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Abstract. Consider the setup where n parties are each given an ele-
ment xi in the finite field Fq and the goal is to compute the sum

∑
i xi

in a secure fashion and with as little communication as possible. We
study this problem in the anonymized model of Ishai et al. (FOCS 2006)
where each party may broadcast anonymous messages on an insecure
channel.

We present a new analysis of the one-round “split and mix” protocol of
Ishai et al. In order to achieve the same security parameter, our analysis
reduces the required number of messages by a Θ(logn) multiplicative
factor.

We also prove lower bounds showing that the dependence of the number
of messages on the domain size, the number of parties, and the security
parameter is essentially tight.

Using a reduction of Balle et al. (2019), our improved analysis of the
protocol of Ishai et al. yields, in the same model, an (ε, δ)-differentially
private protocol for aggregation that, for any constant ε > 0 and any
δ = 1

poly(n)
, incurs only a constant error and requires only a constant

number of messages per party. Previously, such a protocol was known
only for Ω(logn) messages per party.

Keywords: Secure Aggregation · Anonymous Channel · Shuffled Model
· Differential Privacy.

1 Introduction

We study one-round multi-party protocols for the problem of secure aggrega-
tion: Each of n parties holds an element of the field Fq and we wish to compute
the sum of these numbers, while satisfying the security property that for every
two inputs with the same sum, their transcripts are “indistinguishable.” The
protocols we consider work in the anonymized model, where parties are able
to send anonymous messages through an insecure channel and indistinguisha-
bility is in terms of the statistical distance between the two transcripts (i.e.,
this is information-theoretic security rather than computational security). This
model was introduced by Ishai et al. [17] in their work on cryptography from



anonymity3. We refer to [17, 8] for a discussion of cryptographic realizations of
an anonymous channel.

The secure aggregation problem in the anonymized model was studied al-
ready by Ishai et al. [17], who gave a very elegant one-round “split and mix”
protocol. Under their protocol, each party i holds a private input xi and sends
m anonymized messages consisting of random elements of Fq that are condi-
tioned on summing to xi. Upon receiving these mn anonymized messages from
n parties, the server adds them up and outputs the result. Pseudocode of this
protocol is shown as Algorithm 1. Ishai et al. [17] show that as long as m exceeds
a threshold of Θ (log n+ σ + log q), this protocol is σ-secure in the sense that
the statistical distance between transcripts resulting from inputs with the same
sum is at most 2−σ.

Differentially Private Aggregation in the Shuffled Model. An exciting recent de-
velopment in differential privacy is the shuffled model, which is closely related to
the aforementioned anononymized model. The shuffled model provides a middle
ground between two widely-studied models of differential privacy. In the central
model, the data structure released by the analyst is required to be differentially
private, whereas the local model enforces the more stringent requirement that
the messages sent by each party be private. While protocols in the central model
generally allow better accuracy, they require a much greater level of trust to be
placed in the analyzer, an assumption that may be unsuitable for certain appli-
cations. The shuffled model is based on the Encode-Shuffle-Analyze architecture
of [6] and was first analytically studied by [12, 8] and further studied in recent
work [4, 13]. It seeks to bridge the two aforementioned models and assumes the
presence of a trusted shuffler that randomly permutes all incoming messages
from the parties before passing them to the analyzer (see Section 2 for formal
definitions.) The shuffled model is particularly compelling because it allows the
possibility of obtaining more accurate communication-efficient protocols than in
the local model while placing far less trust in the analyzer than in the central
model. Indeed, the power of the shuffled model has been illustrated by a number
of recent works that have designed algorithms in this model for a wide range
of problems such as privacy amplification, histograms, heavy hitters, and range
queries [8, 12, 4, 13, 11].

The appeal of the shuffled model provides the basis for our study of dif-
ferentially private protocols for aggregation in this work. Most relevant to the
present work are the recent differentially private protocols for aggregation of
real numbers in the shuffled model provided by [8, 4, 15, 3]. The strongest of
these results [3] shows that an extension of the split and mix protocol yields an
(ε, δ)-differentially private protocol for aggregation with error O(1 + 1/ε) and
m = O(log(n/δ)) messages, each consisting of O(log n) bits.

3 Ishai et al. in fact considered a more general model in which the adversary is allowed
to corrupt some of the parties; please refer to the discussion at the end of Section 1.1
for more details.
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1.1 Our Results

Upper bound. We prove that the split and mix protocol is in fact secure for a
much smaller number of messages. In particular, for the same security parameter
σ, the number of messages required in our analysis is Θ(log n) times smaller than
the bound in [17]:

Theorem 1 (Improved upper bound for split and mix). Let n and q be
positive integers and σ be a positive real number. The split and mix protocol (Al-
gorithm 1 and [17]) with n parties and inputs in Fq is σ-secure for m messages,

where m = O
(

1 + σ+log q
logn

)
.

An interesting case to keep in mind is when the field size q and the inverse
statistical distance 2σ are bounded by a polynomial in n. In this case, Theorem 1
implies that the protocol works already with a constant number of messages,
improving upon the known O(log n) bound.

Lower bound. We show that, in terms of the number of messages m sent by each
party, Theorem 1 is essentially tight not only for just the split and mix protocol
but also for every one-round protocol.

Theorem 2 (Lower bound for every one-round protocol). Let n and q
be positive integers, and σ ≥ 1 be a real number. In any σ-secure, one-round
aggregation protocol over Fq in the anonymized model, each of the n parties

must send Ω
(

1 + σ
log(σn) + log q

logn

)
messages.

The lower bound holds regardless of the message size and asymptotically
matches the upper bound under the very mild assumption that σ is bounded
by a polynomial in n. Furthermore, when σ is larger, the bound is tight up to a

factor O
(

log σ
logn

)
.

We point out that Theorem 2 provides a nearly-tight lower bound on the
number of messages. In terms of the total communication per party, improve-
ments are still possible when σ+ log q = ω(log n). We discuss this further, along
with other interesting open questions, in Section 5.

Corollary for Differentially Private Aggregation. As stated earlier, the differen-
tially private aggregation protocols of [3, 15] both use extensions of the split and
mix protocol. Moreover, Balle et al. use the security guarantee of the split and
mix protocol as a blackbox and derive a differential privacy guarantee from it [3,
Lemma 4.1]. Specifically, when ε is a constant and δ ≥ 1

poly(n) , their proof uses

the split and mix protocol with field size q = poly(n). Previous analyses required
m = Ω(log n); however, our analysis works with a constant number of messages.
In general, Theorem 1 implies (ε, δ)-differential privacy with a factor Θ(log n)
fewer messages than known before:
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Corollary 1 (Differentially private aggregation in the shuffled model).
Let n be a positive integer, and let ε, δ be positive real numbers. There is an
(ε, δ)-differentially private aggregation protocol in the shuffled model for inputs

in [0, 1] having absolute error O(1 + 1/ε) in expectation, using O
(

1 + log(1/δ)
logn

)
messages per party, each consisting of O(log n) bits.

A more comprehensive comparison between our differentially private aggre-
gation protocol in Corollary 1 and previous protocols is presented in Figure 1.

We end this subsection by remarking that Ishai et al. [17] in fact considered
a setting that is more general than what we have described so far. Specifically,
they allow the adversary to corrupt a certain number of parties. In addition to
the transcript of the protocol, the adversary knows the input and messages of
these corrupted parties. (Alternatively, one can think of these corrupted parties
as if they are colluding to learn the information about the remaining parties.)
As already observed in [17], the security of the split and mix protocol still holds
in this setting except that n is now the number of honest (i.e., uncorrupted)
parties. In other words, Theorem 1 remains true in this more general setup but
with n being the number of honest parties instead of the total number of parties.

Discussion and comparison of parallel and subsequent work. Concurrently and
independently of our work, Balle et al. [2, 5] obtained an upper bound that
is asymptotically the same as the one in Theorem 1. They also give explicit
constants, whereas we state our theorem in asymptotic notation and do not
attempt to optimize the constants in our proof.

A key difference between our work and theirs is that in addition to the
analysis of the split and mix protocol, we manage to prove a matching lower
bound on the required number of messages for any protocol (see Theorem 2),
which establishes the near-tightness of the algorithmic guarantees in our upper
bound. Our lower bound approach could potentially be applied to other problems
pertaining to the anonymous model and possibly differential privacy.

The upper bound proofs use different techniques. Balle et al. reduce the ques-
tion to an analysis of the number of connected components of a certain random
graph, while our proof analyzes the rank deficiency of a carefully-constructed
random matrix. While the upper bound of Balle et al. is shown for summa-
tion over any abelian group, our proofs are presented for finite fields. We note,
though, that our lower bound proof carries over verbatim to any abelian group.

A subsequent work [14] obtained an (ε, 0)-differentially private aggregation
protocol with error Oε(1) and where each user sends Oε(log3 n) messages each
consisting of O(log log n) bits (see Figure 1 for the explicit bounds).

1.2 Applications and Related Work

At first glance it may seem that aggregation is a rather limited primitive for
combining data from many sources in order to analyze it. However, in impor-
tant approaches to machine learning and distributed/parallel data processing,
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the mechanism for combining computations of different parties is aggregation of
vectors. Since we can build vector aggregation in a straightforward way from
scalar aggregation, our results can be applied in these settings.

Before discussing this in more detail, we mention that it is shown in [17]
that summation protocols can be used as building blocks for realizing general
secure computations in a specific setup where a server mediates computation
of a function on data held by n other parties. However, the result assumes a
somewhat weak security model (see in Appendix D of [17] for more details).

Machine Learning and Data Analytics. Secure aggregation has applications in
so-called federated machine learning [21] (see, e.g., [18] for a recent survey). The
idea is to train a machine learning model without collecting data from any party,
and instead compute weight updates in a distributed manner by sending model
parameters to all parties, locally running stochastic gradient descent on private
data, and aggregating model updates over all parties. For learning algorithms
based on gradient descent, a secure aggregation primitive can be used to compute
global weight updates without compromising privacy [23, 24]. It is known that
gradient descent can work well even if data is accessible only in noised form, in
order to achieve differential privacy (e.g., [1, 25]).

Beyond gradient descent, as observed in [8], we can translate any statistical
query over a distributed data set to an aggregation problem over numbers in
[0, 1]. That is, every learning problem solvable using a small number of statistical
queries [19] can be solved privately and efficiently based on secure aggregation.

Moreover, very recent work in eye-tracking research [22, 29] study differential
privacy for eye-tracking tasks, the most basic of which is the aggregation of users’
gaze maps.

Sketching. Research in the area of data stream algorithms has uncovered many
non-trivial algorithms that are compact linear sketches, see, e.g., [9, 31]. As noted
already in [17], linear sketches can be implemented using secure aggregation by
computing linear sketches locally, and then using aggregation to compute their
sum which yields the sketch of the whole dataset. Typically, linear sketches do
not reveal much information about their input, and are robust to the noise
needed to ensure differential privacy, though specific guarantees depend on the
sketch in question. We refer to [20, 26, 27] for examples and further discussion.

Secure aggregation protocols. Secure aggregation protocols are well-studied, both
under cryptographic assumptions and with respect to differential privacy. We
refer to the survey of Goryczka et al. [16] for an overview, but note that our
approach leads to protocols that use less communication than existing (multi-
round) protocols. The trust assumptions needed for implementing a shuffler (e.g.,
using a mixnet) are, however, slightly different from the assumptions typically
used for secure aggregation protocols. Practical secure aggregation typically re-
lies on an honest-but-curious assumption, see e.g. [7]. In that setting, such pro-
tocols typically require five rounds of communication with Ω(n) bits of com-
munication and Ω(n2) computation per party. A more recent work [28] using
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Reference #messages / n Message size Expected error

Cheu et al. [8]
ε
√
n

`
1

1
ε

log n
δ

√
n/`+ 1

ε
log 1

δ

Balle et al. [4] 1 logn n1/6 log1/3(1/δ)

ε2/3

Ghazi et al. [15] log( n
εδ

) log(n
δ

) 1
ε

√
log 1

δ

Balle et al. [3] log(n
δ

) logn 1
ε

This work (Corollary 1) 1 + log(1/δ)
logn

logn 1
ε

Ghazi et al. [14] (δ = 0) log3 n
ε

log log n

√
log(1/ε)

ε3/2

Fig. 1. Comparison of differentially private aggregation protocols in the shuffled model
with (ε, δ)-differential privacy. The number of parties is n, and ` is an integer parameter.
Message sizes are in bits. For readability, we assume that ε ≤ O(1), and asymptotic
notations are suppressed.

homomorphic threshold encryption gives a protocol with three messages and
constant communication and computation per party in addition to a (reusable)
two-message setup (consisting of Ω(n) communication per party). By contrast,
our aggregation protocol has a single round of constant communication and com-
putation per party, albeit in the presence of a trusted shuffler. We note that for
an apples to apples comparison of these approaches, one would need to look at
actual implementations of the shuffler which is beyond the scope of this work.

Other related models. A very recent work [30] has designed an extension of the
shuffled model, called Multi Uniform Random Shufflers and analyzed its trust
model and privacy-utility tradeoffs. Since they consider a more general model,
our differentially private aggregation protocol would hold in their setup as well.

There has also been work on aggregation protocols in the multiple servers
setting, e.g., the PRIO system [10]; here the protocol is secure as long as at least
one server is honest. Thus trust assumptions of PRIO are somewhat different
from those underlying shuffling and mixnets. While each party would be able to
check the output of a shuffler, to see if its message is present, such a check is not
possible in the PRIO protocol making server manipulation invisible even if the
number of parties is known. On the other hand, PRIO handles malicious parties
that try to manipulate the result of a summation by submitting illegal data — a
challenge that has not been addressed yet for summation in the shuffled model
but that would be interesting future work.

1.3 The Split and Mix Protocol

The protocol of [17] is shown in Algorithm 1. To describe the main guarantee
proved in [17] regarding Algorithm 1, we need some notation. For any input
sequence x ∈ Fnq , we denote by Sx the distribution on Fmnq obtained by sampling
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ym(i−1)+1, . . . , ymi ∈ Fq uniformly at random conditioned on ym(i−1)+1 + · · · +
ymi = xi, sampling a random permutation π : [mn] → [mn], and outputting
(yπ(1), . . . , yπ(mn)). Ishai et al. [17] proved that for some m = O(log n+σ+log q)
and for any two input sequences x,x′ ∈ Fnq having the same sum (in Fq), the
distributions Sx and Sx′ are 2−σ-close in statistical distance.

Algorithm 1: Split and mix encoder from [17]

Input: x ∈ Fq, positive integer parameter m
Output: Multiset {y1, . . . , ym} ⊆ Fq
for j = 1, . . . ,m− 1 do

yj ← Uniform(Fq)
ym ← x−

∑m−1
j=1 yj (in Fq)

return {y1, . . . , ym}

1.4 Overview of Proofs

We now give a short overview of the proofs of Theorems 1 and 2. For ease of
notation, we define Bs to be the set of all input vectors x = (x1, x2, . . . , xn) ∈ Fnq
with a fixed sum x1 + x2 + · · ·+ xn = s.

Upper Bound. To describe the main idea behind our upper bound, we start
with the following notation. For every x ∈ Fq, we denote by Sx the uniform
distribution on Fmnq conditioned on all coordinates summing to x.

To prove Theorem 1, we have to show that for any two input sequences
x,x′ ∈ Fnq such that

∑
i∈[n] xi =

∑
i∈[n] x

′
i, the statistical distance between Sx

and Sx′ is at most γ = 2−σ. By the triangle inequality, it suffices to show that
the statistical distance between Sx and Sx1+···+xn is at most γ/2. (Theorem 3).
Note that Sx1+···+xn puts equal mass on all vectors in Fmnq whose sum is equal
to x1 + · · · + xn. Thus, our task boils down to showing that the mass put by
Sx on a random sample from Sx1+···+xn is well-concentrated. We prove this
via a second order method (specifically, Chebyshev’s inequality). This amounts
to computing the mean and bounding the variance. The former is a simple
calculation whereas the latter is more technically involved and reduces to proving
a probabilistic bound (Theorem 4) on the rank deficit of a certain random matrix
(specified in Definitions 7 and 8). A main ingredient in the proof of this bound
is a combinatorial characterization (Lemma 2) of the rank deficit of the relevant
matrices in terms of matching partitions (given in Definition 9).

Lower Bound. For the lower bound (Theorem 2), our proof consists of two parts:

a “security-dependent” lower bound m ≥ Ω
(

σ
log(σn)

)
and a “field-dependent”

lower bound m ≥ Ω
(

log q
logn

)
. Combining these two yields Theorem 2. We start
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by outlining the field-dependent bound as it is simpler before we outline the
security-dependent lower bound which is technically more challenging.

Field-Dependent Lower Bound. To prove the field-dependent lower bound (for-
mally stated in Theorem 5), the key idea is to show that for any s ∈ Fq, there
exist distinct inputs x,x′ ∈ Bs such that the statistical distance between Sx and
Sx′ is at least 1 − nnm/qn−1 (see Lemma 4). We do so by proving the same
quantitative lower bound on the average statistical distance between Sx and Sx′
over all pairs x,x′ ∈ Bs.

The average statistical distance described above can be written as the sum,
over all y, of the average difference in probability mass assigned to y by x and
x′. Thus, we consider how to lower bound this coordinate-wise probability mass
difference for an arbitrary y.

There are at most nnm ways to associate each of the nm elements of y with a
particular party. Since any individual party’s encoding uniquely determines the
corresponding input, it follows that any shuffled output y could have arisen from
at most nnm inputs x. Moreover, since there are exactly qn−1 input vectors x ∈
Bs, it follows that there are at least qn−1−nnm possible inputs x ∈ Bs that cannot
possibly result in y as an output. This implies that the average coordinate-wise

probability mass difference, over all x,x′ ∈ Bs, is at least
(

1− qn−1

nnm

)
times the

average probability mass assigned to y over all inputs in Bs. Summing this up
over all y yields the desired bound.

Security-Dependent Lower Bound. To prove the security-dependent lower bound,
it suffices to prove the following statement (see Theorem 7): if Enc is the encoder
of any aggregation protocol in the anonymized model for n > 2 parties with m
messages sent per party, then there is a vector x ∈ B0 such that the statistical
distance between the distributions of the shuffled output y corresponding to
inputs 0 and x is at least 1

(10nm)5m .

Let us first sketch a proof for the particular case of the split and mix protocol.
In this case, we set x = (1, 1, . . . , 1︸ ︷︷ ︸

n−1

,−(n−1)), and we will bound from below the

statistical distance by considering the “distinguisher” A which chooses a random
permutation π : [nm]→ [nm] and accepts iff yπ(1)+· · ·+yπ(m) = 0. We can argue
(see Subsection 4.2) that the probability that A accepts under the distribution
S0 is larger by an additive factor of 1

(en)m than the probability that it accepts

under the distribution Sx. To generalize this idea to arbitrary encoders (beyond
Ishai et al.’s protocol), it is natural to consider a distinguisher which accepts iff
yπ(1), . . . , yπ(m) is a valid output of the encoder when the input is zero. Unlike
the case of Ishai et al., in general when π(1), . . . , π(m) do not all come from the
same party, it is not necessarily true that the acceptance probability would be
the same for both distributions. To circumvent this, we pick the smallest integer
t such that the t-message marginal of the encoding of 0 and that of input 1 are
substantially different, and we let the distinguisher perform an analogous check
on yπ(1), . . . , yπ(t) (instead of yπ(1), . . . , yπ(m) as before). Another complication
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that we have to deal with is that we can no longer consider the input vector
(1, · · · , 1,−(n − 1)) as in the lower bound for Ishai et al.’s protocol sketched
above. This is because the t-message marginal of the encoding of −(n− 1) could
deviate from that for input 0 more substantially than from that for input 1,
which could significantly affect the acceptance probability. Hence, to overcome
this issue, we instead set x∗ to the minimizer of this value t among all elements
of Fq, and use the input vector x = (x∗, . . . , x∗,−(n−1)x∗) (for more details we
refer the reader to the full proof in Subsection 4.2).

Organization of the Rest of the Paper

We start with some preliminaries in Section 2. We prove our main upper bound
(Theorem 1) in Section 3. We prove our lower bound (Theorem 2) in Section 4.
The proof of Corollary 1 appears in Appendix B.

2 Preliminaries

2.1 Protocols

In this paper, we are concerned with answering the question of how many mes-
sages are needed for protocols to achieve certain security or cryptographic guar-
antees. We formally define the notion of protocols in the models of interest to
us.

We first define the notion of a secure protocol in the shuffled model. An
n-user secure protocol in the shuffled model, P = (Enc,A), consists of a ran-
domized encoder (also known as local randomizer) Enc : X → Ym and an
analyzer A : Ynm → Z. Here, Y is known as the message alphabet, Ym is
the message space for each user, and Z is the output space of the protocol.
The protocol P implements the following mechanism: each party i holds an
input xi ∈ X and encodes xi as Encxi . (Note that Encxi is possibly random
based on the private randomness of party i.) The concatenation of the encod-
ings, y = (Encx1

,Encx2
, . . . ,Encxn) ∈ Ynm is then passed to a trusted shuf-

fler, who chooses a uniformly random permutation π on nm elements and ap-
plies π to y. The output is submitted to the analyzer, which then outputs
P(x) = A(π(y)) ∈ Z.

In this paper, we will be concerned with protocols for aggregation, in which
X = Z = Fq (a finite field on q elements) and Y = [`] = {1, 2, . . . , `}, and

A(π(Encx1 ,Encx2 , . . . ,Encxn)) =

n∑
i=1

xi,

i.e., the protocol always outputs the sum of the parties’ inputs, regardless of the
randomness over the encoder and the shuffler.

A related notion that we consider in this work is a one-round protocol
P = (Enc,A) in the anonymized model. The notion is similar to that of a se-
cure protocol in the shuffled model except that there is no shuffler. Rather, the
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analyzer A receives a multiset of nm messages obtained by enumerating all m
messages of each of the n parties’ encodings. It is straightforward to see that the
two models are equivalent, in the sense that a protocol in one model works in
the other and the distributions of the view of the analyzer are the same.

2.2 Distributions Related to a Protocol

To study a protocol and determine its security and privacy, it is convenient
to define notations for several probability distributions related to the protocol.
First, we use EEncx to denote the distribution of the (random) encoding of x:

Definition 1. For a protocol P with encoding function Enc, we let EEncx denote
the distribution of outputs over Ym obtained by applying Enc to x ∈ X .

Furthermore, for a vector x ∈ Xn, we use EEncx to denote the distribution of
the concatenation of encodings of x1, . . . , xn, as stated more formally below.

Definition 2. For an n-party protocol P with encoding function Enc and x ∈
Xn, we let EEncx denote the distribution over Ynm obtained by applying Enc in-
dividually to each element of x, i.e.,

EEncx ∼
(
EEncx1

, EEncx2
, . . . , EEncxn

)
.

Finally, we define SEncx to be EEncx after random shuffling. Notice that SEncx is
the distribution of the transcript seen at the analyzer.

Definition 3. For an n-party protocol P with encoding function Enc and x ∈
Xn, we let SEncx denote the distribution over Ynm obtained by applying Enc to
the elements of x and then shuffling the resulting nm-tuple, i.e.,

SEncx ∼ π ◦ EEncx

for π a uniformly random permuation over nm elements.

2.3 Security and Privacy

Given two distributions D1 and D2, we let SD(D1,D2) denote the statistical
distance (aka the total variation distance) between D1 and D2.

We begin with a notion of σ-security for computation of a function f , which
essentially says that distinct inputs with a common function value should be
(almost) indistinguishable:

Definition 4 (σ-security). An n-user one-round protocol P = (Enc,A) in the
anonymized model is said to be σ-secure for computing a function f : Xn → Z
if for any x,x′ ∈ Xn such that f(x) = f(x′), we have

SD
(
SEncx ,SEncx′

)
≤ 2−σ.
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In this paper, we will primarily be concerned with the function that sums
the inputs of each party, i.e., f : Fnq → Fq given by f(x1, x2, . . . , xn) =

∑n
i=1 xi.

We now define the notion of (ε, δ)-differential privacy. We say that two input
vectors x = (x1, x2, . . . , xn) ∈ Xn and x′ = (x′1, x

′
2, . . . , x

′
n) ∈ Xn are neighboring

if they differ on at most one party’s data, i.e., xi = x′i for all but one value of i.

Definition 5 ((ε, δ)-differential privacy). An algorithm M : X ∗ → Z is
(ε, δ)-differentially private if for every neighboring input vectors x,x′ ∈ Xn and
every S ⊆ Z, we have

Pr[M(x) ∈ S] ≤ eε · Pr[M(x′) ∈ S] + δ,

where probability is over the randomness of M .

We now define (ε, δ)-differential privacy specifically in the shuffled model.

Definition 6. A protocol P with encoder Enc : X → Zm is (ε, δ)-differentially
private in the shuffled model if the algorithm M : Xn → Znm given by

M(x1, x2, . . . , xn) = π(Encx1
,Encx2

, . . . ,Encxn)

is (ε, δ)-differentially private, where π is a uniformly random permutation on
nm elements.

3 Proof of Theorem 1

In this section, we prove Theorem 1, i.e., that the split and mix protocol of Ishai

et al. is σ-secure even for m = Θ
(

1 + σ+log q
logn

)
messages, improving upon the

known bounds of O(log n+ σ + log q) [17, 3, 15].

Since we only consider Ishai et al.’s split and mix protocol in this section, we
will drop the superscript from SEncx and simply write Sx to refer to the shuffled
output distribution of the protocol. Recall that, by the definition of the protocol,
Sx is generated as follows: for every i ∈ [n], sample ym(i−1)+1, . . . , ymi ∈ Fq
uniformly at random conditioned on ym(i−1)+1 + · · · + ymi = xi. Then, pick a
random permutation π : [mn]→ [mn] and output (yπ(1), . . . , yπ(mn)).

Showing that the protocol is σ-secure is by definition equivalent to showing
that SD(Sx,Sx′) ≤ 2−σ for all inputs x,x′ ∈ Fnq such that

∑
i∈[n] xi =

∑
i∈[n] xi.

In fact, we prove a stronger statement, that each Sx is γ-close (in statistical
distance) to the distribution that is uniform over all vectors in Fmnq whose sum
of all coordinates is equal to

∑
i∈[n] xi, as stated below.

Theorem 3. For every a ∈ Fq, let Sa denote the distribution on Fmnq gener-
ated uniformly at random conditioned on all coordinates summing to a. For any
parameter γ > 0 and any m ≥ Θ(1 + logn(q/γ)), the following holds: for every
x ∈ Fnq , the statistical distance between Sx and Sx1+···+xn is at most γ.
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When plugging in γ = 2−σ−1, Theorem 3 immediately implies Theorem 1
via the triangle inequality.

We now outline the overall proof approach. First, observe that Sx1+···+xn puts
probability mass equally across all vectors t ∈ Fmnq whose sum of all coordinates
is x1+· · ·+xn, whereas Sx puts mass proportional to the number of permutations
π : [mn]→ [mn] such that y := (tπ−1(1), . . . , tπ−1(mn)) satisfies ym(i−1)+1 + · · ·+
ymi = xi for all i ∈ [n]. Thus, our task boils down to proving that this latter
number is well-concentrated (for a random t ∈ supp(Sx1+···+xn)). We prove this
via a second moment method (specifically Chebyshev’s inequality). Carrying this
out amounts to computing the first moment and upper-bounding the second
moment of this number. The former is a simple calculation, whereas the latter
involves proving an inequality regarding the rank of a certain random matrix
(Theorem 4). We do so by providing a combinatorial characterization of the
rank deficit of the relevant matrices (Lemma 2).

The rest of this section is organized as follows. In Subsection 3.1, we define
appropriate random variables, state the bound we want for the second moment
(Lemma 4), and show how it implies our main theorem (Theorem 3). Then, in
Subsection 3.2, we relate the second moment to the rank of a random matrix
(Proposition 1). Finally, we give a probabilistic bound on the rank of such a
random matrix in Subsection 3.3 (Theorem 4).

3.1 Bounding Statistical Distance via Second Moment Method

From now on, let us fix x ∈ Fnq , and let a = x1 + · · · + xn. The variables we
define below will depend on x (or a), but, for notational convenience, we avoid
indicating these dependencies in the variables’ names.

For every t ∈ Fmnq , let Zt denote the number of permutations π : [mn] →
[mn] such that tπ(m(i−1)+1)+ · · ·+tπ(mi) = xi for all i ∈ [n]. From the definition4

of Sx, its probability mass function is

fSx(t) =
Zt

(mn)! · q(m−1)n
. (1)

As stated earlier, Theorem 3 is essentially about the concentration of Zt, which
we will prove via the second moment method. To facilitate the proof, for every π :
[mn]→ [mn], let us also denote by Yt,π the indicator variable of “tπ(r(i−1)+1) +
· · ·+ tπ(ri) = xi for all i ∈ [n]”. Note that by definition we have

Zt =
∑

π∈Πmn

Yt,π (2)

where Πmn denotes the set of all permutations of [mn].
When we think of t as a random variable distributed according to Sa, the

mean of Yt,π (and hence of Zt) can be easily computed: the probability that t

4 Note that, if derived directly from the definition of Sx, π here should be replaced by
π−1. However, these two definitions are equivalent since π 7→ π−1 is a bijection.
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satisfies “tπ(m(i−1)+1) + · · · + tπ(mi) = xi” is exactly 1/q for each i ∈ [n − 1],
and these events are independent. Furthermore, when these events are true, it is
automatically the case that the condition holds for i = n. Hence, we immediately
have:

Observation 1. For every π ∈ Πmn,

E
t∼Sa

[Yt,π] =
1

qn−1
. (3)

The more challenging part is upper-bounding the second moment of Zt

(where we once again think of t as a random variable drawn from Sa). This
is equivalent to upper-bounding the expectation of Yt,π · Yt,π′ , where π, π′ are
independent uniformly random permutations of [mn] and t is once again drawn
from Sa. On this front, we will show the following bound in the next subsections.

Lemma 1. For every π ∈ Πmn, we have

E
π,π′∼Πmn,t∼Sa

[Yt,π · Yt,π′ ] ≤
∑
k≥1

qk

q2n−1
·
(

n2

(n/2)m−2

) k−1
2

. (4)

Since there are many parameters, the bound might look a bit confusing.
However, the only property we need in order to show concentration of Zt is
that the right-hand side of (4) is dominated by the k = 1 term. This is the
case when the term inside the parenthesis is q−Ω(1), which indeed occurs when
m ≥ 4 +Ω(logn q).

The bound in Lemma 1 will be proved in the subsequent sections. For now,
let us argue why such a bound implies our main theorem (Theorem 3).

Proof of Theorem 3. First, notice that (2) and Observation 1 together imply
that

E
t∼Sa

[Zt] =
(mn)!

qn−1
. (5)

For convenience, let us define µ as (mn)!
qn−1 .

We now bound the second moment of Zt as follows:

E
t∼Sa

[Z2
t ] = E

t∼Sa

( ∑
π∈Πmn

Yt,π

)2


= ((mn)!)
2 · E

π,π′∼Πmn,t∼Sa
[Yt,π · Yt,π′ ]

(4)

≤ ((mn)!)
2 ·

∑
k≥1

qk

q2n−1
·
(

n2

(n/2)m−2

) k−1
2


= ((mn)!)

2 · 1

q2(n−1)
·

1 +
∑
k≥2

qk−1 ·
(

n2

(n/2)m−2

) k−1
2
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= µ2 ·

1 +
∑
k≥2

(
(qn)2

(n/2)m−2

) k−1
2

 .

Now, let p =
(

(qn)2

(n/2)m−2

) 1
2

. If m ≥ 4+100 logn/2(q/γ)), then we have p ≤ 0.01γ4.

Plugging this back in the above inequality gives

E
t∼Sa

[Z2
t ] ≤ µ2

(
1

1− p

)
≤ µ2

(
1

1− 0.01γ4

)
≤ µ2(1 + 0.02γ4).

In other words, we have Vart∼Sa(Zt) ≤ (0.2γ2 · µ)2. Hence, by Chebyshev’s
inequality, we have

Pr
t∼Sa

[Zt ≤ (1− 0.5γ)µ] ≤ 0.5γ. (6)

Finally, notice that the statistical distance between Sx and Sa is∑
t∈Fmnq

max{fSa(t)− fSx(t), 0} =
∑

t∈Fmnq
t1+···+tmn=a

max

{
1

qmn−1
− Zt

(mn)! · q(m−1)n
, 0

}

=
∑

t∈Fmnq
t1+···+tmn=a

fSa(t) ·max {1− Zt/µ, 0}

= E
t∼Sa

[max {1− Zt/µ, 0}]

≤ Pr
t∼Sa

[Zt ≤ (1− 0.5γ)µ] · 1 + Pr
t∼Sa

[Zt > (1− 0.5γ)µ] · (0.5γ)

(6)

≤ (0.5γ) · 1 + 1 · (0.5γ)

= γ.

3.2 Relating Moments to Rank of Random Matrices

Having shown how Lemma 1 implies our main theorem (Theorem 3), we now
move on to prove Lemma 1 itself. In this subsection, we deal with the first half
of the proof by relating the quantity on the left-hand side of (4) to a quantity
involving the rank of a certain random matrix.

Warm-Up: (Re-)Computing the First Moment As a first step, let us
define below a class of matrices that will be used throughout.

Definition 7. For every permutation π : [mn] → [mn], let us denote by Aπ ∈
Fn×mnq the matrix whose i-th row is the indicator vector for π({m(i − 1) +
1, . . . ,mi}). More formally,

(Aπ)i,j =

{
1 if j ∈ π({m(i− 1) + 1, . . . ,mi}),
0 otherwise.

14



Before we describe how these matrices relate to the second moment, let us
illustrate their relation to the first moment, by sketching an alternative way
to prove Observation 1. To do so, let us rearrange the left-hand side of (3) as
Et∼Sa [Yt,π] = 1

qmn−1

∑
t∈Fmnq

Yt,π. Now, observe that Yt,π = 1 iff Aπt = x. Since

the rows of the matrix Aπ have pairwise-disjoint supports, the matrix is always
full rank (over Fq), i.e., rank(Aπ) = n. This means that the number of values of
t satisfying the aforementioned equation is qmn−n. Plugging this into the above

expansion gives Et∼Sa [Yt,π] = qmn−n

qmn−1 = 1
qn−1 . Hence, we have rederived (3).

Relating Second Moment to Rank In the previous subsection, we have seen
the relation of matrix Aπ to the first moment. We will now state such a relation
for the second moment. Specifically, we will rephrase the left-hand side of (4) as
a quantity involving matrices Aπ and Aπ′ . To do so, we will need the following
additional notations:

Definition 8. For a pair of permutations π, π′ : [mn] → [mn], we let Aπ,π′ ∈
F2n×mn
q denote the (column-wise) concatenation of Aπ and Aπ′ , i.e.,

Aπ,π′ =

[
Aπ

Aπ′

]
.

Furthermore, let5 the rank deficit of Aπ,π′ be defc(Aπ,π′) := 2n− rank(Aπ,π′).

Analogous to the relationship between the first moment and Aπ seen in the
previous subsection, the quantity Et∼Sa [Yt,π · Yt,π′ ] is in fact proportional to the
number of solutions to certain linear equations, which is represented by Aπ,π′ .
This allows us to give the bound to the former, as formalized below.

Proposition 1. For every pair of permutations π, π′ : [mn]→ [mn], we have

E
t∼Sa

[Yt,π · Yt,π′ ] ≤
qdefc(Aπ,π′ )

q2n−1
.

Proof. First, let us rearrange the left-hand side term as

E
t∼Sa

[Yt,π · Yt,π′ ] =
1

qmn−1

∑
t∈Fmnq

Yt,π · Yt·π′ . (7)

Now, notice that Yt,π = 1 iff Aπt = x. Similarly, Yt,π′ = 1 iff Aπ′t = x. In other
words, Yt,π · Yt·π′ = 1 iff

Aπ,π′t =

[
x
x

]
.

5 Note that defc(Aπ,π′) is equal to the corank of AT
π,π′ .
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The number of solutions t ∈ Fmnq to the above equation is at most qmn−rank(Aπ,π′ ) =

q(m−2)n+defc(AT
π,π′ ). Plugging this back into (7), we get

E
t∼Sa

[Yt,π · Yt,π′ ] ≤
1

qmn−1
· q(m−2)n+defc(Aπ,π′ ) =

qdefc(Aπ,π′ )

q2n−1
,

as desired.

3.3 Probabilistic Bound on Rank Deficit of Random Matrices

The final step of our proof is to bound the probability that the rank deficit of
Aπ,π′ is large. Such a bound is encapsulated in Theorem 4 below. Notice that
Proposition 1 and Theorem 4 immediately yield Lemma 1.

Theorem 4. For all m ≥ 3 and k ∈ N, we have

Pr
π,π′∼Πmn

[defc(Aπ,π′) ≥ k] ≤
(

n2

(n/2)m−2

) k−1
2

.

Characterization of Rank Deficit via Matching Partitions. To prove
Theorem 4, we first give a “compact” and convenient characterization of the
rank deficit of Aπ,π′ . In order to do this, we need several additional notations:
we say that a partition S1 t · · · t Sk = U of a universe U is non-empty if
S1, . . . , Sk 6= ∅. Moreover, for a set S ⊆ [n], we use S→m ⊆ [mn] to denote
the set ∪i∈S{m(i − 1) + 1, . . . ,mi}. Finally, we need the following definition of
matching partitions.

Definition 9. Let π, π′ be any pair of permutations of [mn]. A pair of non-
empty partitions S1t · · ·tSk = [n] and S′1t · · ·tS′k = [n] is said to match with
respect to π, π′ iff

π
(
S→mj

)
= π′

(
(S′j)

→m) (8)

for all j ∈ [k]. When π, π′ are clear from the context, we may omit “with respect
to π, π′” from the terminology.

Condition (8) might look a bit mysterious at first glance. However, there is a
very simple equivalent condition in terms of the matrices Aπ,Aπ′ : S1t· · ·tSk =
[n] and S′1 t · · · tS′k = [n] match iff the sum of rows i ∈ Sj of Aπ coincides with
the sum of rows i′ ∈ S′j of Aπ′ , i.e.,

∑
i∈Sj (Aπ)i =

∑
i′∈S′j

(Aπ′)i′ .

An easy-to-use equivalence of defc(Aπ,π′) = k is that a pair of matching
partitions S1 t · · · t Sk = [n] and S′1 t · · · t S′k = [n] exists. We only use one
direction of this relation, which we prove below.

Lemma 2. For any permutations π, π′ : [mn]→ [mn], if defc(Aπ,π′) ≥ k, then
there exists a pair of matching partitions S1t· · ·tSk = [n] and S′1t· · ·tS′k = [n].
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Proof. We will prove the contrapositive. Let π, π′ : [mn]→ [mn] be any permuta-
tions, and suppose that there is no pair of matching partitions S1t· · ·tSk = [n]
and S′1 t · · · t S′k = [n]. We will show that defc(Aπ,π′) < k, or equivalently
rank(Aπ,π′) > 2n− k.

Consider any pair of matching partitions6 S1t· · ·tSt = [n] and S′1t· · ·tS′t =
[n] that maximizes the number of parts t. From our assumption, we must have
t < k.

For every part j ∈ [t], let us pick an arbritrary element ij ∈ Sj . Consider
all rows of Aπ,π′ , except the ij-th rows for all j ∈ [t] (i.e. {(Aπ,π′)i}i/∈{i1,...,it}).
We claim that these rows are linearly independent. Before we prove this, note
that this imply that the rank of Aπ,π′ is at least 2n− t > 2n− k, which would
complete our proof.

We now move on to prove the linear independence of {(Aπ,π′)i}i/∈{i1,...,it}.
Suppose for the sake of contradiction that these rows are not linearly indepen-
dent. Since the matrix Aπ,π′ is simply a concatenation of Aπ and Aπ′ , we have
that {(Aπ,π′)i}i/∈{i1,...,it} = {(Aπ)i}i∈[n]\{i1,...,it}∪{(Aπ′)i′}i′∈[n]. The linear de-
pendency of these rows mean that there exists a non-zero vector of coefficients
(c1, . . . , cn, c

′
1, . . . , c

′
n) ∈ F2n

q with ci1 = · · · = cit = 0 such that

0 =
∑
i∈[n]

ci · (Aπ)i +
∑
i′∈[n]

c′i′ · (Aπ′)i′ . (9)

Since the rows of Aπ′ are linearly independent, there must exist i∗ ∈ [n] such
that ci∗ 6= 0. Let j ∈ [t] denote the index of the partition to which i∗ belongs, i.e.,
i∗ ∈ Sj . For notational convenience, we will assume, without loss of generality,
that j = t.

Let Pt : Fmnq → F(S→mt )
q denote the projection operator that sends a vector

(v`)`∈[mn] to its restriction on coordinates in S→mt , i.e., (v`)`∈S→mt
. Observe that

Pt((Aπ)i) is non-zero iff i ∈ St and Pt((Aπ′)i′) is non-zero iff i′ ∈ S′t. Thus, by
taking Pt on both sides of (9), we have

0 =
∑
i∈St

ci · Pt((Aπ)i) +
∑
i′∈S′t

ci′ · Pt((Aπ)i′) (10)

Now, let T = {i ∈ St | ci 6= 0} and T ′ = {i′ ∈ S′t | ci′ 6= 0}. Notice that

supp
(∑

i∈St ci · Pt((Aπ)i)
)

= π(T→m) and supp
(∑

i′∈S′t
ci′ · Pt((Aπ)i′)

)
= π′((T ′)→m).

Hence, from (10), we have

π(T→m) = π′((T ′)→m). (11)

Consider the pair of partitions S1 t · · ·St−1 t T t (St \ T ) = [n] and S′1 t
· · ·S′t−1 t T ′ t (S′t \ T ′) = [n]. From the definition of T , we must have T 6= ∅
because i∗ belongs to T , and (St \ T ) 6= ∅ becase it does not belong to T . From
this and (11), these partitions are non-empty and they match. However, these
matching partitions have t + 1 parts, which contradicts the maximality of the
number of parts of S1 t · · · t St and S′1 t · · · t S′t. This concludes our proof.
6 Note that at least one matching partition always exists: S1 = [n] = S′1.
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Proof of Theorem 4 With the characterization from the previous subsection
ready, we can now easily prove our main theorem of this section (Theorem 4).
We will also use two simple inequalities regarding the multinomial coefficients
stated below. For completeness, we provide their proofs in the appendix.

Fact 1. For every a1, . . . , ak, a
′
1, . . . , a

′
k ∈ N, we have(

a1 + · · ·+ ak + a′1 + · · ·+ a′k
a1 + a′1, . . . , ak + a′k

)
≥
(
a1 + · · ·+ ak
a1, . . . , ak

)
·
(
a′1 + · · ·+ a′k
a′1, . . . , a

′
k

)
Fact 2. For every k ∈ N and a1, . . . , ak ∈ N, we have(

a1 + · · ·+ ak
a1, . . . , ak

)
≥
(
a1 + · · ·+ ak

2

)bk/2c
Proof of Theorem 4. Let us fix a pair of non-empty partitions S1t· · ·tSk = [n]
and S′1t · · · tS′k = [n] such that7 |Si| = |S′i| for all i ∈ [k]. Notice that, when we
pick π : [mn] → [mn] uniformly at random, (π (S→m1 ) , · · · , π (S→mk )) is simply
a random partition of [mn] into subsets of size m|S1|, . . . ,m|Sk|. Hence, the
probability that these partitions match is equal to

1(
mn

m|S1|,...,m|Sk|
) .

Hence, by evoking Lemma 2 and taking union bound over all pairs of partitions
S1 t · · · t Sk = [n] and S′1 t · · · t S′k = [n], we have

Pr
π,π′∼Πmn

[defc(AT
π,π′) ≥ k] ≤

∑
S1t···tSk=[n],S′1t···tS

′
k=[n]

|S1|=|S′1|>0,...,|Sk|=|S′k|>0

1(
mn

m|S1|,...,m|Sk|
)

=
∑

a1,...,ak∈N
a1+···+ak=n

∑
S1t···tSk=[n],S′1t···tS

′
k=[n]

|S1|=|S′1|=a1,...,|Sk|=|S
′
k|=ak

1(
mn

ma1,...,mak

)

=
∑

a1,...,ak∈N
a1+···+ak=n

(
n

a1,...,ak

)2(
mn

ma1,...,mak

)
(Fact 1) ≤

∑
a1,...,ak∈N
a1+···+ak=n

1(
n

a1,...,ak

)(m−2)
(Fact 2) ≤

∑
a1,...,ak∈N
a1+···+ak=n

1

(n/2)
(m−2)·bk/2c

≤ nk−1

(n/2)
(m−2)·bk/2c

7 We may assume that |Si| = |S′i|; otherwise, π(S→mi ) and π′((S′i)
→m) are obviously

not equal and hence S1 t · · · t Sk = [n] and S′1 t · · · t S′k = [n] do not match.
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≤
(

n2

(n/2)m−2

) k−1
2

4 Lower Bound Proofs

In this section, we prove our lower bound on the number of messages (Theo-
rem 2), which is a direct consequence of the following two theorems:

Theorem 5. Suppose σ ≥ 1. Then, for any σ-secure n-party aggregation proto-
col over Fq in which each party sends m messages, we have m = Ω(logn q).

Theorem 6. For any σ-secure n-party aggregation protocol over Fq in which

each party sends m messages, we have m = Ω
(

σ
log(σn)

)
.

We prove Theorem 5 in Section 4.1, while we prove Theorem 6 in Section 4.2.
Before we proceed to the proofs, let us start by proving the following fact that
will be used in both proofs: the output of the encoder on a party’s input must
uniquely determine the input held by the party.

Lemma 3. For any n-party aggregation protocol P with encoder Enc : Fq →
[`]m, we have that for any x, x′ ∈ Fq with x 6= x′, the distributions EEncx and EEncx′

have disjoint supports.
As a consequence, for any output vector y ∈ [`]nm, there exists at most one

x = (x1, x2, . . . , xn) ∈ Fnq such that y is a possible output (Encx1
,Encx2

, . . . ,Encxn).

Proof. For the sake of contradiction, suppose there exist x, x′ ∈ Fq with x 6= x′

such that EEncx and EEncx′ have a common element in the support, say z. Then,
let z′ ∈ [`]m be an element in the support of EEnc0 . Note that it follows that
(z, z′, z′, . . . , z′︸ ︷︷ ︸

n−1

) is a possible output of inputs (x,0n−1) and (x′,0n−1), which

means that the analyzer cannot uniquely determine the parties’ inputs from the
output, thereby contradicting the correctness of the protocol. This completes
the proof.

4.1 Field-Dependent Bound

We now present the proof of Theorem 5. Recall from Section 1.4 that Bs is
defined as {x ∈ Fnq |

∑
i xi = s}. The key technical lemma is the following.

Lemma 4. For each s ∈ Fq and every n-user one-round aggregation protocol P
in the anonymized model with encoder Enc : Fq → [`]m, there exists a pair of
inputs x,x′ ∈ Bs such that SD

(
SEncx ,SEncx′

)
≥ 1− nnm/qn−1.

Throughout this subsection, let us fix s ∈ Fq. Before proving Lemma 4, we
first define some notation. For every possible shuffler output vector y and input
x ∈ Bs, let px,y denote the probability that on input x the encoder outputs y,
i.e., PrY∼SEnc

x
[Y = y]. Moreover, let Invy = {x ∈ Bs | px,y > 0} denote the set

of sum-s inputs that are possible given that the output is y.
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Lemma 5. |Invy| ≤ nnm.

Proof. Suppose y is an output vector consisting of nm messages with |Invy| > 0.
Consider a function g : [nm] → [n] that associates each of the mn messages to
a single party. Note that y and g uniquely identify the set of messages Yi sent
by each party i. In turn, Yi must correspond to a unique input xi to party i
by Lemma 3. Then, it follows that y and g can determine at most one input
x ∈ Invy. Since there are at most nnm valid functions g, the desired bound on
|Invy| follows.

Let py =
∑

x∈Bs px,y, and define dy = 1
q2n−2

∑
x∈Bs

∑
x′∈Bs |px,y − px′,y| as

the average difference between probabilities px,y and px′,y over all pairs of inputs
x,x′ with sum s. Then, we have the following lemma.

Lemma 6. dy ≥ 2
(

1− nnm

qn−1

)
py/q

n−1.

Proof. We have

q2n−2dy ≥ 2
∑

x∈Invy

∑
x′∈Bs\Invy

|px,y − 0|

= 2 |Bs \ Invy|
∑

x∈Invy

px,y

= 2
(
qn−1 − |Invy|

)
py

(Lemma 5) ≥ 2
(
qn−1 − nnm

)
py.

We now prove Lemma 4.

Proof of Lemma 4. We will in fact show the stronger statement that the (scaled)
average statistical distance for pairs of inputs in Bs is lower bounded by 1 −
nnm/qn−1, i.e.,

davg ≥ 1− nnm

qn−1
,

where

davg =
1

q2n−2

∑
x∈Bs

∑
x′∈Bs

SD
(
SEncx ,SEncx′

)
. (12)

Note that by Lemma 6, we have

davg =
∑
y

dy
2

≥ 1

qn−1

(
1− nnm

qn−1

)∑
y

py

≥ 1

qn−1

(
1− nnm

qn−1

)∑
y

∑
x∈Bs

px,y
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= 1− nnm

qn−1
,

where the last line follows from the fact that |Bs| = qn−1. To conclude, note that
it follows that at least one of the summands in (12) must be at least 1 − nnm

qn−1 ,
as desired.

Theorem 5 now follows easily from Lemma 4.

Proof of Theorem 5. Suppose P is such a σ-secure n-party aggregation protocol
with encoder Enc : Fq → [`]m. Then, choose an arbitrary s ∈ Fq. Note that by
Lemma 4, there exist x,x′ ∈ Bs such that 2−σ ≥ SD

(
SEncx ,SEncx′

)
≥ 1 − nnm

qn−1 .

Thus, if σ ≥ 1, it follows that m = Ω(logn q), as desired.

4.2 Security-Dependent Bound

We now turn to the proof of Theorem 6, which follows from the next theorem.

Theorem 7. Let Enc be the encoder of any summation protocol for n > 2 parties
with m messages sent per party. Then, there exists a vector x ∈ B0 such that the
statistical distance between SEnc0 and SEncx is at least 1

(10nm)5m .

It is not hard to see that Theorem 6 follows from Theorem 7:

Proof of Theorem 6. Simply note that by Theorem 7 and the definition of σ-
security, we can find x ∈ B0 such that 2−σ ≥ SD

(
SEnc0 ,SEncx

)
≥ 1

(10nm)5m , which

immediately implies that m = Ω
(

σ
log(σn)

)
, as desired.

Henceforth, we focus on proving Theorem 7.

Warm-up: Proof of Theorem 7 for Ishai et al.’s protocol. Before we
prove Theorem 7 for the general case, let us sketch a proof specific to Ishai et
al.’s protocol. The input vector x we will use is simply x = (1, · · · , 1,−(n− 1)).

To lower bound SD(S0,Sx), we give a “distinguisher” A that takes in the
output (y1, . . . , yπ(mn)) of the shuffler and outputs either 1 (i.e. “accept”) or 0
(i.e. “reject”). Its key property will be that the probability that A accepts when
(yπ(1), . . . , yπ(mn)) ∼ S0 is more than that of when (yπ(1), . . . , yπ(mn)) ∼ Sx by

an additive factor of 1
(en)m . This immediately implies that the distributions S0

and Sx are at a statistical distance of at least 1
(en)m as well. (Note that this

bound is slightly better than the one in Theorem 7.)
The distinguisher A is incredibly simple here: A accepts iff yπ(1) + · · · +

yπ(m) = 0. To see that it satisfies the claim property, observe that, when
π(1), . . . , π(m) not all come from the same party, yπ(1) + · · · + yπ(m) is sim-
ply a random number in Fq, meaning that A accepts with probability 1/q (in
both distributions). On the other hand, when π(1), . . . , π(m) come from the
same party, yπ(1) + · · ·+ yπ(m) is always zero in the distribution S0 and hence A
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always accept. For the distribution Sx, if π(1), . . . , π(m) comes from the same
party i 6= n, then the sum yπ(1) + · · ·+ yπ(m) is always one and hence A rejects.
Thus, the probability that A accepts in the former distribution is more than that
of the latter by an additive factor of n−1

(nmm )
≥ 1

(en)m . (The -1 factor corresponds

to the case where p(1), · · · , p(m) comes from party i = n; here A might accept
if −(n− 1) = 0 in Fq.) This concludes the proof sketch.

From Ishai et al.’s protocol to general protocols. Having sketched the
argument for Ishai et al.’s protocol, one might wonder whether the same ap-
proach would work for general protocols. In particular, here instead of checking
if yπ(1) + · · · + yπ(m) = 0, we would check whether yπ(1), . . . , yπ(m) is a valid
output of the encoder when the input is zero. Now, the statement for when
π(1), . . . , π(m) comes from the same party remains true. However, the issue is
that, when π(1), . . . , π(m) do not all come from the same party, it is not nec-
essarily true that the acceptance probability of A would be the same for both
distributions.

To avoid having these “cross terms” affect the probability of acceptance of
A too much, we pick the smallest integer t such that the “t-message marginals”
(defined formally below) of EEnc0 and EEnc1 differ “substantially”. Then, we mod-
ify A so that it performs an analogous check on yπ(1), . . . , yπ(t) (instead of
yπ(1), . . . , yπ(m) as before). Once again, we will have that, if π(1), . . . , π(t) corre-
sponds to the same party, then the probability that A accepts differs significantly
between the two cases. On the other hand, due to the minimality of t, we can
also argue that, when π(1), . . . , π(t) are not all from the same parties (i.e. “cross
terms”), the difference is small. Hence, the former case would dominate and we
can get a lower bound on the difference as desired. This is roughly the approach
we take in the proof of Theorem 7 below. There are subtle points we have to
change in the actual proof below. For instance, we cannot simply use the in-
put (1, · · · , 1,−(n − 1)) as in the case of Ishai et al. protocol because, if the
t-marginal of EEnc−(n−1) deviates from EEnc0 more substantially than that of EEnc1 ,
then this could affect the acceptance probability by a lot. Hence, in the actual
proof, we instead pick x∗ that minimizes the value of such t among all numbers
in Fq, and use the input vector x = (x∗, . . . , x∗,−(n− 1)x∗).

Additional Notation and Observation. To formally prove Theorem 7 in
the general form, we need to formally define the notion of t-marginal. For a
distribution D supported on [`]m and a positive integer t ≤ m, its t-marginal,
denoted by D|t, supported on [`]t is simply the marginal of D on the first t-
coordinates; more formally, for all y ∈ [`]t, we have

Pr
Y∼D|t

[Y = y] =
∑

yt+1,...,ym∈[`]

Pr
Y∼D

[Y = y ◦ (yt+1, . . . , ym)].

An observation that will simplify our proof is that we may assume w.l.o.g.
that the distribution EEncx for every x ∈ Fq is permutation invariant, i.e., that
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for any π : [m]→ [m] and any y ∈ [`]m, we have

Pr
Y∼EEncx

[Y = y] = Pr
Y∼EEncx

[Y = π(y)].

This is because we may apply a random permutation to the encoding Encx before
sending it to the shuffler, which does not change the distribution SxEnc. Notice
that our observation implies that EEncx |t is also permutation invariant.

Proof of Theorem 7. Let t ≤ m be the smallest positive integer such that
maxx∈Fq SD(EEnc0 |t, EEncx |t) is at least 1

(10nm)4(m−t)
. Note that such t always exist

because the requirement holds for t = m, at which EEnc0 |t = EEnc0 and EEnc1 |t =
EEnc1 have statistical distance 1 (as their supports are disjoint due to Lemma 3).

For t as defined above, let x∗ = argmaxx∈Fq SD(EEnc0 |t, EEncx |t) and let us

defined H as the set of elements of [`]t whose probability under EEnc0 |t is higher
than under EEncx∗ |t. More formally, H = {y ∈ [`]t : EEnc0 |t(y) > EEncx∗ |t(y)}. By
definition of statistical distance, we have

Pr
y∈EEnc0 |t

[y ∈ H]− Pr
y∈EEnc

x∗ |t
[y ∈ H] = SD(EEnc0 |t, EEncx∗ |t) ≥

1

(10nm)4(m−t)
, (13)

where the inequality follows from our choice of t.
Let x = (x∗, . . . , x∗,−(n − 1)x∗); clearly, x ∈ B0 as desired. We next give

a distinguisher for the distributions SEnc0 and SEncx . The distinguisher A takes
in the permuted output (yπ(1), . . . , yπ(nm)). It returns one (i.e., “accept”) if
(yπ(1), . . . , yπ(t)) belongs to H and it returns zero (i.e., “reject”) otherwise.

We will show that the probability that A accepts on SEnc0 is more than the
probability that it accepts on SEncx by at least 1

(10nm)5m , which implies that the

statistical distance between SEnc0 and SEncx is also at least 1
(10nm)5m as desired.

To argue about the acceptance probability of A, it is worth noting that
there are two sources of randomness here: the output y (sampled from EEnc0

or EEncx ) and the permutation π. More formally, we may write the probability
that A accepts on SEnc0 and that on SEncx as Prπ∼Πmn,y∼EEnc0

[A(π(y)) = 1] and

Prπ∼Πmn,y∼EEncx
[A(π(y)) = 1] respectively. Hence, the difference between the

probability that A accepts on SEnc0 and that on SEncx is

Pr
π∼Πmn,y∼SEnc

0

[A(π(y)) = 1]− Pr
π∼Πmn,y∼SEnc

x

[A(π(y)) = 1]

= E
π∼Πmn

[
Pr

y∼SEnc
0

[A(π(y)) = 1]− Pr
y∼SEnc

x

[A(π(y)) = 1]

]
.

For brevity, let us define ∆π as

∆π := Pr
y∼SEnc

0

[A(π(y)) = 1]− Pr
y∼SEnc

x

[A(π(y)) = 1].

Note that the quantity we would like to lower bound is now simply Eπ[∆π].
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For each party i ∈ {1, . . . , n} and any permutation π : [mn] → [mn], we
use U iπ to denote {π(1), . . . , π(t)} ∩ {m(i − 1) + 1, . . . ,mi}. Furthermore, we
define the largest number of messages from a single party for a permutation π
as Cπ := maxi=1,...,n |U iπ|.

In the next part of the proof, we classify π into three categories, as listed
below. For each category, we prove either a lower or an upper bound on ∆π and
the probability that a random permutation falls into that category.

I. Cπ = t and |Unπ | 6= t. In other words, all of {π(1), . . . , π(t)} correspond to a
single party and that party is not the last party.

II. Cπ = t and |Unπ | = t. In other words, all of {π(1), . . . , π(t)} correspond to
the last party n.

III. Cπ < t. Not all of π(1), . . . , π(t) comes from the same party.

We will show that for category I permutations, ∆π is large (Lemma 11) and
the probability that a random permutation belongs to this category is not too
small (Lemma 8). For both categories II and III, we show that |∆π| is small
(Lemmas 9 and 11) and the probabilities that a random permutation belongs to
each of these two categories are not too large (Lemmas 10 and 12).

These quantitative bounds are such that the first category dominates Eπ[∆π],
meaning that we get a lower bound on this expectation as desired; this is done
at the very end of the proof.

Category I: Cπ = t and |Unπ | 6= t.
We now consider the first case: when {π(1), . . . , π(t)} corresponds to a single

party i 6= n. In this case, ∆π is exactly equal to the statistical distance between
EEnc0 and EEncx∗ (which we know from (13) to be large):

Lemma 7. For any π such that Cπ = t and |Unπ | 6= t, we have ∆π = SD(EEnc0 |t, EEncx∗ |t).

Proof. Let i ∈ {1, . . . , n} be the party such that |U iπ| = Cπ = t. When y is drawn
from EEncx (respectively EEnc0 ), {π(1), · · · , π(t)} ⊆ {m(i−1)+1, . . . ,mi}, it is the
case that (yπ(1), . . . , yπ(t)) is simply distributed as EEncxi |t (respectively EEnc0 |t).
Recall that we assume that Unπ 6= t, which means that i 6= n or equivalently
xi = x∗. Hence, we have

Pr
y∼EEncx

[A(π(y)) = 1] = Pr
y′∼EEncxi

|t
[y′ ∈ H] = Pr

y′∼EEnc
x∗ |t

[y′ ∈ H].

and

Pr
y∼EEnc0

[A(π(y)) = 1] = Pr
y′∼EEnc0 |t

[y′ ∈ H].

Combining the above two equalities with (13) implies that∆π = SD(EEnc0 |t, EEncx∗ |t)
as desired.

The probability that π falls into this category can be simply computed:
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Lemma 8. Prπ[Cπ = t ∧ Unπ 6= t] =
(n−1)·(mt )

(nmt )
.

Proof. Cπ = t and |Unπ | 6= t if and only if there exists a party i ∈ {1, . . . , n− 1}
such that π({1, . . . , t}) ⊆ {m(i − 1) + 1, . . . ,mi}. For a fixed i, this happens

with probability
(mt )
(nmt )

. Notice also that the event is disjoint for different i’s.

As a result, the total probability that this event occurs for at least one i is

(n− 1) · (mt )
(nmt )

.

Category II: Cπ = t and |Unπ | = t.
We now consider the second category: when {π(1), . . . , π(t)} corresponds to

the last party n. In this case, our choice of x∗ implies that |∆π| is upper bounded
by the statistical distance between EEnc0 |t and EEncx∗ |t, as formalized below.

Lemma 9. For any π such that Cπ = t and |Unπ | = t, we have |∆π| ≤ SD(EEnc0 |t, EEncx∗ |t).

Proof. In this case, we have {π(1), · · · , π(i)} ⊆ {m(n − 1) + 1, . . . ,mn}. Thus,
when y is drawn from EEncx (respectively EEnc0 ), it is the case that (yπ(1), . . . , yπ(t))

is simply distributed as EEncxn |t (respectively EEnc0 |t). Hence, we have Pry∼EEncx
[A(π(y)) =

1] = Pry′∼EEncxn
|t [y
′ ∈ H] and Pry∼EEnc0

[A(π(y)) = 1] = Pry′∼EEnc0 |t [y
′ ∈ H]. Com-

bining the above two equalities implies that |∆π| ≤ SD(EEnc0 |t, EEncxn |t). Recall that
x∗ is chosen to maximize SD(EEnc0 |t, EEncx∗ |t), which means that SD(EEnc0 |t, EEncxn |t)
≤ SD(EEnc0 |t, EEncx∗ |t). Hence, we have |∆π| ≤ SD(EEnc0 |t, EEncx∗ |t) as desired.

The probability that π falls into this category can be simply computed in a
similar manner as in the first case:

Lemma 10. Prπ[Cπ = t ∧ |Unπ | = t] =
(mt )
(nmt )

.

Proof. Cπ = t and |Unπ | = t if and only if π({1, . . . , t}) ⊆ {m(n−1)+1, . . . ,mn}.
This happens with probability exactly

(mt )
(nmt )

.

Category III: Cπ < t.
Finally, we consider any permutation π such that not all of {π(1), . . . , π(t)}

correspond to a single party. On this front, we may use our choice of t to give
an upper bound on |∆π| as follows.

Lemma 11. For any π such that Cπ < t, we have |∆π| < m · 1
(10nm)4(m−Cπ) .

Proof. In fact, we will show something even stronger: that the statistical distance
of (yπ(1), . . . , yπ(t)) when y is drawn from EEnc0 and that when y is drawn from

EEncx is at most m · 1
(10nm)4(m−Cπ) . The desired bound immediately follows.

Let I denote the set of all parties i such that Ui 6= ∅. Observe that, when y
is drawn from EEncx (respectively EEnc0 ), (yp)p∈Ui is simply distributed as EEncxi ||Ui|
(respectively EEnc0 ||Ui|) and that these are independent for different i. In other
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words, (yπ(1), . . . , yπ(t)) is (after appropriate rearrangement) just the product

distribution
∏
i∈I EEncxi ||Ui| (respectively

∏
i∈I EEnc0 ||Ui|).

Recall from the definition of Cπ that |Ui| is at most Cπ for all i. Since Cπ < t
and from our choice of t, we must have SD(EEnc0 ||Ui|, EEncxi ||Ui|) <

1
(10nm)4(m−Cπ)

for all i ∈ I. Hence, we also have

SD

(∏
i∈I
EEnc0 ||Ui|,

∏
i∈I
EEncxi ||Ui|

)
< |I| · 1

(10nm)4(m−Cπ)
≤ m · 1

(10nm)4(m−Cπ)
,

which concludes the proof.

Next, we bound the probability that a random permutation π belongs to this
category:

Lemma 12. For all j < t, we have Prπ[Cπ = j] ≤ n·(mt )
(nmt )

· (nm)3(t−j).

Proof. If Cπ = j, there must exist a subset T ⊆ {1, . . . , t} of size j and a party
i ∈ {1, . . . , n} such that π(T ) ⊆ {m(i− 1) + 1, . . . ,mi}. For a fixed T and i, this

happens with probability exactly
(mj )
(nmj )

. Hence, by union bound over all T and i,

we have

Pr
π

[Cπ = j] ≤ n ·
(
t

j

)
·
(
m
j

)(
nm
j

) ≤ n ·
(
m
t

)(
nm
t

) · (tj) ·mt−j

(nm)j−t
≤
n ·
(
m
t

)(
nm
t

) · (nm)3(t−j).

Putting things together. With all the claims ready, it is now simple to finish the
proof of Theorem 7. The difference between the probability that A accepts on
SEnc0 and that on SEncx is

E
π

[∆π] = Pr
π

[Cπ = t ∧ |Unπ | 6= t] · E
π

[∆π | Cπ = t ∧ |Unπ | 6= t]

+ Pr
π

[Cπ = t ∧ |Unπ | = t] · E
π

[∆π | Cπ = t ∧ |Unπ | = t]

+

t−1∑
j=1

Pr
π

[Cπ = j] · E
π

[∆π | Cπ = j]

(Lemmas 7, 8, 9, 10) ≥
(n− 1) ·

(
m
t

)(
nm
t

) · SD(EEnc0 |t, EEncx∗ |t)−
(
m
t

)(
nm
t

) · SD(EEnc0 |t, EEncx∗ |t)

+

t−1∑
j=1

Pr
π

[Cπ = j] · E
π

[∆π | Cπ = j]

(From n ≥ 3) ≥
n ·
(
m
t

)
3
(
nm
t

) · SD(EEnc0 |t, EEncx∗ |t) +

t−1∑
j=1

Pr
π

[Cπ = j] · E
π

[∆π | Cπ = j]

((13) and Lemma 11) ≥
n ·
(
m
t

)
3
(
nm
t

) · 1

(10nm)4(m−t)
−

t−1∑
j=1

Prπ[Cπ = j] ·m
(10nm)4(m−j)
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(Lemma 12) ≥
n ·
(
m
t

)(
nm
t

) ·
1

3
· 1

(10nm)4(m−t)
−

t−1∑
j=1

(nm)3(t−j)m

(10nm)4(m−j)


≥
n ·
(
m
t

)(
nm
t

) ·
1

3
−

t−1∑
j=1

1

10t−j

 · 1

(10nm)4(m−t)

≥
n ·
(
m
t

)(
nm
t

) · 1

10
· 1

(10nm)4(m−t)

≥ 1

(nm)t
· 1

10
· 1

(10nm)4(m−t)

≥ 1

(10nm)5m
.

5 Conclusion and Open Questions

In this work, we provide an improved analysis for the split and mix protocol
of Ishai et al. [4] in the shuffled model. Our analysis reduces the number of
messages required by the protocol by a logarithmic factor. Moreover, for a large
range of parameters, we give an asymptotically tight lower bound in terms of the
number of messages that each party needs to send for any protocol for secure
summation.

Although our lower bound is tight in terms of the number of messages, it
does not immediately imply any communication lower bound beyond the trivial
log q bound. For instance, when q = nlogn and σ is a constant, then the number

of messages needed by Ishai et al.’s protocol is O
(

log q
logn

)
= O(log n) but each

message is also of length O(log q). However, our lower bound does not preclude
a protocol with the same number of messages but of length only O(log n) bits.
It remains an interesting open question to close this gap.

Another interesting open question is whether we can give a lower bound for
(ε, δ)-differentially private summation protocols when ε is a constant. Currently,
our lower bound does not give anything in this regime. In fact, to the best of
our knowledge, it remains possible that an (ε, 0)-differentially private summation
protocol exists with error O(1/ε) and where each party sends only Oε(log n) bits.
Coming up with such a protocol, or proving that one does not exist, would be
a significant step in understanding the power of differential private algorithms
in the shuffled model. We point out that following up on this work, [14] studied
this question obtaining a pure differentially protocol for summation along with
a lower bound, though the tight answer remains unknown.
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11. Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Song, S., Talwar, K.,
Thakurta, A.: Encode, shuffle, analyze privacy revisited: Formalizations and em-
pirical evaluation. arXiv preprint arXiv:2001.03618 (2020)
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A Proofs of Bounds for Multinomial Coefficients

Below we prove Facts 1 and 2 from Section 3.

Proof of Fact 1. Let U = [a1 + a′1 + · · · + ak + a′k], A = [a1 + · · · + ak] and
B = U \A.

Consider the following process of generating a partition S1 t · · · t Sk = U .
First, take a partition T1 t · · · tTk = A and a partition T ′1 t · · · tT ′k = B. Then,
let Si = Ti ∪ T ′i for all i ∈ [k].
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Notice that each pair of T1 t · · · t Tk with |Ti| = ai and T ′1 t · · · t T ′k with
|Pi| = a′i produces different S1 t · · · t Sk = U with |Si| = ai + a′i. Since the

number of such pairs T1t · · ·tTk and T ′1t · · ·tT ′k is
(
a1+···+ak
a1,...,ak

)
·
(a′1+···+a′k
a′1,...,a

′
k

)
and

the number of S1 t · · · tSk = U with |Si| = ai + a′i is only
(a1+···+ak+a′1+···+a′k

a1+a′1,...,ak+a
′
k

)
,

we have(
a1 + · · ·+ ak + a′1 + · · ·+ a′k

a1 + a′1, . . . , ak + a′k

)
≥
(
a1 + · · ·+ ak
a1, . . . , ak

)
·
(
a′1 + · · ·+ a′k
a′1, . . . , a

′
k

)
as desired.

Proof of Fact 2. Assume w.l.o.g. that a1 ≤ a2 ≤ · · · ≤ ak. We have(
a1 + · · ·+ ak
a1, . . . , ak

)
=

k∏
i=1

(
ai + · · ·+ ak

ai

)
≥
bk/2c∏
i=1

(
ai + · · ·+ ak

ai

)

≥
bk/2c∏
i=1

(ai + · · ·+ ak)

≥
(
a1 + · · ·+ ak

2

)bk/2c
,

where the last inequality uses the fact that a1 ≤ · · · ≤ ak.

B Proof of Corollary 1

Corollary 1 follows from our main theorem (Theorem 1) and the connection
between secure summation protocols and differentially private summation pro-
tocols due to Balle et al. [3]. We recall the latter below.

Lemma 13 (Lemma 4.1 of [3]). Given a σ-secure protocol in the anonymized
setting for n-party summation over the domain Fq, where each party sends
f(q, n, σ) messages each of g(q, n, σ) bits, there exists an (ε, (1 + eε)2−σ−1)-
differentially private protocol in the shuffled model for real summation with ab-
solute error O(1 + 1/ε) where each party sends f(O(n3/2), n, σ) messages each
of g(O(n3/2), n, σ) bits.

Corollary 1 now follows immediately by applying Lemma 13 and Theorem 1
with σ = 1 + log

(
1+eε

δ

)
= O (1 + ε+ log(1/δ)).

We remark here that Lemma 13 as stated above is slightly different from
Lemma 4.1 of [3]. In particular, in [3], the statement requires the secure sum-
mation protocol to works for any Zq even when q is not a prime power. On the
other hand, our analysis in this paper (which uses rank of matrices) only applies
to when q is a prime power (i.e., Fq is a field). However, it turns out that this
does not affect the connection too much: instead of picking q = 2dn3/2e as in [3],
we may pick q to be the smallest prime larger than 2n3/2. In this case, q remains
O(n3/2) and the remaining argument of [3] remains exactly the same.
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