the low-qubits model. They also obtained a 3-xor QACM algorithm
of quantum time complexity Õ

(
20.3n

)
, with an exponential improvement over

quantum collision search. In this paper, we subsume and improve all these results.
Notably, our new algorithms in this case require QACM only.

Restricted Domain and Unique k-xor. To the best of our knowledge, the k-xor
problem with limited domain size, including Problem 3, has never been studied
for a general k from a quantum algorithmic perspective. For k = 4, a quantum
walk algorithm (originally designed for solving subset sums) is given in [7]. It

solves Problem 3 in time Õ
(
20.3n

)
, using Õ

(
20.2n

)
QAQM. This represents an

exponential quantum time and memory improvement with respect to k = 2.
However, for other values of k, e.g. k = 5, we must revert to a simple meet-in-
the-middle strategy using Ambainis’ algorithm.

Moreover, while Ambainis’ algorithm gives a general meet-in-the-middle re-
sult, the 4-list algorithm of [7] is not a general 4-dissection algorithm; it does
not apply to 4-encryption (we will explain this in Section 7).

3 Summary of our Main Results

In this section we summarize the optimal time complexities, in our merging tree
framework, for solving Problems 1, 2, 3 and 4, with XORs and modular additions.
The details will be given in the following sections.

The origin of this work was realizing that for some values of k, we were able to
obtain merging algorithms that were more efficient than the ones from [20]. This
could be done by decomposing the original k-xor problem on n bits in smaller
problems, with smaller values of k′ and a smaller number of bits, and merging
them together. At the beginning, we did not find an intuitive way to predict the
best merging strategies for a given k. We decided to implement a Mixed Integer
Linear programa that gave us the best possible algorithms for k ≤ 20. From
these results, we were able to understand the optimal methods and extrapolate
the results given below.

New quantum algorithms for LPN, subset-sums, multiple-encryption and the par-
ity check problem. Whenever a classical algorithm makes use of a black-box k-
xor procedure, we can replace this inner machinery with a quantum merging
algorithm and optimize the strategy using MILP. We have identified various
cryptographic applications of our framework. However, we defer the details to
Section 7 and concentrate here only on the black-box k-xor problems.

a Our code is available at https://project.inria.fr/quasymodo/files/2019/05/

merging_kxor_eprint.tar.gz
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3.1 Quantum Algorithms for Problem 2

In the QACM setting, we prove Theorem 1 and, answering one of the open ques-
tions of [20], show that the time complexity exponent of our method decreases
strictly for each k (see Figure 1 for a comparison).

Theorem 1. Let k ≥ 2 be an integer and κ = blog2(k)c. The best quantum

merging tree finds a k-xor on n bits in quantum time and memory Õ (2αkn)
where αk = 2κ

(1+κ)2κ+k . For c ≤ 1, the same method finds 2nc k-xor with a

quantum (time and memory) complexity exponent of nmax (αk + 2αkc, c).

5 10 15
0.1

0.2

0.3

0.4

0.5

k

α
k

[20]
Classical

New

(a) QACM setting

5 10 15

k

(b) with O (n) qubits only.

Fig. 1: Comparison of time complexity exponents between the classical case, the
algorithms of [20] and our new results. The complexities are Õ (2αkn).

In the low-qubits setting, we find the following. Except in the cases k = 3
and k = 5, quantum optimal merging trees give an exponential time speedup for
half of the values of k, where the merging is mostly done classically. This also
answers a question in [20] (see Figure 1 for a comparison).

Theorem 2. Let k > 2, k 6= 3, 5 be an integer and κ = blog2(k)c. The best
quantum merging tree finds a k-xor on n bits in quantum time and classical
memory Õ (2αkn) where:

αk =

{ 1
κ+1 if k < 2κ + 2κ−1
2

2κ+3 if k ≥ 2κ + 2κ−1

The same method finds 2nc k-xor with a (quantum time and classical memory)
complexity exponent of nmax (αk + αkc, c).
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3.2 Quantum Algorithms for Unique k-xor

For Problems 4 and 3, we give algorithms in the QAQM model starting from
k = 3. We improve over the previously known techniques for all k that are not
multiples of 4. Our time complexity is given by Theorem 3.

Theorem 3. Let k > 2 be an integer. The best merging tree finds, given k
lists of uniformly distributed n-bit strings, of size 2n/k each, a k-xor on n bits

(if it exists) in quantum time Õ
(
2βkn

)
where βk = 1

k
k+dk/5e

4 . In particular, it
converges towards a minimum 0.3, which is reached by multiples of 5. For k ≥ 5
the memory (QAQM) used is 2γkn with γk ≤ 0.2.

3.3 k-xor with Classical Lists

In the QAQM setting, we give the first quantum speedups for Problem 1 for a
general k. We prove Proposition 1. .

Proposition 1. Let k > 2 which is not a power of 2, let κ = blog2 kc. The

quantum time complexity of k-xor with classical lists is Õ (2αkn) with αk ≤
1

2+blog2 kc
.

4 Introducing the k-Merging trees

In this section, we first present Wagner’s algorithm [32] in two ways: first, as
introduced in [32], second, as an alternative way, which will appear much more
compliant with quantum exhaustive search.

Wagner’s algorithm is a recursive generalization of an idea introduced by
Camion and Patarin [15]. The description in [32] uses lists, but to emphasize
the translation to a quantum algorithm, we will start by considering Problem 2
instead, with a random function H : {0, 1}n → {0, 1}n.

We will next introduce and define the context of k-merging trees. They pro-
vide a unified framework for merging quantumly (and classically) and enable
automatic search of optimal merging strategies. We will show how to use these
trees in the quantum case, and how to optimize them.

4.1 Wagner’s Binary Tree in a Breadth-first Order

We now fix the constant k. Wagner notices that given two sorted lists L1 and
L2 of random n-bit elements, it is easy to “merge” L1 and L2 according to some
prefix of length u. Let Lu be the lists of pairs x1 ∈ L1, x2 ∈ L2 such that x1⊕x2
has its first u bits to zero. We say that such x1 and x2 partially collide on u bits.
Then Lu can be produced in time max (|Lu|,min(|L1|, |L2|)).

For example, if L1 and L2 contain 2u elements and we want the merged list
of partial collisions on the first u bits, then this list will have a size of around 2u

and can be obtained in time 2u.
If k is given, and if H is a random oracle, Wagner’s algorithm is a strategy

of successive merges building a sequence of lists of partial `-xor on u bits, for
increasing values of u < n and ` < k, culminating into a single k-xor.
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Example: 4-xor. The strategy for 4-xor is depicted on Figure 2. We start from
4 lists of 2n/3 random elements each. At the second level of the tree, we build
two lists of 2n/3 partial n3 -bit collisions (2-xors on u = n/3 bits), by merging the

two pairs of lists in time 2n/3. At the root, we merge the two lists of collisions.
There are 22n/3 4-tuples to form, with 2n/3 remaining bits to put to zero.

Single 4-xor
on n bits

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

Fig. 2: Structure of Wagner’s 4-xor-tree

General k. If k is a power of 2, we write k = 2κ. In the remaining of this paper,
when k is an integer, we write κ = blog2(k)c for ease of notation. In the context
of Wagner’s algorithm, if k is not a power of 2, we first take k − 2κ arbitrary
elements z1, . . . , zk−2κ and then find a 2κ-xor on their sum. So assume without
loss of generality that k = 2κ. All the lists in the tree will have size 2

n
κ+1 .

• At the lowest level of the tree (level 0), we build k lists of 2
n
κ+1 single ele-

ments, making random queries to H.
• At level 1, we merge the lists by pairs, obtaining 2κ−1 lists, each one con-

taining 2
n
κ+1 collisions on n

κ+1 bits.

• At level i (0 ≤ i ≤ κ − 1), we have 2κ−i lists of 2i-tuples which XOR to
zero on in

κ+1 bits: each level puts n
κ+1 new bits to zero. Notice that all these

bit-positions are arbitrary and fixed, for example prefixes of increasing size.
• At the final level, we merge two lists of 2κ−1-tuples which XOR to zero on

(κ−1)n
κ+1 bits, both lists having size 2

n
κ+1 . We expect on average one 2κ-tuple

to entirely XOR to zero.

4.2 Building a k-tree in a Depth-first Order

To build a node of the tree, it suffices to have built its children; not necessarily
all nodes of bigger depth. Wagner [32] already remarks that this allows to reduce
the memory requirement of his algorithm from 2κ lists to κ.

On Figure 3, we highlight the difference between these two strategies, by
considering the 4-xor tree of Figure 2. In a breadth-first manner, we go from one
level to the other by building all the nodes (the new nodes are put in bold). Four
lists need to be stored (the whole lower level). In a depth-first manner, only two
lists need to be stored.
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(b) Step 2

Single 4-xor
on n bits

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

Single 4-xor
on n bits

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

(c) Step 3

Fig. 3: Building the 4-xor tree of Figure 2 in a breadth-first (above) or depth-first
manner (below). At each new step, new lists are built (in bold). We put in dotted
the lists which are either discarded at this step, or do not need to be stored.

Single 4-xor
on n bits

New collisions

New queries
to H

List L2 of 2n/3

elements

List L1 of 2n/3 collisions
on n/3 bits

New queries
to H

List L0 of 2n/3

elements

Fig. 4: Depth-first order in which to build the lists.

Example: 4-xor. We illustrate this depth-first tree traversal with the 4-xor ex-
ample of before. Lists are numbered as in Figure 4.

1. We build and store the list L0 of 2n/3 elements.
2. We build the list L1 of pairs x, x0 such that x0 ∈ L0, x is a new queried

element, and x ⊕ x0 is 0 on n/3 bits. To build a list of 2n/3 elements, we
need time 2n/3, as each new x has on average one partial collision (n/3-bit
condition) with some x0 in L0 (2n/3 elements).

3. We discard L0. We build and store the list L2 of 2n/3 elements.
4. We find a 4-xor on n bits as follows: we make new queries x. Given an

element x, we expect a partial n/3-bit collision with some x2 ∈ L2 (if there
is none, abort). Given x ⊕ x2, we expect a partial 2n/3-bit collision with
some (x′ ⊕ x0) ∈ L1 (if there is none, abort). Then value x⊕ x2 ⊕ (x′ ⊕ x0)
has 2n/3 bits to zero. It remains to nullify n/3 remaining bits, which is why
we repeat this operation for 2n/3 values of x.

Ensuring a Success Probability of 1. Minder and Sinclair [27] provided a study of
the probability of failure in Wagner’s algorithm. By building the tree in a depth-
first manner, we can easily ensure an exponentially high success probability, that
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will hold in the quantum setting as well as in the classical. The idea is to always
ensure that, given a candidate, a list will yield at least one partially colliding
element on the bits that we wish to put to zero. This makes our analysis simpler,
but we must pay a logarithmic overhead. The details can be found in the full
version of the paper.

4.3 Limitations of the Extension to Quantum k-trees

In the breadth-first variant of Wagner’s algorithm, it does not seem easy to use
Grover’s algorithm as a subroutine, as the initial lists are all fixed (although this
is proposed in [17]). Since the time complexity depends on the size of the output
list, the necessity to write this list in memory forbids a quantum improvement.

This fundamental problem is the main limitation on the quantum k-xor algo-
rithms of [20]. In their quantum walk approach, they mimic Wagner’s algorithm.
Given a set of queries to H, one reproduces the k-tree and moves from one set
to another in the MNRS quantum walk framework [26]. The inherent limitation
of this procedure is that it reproduces the classical steps, and cannot yield a
better time when k is not a power of 2. In their low-qubits approach, they use
trees of depth 1: the leaf nodes are produced using some (classical or quantum)
precomputation, and then, they do a Grover search for the final element.

However, in the depth-first variant, each new step corresponds to some new
exhaustive search. New elements x are queried and matched (not merged) against
the currently stored lists. Hence, classical search can easily be replaced with
quantum search. We apply this idea in the next section.

4.4 Examples of Quantum Merging

In the depth-first tree traversal for 4-xor of Figure 4, we now allow quantum
computations. Each new node in the tree will be potentially built using quan-
tum queries to H and lookups to the previously computed nodes. We reuse the
numbering of lists of Figure 4.

1. We build and store classically the list L0 of 2n/3 elements.
2. We build the list L1 of pairs x, x0 such that x0 ∈ L0, x is a new queried

element, and x ⊕ x0 is 0 on n/3 bits. Since the list is of size 2n/3, and it
needs to be written down, we still need time 2n/3.

3. We discard the list L0. We build and store the list L2 of 2n/3 elements.
4. To find the final 4-xor, we are testing 2n/3 values of x, after which we expect

that the partial collision with a candidate in L2 and a candidate in L1 also
nullifies the last n/3 bits. This step can be done using Grover search, in time
2n/6.

At this point, it becomes clear that the tree of Figure 2 must be re-optimized,
so that all steps, including the last Grover search, take the same time. This new
strategy is specific to the quantum setting. We obtain a time complexity of
Õ
(
2n/4

)
, which is that of [20] for 4-xor. We don’t use a quantum walk anymore,
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but the procedure still requires Õ
(
2n/4

)
QACM to hold the intermediate lists

L2 and L1 during the final Grover search.
Moreover, the example of 3-xor shows that there exists inherently quantum

merging strategies. In Algorithm 1, which also improves over [20], the corre-
sponding “3-xor-tree” is of depth one. Classically, it does not yield a speedup
over the collision exponent 1

2 .

Algorithm 1 Quantum 3-xor Algorithm with QACM

1: Store a list L0 of 22n/7 elements;
2: Using Grover subroutines, build a list L1 of 2n/7 elements with a 2n

7 -bit zero
prefix;

3: Use Grover’s algorithm to find an element x such that f(x) = 1, where f is
defined as:
• Find x0 ∈ L0 which collides with x on the first 2n

7 bits, in time Õ (1),
with probability of success 1,

• Find x1 ∈ L1 such that x0 ⊕ x1 ⊕ x is zero on 3n
7 bits,

• If x0 ⊕ x1 ⊕ x = 0, return 1, else 0.
This requires

√
24n/7 iterations, as x0 ⊕ x1 ⊕ x has always 3n

7 bits to zero;
there remains 4n

7 bits to nullify.

4.5 Definition of Merging Trees

In order to emphasize that our trees are constructed in a depth-first manner,
and to make their definition more suitable, we start from now on to represent
them as unbalanced trees where each node introduces a new exhaustive search,
as on Figure 5.

Single 4-xor
on n bits

List L2 of 2n/4

elements
List L1 of 2n/4 collisions

on n/4 bits

List L0 of 2n/4

elements

Fig. 5: Tree of Figure 4 as an unbalanced quantum merging tree.

Since all the complexities throughout this paper are exponential in the output
bit-size n and we focus on the exponent, we write them in log2 as αkn for some αk
which depends only on k. We notice that n is a common factor in all complexities,
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so it can actually by removed. Next, we define our unbalanced merging trees. A
tree represents a possible strategy for computing a k-xor; due to our specific
writing, its number of nodes is k. Each node corresponds to computing a new
list, starting from the leaves, computing the root last.

Definition 1. A k-merging tree is defined recursively as follows:

• If k = 1, it has no children: this corresponds to “simple queries” to H.

• If k > 1, it can have up to k− 1 children T0, . . . , T`−1, which are ki-merging
trees respectively, with the constraint k0 + . . .+ k`−1 = k − 1.

In other words, a k-sum to zero can be obtained by summing some ki-sums,
such that the ki sum to k (here a +1 comes from the exhaustive search at the
root of the tree).

Next, we label each node of the tree with some variables, which represents
the characteristics of the list computed:

• The number ` of nodes of the subtree

• The number u of bits to zero (relatively to n)

• The size s of this list: s represents a size of 2sn

• The (time) cost c of producing this list: c represents a time complexity of
2cn

We obtain the general shape of a tree represented on Figure 6.

T 0
0

Single k-xor
on n bits

T 1
0

2s
1
0 k10-xors

on u10 bits

T 1
1

2s
1
1 k11-xors

on u11 bits

. . .

. . .

T ji
2s
j
i kji -xors

on uji bits

T j+1
0

2s
j+1
0 kj+1

0 -xors

on uj+1
0 bits

T j+1
1

2s
j+1
1 kj+1

1 -xors

on uj+1
1 bits

. . .

T 1
`−1

2s
1
`−1 k1`−1-xors
on u1`−1 bits

. . .

Fig. 6: k-merging tree
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The Merging Strategy. We now consider a k-node T and the ` subtrees (of
children) T0, . . . , T`−1 attached to it. We suppose that they are ordered by their
number of nodes (hence the lists will contain k0-xors, k1-xors, . . . , k`−1-xors,
with k0 + . . .+ k`−1 + 1 = k). The merging strategy is inherent to the definition
of merging trees, and independent of the computation model. It generalizes the
depth-first examples of Section 4.

Each element of T is built using exhaustive search, with T0, . . . , T`−1 as inter-
mediate data. We impose that the zero-prefixes of T0, . . . , T`−1 are contained in
one another. Let u0, u1, . . . u`−1 be the sizes of these prefixes and s0, s1, . . . , s`−1
the sizes of the lists. Given x in the search space of T , the test proceeds in `
steps. First, we make sure that x has zero-prefix u0. Then we can match it with
the first child T0. Since this child contains 2s0 elements, we can expect to find
x0 ∈ T0 such that x⊕ x0 has u0 + s0 bits to zero. Now we search T1 for some x1
which increases the number of zeroes in x⊕ x0⊕ x1. We would like T1 to have a
zero-prefix of size u1 = u0 +s0. Then x⊕x0⊕x1 will have u1 +s1 = u0 +s0 +s1
zero, and so on.

We see that for this depth-first merging strategy to work, we need a constraint
relating the sizes of the lists and of the prefix of each node. It must hold at any
non-leaf node in the tree.

Constraint 1 (A pyramid of zeroes) Let T0, . . . , T`−1 be the ` subtrees at-
tached to a given k-node T , ordered by their number of nodes. Let u0, u1, . . . , u`−1
be their prefix sizes and s0, s1, . . . , s`−1 be their sizes. We have:

∀1 ≤ i ≤ `− 1, ui = ui−1 + si−1 .

In other words, given x in the search space for node T , having u0 zeroes,
we expect only one candidate x0 ∈ T0 such that x0 ⊕ x1 has u1 zeroes, one
candidate in T1, etc. This constraint also ensures a success probability of 1 by
the argument of Section 4.2. Since the list of node Ti is responsible for putting
ui+1−ui bits to zero exactly, we ensure that it takes all the values in this range.
Notice that at this point, our definition of merging trees encompasses the binary
tree of Wagner’s algorithm, created in a depth-first manner.

Computation of the cost of a Tree. Since the goal of our strategy is to obtain the
best time complexity for merging, we enforce computational constraints, which
relate the cost of a k-node T with his size and zero-prefix and that of its children.
These constraints depend on the computation model used; whether we authorize
classical or quantum computation, QACM or not.

Constraint 2 (Cost of a leaf node) A leaf node T with size s and zero prefix
u has a cost c such that classically c = u+ s and quantumly c = s+ u

2 .

Classically, finding a single x with a prefix of u bits requires 2u queries to H.
Quantumly, it requires 2u/2 superposition queries with Grover’s algorithm.

Constraint 3 (Cost of a non-leaf node) A k-node T with size s and zero
prefix u, with children T0, . . . , T`−1 having sizes s0, . . . , s`−1 and prefix sizes
u0, . . . , u`−1 has a cost c such that:
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• Classically c = s+ u+ u0 − u`−1 − s`−1
• Quantumly, with QACM: c = s+ 1

2 (u+ u0 − u`−1 − s`−1)
• Quantumly, low-qubits: c = s+ 1

2 (u− u`−1 − s`−1) + max
(
u0

2 , s0, . . . , s`−1
)

In the classical setting, there are 2s elements in the node to build and u
zeroes to obtain. We must start from an element with u0 zeroes, which requires
already 2u0 queries. Next, we traverse all intermediate lists, which give us a k-xor
on u`−1 + s`−1 zeroes. There remains u − u`−1 − s`−1 zeroes to obtain, so we
have to repeat this 2u−u`−1−s`−1 times. Quantumly, if we have quantum random
access to the previously computed children, we use Grover’s algorithm. We take
the square root of the classical complexity for finding one element and multiply
it by 2s, the total number of elements in the node. If we don’t have quantum
random access, we can emulate a QACM by a sequential lookup of classically
stored data. This was done in [16] in the case of quantum collision search (2-
xor) and further used in [20] for low-qubit k-xor algorithms. Checking whether
x ∈ Ti can be done in time n2si using a sequence of comparisons. Finding a
partially colliding element on some target takes the same time. Since each child
list is queried this way, for each iteration of Grover search, the time complexity
becomes:

2s+
1
2 (u−u`−1−s`−1)

(
2
u0
2 + 2s0 + . . .+ 2s`

)
.

We approximate the right sum by 2max(u02 ,s0,...,s`). This remains valid up to
a constant factor in k. In the quantum setting, we will also authorize to fall back
on classical computations if there is no better choice.

Finally, the size and number of zeroes of the final list (the root node) are
parameters of the problem.

Constraint 4 (Final number of solutions) The root T of the tree has zero-
prefix u = 1 (since it requires n zeroes). Its size s is 0 if we want a single tuple,
or γ if we want 2γn of them for some constant γ.

Example. We can take as example Algorithm 1, which builds a 3-xor using two
intermediate lists. We have a merging tree T , where the root has children T0 and
T1. At T0, we build a list of 22n/7 elements: u0 = 0, s0 = 2

7 . At T1 we build a list

of 2n/7 elements with a 2n
7 -bit zero prefix: u1 = 2

7 , s1 = 1
7 . At the root we have

s = 0 and u = 1. The costs of all nodes are c0 = c1 = c = 2
7 . We can verify that

u1 = u0 + s0 and c = s+ 1
2 (u+ u0 − u1 − s1) = 0 + 1

2 (1− 1/7− 2/7) = 2
7 .

4.6 Optimization of Merging Trees

The description of merging trees that we have given above has two purposes: first,
to provide a unified framework for merging quantumly and classically; second,
to enable automatic search of optimal merging strategies. Given a tree structure,
minimizing the total time complexity (the maximum of ci for all Ti) is a linear
problem, that we can solve with Mixed Integer Linear Programming (MILP).
Given k, we can try different possible tree structures and find an optimal one.
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Linear Program. We minimize the total time complexity of the merging tree.
By definition of ci, this is the sum of all 2nci for all nodes Ti, starting from the
leaf nodes (which are traversed first) up to the root (which is produced last). We
approximate it to 2nmaxi(ci), up to a constant factor in k. Hence we minimize
c = maxi(ci) under the constraints outlined above.

Adaptations. The constraints of Section 4.5 are the only ones required to solve
efficiently Problem 2. We will amend the framework in Section 6 to solve effi-
ciently Problems 1, 4 and 3.

5 Optimal Merging Trees

In this section, we present our main results regarding Problem 2. We first describe
the shape of the optimal trees, and next, the complexities in the QACM and
in the low-qubit setting. Our results are compared with the ones from [20] on
Figure 1 and Table 3 in the full version of the paper [28].

5.1 Description of the Optimal Trees

By testing the different possible merging trees, and optimizing each tree with
a MILP solver, we obtained optimal merging-tree strategies for solving the k-
xor problem in the quantum setting, improving on [20] for many values of k.
Furthermore, the quantum walk of [20] uses QAQM, while our method relies
only on QACM. For non-powers of 2, we reach new and strictly better complexity
exponents for all k. In the low-qubits case, we obtain non-trivial improvements
for k = 5, 6, 7 and a new quantum speedup for half the values of k.

Optimal Trees. First of all, we define a family of trees Tk which will repre-
sent some optimal strategies for k-xor. The root of Tk (a k-xor) has dlog2(k)e
children. The first child contains

⌊
k
2

⌋
-xors on some bits, the second contains⌊

1
2

(
k −

⌊
k
2

⌋)⌋
-xors. In general, child i contains ki-xors, and child i+ 1 contains

ki+1 =
⌊
1
2

(
k −

∑i
j=1 kj

)⌋
. The children subtrees are all Tki .

If the Tk trees are solved with the classical constraints, we recover the com-
plexities of Wagner’s algorithm. Quantumly, we can make use of the additional
nodes when k is not a power of 2. Indeed, Grover’s algorithm allows to create
elements with some zero-prefix quadratically faster. This is the source of the
3-xor quantum speedup (see Algorithm 1), and it can be generalized. We point
out that Tk provides the optimal complexity both in the QACM and low-qubits
setting (for k > 5) however it is not the only merging tree with such optimization.

QACM Setting. In the QACM case, each node that has a non-empty zero pre-
fix is produced using Grover search. We note κ = blog2(k)c and αk = 2κ

(1+κ)2κ+k .

In the optimization of Tk, all the nodes have exactly the same cost (so all the
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lists are generated in the same quantum time). For all nodes of the tree, the
optimal values of si and ui are multiples of 1

(1+κ)2κ+k . The whole description

of the optimal tree is easily derived from the constraints, but we do not have
a clear description of it for a given k. We give the tree and constraints in the
example of 11-xor in the full version of the paper [28].

Low-qubits Setting. In the low-qubits case, for k 6= 2, 3, 5, the best strategy
is always to use classical searches, except at some leaves of the tree, where some
elements with zero-prefixes are produced using Grover search. This gives one
intermediate level of complexity between two successive powers of 2. For collision
search, we obtain the algorithm of [16] with α2 = 2

5 . For k = 3, we obtain the
algorithm of [20] with α3 = 5

14 , showing that it remains optimal in our extended
framework (contrary to 3-xor with QACM, see Algorithm 1). The case k = 5 is
the last using Grover search at the root of the tree, with a surprisingly non-trivial
α5 = 14

45 . We describe it in full detail in the full version of the paper [28].

Memory. The memory used by our algorithms, for an equal time, is always
equal or better than the one from [20], in both settings. Notice that the low-
qubits variants use classical memory only (it can be seen as a quantum-classical

tradeoff), its O (n) qubits being dedicated to computing. For a time Õ (2αkn),

the QACM variant requires Õ (2αkn) QACM (it is needed to store the leaf lists).

5.2 Optimality in the QACM Setting

The MILP experiments helped us find the time complexity exponents αk for
k ≤ 20, and acquire an intuition of the optimal algorithms for any k. We can
prove this optimality in the QACM setting among all merging trees.

Theorem 1. Let k ≥ 2 be an integer and κ = blog2(k)c. The best quantum

merging tree finds a k-xor on n bits in quantum time (and memory) Õ (2αkn)
where αk = 2κ

(1+κ)2κ+k . The same method finds 2nc k-xor with a quantum (time

and memory) complexity exponent of nmax (αk + 2αkc, c).
Furthermore, for every k, the optimum is realized by Tk.

One can verify that αk gives the expected exponent for powers of 2, where it
is equal to 1

κ+2 .
The idea of the proof is an induction on k. It is possible to prove that, if the

last child of the root node is a list of partial k`-xors, then the optimal exponent
αk satisfies: 1

αk
≤ 1 + 1

2αk−k`
+ 1

2αk`
.

This is where the structure Tk appears naturally. Since αk is a decreasing
function of k, to minimize the sum on the right, we need k` equal to bk/2c. By
plugging in this value and using the recurrence hypothesis, we obtain immedi-
ately the formula for αk, and show that it is attained by Tk. The full proof is
given in the full version of the paper [28].
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5.3 Theoretical Result in the low-qubits Setting

In the low-qubits setting, we can explain why Theorem 2 gives the optimal
complexities.

Theorem 2. Let k > 2, k 6= 3, 5 be an integer and κ = blog2(k)c. The best
quantum merging tree finds a k-xor on n bits in quantum time and classical
memory Õ (2αkn) where:

αk =

{ 1
κ+1 if k < 2κ + 2κ−1
2

2κ+3 if k ≥ 2κ + 2κ−1

The same method finds 2nc k-xors with a (quantum time and classical memory)
complexity exponent of max (αkn+ αkc, c).

Furthermore, for every k 6= 3, 5, the optimum is realized by Tk.

Informally, when k is bigger than 6, the merging operation at the root of the
tree is performed using classical search. Grover search cannot be used anymore,
as each iteration requires to pay the full length of the children (to emulate the
qRAM lookups). In that case, we single out the first child T0. We can rewrite
the k-tree as a single merge between T0, which is a k0-tree, and a k − k0-tree.
The costs of producing these trees should be balanced, hence we should have
k0 = bk/2c as before, and we obtain the tree Tk. Now we can remark that if
k < 2κ + 2κ−1, then bk/2c < 2κ−1 + 2κ−2; and conversely, if k ≥ 2κ + 2κ−1, then
bk/2c ≥ 2κ−1 + 2κ−2. In other words, we fall back very easily on the recurrence
hypothesis.

6 Extended Merging Trees and Quantum Dissections

In this section, we extend merging trees to a much broader setting. We limit the
input domain size, solving Problems 3 and 4 with time complexities better than
the previous algorithms for most of the values of k. All new algorithms in this
section run in the QAQM model.

First we will show how to adapt the merging trees of Section 4 to this new
situation. We will present some examples of algorithms and our general results.
Recall that in our formulation of Problems 4 and 3, the input domain of the
oracle H is restricted to n/k bits and the codomain is n bits; alternatively, the
input lists are of size 2n/k.

6.1 Generalized Merging Trees for Problems 1, 3 and 4.

Our observation is that the dissection technique of [18, Section 3] finds a very
simple analogue in terms of merging trees.

We remark that a merging tree as defined in Section 4 has many unused
degrees of freedom. Indeed, suppose that we are building a tree T with children
T0, . . . T`−1. Each Ti has a zero-prefix of ui bits. We deliberately used the term
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“zero-prefix”, but we can actually take any value for these bits. During a search
for a new element of T , we still look for successive collisions, but the values
required depend on the prefixes of each child. All the prefixes are ours to choose,
except for the root, since we still want the final k-tuple to XOR to zero.

This allows to repeat the node T up to 2u0 × 2u1 × . . . × 2u`−1 times, and
to overcome a limitation in the domain size. We write a merging tree as before,
but expect only a small probability of success for the search at the root; so we
interleave this tree with repetitions. The root search can be performed many
more times, by changing the children.

The final time complexity depends on the complexity of the children, and
the number of times that they are repeated. Indeed, suppose that the children
T0, . . . , T`−1 are built in time t0, . . . , t`−1 (all of this in log2 and multiples of
n). Suppose also that the root search requires time t. With a total number of
repetitions r before we find a solution, the children will respectively be repeated
r0, . . . , r`−1 times (up to the choices they have in their prefixes) with r0 + . . .+
r`−1 = r. We can write the time complexity as:

r0(t0 + r1(t1 + . . .) . . .+ t)

by taking an arbitrary order for the children and writing the algorithm as `
nested loops:

0. The first loop iterates r0 times on child T0
1. Inside the first loop, after building T0, the second loop iterates r1 times on

child T1
. . .
`− 1 Inside all ` − 1 previous loops, after building T0, . . . , T`−2, the `-th loop

iterates on child T`−1. Inside this loop:
• We build the child T`
• We perform the exhaustive search of the root T , using the children
T0, . . . , T`−1

In particular, this method subsumes the algorithms of [18, Section 3] in a clas-
sical setting. It also generalizes the idea of guessing intermediate values (which
are the prefixes of the children Ti) and running an exhaustive search of these,
and extends [18, Section 3] to all intermediate domain sizes.

The quantum correspondence works in a very simple way: these ` nested loops
become ` nested Grover searches. We search among choices for Ti, i.e. choices for
the fixed prefix. The setup (producing the superposition over the whole search
space) remains easy. The test of a choice performs the nested computations:
creating the list Ti itself and running the other searches.

Example: Quantum and Classical 4-dissection. We take the example of
Problem 3. We suppose quantum access to a random function H : {0, 1}n/4 →
{0, 1}n. Classically, the best algorithm is Algorithm 2, from [31], in time 2n/2 and
memory 2n/4. Quantumly, the best algorithm is in [7], in time 20.3n using 20.2n

QAQM. Our method is Algorithm 3. It runs in quantum time 20.3125n, smaller
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than a simple meet-in-the-middle, and QAQM 20.25n. It is worse than [7] for
Problems 4 and 3, but we will see in Section 7 that it can be used to attack the
4-encryption problem, contrary to [7].

Algorithm 2 Classical 4-dissection

1: Query H and store all the elements H(x) in a list L0

2: for each u ∈ {0, 1}0.25n do
3: Create the list L1 of pairs x, y with x⊕ y = u|∗. This takes time 20.25n,
L1 contains 20.25n elements (indeed, for each element x ∈ L0 we expect a
partial collision on 0.25n bits with some other element y ∈ L0).

4: for each z ∈ L0 do
5: Find t ∈ L0 such that t⊕ z = u|∗.
6: Find x⊕ y ∈ L1 such that x⊕ y ⊕ z ⊕ t gives a 0.5n-bit zero prefix.
7: If x⊕ y⊕ z⊕ t is all-zero and all are distinct, then return this result.
8: end for
9: end for

10: Return the 4-tuple that XORs to zero.

Algorithm 3 Optimal merging tree algorithm for Problems 4 and 3 with k = 4

1: Query H and store all the elements H(x) in a list L0

2: for each u ∈ {0, 1}0.25n do
3: for 20.125n repetitions do
4: Build a list L1 of 20.125n partial collisions x⊕y = u|∗, in time 20.125n,

using exhaustive search with L0 as intermediate (if we take any element, we
expect a partial collision on 0.25n bits with some other in L0)

5: for each z ∈ L0 do
6: Find t ∈ L0 such that z ⊕ t = u|∗
7: Find x⊕ y ∈ L1 that collides with z ⊕ t on 0.25n more bits
8: If x⊕ y ⊕ z ⊕ t = 0 and all are distinct, then return this result
9: end for

10: end for
11: end for
12: Return the 4-tuple that XORs to zero.

The classical time complexity of Algorithm 3 would be:

20.25n︸ ︷︷ ︸
choice of u

(
20.125n

(
20.125n︸ ︷︷ ︸

Intermediate
list L1

+ 20.25n︸ ︷︷ ︸
Exhaustive

search

))
= 20.625n

which is not optimal. However, as a quantum algorithm with nested Grover
searches, it optimizes differently, since exhaustive search factors are replaced by
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their square roots:

20.125n/2 × 20.125n/2
(

20.125n + 20.25n/2
)

= 20.3125n .

6.2 Quantum Algorithms for Unique k-xor

In what follows, we solve together Problem 4 and 3 in the QAQM model, with
the same time complexities. The reason why there is little difference between
these problems is that, as long as quantum random-access is allowed (QACM
or QAQM), it allows to simulate quantum oracle queries. It suffices to store the
input data in QACM and replace an oracle query by a query to the whole mem-
ory. For k ≥ 4, the cost of storing the whole domain of size 2n/k is not dominant.
For k = 3, there is a difference in the memory complexity. For completeness, the
two procedures for k = 3 are given in the full version of the paper [28].

From our observations, we derive the optimal merging-tree time complexity
for Problems 4 and 3. When k is a multiple of 5, we can just apply our 5-xor
algorithm with an increased domain size, and obtain an exponent 0.3. For other
values of k, a good combination of Grover searches allows to approach it.

Theorem 3. Let k > 2 be an integer. The best merging tree finds, given k
lists of uniformly distributed n-bit strings, of size 2n/k each, a k-xor on n bits

if it exists in quantum time Õ
(
2βkn

)
where βk = 1

k
k+dk/5e

4 . In particular, it
converges towards a minimum 0.3, which is reached by multiples of 5. For k ≥ 5
the memory (QAQM) used is 2γkn with γk ≤ 0.2.

Memory Usage. One of the advantages of the Dissection technique is its memory
consumption. On Figure 7, we compare the time complexities of the classical
Dissection [18, Section 3] and of our quantum algorithm, for increasing k, when
the memory available is limited to 2n/k. We remark that our technique often
reaches a square root speedup upon [18, Section 3].

Without QAQM. Problem 4 becomes more difficult if QAQM is replaced by
QACM. Indeed, assume that we are making a loop on a prefix of u bits, under
which we build and store a list L of elements with u-prefix (before moving to
other computations). It is crucial for our technique to be able to loop over this
prefix with Grover search, in 2u/2 iterations. However, the list L written in each
iteration is now in superposition as well, since it depends on u: it cannot be
stored in classical memory. The solution would be to iterate classically on the
prefix, in 2u iterations. But then, we seem to loose the advantage over classical
computations.

An algorithm for Problem 4 without QAQM can be obtained for k = 3 (and
any multiple of 3) as follows: we store classically one of the lists and we do a
Grover search on the product of the two others. The time complexity is always
Õ
(
2n/3

)
. We leave as an open problem to find QACM algorithms for unique

k-xor (for any k ≥ 3) with a factor less than 1/3 in the complexity exponent, or
even to find algorithms in the low-qubits model.
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11 7/11 15/44
12 2/3 1/3
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Fig. 7: Smallest classical (using [18, Section 3]) and quantum time (using our
algorithms) for merging k lists of size 2n/k for a single solution, with a memory

limit of 2n/k (RAM or QAQM). The complexities are Õ (2αkn).

7 Applications

In this section, we elaborate on various applications of our new algorithms. The
common point of all the problems below is their k-list or bicomposite structure.

7.1 Improved Quantum time – memory Tradeoff for Subset-sums

Using the extended merging trees for Problem 3, we reach a better quantum
time – memory product with respect to the current literature for low-density
knapsacks, as was the case in [18] for classical algorithms.

Let a1, . . . , an, t be randomly chosen integers on ` bits. We are looking for a
subset of indices I ⊂ {1, . . . , n} such that

∑
i∈I ai ≡ t mod 2`. The hardness

of this problem is related to the density n/`. When ` = poly(n), and we expect
a single solution with high probability, the best classical algorithm [4], runs in

time and memory Õ
(
20.291n

)
. The current best quantum algorithm [22] takes

time Õ
(
20.226n

)
, using as much QAQM.

A subset-sum problem can easily be translated to a k-sum problem with a
single solution. Indeed, it suffices to separate the set {1, . . . , n} into k disjoint
parts J1 ∪ . . .∪ Jk and to start from the lists L1, . . . , Lk, with list Lj containing
all the sums

∑
i∈I ai for I ⊂ Jj .

Both the quantum time and memory (QAQM) complexities of the k-xor (or
k-sum) problem with a single solution vary with k. Optimizing the time-memory
product (more details are given in the full version of the paper), we find that

k = 12 seems the most interesting, with a time Õ
(
2n/3

)
and a memory 2n/12.

The product is Õ
(
25n/12

)
= Õ

(
20.412n

)
, which is less than the previous 0.452n.
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7.2 New Quantum Algorithms for LPN and LWE

We consider the LPN problem in dimension n with constant error rate 0 ≤ p <
1/2. Given a certain number of samples of the form (a, a ·s+e) where a ∈ {0, 1}n
is chosen uniformly at random and e ∈ {0, 1} is a Bernoulli noise: e ∼ Berp i.e.
P (e = 1) = p. The LWE problem is the generalization from F2 to Fq for some
prime q.

In [9], Blum, Kalai and Wasserman introduced an algorithm solving LPN in
time O

(
2n/ logn

)
, using 2n/ logn samples. Their idea is to combine samples: given

(a1, a1 ·s+e1) and (a2, a2 ·s+e2) one can compute (a1⊕a2, (a1⊕a2) ·s+e1+e2).
When summing k Bernoulli errors of correlation ε = 1 − 2p, one obtains a
Bernoulli error of correlation εk by the Piling-Up Lemma. Hence, the goal is to
produce sufficiently many sums of ai with almost all bits to zero, with sufficiently
few ai summed, so that one can obtain a bit of s from the samples gathered.
The same principle applies to LWE, although we focus on LPN for simplicity.

In its original version, the BKW algorithm uses 2n/ logn samples and mem-
ory. It starts from the list of samples and repeatedly finds partial collisions,
cancelling n/ log n bits in the ai, until it produces a list of 2n/ logn samples with
a single nonzero bit. In [19], the authors find that there are many advantages
of combining c > 2 samples at a time, that is, using a c-list algorithm in place
of a simple 2-list merge operation. First of all, this reduces the memory used,
which is crucial for practical implementations of the BKW algorithm. Second,
this reduces the number of samples: we start from a smaller list. Finally, they
give the first quantum version of the BKW algorithm.

The c-sum-BKW algorithm is build upon the c-Sum-Problem as defined
in [19, Definition 3.1]: given a list L of N uniformly random b-bit strings, given
t ∈ {0, 1}n find at least N distinct c-tuples of elements of L that xor to t.

They prove that, given an algorithm solving this problem in time Tc,N and

memory Mc,N with overwhelming probability, for b = log cn(1+ε)logn and N ≥
2
b+c log c+1

c−1 , then their adapted BKW algorithm solves LPN in dimension n in

time T
1+o(1)
c,N and memory M

1+o(1)
c,N .

The authors study the solving of this c-sum problem via the Dissection
method [18] and obtain new time-memory trade-offs. They also study a quan-
tum version of this algorithm, hereby using a naive Grover search in the QACM
model: we store L in QACM and perform a Grover search on all c−1 tuples of L,
for those who xor to an element of L. The memory used is N . As the parameters
are tailored for N solutions in total, the quantum time complexity is N c/2−1 for
a single solution and N c/2 for all of them. They leave as an open question (end
of Section 1) whether a quantum k-list algorithm could be used in replacement.

New trade-offs. We are in a situation in which the input list is of size Nc and
there are Nc solutions to recover. It is as if we were solving a c-xor problem on b
bits with c lists of size Nc = 2b/(c−1) each, and wanted all the 2b/(c−1) expected
solutions. Furthermore, we limit the memory (QAQM) used to Nc. We simply

solve the problem Õ
(
2b/(c−1)

)
times, as in the naive Grover case.
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Table 1: Improvements on the quantum-BKW algorithm of [19] (see Table 1 in [19])

Previous (naive + Grover) This paper
c Memory Time Memory Time Time exponent

3 Nc N
3/2
c Nc N

5/3
c 5/3 = 1.667

4 Nc N2
c Nc N

13/7
c 13/7 = 1.857

5 Nc N
5/2
c Nc N2

c 2

6 Nc N3
c Nc N

5/2
c 5/2 = 2.5

7 Nc N
7/2
c Nc N

11/4
c 11/4 = 2.75

8 Nc N4
c Nc N3

c 3

7.3 New Quantum Algorithms for the Multiple-encryption Problem

The multiple-encryption problem is an example of a bicomposite problem ex-
tensively studied in [18]. Consider a block cipher Ek with message space and
key space of size n both. We consider the encryption by Ek1 ◦ . . . ◦ Ekr with
a sequence of independent keys k1, . . . , kr. Given r plaintext-ciphertext pairs
(enough to discriminate the good sequence with high probability), we want to
retrieve k1, . . . , kr. Classically, the best time complexity to date is essentially
2dr/2en and the question is to obtain better time-memory trade-offs, as it is the
case in [18]. We do not know of any r-list algorithm that wouldn’t be applicable
to r-encryption as well.

In [24], Kaplan proves that 2-encryption is (quantumly) equivalent to element
distinctnessb. However, already for r = 4, we remark that the 4-xor algorithm
of [7] cannot be used to attack 4-encryption. Indeed, in the quantum optimization
of [7], the size of the “intermediate value” that is guessed is not a multiple of
n bits. This has no consequence on Problem 3, but if we try to translate the
algorithm to attack multiple-encryption, we cannot solve efficiently the smaller
meet-in-the middle problems. It would require to produce efficiently (in time
20.8n), from 20.8n choices of k1 and k2, the list of 20.8n pairs k1, k2 such that
Ek1 ◦ Ek2(P ) has some fixed 0.8n-bit prefix.

We remark that all our r-xor algorithms (on nr bits) can be naturally con-
verted to r-encryption: the size of the prefixes guessed is always a multiple of
n, so we remain in a similar situation as [18], while this was not the case for
quantum-walk based methods. For example, Algorithm 3 provides the best quan-
tum time for 4-encryption that we know of, in quantum time 21.25n and QAQM
2n to obtain the 4n-bit key. Theorem 3 gives the best quantum time complex-
ities for r-encryption for r ≥ 4 and also shows an exponential decrease in the
quantum time complexity with respect to 2-encryption.

b Kaplan [24] also gives an algorithm for 4-encryption, but we could not verify its time
complexity.
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7.4 Approximate k-list Problem

In [10], Both and May introduce and study the approximate k-list problem. It
is a generalization of k-xor in which the final n-bit value only needs to have a
Hamming weight lower than αn for some fraction 0 ≤ α ≤ n

2 (so the k-xor is
the special case α = 0). Its main application is solving the parity check problem:
given an irreducible polynomial P (X) ∈ F2[X] of degree n, find a multiple Q(X)
of P (X) of a certain weight and degree. This is used in fast correlation attacks on
stream ciphers. For this application, we can consider quantum oracle access (the
lists actually contain polynomials of the form Xa mod P (X) for many choices
of a).

The match-and-filter algorithm of [10, Section 3] consists in running a k-
xor algorithm with a restricted number of bits to put to zero, and to tailor the
length of the final list so that it will contain one element of low Hamming weight
with certainty. With a quantum k-merging tree, we can always improve on this
classical method in the QACM model. Let αk be the k-xor optimal QACM time
exponent as defined in Theorem 1. We cut the tree at its root: in time Õ (2αkun),
we can obtain a tuple of lists L1, . . . Lt such that, given an n-bit element x, we
can find x1 ∈ L1, . . . , xt ∈ Lt such that x ⊕ x1 . . . ⊕ xt has (1 − 2αk)un bits to

zero. Indeed, the Grover search at the root of the tree has also cost Õ (2αkun)
since everything is balanced, so it eliminates 2αkun bits.

Hence, if we want to be able to eliminate un bits for some fraction 0 ≤ u ≤ 1,

we build all these lists in time Õ
(

2
αk

(1−2αk)
un
)

.

Now we do a modified Grover search at the root: given any n-bit element x,
the structure puts un bits to zero. There remains (1 − u)n (random) bits. We
want the Hamming weight of the result to be less than a target cwn. The propor-
tion of (1− u)n-bit strings of Hamming weight less than cwn is approximately:(

(1− u)n
cwn

)
/2(1−u)n ' 2(1−u)n(H(cw/(1−u))−1)) if c ≤ (1 − u) and 1 otherwise,

where H is the binary entropy function. Hence the number of Grover iterations
in this last step is: 2

1
2 (1−u)n(1−He(cw/(1−u)))) where He(x) = 0 if x ≥ 1. It suffices

to look for 0 ≤ u ≤ 1 which optimizes the sum of the time complexities of the
two steps:

2
αk

(1−2αk)
un

+ 2
1
2 (1−u)n(1−He(cw/(1−u)))) .

We obtain the results of Table 2 by numerical optimization.

8 Conclusion

Better Quantum k-xor Algorithms. In this paper, we proposed new algorithms
improving the complexities from [20] for most values of k in both the QACM
and low-qubits settings. We gave quantum algorithms for the k-xor problem with
limited input size. This enabled us to gave algorithms for k-encryption running
exponentially faster than double-encryption and to reach the best quantum time
– memory product known for solving the subset-sum problem. All our algorithms
can be used by replacing xors by sums modulo 2n.
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Table 2: Quantum speedup of the approximate k-list problem of [10], in the
QACM model.

k = 2 k = 3 k = 4
cw log T/n log T/n

(classical) (quantum)
0 0.5000 0.3333

0.1 0.2920 0.1876
0.2 0.1692 0.1046
0.3 0.0814 0.0481
0.4 0.0232 0.0129

cw log T/n log T/n
(classical) (quantum)

0 0.5000 0.2857
0.1 0.2769 0.1641
0.2 0.1590 0.0935
0.3 0.0778 0.0440
0.4 0.0221 0.0122

cw log T/n log T/n
(classical) (quantum)

0 0.3333 0.2500
0.1 0.2040 0.1460
0.2 0.1238 0.0846
0.3 0.0630 0.0407
0.4 0.0195 0.0116

k = 8 k = 32 k = 1024
cw log T/n log T/n

(classical) (quantum)
0 0.2500 0.2000

0.1 0.1576 0.1200
0.2 0.0984 0.0714
0.3 0.0518 0.0355
0.4 0.0170 0.0106

cw log T/n log T/n
(classical) (quantum)

0 0.1667 0.1429
0.1 0.1091 0.0889
0.2 0.0704 0.0548
0.3 0.0387 0.0284
0.4 0.0914 0.0091

cw log T/n log T/n
(classical) (quantum)

0 0.1667 0.1429
0.1 0.1091 0.0889
0.2 0.0704 0.0548
0.3 0.0387 0.0284
0.4 0.0914 0.0091

Optimal Strategies from MILP. We defined the framework of merging trees,
which allows to write strategies for solving k-list problems (classically and quan-
tumly) in an abstract and systematic way. Our optimization results were ob-
tained using Mixed Integer Linear Programming. We used this experimental
evidence to move on to actual proofs and systematic descriptions of our opti-
mums.

Future Work. The merging trees we defined might be extended with more ad-
vanced techniques, inspired by the classical literature on k-list problems. We
tried some of these techniques and could not find a quantum advantage so far.
There are also many cryptographic applications for quantum k-list algorithms
(e.g. lattice algorithms or decoding random linear codes [11]) that we did not
cover yet.

Open Questions. We have proven some optimality results among all merging
trees, which is a set of strategies that we carefully defined, but we do not know
whether an extended framework could be suitable to improve the quantum al-
gorithms. In particular, the time complexity of our merging tree algorithms for
r-encryption encounters a limit 20.3n. Whether an extended framework could
allow to break this bound remains unknown to us. It would also be interesting
to obtain better algorithms for Problem 4 (unique k-xor) without QAQM, or
even in the low-qubits model.
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