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Abstract. We present a methodology to construct preprocessing zk-
SNARKs where the structured reference string (SRS) is universal and up-
datable. This exploits a novel use of holography [Babai et al., STOC 1991],
where fast verification is achieved provided the statement being checked
is given in encoded form.

We use our methodology to obtain a preprocessing zkSNARK where the
SRS has linear size and arguments have constant size. Our construction
improves on Sonic [Maller et al., CCS 2019], the prior state of the art in
this setting, in all efficiency parameters: proving is an order of magnitude
faster and verification is thrice as fast, even with smaller SRS size and
argument size. Our construction is most efficient when instantiated in
the algebraic group model (also used by Sonic), but we also demonstrate
how to realize it under concrete knowledge assumptions. We implement
and evaluate our construction.

The core of our preprocessing zkSNARK is an efficient algebraic holo-
graphic proof (AHP) for rank-1 constraint satisfiability (R1CS) that
achieves linear proof length and constant query complexity.

1 Introduction

Succinct non-interactive arguments (SNARGs) are efficient certificates of mem-
bership in non-deterministic languages. Recent years have seen a surge of interest
in zero-knowledge SNARGs of knowledge (zkSNARKs), with researchers study-
ing constructions under different cryptographic assumptions, improvements in
asymptotic efficiency, concrete performance of implementations, and numerous
applications. The focus of this paper is SNARGs in the preprocessing setting, a
notion that we motivate next.

When is fast verification possible? The size of a SNARG must be, as a
minimum condition, sublinear in the size of the non-deterministic witness, and
often is required to be even smaller (e.g., logarithmic in the size of the non-
deterministic computation). The time to verify a SNARG would be, ideally, as
fast as reading the SNARG. This is in general too much to hope for, however. The
verification procedure must also read the description of the computation, in order
know what statement is being verified. While there are natural computations



that have succinct descriptions (e.g., machine computations), in general the
description of a computation could be as large as the computation itself, which
means that the time to verify the SNARG could be asymptotically comparable
to the size of the computation. This is unfortunate because there is a very useful
class of computations for which we cannot expect fast verification: general circuit
computations.

The preprocessing setting. An approach to avoid the above limitation is to
design a verification procedure that has two phases: an offline phase that produces
a short summary for a given circuit; and an online phase that uses this short
summary to verify SNARGs that attest to the satisfiability of the circuit with
different partial assignments to its input wires. Crucially, now the online phase
could in principle be as fast as reading the SNARG (and the partial assignment),
and thus sublinear in the circuit size. This goal was captured by preprocessing
SNARGs [Gro10; Lip12; GGPR13; BCI+13], which have been studied in an
influential line of works that has led to highly-efficient constructions that fulfill
this goal (e.g., [Gro16]) and large-scale deployments in the real world that benefit
from the online fast verification (e.g., [Zcash]).

The problem: circuit-specific SRS. The offline phase in efficient construc-
tions of preprocessing SNARGS consists of sampling a structured reference string
(SRS) that depends on the circuit that is being preprocessed. This implies that
producing/validating proofs with respect to different circuits requires different
SRSs. In many applications of interest, there is no single party that can be
entrusted with sampling the SRS, and so real-world deployments have had to
rely on cryptographic “ceremonies” [ZcashMPC] that use secure multi-party
sampling protocols [BCG+15; BGG17; BGM17]. However, any modification in
the circuit used in an application requires another cryptographic ceremony, which
is unsustainable for many applications.

A solution: universal SRS. The above motivates preprocessing SNARGs
where the SRS is universal, which means that the SRS supports any circuit up
to a given size bound by enabling anyone, in an offline phase after the SRS is
sampled, to publicly derive a circuit-specific SRS.3 Known techniques to obtain
a universal SRS from circuit-specific SRS introduce expensive overheads due
to universal simulation [BCTV14a; BCTV14b]. Also, these techniques lead to
universal SRSs that are not updatable, a property introduced in [GKM+18]
that significantly simplifies cryptographic ceremonies. The recent work of Maller
et al. [MBKM19] overcomes these shortcomings, obtaining the first efficient
construction of a preprocessing SNARG with universal (and updatable) SRS.
Even so, the construction in [MBKM19] is considerably more expensive than
the state of the art for circuit-specific SRS [Gro16]. In this paper we ask: can
the efficiency gap between universal SRS and circuit-specific SRS be closed, or at
least significantly reduced?

3
Even better than a universal SRS would be a URS (uniform reference string). However,
achieving preprocessing SNARGs in the URS model with small argument size remains
an open problem; see Section 1.2.
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Concurrent work. A concurrent work [GWC19] studies the same question as
this paper. See Section 1.2 for a brief discussion that compares the two works.

1.1 Our results

In this paper we present Marlin, a new preprocessing zkSNARK with universal
(and updatable) SRS that improves on the prior state of the art [MBKM19, Sonic]
in essentially all relevant efficiency parameters.4 In addition to reducing argument
size by several group and field elements and reducing time complexity of the
verifier by over 3×, our construction overcomes the main efficiency drawback
of [MBKM19, Sonic]: the cost of producing proofs. Indeed, our construction
improves time complexity of the prover by over 10×, achieving prover efficiency
comparable to the case of preprocessing zkSNARKs with circuit-specific SRS.
In Fig. 1 we provide a comparison of our construction and [MBKM19, Sonic],
including argument sizes for two popular elliptic curves; the table also includes
the state of the art for circuit-specific SRS. We have implemented Marlin in a
Rust library,5 and report evaluation results in Fig. 2.

Our zkSNARK is the result of several contributions that we deem of independent
interest, summarized below.

(1) A new methodology. We present a general methodology to construct
preprocessing SNARGs (and also zkSNARKs) where the SRS is universal (and
updatable). Our methodology produces succinct interactive arguments that can
be made non-interactive via the Fiat–Shamir transformation [FS86], and so below
we focus on preprocessing arguments with universal and updatable SRS.

Our key observation is that the ability to preprocess a circuit in an offline
phase is closely related to constructing “holographic proofs” [BFLS91], which
means that the verifier does not receive the circuit description as an input but,
rather, makes a small number of queries to an encoding of it. These queries
are in addition to queries that the verifier makes to proofs sent by the prover.
Moreover, in this paper we focus on the setting where the encoding of the
circuit description consists of low-degree polynomials and also where proofs are
themselves low-degree polynomials — this can be viewed as a requirement that
honest and malicious provers are “algebraic”. We call these algebraic holographic
proofs (AHPs); see Section 4 for definitions.

We present a transformation that “compiles” any public-coin AHP into a
corresponding preprocessing argument with universal (and updatable) SRS by
using suitable polynomial commitments.

Theorem 1. There is an efficient transformation that combines any public-coin
AHP for a relation R and an extractable polynomial commitment scheme to obtain

4
Maller et al. [MBKM19] discuss two variants of their protocol, a cheaper one for the
“helped setting” and a costlier one for the “unhelped setting”. The variant that is
relevant to this paper is the latter one, because it is a preprocessing zkSNARK. (The
former variant does not achieve succinct verification, and instead achieves a weaker
guarantee that applies to proof batches.)

5
https://github.com/scipr-lab/marlin
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construction argument size over BN-256 (bytes) argument size over BLS12-381 (bytes)

Sonic [MBKM19] 1152 1472
Marlin [this work] 1088 1296
Groth16 [Gro16] 128 192

zkSNARK
construction

sizes time complexity

|ipk| |ivk| |π| generator indexer prover verifier

Sonic
[MBKM19]

G1 8M — 20 8 f-MSM(M) 4 v-MSM(3m) 273 v-MSM(m)
7 pairingsG2 8M 3 — 8 f-MSM(M) — —

Fq — — 16 — O(m logm) O(m logm) O(|x|+ logm)

Marlin
[this work]

G1 6M 2 13 1 f-MSM(6M) 9 v-MSM(m) 21 v-MSM(m)
2 pairingsG2 — 2 — — — —

Fq — — 21 — O(m logm) O(m logm) O(|x|+ logm)

Groth16
[Gro16]

G1 4n O(|x|) 2 4 f-MSM(n)
N/A

4 v-MSM(n) 1 v-MSM(|x|)
G2 n O(1) 1 1 f-MSM(n) 1 v-MSM(n) 3 pairings
Fq — — — O(m+ n logn) O(m+ n logn) —

n: number of multiplication gates in the circuit
m: total number of (addition or multiplication) gates in the circuit
M : maximum supported circuit size (= number of addition and multiplication gates)

Fig. 1: Comparison of two preprocessing zkSNARKs with universal (and updat-
able) SRS: the prior state of the art and our construction. We include the current
state of the art for circuit-specific SRS (in gray), for reference. Here G1/G2/Fq
denote the number of elements or operations over the respective group/field;
also, f-MSM(m) and v-MSM(m) denote fixed-base and variable-base multi-scalar
multiplications (MSM) each of size m, respectively. The number of pairings that
we report for Sonic’s verifier is lower than that reported in [MBKM19] because
we account for standard batching techniques for pairing equations.
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Fig. 2: Measured performance of Marlin and [Gro16] over the BLS12-381 curve.
We could not include measurements for [MBKM19, Sonic] because at the time of
writing there is no working implementation of its unhelped variant.
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a public-coin preprocessing argument with universal SRS for the relation R. The
transformation preserves zero knowledge and proof of knowledge of the underlying
AHP. The SRS is updatable provided the SRS of the polynomial commitment
scheme is.

The above transformation provides us with a methodology to construct pre-
processing zkSNARKs with universal SRS (see Fig. 3). Namely, to improve the
efficiency of preprocessing zkSNARKs with universal SRS it suffices to improve
the efficiency of simpler building blocks: AHPs (an information-theoretic primitive)
and polynomial commitments (a cryptographic primitive).6

The improvements achieved by our preprocessing zkSNARK (see Fig. 1) were
obtained by following this methodology: we designed efficient constructions for
each of these two building blocks (which we discuss shortly), combined them via
Theorem 1, and then applied the Fiat–Shamir transformation [FS86].

Methodologies that combine information-theoretic probabilistic proofs and
cryptographic tools have played a fundamental role in the construction of effi-
cient argument systems. In the particular setting of preprocessing SNARGs, for
example, the compiler introduced in [BCI+13] for circuit-specific SRS has paved
the way towards current state-of-the-art constructions [Gro16], and also led to
constructions that are plausibly post-quantum [BISW17; BISW18]. We believe
that our methodology for universal SRS will also be useful in future work, and
may lead to further efficiency improvements.

public-coin
AHP

extractable
polynomial commitments

Theorem 1
(our compiler)

public-coin
preprocessing argument

with universal SRS

Fiat–Shamir
transformation

preprocessing SNARK
with universal SRS

Fig. 3: Our methodology for constructing preprocessing SNARGs with universal
SRS.

(2) An efficient AHP for R1CS. We design an algebraic holographic proof
(AHP) that achieves linear proof length and constant query complexity, among
other useful efficiency features. The protocol is for rank-1 constraint satisfiability
(R1CS), a well-known generalization of arithmetic circuits where the “circuit
description” is given by coefficient matrices (see definition below). Note that the
relations that we consider consist of triples rather than pairs, because we need
to split the verifier’s input into a part for the offline phase and a part for the
online phase. The offline input is called the index, and it consists of the coefficient
matrices; the online input is called the instance, and it consists of a partial
assignment to the variables. The algorithm that encodes the index (coefficient
matrices) in the offline phase is called the indexer.

6
The methodology also captures as a special case various folklore approaches used in
prior works to construct non-preprocessing zkSNARKs via polynomial commitment
schemes (see Section 1.2), thereby providing the first formal statement that clarifies
what properties of algebraic proofs and polynomial commitment schemes are essential
for these folklore approaches.
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Definition 1 (informal). The indexed relation RR1CS is the set of triples
(i,x,w) =

(
(F, n,m,A,B,C), x, w

)
where F is a finite field, A,B,C are n × n

matrices over F, each containing at most m non-zero entries, and z := (x,w) is a
vector in Fn such that Az ◦Bz = Cz. (Here “◦” denotes the entry-wise product.)

Theorem 2 (informal). There exists a constant-round AHP for the indexed
relation RR1CS with linear proof length and constant query complexity. The
soundness error is O(m/|F|), and the construction is a zero knowledge proof of
knowledge. The arithmetic complexity of the indexer is O(m logm), of the prover
is O(m logm), and of the verifier is O(|x|+ logm).

The literature on probabilistic proofs contains algebraic protocols that are
holographic (e.g., [BFLS91] and [GKR15]) but none achieve constant query
complexity, and so applying our methodology (Theorem 1) to these would lead to
large argument sizes (many tens of kilobytes). These prior algebraic protocols rely
on the multivariate sumcheck protocol applied to certain multivariate polynomials,
which means that they incur sizable communication costs due to (a) the many
rounds of the sumcheck protocol, and (b) the fact that applying the methodology
would involve using multivariate polynomial commitment schemes that (for known
constructions) lead to communication costs that are linear in the number of
variables.

In contrast, our algebraic protocol relies on univariate polynomials and
achieves constant query complexity, incurring small communication costs. Our
algebraic protocol can be viewed as a “holographic variant” of the algebraic
protocol for R1CS used in Aurora [BCR+19], because it achieves an exponential
improvement in verification time when the verifier is given a suitable encoding of
the coefficient matrices.

(3) Extractable polynomial commitments. Polynomial commitment schemes,
introduced in [KZG10], are commitment schemes specialized to work with uni-
variate polynomials. The security properties in [KZG10], while sufficient for the
applications therein, do not appear sufficient for standalone use, or even just
for the transformation in Theorem 1. We propose a definition for polynomial
commitment schemes that incorporates the functionality and security that we
believe to suffice for standalone use (and in particular suffices for Theorem 1).
Moreover, we show how to extend the construction of [KZG10] to fulfill this
definition in the plain model under non-falsifiable knowledge assumptions, or
via a more efficient construction in the algebraic group model [FKL18] under
falsifiable assumptions. These constructions are of independent interest, and
when combined with our transformation, lead to the first efficient preprocessing
arguments with universal SRS under concrete knowledge assumptions, and also
to the efficiency reported in Fig. 1.

We have implemented in a Rust library7 the polynomial commitment schemes,
and our implementation of Marlin relies on this library. We deem this library
of independent interest for other projects.

7
https://github.com/scipr-lab/poly-commit
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1.2 Related work

In this paper we study the goal of constructing preprocessing SNARGs with
universal SRS, which achieve succinct verification regardless of the structure of
the non-deterministic computation being checked. The most relevant prior work
is Sonic [MBKM19], on which we improve as already discussed (see Fig. 1). The
notion of updatable SRS was defined and achieved in [GKM+18], but with a less
efficient construction.

Concurrent work. A concurrent work [GWC19] studies the same question
as this paper, and also obtains efficiency improvements over Sonic [MBKM19].
Below is a brief comparison.

– We provide an implementation and evaluation of our construction, while
[GWC19] do not. The estimated costs reported in [GWC19] suggest that an
implementation may perform similarly to ours.

– Similarly to our work, [GWC19] extends the polynomial commitment in
[KZG10] to support batching, and proves the extension secure in the al-
gebraic group model. We additionally show how to prove security in the plain
model under non-falsifiable knowledge assumptions, and consider the problem
of enforcing different degrees for different polynomials (a feature that is not
needed in [GWC19]).

– We show how to compile any algebraic holographic proof into a preprocessing
argument with universal SRS, while [GWC19] focus on compiling a more
restricted notion that they call “polynomial protocols”.

– Our protocol natively supports R1CS, and can be viewed as a holographic
variant of the algebraic protocol in [BCR+19]. The protocol in [GWC19]
natively supports a different constraint system, and involves a protocol that,
similar to [Gro10], uses a permutation argument to attest that all variables in
the same cycle of a permutation are equal (e.g., (1)(2, 3)(4) would require that
the second and third entries are equal).

Preprocessing SNARGs with a URS. Setty [Set19] studies preprocessing
SNARGs with a URS (uniform reference string), and describes a protocol that
for n-gate arithmetic circuits and a chosen constant c ≥ 2 achieves proving time

Oλ(n), argument size Oλ(n1/c), and verification time Oλ(n1−1/c). The protocol in
[Set19] offers a tradeoff compared to our work: preprocessing with a URS instead
of a SRS, at the cost of asymptotically larger argument size and verification
time. The question of achieving processing with a URS while also achieving
asymptotically small argument size and verification time remains open.

The protocol in [Set19] is obtained by combining the multivariate polynomial
commitments of [WTS+18] and a modern rendition of the PCP in [BFLS91]
(which itself can be viewed as the “bare bones” protocol of [GKR15] for circuits
of depth 1). [Set19] lacks an analysis of concrete costs, and also does not discuss
how to achieve zero knowledge beyond stating that techniques in other papers
[ZGK+17a; WTS+18; XZZ+19] can be applied. Nevertheless, argument sizes
would at best be similar to these other papers (tens of kilobytes), which is much
larger than our argument sizes (in the SRS model).
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We conclude by noting that the informal security proof in [Set19] appears
insufficient to show soundness of the argument system, because the polynomial
commitment scheme is only assumed to be binding but not also extractable (there
is no explanation of where the witness encoded in the committed polynomial
comes from). Our definitions and security proofs, if ported over to the multivariate
setting, would fill this gap.

Non-preprocessing SNARGs for arbitrary computations. Checking ar-
bitrary circuits without preprocessing them requires the verifier to read the
circuit, so the main goal is to obtain small argument size. In this setting of non-
preprocessing SNARGs for arbitrary circuits, constructions with a URS (uniform
reference string) are based on discrete logarithms [BCC+16; BBB+18] or hash
functions [AHIV17; BCR+19], while constructions with a universal SRS (struc-
tured reference string) combine polynomial commitments and non-holographic
algebraic proofs [Gab19]; all use random oracles to obtain non-interactive argu-
ments.8

We find it interesting to remark that our methodology from Theorem 1
generalizes protocols such as [Gab19] in two ways. First, it formalizes the folklore
approach of combining polynomial commitments and algebraic proofs to obtain
arguments, identifying the security properties required to make this approach
work. Second, it demonstrates how for algebraic holographic proofs the resulting
argument enables preprocessing.

Non-preprocessing SNARGs for structured computations. Several works
study SNARGs for structured computations. This structure enables fast veri-
fication without preprocessing. A line of works [BBC+17; BBHR19; BCG+19]
combines hash functions and various interactive oracle proofs. Another line of
works [ZGK+17b; ZGK+18; ZGK+17a; WTS+18; XZZ+19] combines multi-
variate polynomial commitments [PST13] and doubly-efficient interactive proofs
[GKR15].

While in this paper we study a different setting (preprocessing SNARGs for
arbitrary computations), there are similarities, and notable differences, in the
polynomial commitments used in our work and prior works. We begin by noting
that the notion of “multivariate polynomial commitments” varies considerably
across prior works, despite the fact that most of those commitments are based
on the protocol introduced in [PST13].

– The commitments used in [ZGK+17b; ZGK+18] are required to satisfy ex-
tractability (a stronger notion than binding) because the security proof of the
argument system involves extracting a polynomial encoding a witness. The
commitment is a modification of [PST13] that uses knowledge commitments, a
standard ingredient to achieve extractability under non-falsifiable assumptions

8
The linear verification time in most of the cited constructions can typically be partially
mitigated via techniques that enable an untrusted party to help the verifier to check
a batch of proofs for the same circuit faster than checking each proof individually
(the linear cost in the circuit is paid only once per batch rather than once for each
proof in the batch).
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in the plain model. Neither of these works consider hiding commitments as
zero knowledge is not a goal for them.

– The commitments used in [ZGK+17a; WTS+18] must be compatible with
the Cramer–Damg̊ard transform [CD98] used in constructing the argument
system. They consider a modified setting where the sender does not reveal the
value of the commitment polynomial at a desired point but, instead, reveals a
commitment to this value, along with a proof attesting that the committed
value is correct. For this modified setting, they consider commitments that
satisfy natural notions of extractability and hiding (achieving zero knowledge
arguments is a goal in both papers). The commitments constructed in the two
papers offer different tradeoffs. The commitment in [ZGK+17a] is based on
[PST13]: it relies on a SRS (structured reference string); it uses pairings; and
for `-variate polynomials achieves Oλ(`)-size arguments that can be checked
in Oλ(`) time. The commitment in [WTS+18] is inspired from [BG12] and
[BBB+18]: it relies on a URS (uniform reference string); it does not use
pairings; and for `-variate multilinear polynomials and a given constant c ≥ 2

achieves Oλ(2`/c)-size arguments that can be checked in Oλ(2`−`/c) time.
– The commitments used in [XZZ+19] are intended for the regular (unmodified)

setting of commitment schemes where the sender reveals the value of the
polynomial, because zero knowledge is later achieved by building on the
algebraic techniques described in [CFS17]. The commitment definition in
[XZZ+19] considers binding and hiding, but not extractability. However, the
given security analysis for the argument system does not seem to go through
for this definition (there is no explanation of where the witness encoded in
the committed polynomial comes from). Also, no commitment construction is
provided in [XZZ+19], and instead the reader is referred to [ZGK+17a], which
considers the modified setting described above.

In sum there are multiple notions of commitment and one must be precise about
the functionality and security needed to construct an argument system. We now
compare prior notions of commitments to the one that we use.

First, since in this paper we do not use the Cramer–Damg̊ard transform for
zero knowledge, commitments in the modified setting are not relevant. Instead, we
achieve zero knowledge via bounded independence [BCGV16], and in particular
we consider the familiar setting where the sender reveals evaluations to the
committed polynomial. Second, prior works consider protocols where the sender
commits to a polynomial in a single round, while we consider protocols where
the sender commits to multiple polynomials of different degrees in each of several
rounds. This multi-polynomial multi-round setting requires suitable extensions in
terms of functionality (to enable batching techniques to save on argument size)
and security (extractability and hiding need to be strengthened), which means
that prior definitions do not suffice for us.

The above discrepancies have led us to formulate new definitions of function-
ality and security for polynomial commitments (as summarized in Section 2.2).
We conclude by noting that, since in this paper we construct arguments that
use univariate polynomials, our definitions are specialized to commitments for

9



univariate polynomials. Corresponding definitions for multivariate polynomials
can be obtained with straightforward modifications, and would strengthen defini-
tions appearing in some prior works. Similarly, we fulfill the required definitions
via natural adaptations of the univariate scheme of [KZG10], and analogous
adaptations of the multivariate scheme of [PST13] would fulfill the multivariate
analogues of these definitions.

2 Techniques

We discuss the main ideas behind our results. First we describe the two building
blocks used in Theorem 1: AHPs and polynomial commitment schemes (described
in Sections 2.1 and 2.2 respectively). We describe how to combine these to obtain
preprocessing arguments with universal SRS in Section 2.3. Next, we discuss
constructions for these building blocks: in Section 2.4 we describe our AHP
(underlying Theorem 2), and in Section 2.5 we describe our construction of
polynomial commitments.

Throughout, instead of considering the usual notion of relations that consist
of instance-witness pairs, we consider indexed relations, which consist of triples
(i,x,w) where i is the index, x is the instance, and w is the witness. This is
because i represents the part of the verifier input that is preprocessed in the
offline phase (e.g., the circuit description) and x represents the part of the verifier
input that comes in the online phase (e.g., a partial assignment to the circuit’s
input wires). The indexed language corresponding to an indexed relation R,
denoted L(R), is the set of pairs (i,x) for which there exists a witness w such
that (i,x,w) ∈ R.

2.1 Building block: algebraic holographic proofs

Interactive oracle proofs (IOPs) [BCS16; RRR16] are multi-round protocols
where in each round the verifier sends a challenge and the prover sends an oracle
(which the verifier can query). IOPs combine features of interactive proofs and
probabilistically checkable proofs . Algebraic holographic proofs (AHPs) modify
the notion of an IOP in two ways.

– Holographic: the verifier does not receive its input explicitly but, rather, has
oracle access to a prescribed encoding of it. This potentially enables the verifier
to run in time that is much faster than the time to read its input in full. (Our
constructions will achieve this fast verification.)

– Algebraic: the honest prover must produce oracles that are low-degree poly-
nomials (this restricts the completeness property), and all malicious provers
must produce oracles that are low-degree polynomials (this relaxes the sound-
ness property). The encoded input to the verifier must also be a low-degree
polynomial.

Since in this paper we only work with univariate polynomials, our definitions
focus on this case, but they can be modified in a straightforward way to be more
general.

Informally, a (public-coin) AHP over a field F for an indexed relation R is
specified by an indexer I, prover P, and verifier V that work as follows.

10



– Offline phase. The indexer I receives as input the index i to be preprocessed,
and outputs one or more univariate polynomials over F encoding i.

– Online phase. For some instance x and witness w, the prover P receives (i,x,w)
and the verifier V receives x; P and V interact over some (in this paper,
constant) number of rounds, where in each round V sends a challenge and P
sends one or more polynomials; after the interaction, V(x) probabilistically
queries the polynomials output by the indexer and the polynomials output
by the prover, and then accepts or rejects. Crucially, V does not receive i as
input, but instead queries the polynomials output by I that encode i. This
enables the construction of verifiers V that run in time that is sublinear in |i|.

The completeness property states that for every (i,x,w) ∈ R the probability

that P(i,x,w) convinces VI(i)(x) to accept is 1. The soundness property states
that for every (i,x) /∈ L(R) and admissible prover P̃ the probability that P̃

convinces VI(i)(x) to accept is at most a given soundness error ε. A prover is
“admissible” if the degrees of the polynomials it outputs fit within prescribed
degree bounds of the protocol. See Section 4 for details on AHPs.

2.2 Building block: polynomial commitments

Informally, a polynomial commitment scheme [KZG10] allows a prover to produce
a commitment c to a univariate polynomial p ∈ F[X], and later “open” p(X)
at any point z ∈ F, producing an evaluation proof π showing that the opened
value is consistent with the polynomial “inside” c at z. Turning this informal goal
into a useful definition requires some care, however, as we explain below. In this
paper we propose a set of definitions for polynomial commitment schemes that
we believe are useful for standalone use, and in particular suffice as a building
block for our compiler described in Section 2.3.

First, we consider constructions with strong efficiency requirements: the
commitment c is much smaller than the polynomial p (e.g., c consists of a
constant number of group elements), and the proof π can be validated very fast
(e.g., in a constant number of cryptographic operations). These requirements not
only rule out natural constructions, but also imply that the usual binding property,
which states that an efficient adversary cannot open the same commitment to
two different values, does not capture the desired security. Indeed, even if the
adversary were to be bound to opening values of some function f : F→ F, it may
be that the function f is consistent with a polynomial whose degree is higher than
what was claimed. This means that a security definition needs to incorporate
guarantees about the degree of the committed function.9

9
This consideration motivates the strong correctness property in [KZG10], which states
that if the adversary knows a polynomial that leads to the claimed commitment
c then this polynomial has bounded degree. This notion, while sufficient for the
application in [KZG10], does not seem to suffice for standalone use because there
is no a priori guarantee that an adversary that can open values to a commitment
knows a polynomial inside the commitment. In some sense, a knowledge assumption
is hidden in this hypothesis.
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Second, in many applications of polynomial commitments, an adversary
produces multiple commitments to polynomials within a round of interaction and
across rounds of interaction. After this interaction, the adversary reveals values
of all of these polynomials at one or more locations. This setting motivates a
number of considerations. First, it is desirable to rely on a single set of public
parameters for committing to multiple polynomials, even if the polynomials differ
in degree. A construction such as that of [KZG10] can be modified in a natural
way to achieve this is by committing both to the polynomial and its shift to
the maximum degree, similarly to techniques used to bundle multiple low-degree
tests into a single one [BCR+19]. This modification needs to be addressed in
any proof of security. Second, it would be desirable to batch evaluation proofs
across different polynomials for the same location. Again, the construction in
[KZG10] can support this, but one must argue that security still holds in this
more general case.

The preceeding considerations require an extension of previous definitions
and motivate our re-formulation of the primitive. Informally, a polynomial com-
mitment scheme PC is a tuple of algorithms PC = (Setup,Trim,Commit,Open,
Check). The setup algorithm PC.Setup takes as input a security parameter and
maximum supported degree bound D, and outputs public parameters pp that
contain the description of a finite field F. The “trimming” algorithm PC.Trim then
deterministically specializes these parameters for a given set of degree bounds
and outputs a committer key ck and a receiver key rk. The sender can then invoke
PC.Commit with input ck and a list of polynomials p with respective degree
bounds d to generate a set of commitments c. Subsequently, the sender can use
PC.Open to produce a proof π that convinces the receiver that the polynomials
“inside” c respect the degree bounds d and, moreover, evaluate to the claimed set
of values v at a given query set Q that specifies any number of evaluation points
for each polynomial. The receiver can invoke PC.Check to check this proof.

The scheme PC is required to satisfy extractability and efficiency properties,
and also, optionally, a hiding property. We outline these properties below, and
provide detailed definitions in the full version.

Extractability. Consider an efficient sender adversary A that can produce a
commitment c and degree bound d ≤ D such that, when asked for an evaluation
at some point z ∈ F, can produce a supposed evaluation v and proof π such
that PC.Check accepts. Then PC is extractable if for every maximum degree
bound D and every sender adversary A who can produce such commitments,
there exists a corresponding efficient extractor EA that outputs a polynomial
p of degree at most d that “explains” c so that p(z) = v. While for simplicity
we have described the most basic case here, our definition considers adversaries
and extractors who interact over multiple rounds, wherein the adversary may
produce multiple commitments in each round and the extractor is required to
output corresponding polynomials on a per-round basis (before seeing the query
set, proof, or supposed evaluations).

In this work we rely on extractability to prove the security of our compiler
(see Section 2.3); we do not know if weaker security notions studied in prior works,
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such as evaluation binding, suffice. More generally, we believe that extractability
is a useful property that may be required across a range of other applications.

Efficiency. We require two notions of efficiency for PC. First, the time required
to commit to a polynomial p and then to create an evaluation proof must be
proportional to the degree of p, and not to the maximum degree D. (This ensures
that the argument prover runs in time proportional to the size of the index.)

On the receiver’s side, the commitment size, proof size, and time to verify an
opening must be independent of the claimed degrees for the polynomials. (This
ensures that the argument produced by our compiler is succinct.)

Hiding. The hiding property of PC states that commitments and proofs of
evaluation reveal no information about the committed polynomial beyond the
publicly stated degree bound and the evaluation itself. Namely, PC is hiding
if there exists an efficient simulator that outputs simulated commitments and
simulated evaluation proofs that cannot be distinguished from their real counter-
parts by any malicious distinguisher that only knows the degree bound and the
evaluation.

Analogously to the case of extractability, we actually consider a more general
definition that considers commitments to multiple polynomials within and across
multiple rounds; moreover, the definition considers the case where some polyno-
mials are designated as not hidden (and thus given to the simulator) because in
our application we sometimes prefer to commit to a polynomial in a non-hiding
way (for efficiency reasons).

2.3 Compiler: from AHPs to preprocessing arguments with
universal SRS

We describe the main ideas behind Theorem 1, which uses polynomial commitment
schemes to compile any (public-coin) AHP into a corresponding (public-coin)
preprocessing argument with universal SRS. In a subsequent step, the argument
can be made non-interactive via the Fiat–Shamir transformation, and thereby
obtain a preprocessing SNARG with universal SRS.

The basic intuition of the compiler follows the well-known framework of
“commit to oracles and then open query answers” pioneered by Kilian [Kil92].
However, the commitment scheme used in our compiler leverages and enforces the
algebraic structure of these oracles. While several works in the literature already
take advantage of algebraic commitment schemes applied to algebraic oracles,
our contribution is to observe that if we apply this framework to a holographic
proof then we obtain a preprocessing argument.

Informally, first the argument indexer invokes the AHP indexer to generate
polynomials, and then deterministically commits to these using the polynomial
commitment scheme. Subsequently, the argument prover and argument verifier
interact, each respectively simulating the AHP prover and AHP verifier. In each
round, the argument prover sends succinct commitments to the polynomials
output by the AHP prover in that round. After the interaction, the argument
verifier declares its queries to the polynomials (of the prover and of the indexer).

13



The argument prover replies with the desired evaluations along with an evaluation
proof attesting to their correctness relative to the commitments.

This approach, while intuitive, must be proven secure. In particular, in the
proof of soundness, we need to show that if the argument prover convinces the
argument verifier with a certain probability, then we can find an AHP prover
that convinces the AHP verifier with similar probability. This step is non-trivial:
the AHP prover outputs polynomials, while the argument prover merely outputs
succinct commitments and a few evaluations, which is much less information. In
order to deduce the former from the latter requires extraction. This motivates
considering polynomial commitment schemes that are extractable, in the sense
described in Section 2.2. We do not know whether weaker security properties,
such as the evaluation binding property studied in some prior works, suffice for
proving the compiler secure.

The compiler outlined above is compatible with the properties of argument
of knowledge and zero knowledge. Specifically, we prove that if the AHP is a
proof of knowledge, then the compiler produces an argument of knowledge; also,
if the AHP is (bounded-query) zero knowledge and the polynomial commitment
scheme is hiding, then the compiler produces a zero knowledge argument.

See the full version for more details on the compiler.

2.4 Construction: an AHP for constraint systems

In prior sections we have described how we can use polynomial commitment
schemes to compile AHPs into corresponding preprocessing SNARGs. In this
section we discuss the main ideas behind Theorem 2, which provides an efficient
AHP for the indexed relation corresponding to R1CS (see Definition 1). The
preprocessing zkSNARK that we achieve in this paper (see Fig. 1) is based on
this AHP.

Our protocol can be viewed as a “holographic variant” of the non-holographic
algebraic proof for R1CS constructed in [BCR+19]. Achieving holography involves
designing a new sub-protocol that enables the verifier to evaluate low-degree
extensions of the coefficient matrices at a random location. While in [BCR+19] the
verifier performed this computation in time poly(|i|) on its own, in our protocol
the verifier performs it exponentially faster, in time O(log |i|), by receiving help
from the prover and having oracle access to the polynomials produced by the
indexer. We introduce notation and then discuss the protocol.

Some notation. Consider an index i = (F, n,m,A,B,C) specifying coefficient
matrices, an instance x = x ∈ F∗ specifying a partial assignment to the variables,
and a witness w = w ∈ F∗ specifying an assignment to the other variables
such that the R1CS equation holds. The R1CS equation holds if and only if
Az ◦ Bz = Cz for z := (x,w) ∈ Fn. Below, we let H and K be prescribed
subsets of F of sizes n and m respectively; we also let vH(X) and vK(X) be the
vanishing polynomials of these two sets. (The vanishing polynomial of a set S is
the monic polynomial of degree |S| that vanishes on S, i.e.,

∏
γ∈S(X − γ).) We

assume that both H and K are smooth multiplicative subgroups. This allows
interpolation/evaluation over H in O(n log n) operations and also makes vH(X)
computable in O(log n) operations (and similarly for K). Given an n× n matrix
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M with rows/columns indexed by elements of H, we denote by M̂(X,Y ) the
low-degree extension of M , i.e., the polynomial of individual degree less than n
such that M̂(κ, ι) is the (κ, ι)-th entry of M for every κ, ι ∈ H.

A non-holographic starting point. We sketch a non-holographic protocol
for R1CS with linear proof length and constant query complexity, inspired from
[BCR+19], that forms the starting point of our work. In this case the prover
receives as input (i,x,w) and the verifier receives as input (i,x). (The verifier
reads the non-encoded index i because we are describing a non-holographic
protocol.)

In the first message the prover P sends the univariate polynomial ẑ(X) of
degree less than n that agrees with the variable assignment z on H, and also
sends the univariate polynomials ẑA(X), ẑB(X), ẑC(X) of degree less than n that
agree with the linear combinations zA := Az, zB := Bz, and zC := Cz on H.
The prover is left to convince the verifier that the following two conditions hold:

(1) Entry-wise product: ∀κ ∈ H , ẑA(κ)ẑB(κ)− ẑC(κ) = 0 .

(2) Linear relation: ∀M ∈ {A,B,C} , ∀κ ∈ H , ẑM (κ) =
∑
ι∈H

M [κ, ι]ẑ(ι) .

(The prover also needs to convince the verifier that ẑ(X) encodes a full assignment
z that is consistent with the partial assignment x, but we for simplicity we ignore
this in this informal discussion.)

In order to convince the verifier of the first (entry-wise product) condition,
the prover sends the polynomial h0(X) such that ẑA(X)ẑB(X) − ẑC(X) =
h0(X)vH(X). This polynomial equation is equivalent to the first condition (the
left-hand side equals zero everywhere on H if and only if it is a multiple of H’s
vanishing polynomial). The verifier will check the equation at a random point
β ∈ F: it queries ẑA(X), ẑB(X), ẑC(X), h0(X) at β, evaluates vH(X) at β on its
own, and checks that ẑA(β)ẑB(β)− ẑC(β) = h0(β)vH(β). The soundness error is
the maximum degree over the field size, which is at most 2n/|F|.

In order to convince the verifier of the second (linear relation) condition, the
prover expects a random challenge α ∈ F from the verifier, and then replies in a
second message. For each M ∈ {A,B,C}, the prover sends polynomials hM (X)
and gM (X) such that

r(α,X)ẑM (X)− rM (α,X)ẑ(X) = hM (X)vH(X) +XgM (X)

for rM (Z,X) :=
∑
κ∈H r(Z, κ)M̂(κ,X)

where r(Z,X) is a prescribed polynomial of individual degree less than n such
that (r(Z, κ))κ∈H are n linearly independent polynomials. Prior work [BCR+19]
on checking linear relations via univariate sumchecks shows that this polynomial
equation is equivalent, up to a soundness error of n/|F| over α, to the second
condition.10 The verifier will check this polynomial equation at the random point

10
In particular, we are using the fact from [BCR+19] that, given a multiplicative
subgroup S of F, a polynomial f(X) sums to σ over S if and only if f(X) can be
written as h(X)vS(X)+Xg(X)+σ/|S| for some h(X) and g(X) with deg(g) < |S|−1.
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β ∈ F: it queries ẑ(X), ẑA(X), ẑB(X), ẑC(X), hM (X), gM (X) at β, evaluates
vH(X) at β on its own, evaluates r(Z,X) and rM (Z,X) at (α, β) on its own,
and checks that r(α, β)ẑM (β) − rM (α, β)ẑ(β) = hM (β)vH(β) + βgM (β). The
additional soundness error is 2n/|F|.

The above is a simple 3-message protocol for R1CS with soundness error
max{2n/|F|, 3n/|F|} = 3n/|F| in the setting where the honest prover and mali-
cious provers send polynomials of prescribed degrees, which the verifier can query
at any location. The proof length (sum of all degrees) is linear in n and the query
complexity is constant.

Barrier to holography. The verifier in the above protocol runs in time that is
Ω(|i|) = Ω(n+m). While this is inherent in the non-holographic setting (because
the verifier must read i), we now discuss how exactly the verifier’s computation
depends on i. We shall later use this understanding to achieve an exponential
improvement in the verifier’s time when given a suitable encoding of i.

The verifier’s check for the entry-wise product is ẑA(β)ẑB(β) − ẑC(β) =
h0(β)vH(β), and can be carried out in O(log n) operations regardless of the
coefficient matrices contained in the index i. In other words, this check is efficient
even in the non-holographic setting. However, the verifier’s check for the linear
relation is r(α, β)ẑM (β)− rM (α, β)ẑ(β) = hM (β)vH(β) + βgM (β), which has a
linear cost. Concretely, evaluating the polynomial rM (Z,X) at (α, β) requires
Ω(n+m) operations.

In the holographic setting, a natural idea to reduce this cost would be to
grant the verifier oracle access to the low-degree extension M̂ for M ∈ {A,B,C}.
This idea has two problems: the verifier still needs Ω(n) operations to evaluate
rM (Z,X) at (α, β) and, moreover, the size of M̂ is quadratic in n, which means
that the encoding of the index i is Ω(n2). We cannot afford such an expensive
encoding in the offline preprocessing phase. We now describe how we overcome
both of these problems, and obtain a holographic protocol.

Achieving holography. To overcome the above problems and obtain a holo-
graphic protocol, we rely yet again on the univariate sumcheck protocol. We
introduce two additional rounds of interaction, and in each round the verifier
learns that their verification equation holds provided the sumcheck from the next
round holds. The last sumcheck will rely on polynomials output by the indexer,
which the verifier knows are correct.

We address the first problem by letting the prover and verifier interact in an
additional round, where we rely on an additional univariate sumcheck to reduce
the problem of evaluating rM (Z,X) at (α, β) to the problem of evaluating M̂
at (β2, β) for a random β2 ∈ F. Namely, the verifier sends β to the prover, who
computes

σ2 := rM (α, β) =
∑
κ∈H

r(α, κ)M̂(κ, β).

Then the prover replies with σ2 and the polynomials h2(X) and g2(X) such that

r(α,X)M̂(X,β) = h2(X)vH(X) +Xg2(X) + σ2/n .
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Prior techniques on univariate sumcheck [BCR+19] tell us that this equation is
equivalent to the polynomial r(α,X)M̂(X,β) summing to σ2 on H. Thus the
verifier needs to check this equation at a random β2 ∈ F: r(α, β2)M̂(β2, β) =
h2(β2)vH(β2) + β2g2(β2) + σ2/n. The only expensive part of this equation for
the verifier is computing the value M̂(β2, β), which is problematic. Indeed, we
have already noted that we cannot afford to simply let the verifier have oracle
access to M̂ , because this polynomial has quadratic size (it contains a quadratic
number of terms).

We address this second problem as follows. Let uH(X,Y ) := vH(X)−vH(Y )
X−Y be

the formal derivative of the vanishing poynomial vH(X), and note that uH(X,Y )
vanishes on the square H ×H except for on the diagonal, where it takes on the
(non-zero) values (uH(a, a))a∈H . Moreover, uH(X,Y ) can be evaluated at any

point in F× F in O(log n) operations. Using this polynomial, we can write M̂ as
a sum of m = |K| terms instead of n2 = |H|2 terms:

M̂(X,Y ) :=
∑
κ∈K

uH(X, ˆrowM (κ)) · uH(Y, ĉolM (κ)) · v̂alM (κ) ,

where ˆrowM , ĉolM , v̂alM are the low-degree extensions of the row, column, and
value of the non-zero entries in M according to some canonical order over K.11

This method of representing the low-degree extension of M suggests an idea:
let the verifier have oracle access to the polynomials ˆrowM , ĉolM , v̂alM and do
yet another univariate sumcheck, but this time over the set K. The verifier sends
β2 to the prover, who computes

σ3 := M̂(β2, β) =
∑
κ∈K

uH(β2, ˆrowM (κ)) · uH(β, ĉolM (κ)) · v̂alM (κ) .

Then the prover replies with σ3 and the polynomials h3(X) and g3(X) such that

uH(β2, ˆrowM (X))uH(β, ĉolM (X))v̂alM (X) = h3(X)vK(X) +Xg3(X) + σ3/m .

The verifier can then check this equation at a random β3 ∈ F, which only requires
O(logm) operations.

The above idea almost works; the one remaining problem is that h3(X) has
degree Ω(nm) (because the left-hand size of the equation has quadratic degree),
which is too expensive for our target of a quasilinear-time prover. We overcome
this problem by letting the prover run the univariate sumcheck protocol on the
unique low-degree extension f̂(X) of the function f : K → F defined as f(κ) :=

uH(β2, ˆrowM (κ))uH(β, ĉolM (κ))v̂alM (κ). Observe that f̂(X) has degree less than

m. The verifier checks that f̂(X) and uH(β2, ˆrowM (X))uH(β, ĉolM (X))v̂alM (X)
agree on K.

From sketch to protocol. In the above discussion we have ignored a number
of technical aspects, such as proof of knowledge and zero knowledge (which

11
Technicality: v̂al(κ) actually equals the value divided by
uH( ˆrowM (κ), ˆrowM (κ))uH(ĉolM (κ), ĉolM (κ)).

17



are ultimately needed in the compiler if we want to construct a preprocessing
zkSNARK). We have also not discussed time complexities of many algebraic steps,
and we omitted discussion of how to batch multiple sumchecks into fewer ones,
which brings important savings in argument size. For details, see our detailed
construction in Section 5.

2.5 Construction: extractable polynomial commitments

We now sketch how to construct a polynomial commitment scheme that achieves
the strong functionality and security requirements of our definition in Section 2.2.
Our starting point is the PolyCommitDL construction of Kate et al. [KZG10],
and then describe a sequence of natural and generic transformations that extend
this construction to enable extractability, commitments to multiple polynomials,
and the enforcement of per-polynomial degree bounds. In fact, once we arrive
at a scheme that supports extractability for committed polynomials at a single
point, our transformations build on this construction in a black box way to first
support per-polynomial degree bounds, and then query sets that may request
multiple evaluation points per polynomial. See the full version for details of these
transformations.

Starting point: PolyCommitDL. The setup phase samples a cryptographically
secure bilinear group (G1,G2,GT , q, G,H, e) and then samples a committer
key ck and receiver key rk for a given degree bound D. The committer key
consists of group elements encoding powers of a random field element β, namely,
ck := {G, βG, . . . , βDG} ∈ GD+1

1 . The receiver key consists of the group elements
rk := (G,H, βH) ∈ G1 ×G2

2. Note that the SRS, which consists of the keys ck
and rk, is updatable because the coefficients of group elements in the SRS are all
monomials.

To commit to a polynomial p ∈ Fq[X], the sender computes c := p(β)G. To
subsequently prove that the committed polynomial evaluates to v at a point z,
the sender computes a witness polynomial w(X) := (p(X)− p(z))/(X − z), and
provides as proof a commitment to w: π := w(β)G. The idea is that the witness
function w is a polynomial if and only if p(z) = v; otherwise, it is a rational
function, and cannot be committed to using ck.

Finally, to verify a proof of evaluation, the receiver checks that the commitment
and proof of evaluation are consistent. That is, it checks that the proof commits
to a polynomial of the form (p(X) − p(z))/(X − z) by checking the equality
e(c− vG,H) = e(π, βH − zH).

Achieving extractability. While the foregoing construction guarantees cor-
rectness of evaluations, it does not by itself guarantee that a commitment actually
“contains” a suitable polynomial of degree at most D. We study two methods to
address this issue, and thereby achieve extractability. One method is to modify
the construction to use knowledge commitments [Gro10], and rely on a concrete
knowledge assumption. The main disadvantage of this approach is that each
commitment doubles in size. The other method is to move away from the plain
model, and instead conduct the security analysis in the algebraic group model
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(AGM) [FKL18]. This latter method is more efficient because each commitment
remains a single group element.

Committing to multiple polynomials at once. We enable the sender
to simultaneously open multiple polynomials [pi]

n
i=1 at the same point z as

follows. Before generating a proof of evaluation for [pi]
n
i=1, the sender requests

from the receiver a random field element ξ, which he uses to take a random
linear combination of the polynomials: p :=

∑n
i=1 ξ

ipi, and generates a proof of
evaluation π for this polynomial p.

The receiver verifies π by using the fact that the commitments are additively
homomorphic. The receiver takes a linear combination of the commitments and
claimed evaluations, obtaining the combined commitment c =

∑n
i=1 ξ

ici and

evaluation v =
∑n
i=1 ξ

ivi. Finally, it checks the pairing equations for c, π, and v.
Completeness of this check is straightforward, while soundness follows from

the fact that if any polynomial does not match its evaluation, then the combined
polynomial will not match its evaluation with high probability.

Enforcing multiple degree bounds. The construction so far enforces a single
bound D on the degrees of all the polynomials pi. To enforce a different degree
bound di for each pi, we require the sender to commit not only to each pi, but
also to “shifted polynomials” p′i(X) := XD−dipi(X). The proof of evaluation

proves that, if pi evaluates to vi at z, then p′i evaluates to zD−divi.
The receiver checks that the commitment for each p′i corresponds to an

evaluation zD−divi so that, if z is sampled from a super-polynomial subset of Fq,
the probability that deg(pi) 6= di is negligible. This trick is similar to the one
used in [BS08; BCR+19] to derive low-degree tests for specific degree bounds.

However, while sound, this approach is inefficient in our setting: the witness
polynomial for p′i has Ω(D) non-zero coefficients (instead of O(di)), and so
constructing an evaluation proof for it requires Ω(D) scalar multiplications
(instead of O(di)). To work around this, we instead produce a proof that the

related polynomial p?i (X) := p′i(X) − pi(z)X
D−di evaluates to 0 at z. As we

show in the full version, the witness polynomial for this claim has O(di) non-zero
coefficients, and so constructing the evaluation proof can be done in O(di) scalar
multiplications. Completeness is preserved because the receiver can check the
correct evaluation of p?i by subtracting pi(z)(β

D−diG) from the commitment to
the shifted polynomial p′i, thereby obtaining a commitment to p?i , while security
is preserved because p′i(z) = zD−divi ⇐⇒ p?i (z) = 0.

Evaluating at a query set instead of a single point. To support the case
where the polynomials [pi]

n
i=1 are evaluated at a set of points Q, the sender

proceeds as follows. Say that there are k different points [zi]
k
i=1 in Q. The sender

partitions the polynomials [pi]
n
i=1 into different groups such that every polynomial

in a group is to be evaluated at the same point zi. The sender runs PC.Open on
each group, and outputs the resulting list of evaluation proofs.

Achieving hiding. To additionally achieve hiding, we follow the above blueprint,
replacing PolyCommitDL with the hiding scheme PolyCommitPed described in
[KZG10].
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3 Preliminaries

We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]
n
i=1 as a short-hand for

the tuple (a1, . . . , an), and [ai]
n
i=1 = [[ai,j ]

m
j=1]ni=1 as a short-hand for the tuple

(a1,1, . . . , a1,m, . . . , an,1, . . . , an,m); |a| denotes the number of entries in a. If x
is a binary string then |x| denotes its bit length. If M is a matrix then ‖M‖
denotes the number of nonzero entries in M . If S is a finite set then |S| denotes
its cardinality and x← S denotes that x is an element sampled at random from
S. We denote by F a finite field, and whenever F is an input to an algorithm
we implicitly assume that F is represented in a way that allows efficient field
arithmetic. Given a finite set S, we denote by FS the set of vectors indexed by
elements in S. We denote by F[X] the ring of univariate polynomials over F in

X, and by F<d[X] the set of polynomials in F[X] with degree less than d.

We denote by λ ∈ N a security parameter. When we state that n ∈ N for
some variable n, we implicitly assume that n = poly(λ). We denote by negl(λ)
an unspecified function that is negligible in λ (namely, a function that vanishes
faster than the inverse of any polynomial in λ). When a function can be expressed
in the form 1− negl(λ), we say that it is overwhelming in λ. When we say that
A is an efficient adversary we mean that A is a family {Aλ}λ∈N of non-uniform
polynomial-size circuits. If the adversary consists of multiple circuit families
A1,A2, . . . then we write A = (A1,A2, . . . ).

Given two interactive algorithms A and B, we denote by 〈A(x), B(y)〉(z) the
output of B(y, z) when interacting with A(x, z). Note that this output could be a
random variable. If we use this notation when A or B is a circuit, we mean that
we are considering a circuit that implements a suitable next-message function to
interact with the other party of the interaction.

3.1 Indexed relations

An indexed relation R is a set of triples (i,x,w) where i is the index, x is the
instance, and w is the witness; the corresponding indexed language L(R) is the
set of pairs (i,x) for which there exists a witness w such that (i,x,w) ∈ R. For
example, the indexed relation of satisfiable boolean circuits consists of triples
where i is the description of a boolean circuit, x is a partial assignment to its
input wires, and w is an assignment to the remaining wires that makes the circuit
to output 0. Given a size bound N ∈ N, we denote by RN the restriction of R to
triples (i,x,w) with |i| ≤ N.

4 Algebraic holographic proofs

We define algebraic holographic proofs (AHPs), the notion of proofs that we use.
For simplicity, the formal definition below is tailored to univariate polynomials,
because our AHP construction is in this setting. The definition can be modified
in a straightforward way to consider the general case of multivariate polynomials.

We represent polynomials through the coefficients that define them, as opposed
to through their evaluation over a sufficiently large domain (as is typically the
case in probabilistic proofs). This definitional choice is due to the fact that we
will consider verifiers that may query the polynomials at any location in the field
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of definition. Moreover, the field of definition itself can be chosen from a given
field family, and so we make the field an additional input to all algorithms; this
degree of freedom is necessary when combining this component with polynomial
commitment schemes. Finally, we consider the setting of indexed relations (see
Section 3.1), where the verifier’s input has two parts, the index and the instance;
in the definition below, the verifier receives the index encoded and the instance
explicitly.

Formally, an algebraic holographic proof (AHP) over a field family F for
an indexed relation R is specified by a tuple

AHP = (k, s, d, I,P,V)

where k, s, d : {0, 1}∗ → N are polynomial-time computable functions and I,P,V
are three algorithms known as the indexer, prover, and verifier. The parameter k
specifies the number of interaction rounds, s specifies the number of polynomials
in each round, and d specifies degree bounds on these polynomials.

In the offline phase (“0-th round”), the indexer I receives as input a field
F ∈ F and an index i for R, and outputs s(0) polynomials p0,1, . . . , p0,s(0) ∈ F[X]
of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, s(0)) respectively. Note that the offline
phase does not depend on any particular instance or witness, and merely considers
the task of encoding the given index i.

In the online phase, given an instance x and witness w such that (i,x,w) ∈ R,
the prover P receives (F, i,x,w) and the verifier V receives (F,x) and oracle
access to the polynomials output by I(F, i). The prover P and the verifier V
interact over k = k(|i|) rounds.

For i ∈ [k], in the i-th round of interaction, the verifier V sends a message
ρi ∈ F∗ to the prover P; then the prover P replies with s(i) oracle polynomials
pi,1, . . . , pi,s(i) ∈ F[X]. The verifier may query any of the polynomials it has
received any number of times. A query consists of a location z ∈ F for an oracle
pi,j , and its corresponding answer is pi,j(z) ∈ F. After the interaction, the verifier
accepts or rejects.

The function d determines which provers to consider for the completeness and
soundness properties of the proof system. In more detail, we say that a (possibly
malicious) prover P̃ is admissible for AHP if, on every interaction with the
verifier V, it holds that for every round i ∈ [k] and oracle index j ∈ [s(i)] we have
deg(pi,j) ≤ d(|i|, i, j). The honest prover P is required to be admissible under
this definition.

We say that AHP has perfect completeness and soundness error ε if the
following holds.

– Completeness. For every field F ∈ F and index-instance-witness tuple

(i,x,w) ∈ R, the probability that P(F, i,x,w) convinces VI(F,i)(F,x) to
accept in the interactive oracle protocol is 1.

– Soundness. For every field F ∈ F , index-instance pair (i,x) /∈ L(R), and

admissible prover P̃, the probability that P̃ convinces VI(F,i)(F,x) to accept
in the interactive oracle protocol is at most ε.
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The proof length l is the sum of all degree bounds in the offline and online

phases, l(|i|) :=
∑k(|i|)
i=0

∑s(i)
j=1 d(|i|, i, j). The intuition for this definition is that in

a probabilistic proof each oracle would consist of the evaluation of a polynomial
over a domain whose size (in field elements) is linearly related to its degree bound,
so that the resulting proof length would be linearly related to the sum of all
degree bounds.

The query complexity q is the total number of queries made by the verifier to
the polynomials. This includes queries to the polynomials output by the indexer
and those sent by the prover.

All AHPs that we construct achieve the stronger property of knowledge
soundness (against admissible provers), and optionally also zero knowledge. We
define both of these properties below.

Knowledge soundness. We say that AHP has knowledge error ε if there exists
a probabilistic polynomial-time extractor E for which the following holds. For
every field F ∈ F , index i, instance x, and admissible prover P̃, the probability

that EP̃(F, i,x, 1l(|i|)) outputs w such that (i,x,w) ∈ R is at least the probability

that P̃ convinces VI(F,i)(F,x) to accept minus ε. Here the notation EP̃ means
that the extractor E has black-box access to each of the next-message functions
that define the interactive algorithm P̃. (In particular, the extractor E can
“rewind” the prover P̃.) Note that since E receives the proof length l(|i|) in unary,
E has enough time to receive, and perform efficient computations on, polynomials
output by P̃.

Zero knowledge. We say that AHP has (perfect) zero knowledge with query
bound b and query checker C if there exists a probabilistic polynomial-time simu-
lator S such that for every field F ∈ F , index-instance-witness tuple (i,x,w) ∈ R,
and (b,C)-query algorithm Ṽ the random variables View(P(F, i,x,w), Ṽ) and

SṼ(F, i,x), defined below, are identical. Here, we say that an algorithm is (b,C)-
query if it makes at most b queries to oracles it has access to, and each query
individually leads the checker C to output “ok”.

– View(P(F, i,x,w), Ṽ) is the view of Ṽ, namely, is the random variable
(r, a1, . . . , aq) where r is Ṽ’s randomness and a1, . . . , aq are the responses

to Ṽ’s queries determined by the oracles sent by P(F, i,x,w).

– SṼ(F, i,x) is the output of S(F, i,x) when given straightline access to Ṽ (S
may interact with Ṽ, without rewinding, by exchanging messages with Ṽ and
answering any oracle queries along the way), prepended with Ṽ’s randomness
r. Note that r could be of super-polynomial size, so S cannot sample r on Ṽ’s
behalf and then output it; instead, as in prior work, we restrict S to not see r,
and prepend r to S’s output.

A special case of interest. We only consider AHPs that satisfy the following
properties.

– Public coins: AHP is public-coin if each verifier message to the prover is a
uniformly random string of some prescribed length (or an empty string). All
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verifier queries can be postponed, without loss of generality, to a query phase
that occurs after the interactive phase with the prover.

– Non-adaptive queries: AHP is non-adaptive if all of the verifier’s query locations
are solely determined by the verifier’s randomness and inputs (the field F and
the instance x).

Given these properties, we can view the verifier as two subroutines that execute
in the query phase: a query algorithm QV that produces query locations based
on the verifier’s randomness, and a decision algorithm DV that accepts or rejects
based on the answers to the queries (and the verifier’s randomness). In more detail,
QV receives as input the field F, the instance x, and randomness ρ1, . . . , ρk, ρk+1,
and outputs a query set Q consisting of tuples ((i, j), z) to be interpreted as
“query pi,j at z ∈ F”; and DV receives as input the field F, the instance x, answers
(v((i,j),z))((i,j),z)∈Q, and randomness ρ1, . . . , ρk, ρk+1, and outputs the decision
bit.

While the above properties are not strictly necessary for the compiler that we
describe in the full version, all “natural” protocols that we are aware of (including
those that we construct in this paper) satisfy these properties, and so we restrict
our attention to public-coin non-adaptive protocols for simplicity.

5 AHP for constraint systems

We construct an AHP for rank-1 constraint satisfiability (R1CS) that has linear
proof length and constant query complexity. Below we define the indexed relation
that represents this problem, and then state our result.

Definition 1 (R1CS indexed relation). The indexed relation RR1CS is the
set of all triples

(i,x,w) =
(
(F, H,K,A,B,C), x, w

)
where F is a finite field, H and K are subsets of F, A,B,C are H ×H matrices
over F with |K| ≥ max{‖A‖, ‖B‖, ‖C‖}, and z := (x,w) is a vector in FH such
that Az ◦Bz = Cz.

Theorem 1. There exists an AHP for the indexed relation RR1CS that is a
zero knowledge proof of knowledge with the following features. The indexer uses
O(|K| log |K|) field operations and outputs O(|K|) field elements. The prover and
verifier exchange 7 messages. To achieve zero knowledge against b queries (with a
query checker C that rejects queries in H), the prover uses O((|K|+b) log(|K|+b))
field operations and outputs a total of O(|H|+b) field elements. The verifier makes
O(1) queries to the encoded index and to the prover’s messages, has soundness
error O((|K|+ b)/|F|), and uses O(|x|+ log |K|) field operations.

Remark 1 (restrictions on domains). Our protocol uses the univariate sumcheck
of [BCR+19] as a subroutine, and in particular inherits the requirement that the
domains H and K must be additive or multiplicative subgroups of the field F.
For simplicity, in our descriptions we use multiplicative subgroups because we
use this case in our implementation; the case of additive subgroups involves only
minor modifications. Moreover, the arithmetic complexities for the indexer and
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prover stated in Theorem 1 assume that the domains H and K are “FFT-friendly”
(e.g., they have smooth sizes); this is not a requirement, since in general the
arithmetic complexities will be that of an FFT over the domains H and K. Note
that we can assume without loss of generality that |H| = O(|K|), for otherwise
(if |K| < |H|/3) then are empty rows or columns across the matrices that we can
drop and reduce their size. Finally, we assume that |H| ≤ |F|/2.

This section is organized as follows: in Section 5.1 we introduce algebraic
notations and facts used in this section, and then in Section 5.2 we describe an
AHP for checking linear relations. Due to space constraints, we describe how to
use this latter AHP to construct our AHP for R1CS only in the full version.

Throughout we assume thatH andK come equipped with bijections φ
H

: H →
[|H|] and φ

K
: K → [|K|] that are computable in linear time. Moreover, we define

the two sets H[≤ k] := {κ ∈ H : 1 ≤ φ
H

(κ) ≤ k} and H[> k] := {κ ∈
H : φ

H
(κ) > k} to denote the first k elements in H and the remaining elements,

respectively. We can then write that x ∈ FH[≤|x|] and w ∈ FH[>|x|].

5.1 Algebraic preliminaries

Polynomial encodings. For a finite field F, subset S ⊆ F, and function
f : S → F we denote by f̂ the (unique) univariate polynomial over F with degree

less than |S| such that f̂(a) = f(a) for every a ∈ S. We sometimes abuse notation

and write f̂ to denote some polynomial that agrees with f on S, which need not
equal the (unique) such polynomial of smallest degree.

Vanishing polynomials. For a finite field F and subset S ⊆ F, we denote
by vS the unique non-zero monic polynomial of degree at most |S| that is zero
everywhere on S; vS is called the vanishing polynomial of S. If S is an additive or
multiplicative coset in F then vS can be evaluated in polylog(|S|) field operations.

For example, if S is a multiplicative subgroup of F then vS(X) = X |S| − 1 and,
more generally, if S is a ξ-coset of a multiplicative subgroup S0 (namely, S = ξS0)

then vS(X) = ξ|S|vS0
(X/ξ) = X |S| − ξ|S|; in either case, vS can be evaluated in

O(log |S|) field operations.

Derivative of vanishing polynomials. We rely on various properties of a
bivariate polynomial uS introduced in [BCG+19]. For a finite field F and subset
S ⊆ F, we define

uS(X,Y ) :=
vS(X)− vS(Y )

X − Y
,

which is a polynomial of individual degree |S|− 1 because X−Y divides Xi−Y i
for any positive integer i. Note that uS(X,X) is the formal derivative of the
vanishing polynomial vS(X). The bivariate polynomial uS(X,Y ) satisfies two
useful algebraic properties. First, the univariate polynomials (uS(X, a))a∈S are
linearly independent, and uS(X,Y ) is their (unique) low-degree extension. Second,
uS(X,Y ) vanishes on the square S×S except for on the diagonal, where it takes
on the (non-zero) values (uS(a, a))a∈S .

If S is an additive or multiplicative coset in F, uS(X,Y ) can be evaluated at
any (α, β) ∈ F2 in polylog(|S|) field operations because in this case both vS (and
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its derivative) can be evaluated in polylog(|S|) field operations. For example,

if S is a multiplicative subgroup then uS(X,Y ) = (X |S| − Y |S|)/(X − Y ) and

uS(X,X) = |S|X |S|−1, so both can be evaluated in O(log |S|) field operations.

Univariate sumcheck for subgroups. Prior work [BCR+19] shows that,
given a multiplicative subgroup S of F, a polynomial f(X) sums to σ over S if
and only if f(X) can be written as h(X)vS(X) +Xg(X) + σ/|S| for some h(X)
and g(X) with deg(g) < |S| − 1. This can be viewed as a univariate sumcheck
protocol, and we shall rely on it throughout this section.

5.2 AHP for the lincheck problem

The lincheck problem for univariate polynomials considers the task of deciding
whether two polynomials encode vectors that are linearly related in a prescribed
way. In more detail, the problem is parametrized by a field F, two subsets H and
K of F, and a matrix M ∈ FH×H with |K| ≥ ‖M‖ > 0. Given oracle access to

two low-degree polynomials f1, f2 ∈ F<d[X], the problem asks to decide whether
for every a ∈ H it holds that f1(a) =

∑
b∈HMa,b ·f2(b), by asking a small number

of queries to f1 and f2. The matrix M thus prescribes the linear relations that
relate the values of f1 and f2 on H.

Ben-Sasson et al. [BCR+19] solve this problem by reducing the lincheck
problem to a sumcheck problem, and then reducing the sumcheck problem to low-
degree testing (of univariate polynomials). In particular, this prior work achieves
a 2-message algebraic non-holographic protocol that solves the lincheck problem
with linear proof length and constant query complexity. In this section we show
how to achieve a 6-message algebraic holographic protocol, again with linear proof
length and constant query complexity. In Section 5.2.1 we describe the indexer
algorithm, in Section 5.2.2 we describe the prover and verifier algorithms. In the
full version we provide a diagram that summarizes the protocol, and provide
completeness, soundness, and efficiency analyses.

5.2.1 Offline phase: encoding the linear relation

The indexer I for the lincheck problem receives as input a field F, two subsets
H and K of F, and a matrix M ∈ FH×H with |K| ≥ ‖M‖. The non-zero entries
of M are assumed to be presented in some canonical order (e.g., row-wise or

column-wise). The output of I is three univariate polynomials ˆrow, ĉol, v̂al over
F of degree less than |K| such that the following polynomial is a low-degree
extension of M :

M̂(X,Y ) :=
∑
κ∈K

uH(X, ˆrow(κ))uH(Y, ĉol(κ))v̂al(κ) . (1)

The three three aforementioned polynomials are the (unique) low-degree exten-
sions of the three functions row, col, val : K → F that respectively represent the
row index, column index, and value of the non-zero entries of the matrix M . In
more detail, for every κ ∈ K with 1 ≤ φ

K
(κ) ≤ ‖M‖:

– row(κ) := φ−1
H

(tκ) where tκ is the row index of the φ
K

(κ)-th nonzero entry in
M ;
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– col(κ) := φ−1
H

(tκ) where tκ is the column index of the φ
K

(κ)-th nonzero entry
in M ;

– val(κ) is the value of the φ
K

(κ)-th nonzero entry in M , divided by
uH(row(κ), row(κ))uH(col(κ), col(κ)).

Also, val(κ) returns the element 0 for every κ ∈ K with φ
K

(κ) > ‖M‖, while
row(κ) and col(κ) return an arbitrary element in H for such κ. The evaluation
tables of these functions can be found in O(|K| log |H|) operations, from which
interpolation yields the desired polynomials in O(|K| log |K|) operations.

Recall from Section 5.1 that the bivariate polynomial uH(X,Y ) vanishes on the
square H ×H except for on the diagonal, where it takes on the (non-zero) values

(uH(a, a))a∈H . By construction of the polynomials ˆrow, ĉol, v̂al, the polynomial

M̂(X,Y ) agrees with the matrix M everywhere on the domain H × H. The
individual degree of M̂(X,Y ) is less than |H|. Thus, M̂ is the unique low-degree
extension of M .

We rewrite the polynomial M̂(X,Y ) in a form that will be useful later:

Claim 1.

M̂(X,Y ) =
∑
κ∈K

vH(X)

(X − ˆrow(κ))
· vH(Y )

(Y − ĉol(κ))
· v̂al(κ) . (2)

Proof. Note that vH( ˆrow(κ)) = vH(ĉol(κ)) = 0 for every κ ∈ K because ˆrow(X)

and ĉol(X) map K to H and vH vanishes on H. Therefore:

M̂(X,Y ) =
∑
κ∈K

uH(X, ˆrow(κ)) · uH(Y, ĉol(κ)) · v̂al(κ)

=
∑
κ∈K

vH(X)− vH( ˆrow(κ))

X − ˆrow(κ)
· vH(Y )− vH(ĉol(κ))

Y − ĉol(κ)
· v̂al(κ)

=
∑
κ∈K

vH(X)

(X − ˆrow(κ))
· vH(Y )

(Y − ĉol(κ))
· v̂al(κ) .

5.2.2 Online phase: proving and verifying the linear relation

The prover P for the lincheck problem receives as input a field F, two subsets
H and K of F, a matrix M ∈ FH×H with |K| ≥ ‖M‖, and two polynomials

f1, f2 ∈ F<d[X]. The verifier V for the lincheck problem receives as input the
field F and two subsets H and K of F; V also has oracle access to the polynomials
ˆrow, ĉol, v̂al output by the indexer I invoked on appropriate inputs.

The protocol begins with a reduction from a lincheck problem to a sumcheck
problem: V samples a random element α ∈ F and sends it to P. Indeed, letting
r(X,Y ) denote the polynomial uH(X,Y ), P is left to convince V that the
following univariate polynomial sums to 0 on H:

q1(X) := r(α,X)f1(X)− rM (α,X)f2(X) (3)
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where rM (X,Y ) :=
∑
κ∈H r(X,κ)M̂(κ, Y ).

We rely on the univariate sumcheck protocol for this step: P sends to V the
polynomials g1(X) and h1(X) such that q1(X) = h1(X)vH(X) + Xg1(X). In
order to check this polynomial identity, V samples a random element β1 ∈ F
with the intention of checking the identity at X := β1. For the right-hand side, V
queries g1 and h1 at β1, and then evaluates h1(β1)vH(β1)+β1g1(β1) in O(log |H|)
operations. For the left-hand side, V queries f1 and f2 at β1 and then needs
to ask help from P to evaluate r(α, β1)f1(β1) − rM (α, β1)f2(β1). The reason
is that while r(α, β1) is easy to evaluate (it requires O(log |H|) operations),
rM (α, β1) =

∑
κ∈H r(α, κ)M̂(κ, β1) in general requires Ω(|H||K|) operations.

We thus rely on the univariate sumcheck protocol again. We define

q2(X) := r(α,X)M̂(X,β1) (4)

V sends β1 to P, and then P replies with the sum σ2 :=
∑
κ∈H r(α, κ)M̂(κ, β1)

and the polynomials g2(X) and h2(X) such that q2(X) = h2(X)vH(X)+Xg2(X)+
σ2/|H|. In order to check this polynomial identity, V samples a random element
β2 ∈ F with the intention of checking the identity at X := β2. For the right-hand
side, V queries g2 and h2 at β2, and then evaluates h2(β2)vH(β2) + β2g2(β2) +
σ2/|H| in O(log |H|) operations. To evaluate the left-hand side, however, V
needs to ask help from P. The reason is that while r(α, β2) is easy to evaluate (it
requires O(log |H|) operations), M̂(β2, β1) in general requires Ω(|K|) operations.

We thus rely on the univariate sumcheck protocol (yet) again: V sends β2

to P, and then P replies with the value σ3 := M̂(β2, β1), which the verifier
must check. Note though that we cannot use the sumcheck protocol directly to
compute the sum obtained from Eq. (1):

M̂(β2, β1) =
∑
κ∈K

uH(β2, ˆrow(κ))uH(β1, ĉol(κ))v̂al(κ) .

The reason is because the degree of the above addend, if we replace κ with an
indeterminate, is Ω(|H||K|), which means that the degree of the polynomial
h3 sent as part of a sumcheck protocol also has degree Ω(|H||K|), which is not
within our budget of an AHP with proof length O(|H|+ |K|). Instead, we make
the minor modification that in the earlier rounds β1 and β2 are sampled from
F \ H instead of F, and we will leverage the sumcheck protocol to verify the
equivalent (well defined) expression from Eq. (2):

M̂(β2, β1) =
∑
κ∈K

vH(β2)vH(β1)v̂al(κ)

(β2 − ˆrow(κ))(β1 − ĉol(κ))
.

This may appear to be an odd choice, because if we replace κ with an indetermi-
nate in the sum above, we obtain a rational function that is (in general) not a
polynomial, and so does not immediately fit the sumcheck protocol. Nevertheless,
we are still able to use the sumcheck protocol with it, as we now explain.

Define f3(X) to be the (unique) polynomial of degree less than |K| such that

∀κ ∈ K , f3(κ) =
vH(β2)vH(β1)v̂al(κ)

(β2 − ˆrow(κ))(β1 − ĉol(κ))
. (5)
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The prover computes the polynomials g3(X) and h3(X) such that

f3(X) = Xg3(X) + σ3/|K| ,

h3(X)vK(X) = vH(β2)vH(β1)v̂al(X)− (β2 − ˆrow(X))(β1 − ĉol(X))f3(X) .

The first equation demonstrates that f3 sums to σ3 over K, and the second
equation demonstrates that f3 agrees with the correct addends over K. These
two equations can be combined in a single equation that involves only g3(X) and
h3(X):

h3(X)vK(X) = vH(β2)vH(β1)v̂al(X)

− (β2 − ˆrow(X))(β1 − ĉol(X))(Xg3(X) + σ3/|K|) .

The prover thus only sends the two polynomials g3(X) and h3(X). In order
to check this polynomial identity, V samples a random element β3 ∈ F with
the intention of checking the identity at X := β3. Then V queries g3, h3, ˆrow,
ĉol, v̂al at β3, and then evaluates vH(β2)vH(β1)v̂al(β3) − (β2 − ˆrow(β3))(β1 −
ĉol(β3))(β3g3(β3) + σ3/|K|) = h3(β3)vK(β3) in O(log |K|) operations.

If this third test passes then V can use the value σ3 in place of M̂(β2, β1)
to finish the second test. If this latter passes, V can in turn use the value σ2 in
place of rM (α, β1) to finish the first test.
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