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Abstract. An adversary with S bits of memory obtains a stream of Q
elements that are uniformly drawn from the set {1, 2, . . . , N}, either with
or without replacement. This corresponds to sampling Q elements using
either a random function or a random permutation. The adversary’s goal
is to distinguish between these two cases.

This problem was first considered by Jaeger and Tessaro (EUROCRYPT
2019), which proved that the adversary’s advantage is upper bounded by√

Q · S/N . Jaeger and Tessaro used this bound as a streaming switching
lemma which allowed proving that known time-memory tradeoff attacks
on several modes of operation (such as counter-mode) are optimal up to
a factor of O(logN) if Q · S ≈ N . However, the bound’s proof assumed
an unproven combinatorial conjecture. Moreover, if Q ·S � N there is a
gap between the upper bound of

√
Q · S/N and the Q · S/N advantage

obtained by known attacks.

In this paper, we prove a tight upper bound (up to poly-logarithmic fac-
tors) of O(logQ ·Q ·S/N) on the adversary’s advantage in the streaming
distinguishing problem. The proof does not require a conjecture and
is based on a hybrid argument that gives rise to a reduction from the
unique-disjointness communication complexity problem to streaming.

Keywords: Streaming algorithm, time-memory tradeoff, communica-
tion complexity, provable security, switching lemma, mode of operation.

1 Introduction

A classical result in cryptography asserts that an adversary attempting to dis-
tinguish a random permutation from a random function with an image size of
N using Q queries has advantage that is upper bounded by about Q2/N over a
coin toss [3, 13, 14]. This bound serves as a switching lemma which has important
implications in establishing the security of various cryptographic constructions.
For example, the security of several modes of operation (such as counter-mode)
is proved up to the birthday bound of Q =

√
N by first idealizing the underly-

ing block cipher as a random permutation and then replacing it with a random
function using the switching lemma.1

1 For the sake of brevity, in this paper we use the term “switching lemma” to refer
to a particular type of lemma that allows to switch between a random permutation
and a random function.



A limitation of the switching lemma is that it only bounds the advantage of
the adversary as a function of the number of queries, whereas in practice, the
adversary could have constraints on additional resources, notably on memory. At
the same time, given Q ≈

√
N unrestricted queries to the underlying primitive,

it is possible to distinguish a random function from a random permutation with
constant advantage using a negligible amount of O(logN) bits of memory by ap-
plying a “memory-less” cycle detection algorithm such as Floyd’s algorithm [17]
(or its variants, e.g., [6, 21]).

Streaming Indistinguishability Cycle detection algorithms are inapplicable
when only given access to a stream of data produced by arbitrary queries to the
underlying primitive which are not under the adversary’s control. The stream-
ing indistinguishability model was introduced in the context of symmetric-key
cryptography by Jaeger and Tessaro at EUROCRYPT 2019 [15]. The authors
considered an adversary (i.e. a randomized algorithm) with memory size of S bits
and access to a stream of Q elements drawn from either a random permutation
or from a random function with an image size of N . The main technical result
of [15] is an adaptation of the switching lemma between a random permutation
and random function to the streaming model. The streaming switching lemma
asserts that the adversary’s advantage is bounded by

√
Q · S/N as long as the

queries to the underlying primitive are not repeated. The proof of the bound is
based on tools from information theory and relies on a combinatorial conjecture
regarding hypergraphs. We refer the reader to [15] for more details.

The main applications of the switching lemma described in [15] deal with
cryptanalysis of modes of operations. Such modes are typically secure up to
the birthday bound against adversaries with unbounded memory, yet [15] shows
that they become more secure against memory-bounded adversaries. For ex-
ample, in AES-based randomized counter-mode, message mi is encrypted as
ri, ci = AESK(ri) ⊕ mi, where ri is a random 128-bit string. The best known
distinguishing attack simply awaits a collision ri = rj for i 6= j, in which case
ci ⊕ cj = mi ⊕ mj . This attack stores the ri’s and requires memory of about√
N = 264 to find a collision with high probability. Let us now assume that the

memory is limited to storing only S′ � 264 values (where S′ ≈ S · logN bits, as
storing an element requires logN bits). In this case, the probability of observing
a collision with a stored element (i.e., the distinguishing advantage) is roughly
Q ·S′/N ≈ Q ·S/N (ignoring a logarithmic factor in N). Hence, such a collision
is likely to occur only after observing about Q ≈ N/S � 264 elements.

Jaeger and Tessaro used their streaming switching lemma to show that the
simple attack on randomized counter-mode describe above is optimal up to a fac-
tor of O(logN), if we require a constant advantage. The proof applies the stream-
ing switching lemma to replace the random ri’s with random non-repeating ones
and further replaces AES with a truly random permutation (assuming it is a
PRP). Finally, it applies the streaming switching lemma again to replace the
permutation with a random function, completely masking the messages. More
details and additional applications are described in [15]. We further mention that
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attacks against counter-mode and other modes of operation have been shown to
be meaningful in practice (refer to [4] for a recent example), giving an additional
motivation to understand their limitations.

The streaming switching lemma of [15] is very useful, but has two limitations.
First, it is based on an unproven combinatorial conjecture. Second, when Q·S �
N , there is a gap between the advantage upper bound

√
Q · S/N of the lemma

and the Q · S/N advantage of the simple attack described above. In fact, it is
easy to see that the bound

√
Q · S/N is not tight when Q ·S � N and S ≈ Q, as

it evaluates to Q/
√
N . On the other hand, the true optimal advantage is Q2/N ,

as obtained by the original switching lemma (since for S ≈ Q, the adversary can
store all the elements in the stream).

In order to demonstrate this gap, let us assume that for N = 2128 the ad-
versary has memory limited to storing S = 240 elements, and obtains a stream
of Q = 264 elements. Jaeger and Tessaro’s result upper bounds the adversary’s
advantage by about

√
264+40−128 = 2−12. On the other hand, the distinguishing

advantage of the attack described above is 264+40−128 = 2−24, which is signifi-
cantly lower.

Our Results In this paper, we overcome the two limitations of Jaeger and
Tessaro’s result. More specifically, we derive a streaming switching lemma which
bounds the adversary’s advantage by O(logQ ·Q ·S/N) via an alternative proof
which it is not based on any conjecture. This matches the advantage of the simple
distinguishing attack described above (up to poly-logarithmic factors in N),
hence we resolve the streaming indistinguishability problem unconditionally.2

Note that if we plug S = Q into our bound, we obtain the original switching
lemma (up to poly-logarithmic factors). Hence, our bound can also be viewed
as a natural generalization of the original switching lemma to the case that the
adversary cannot store all the Q elements of the stream (i.e. S � Q).

Finally, we extend the streaming switching lemma to show that the advantage
of an adversary with S bits of memory that is allowed P passes over a stream of Q
elements (drawn from a random permutation or a random function) is bounded
by O(logQ ·Q · S · P/N). If we combine the multi-pass bound with the original
switching lemma, we obtain the bound of about min{logQ ·Q ·S ·P/N,Q2/N},
which is tight up to poly-logarithmic factors in N .

To understand the significance of our multi-pass bound, observe that for a
fixed value of S, the P -pass streaming bound depends only on the total number
of queries, Q · P (ignoring the small factor of logQ). This essentially implies
that repeating Q distinct queries P times does not give a P -pass algorithm
an advantage over a single-pass algorithm that issues Q · P distinct queries. In
contrast, in the non-streaming model repeating queries in an adaptive way has
a big advantage, as cycle detection algorithms perform significantly better than
the P -pass bound (obtaining constant advantage for S = O(logN) and

√
N

queries).

2 We note, however, that Jaeger and Tessaro’s result is superior to ours by a factor of
up to O(

√
logQ) when S ·Q ≈ N .
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Our Techniques The main novelty of the proof of our switching lemma is a
hybrid argument that allows to devise a reduction from communication complex-
ity to streaming. The hybrid argument is tailored to a common cryptographic
setting where the goal is to distinguish between two pre-fixed distributions on
streams. The cryptographic setting is different from the typical worst-case set-
ting of streaming problems, where there is much more freedom in choosing the
stream distributions in reductions from communication complexity, and hybrid
arguments are not required. Although it is simple, this hybrid argument is some-
what non-trivial and allows us to apply strong bounds from communication com-
plexity to the problem. This proof naturally extends to multi-pass adversaries.
On the other hand, it seems challenging to extend the proof of [15] to multi-pass
adversaries, where queries to the underlying primitive are repeated. This further
demonstrates that our proof technique may be of independent interest.

Related Work This work lies in the intersection between cryptography and
streaming algorithms. The area of streaming algorithms is subject to active re-
search in computer science, and has been largely influenced by the seminal work
of Alon, Matias, and Szegedy on approximating frequency moments with limited
space [1]. In the field of cryptography, several previous works investigated the
security of cryptographic primitives against a space-bounded adversary whose
input is given as a data stream composed of a sequence of elements that can be
read only once (cf., [7, 20]). More recently, Thiruvengadam and Tessaro initiated
the study of the security of modes of operation against space-bounded adver-
saries [23]. Jaeger and Tessaro’s work [15], as well as this paper, continue the
line of research on streaming algorithms in cryptography.

Paper Organization The rest of the paper is organized as follows. We give
a technical overview of the proof in Section 2 and describe preliminaries in
Section 3. In Section 4 we prove our main streaming switching lemma for single-
pass algorithms, while our proof of the multi-pass variant is given in Section 5.
Finally, we conclude the paper in Section 6.

2 Technical Overview

We consider an algorithm with S bits of memory that processes a stream of
Q ≤ N elements from [N ] = {1, 2, . . . , N}, element by element. The goal of the
algorithm is to decide whether the stream is drawn from a random permutation
(i.e., the elements are drawn uniformly without replacement), or from a random
function (i.e., the elements are drawn uniformly with replacement).

In [15] Jaeger and Tessaro approached the problem by considering the se-
quences of states maintained by the adversary for the two stream distributions,
claiming that they remain statistically close.

In the rest of this section, we give an overview of our proof, which (unlike
Jaeger and Tessaro’s proof) does not directly analyze the states maintained by
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the adversary. For the sake of simplicity, in this overview we aim to show that
the distinguishing advantage of any algorithm (compared to a random guess) is
negligible as long as Q� N/S, but do not consider the concrete advantage.

2.1 Communication Complexity

A standard approach for obtaining bounds on streaming algorithms is via a re-
duction from communication complexity. Suppose that our goal is to distinguish
between two distributions D1 and D2 on a stream x1, x2, . . . , xQ ∈ [N ]Q. We can
reduce the problem from a 2-player communication game between A and B as
follows. For some value of i, we partition the stream into two parts, x1, . . . , xi
and xi+1, . . . , xQ. We give the first part to A and the second part to B. The goal
of A and B is to decide whether the (concatenated) stream is drawn from D1 or
from D2 with minimal one-way communication between A and B.

In the reduction, A simulates a streaming algorithm on its input, sends its
intermediate state to B, which continues the simulation of the streaming algo-
rithm and outputs its result. Thus, any streaming algorithm with memory S
yields a one-way communication protocol with communication cost of S and the
same distinguishing advantage. Therefore, an upper bound on the distinguishing
advantage of A and B in any one-way communication protocol yields a bound
on the distinguishing advantage of any streaming algorithm.

Obviously, in order to obtain a meaningful upper bound on the distinguish-
ing advantage in the communication game, the communication problem induced
from the streaming problem must be hard. In particular, a reduction from com-
munication complexity to the streaming distinguishability game could be use-
ful only if it has the property that for both stream distributions considered in
the game, each player receives an input (partial stream) drawn from the same
marginal distribution. Otherwise, a player could trivially distinguish between the
two distributions locally with no communication (since A and B are unrestricted
computationally).

Suppose that D1 is the distribution where x1, x2, . . . , xQ are sampled using a
random permutation, and D2 is the distribution where the elements are sampled
using a random function. Unfortunately, for Q > 2 there is no way to partition
the stream between A and B such that each player receives an input with the
same marginal distribution in both cases.

In order to work around this difficulty, we define hybrid stream distributions
between D1 and D2 with the aim of bounding the advantage between each pair
of neighboring distributions using communication complexity, and applying a
hybrid argument to bound the total advantage.

2.2 An Initial Approach

We start by informally outlining an initial approach that does not give the
desired bound, but motivates the alternative approach that follows. We denote
a stream drawn from a random permutation by x1, . . . , xQ and a stream drawn
from a random function by x̂1, . . . , x̂Q. We define Q − 1 intermediate stream
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distributions, which give rise to Q distinguishing games. The i’th game involves
distinguishing between the stream distributions

x1, . . . , xQ−i, x̂Q−i+1, . . . , x̂Q and x1, . . . , xQ−i−1, x̂Q−i, . . . , x̂Q,

which is equivalent to distinguishing between

x1, . . . , xQ−i and x1, . . . , xQ−i−1, x̂Q−i.

Namely, the goal is to determine whether the last element already appears in
the stream or not. In fact, even if the last element is chosen uniformly, it will not
appear in the stream with probability 1−(Q−i−1)/N . Hence, we can condition
on the event that x̂Q−i appears in the stream. As a result, the distinguishing
advantage of any algorithm can be approximately bounded by α · (Q− i− 1)/N ,
where α = α(i) is the advantage of the algorithm in distinguishing between
x1, . . . , xQ−i and x1, . . . , xQ−i−1, x̂Q−i, where x̂Q−i is drawn uniformly from the
first Q− i− 1 elements of the stream.

Unfortunately, this approach is insufficient to prove the bound we require via
a hybrid argument (regardless of whether we use communication complexity of
any other tool). In order to demonstrate this, consider the following distinguish-
ing algorithm that uses only O(logN) bits of memory: we iteratively hash every
element of x1, . . . , xQ−i−1 to a single bit, maintaining the majority of the hashes.
Then, we hash the final element and output 1 if and only if its hash is equal to
the majority over the first Q − i − 1 hashes. Simple calculation shows that the
advantage of the algorithm in distinguishing between the above streams is about
α = 1/

√
Q− i− 1. This implies that using this method cannot give a better up-

per bound than 1/
√
Q− i− 1 · (Q − i − 1)/N on the advantage of a streaming

algorithm with memory S = O(logN) in distinguishing between neighboring
stream distributions. If we sum over the advantages of the first Q−1 games (the
advantage is 0 in the last game), we obtain

Q−2∑
i=0

1√
Q− i− 1

· Q− i− 1

N
=

Q−2∑
i=0

√
Q− i− 1

N
= Ω

(
Q3/2

N

)
,

which is already Ω(1) for Q = N2/3. On the other hand, our goal is to show that
if S = O(logN) and the distinguishing advantage is Ω(1), then Q ≈ N .

2.3 The Improved Approach

The reason that the initial attempt above fails to prove the required bound is
that distinguishing neighboring stream distributions is too easy, and the sum
of the advantages over all Q games results in a loose bound. An alternative
approach in attempt to overcome the loss is to try and avoid the straightforward
sum of advantages by using more advanced techniques developed in the area of
provable security for the purpose of obtaining tight bounds (e.g., the chi-squared
method proposed in [10]). However, such techniques do not directly apply to the

6



streaming model where the adversary no longer has access to answers of its
previous queries. Moreover, it seems challenging to extend such techniques to
the multi-pass setting in order to handle the dependencies between repeated
queries to the underlying primitive. In this paper, we use a completely different
approach by reconsidering our definition of intermediate hybrid distributions
that lead from a stream produced by random permutation to a stream produced
by a random function.

The Hybrid Distributions We start by defining the first distinguishing game
between x1, . . . , xQ (a stream drawn from a random permutation) and a second
stream drawn from a carefully chosen hybrid distribution. Our goal is to make
sure that the distinguishing advantage between two neighboring stream distri-
butions is significantly lower compared to the basic approach. Furthermore, we
would like to use communication complexity in order to analyze neighboring
stream distributions, i.e., we require that the stream can be partitioned such
that the marginal distributions of the inputs given to each player are identical.

We define our stream distributions using more convenient notation of
x1, . . . , xQ/2, y1, . . . , yQ/2, where each of x1, . . . , xQ/2 and y1, . . . , yQ/2 is a stream
drawn from a random permutation, such that the streams are either drawn
from the same permutation (which corresponds to the original distribution),
or drawn from independent permutations (which corresponds to the first in-
termediate hybrid). We then define the corresponding 2-player communication
problem (which we call the permutation-dependence problem), where A and B
obtain x1, . . . , xQ/2 and y1, . . . , yQ/2, respectively, and try to decide with mini-
mal one-way communication whether their inputs are drawn from the same or
from independent permutations.

To complete the distinguishability upper bound proof for the streaming game,
we prove an upper bound on the distinguishing advantage of A and B in the
permutation-dependence problem. The proof is by a reduction from the set-
disjointness problem, which is a canonical 2-player problem in communication
complexity [2, 16, 22], where the input of each player is a set and their goal is to
determine whether their sets intersect, or are disjoint.3

The first hybrid breaks the dependency between the two halves of the stream.
We can now continue recursively by dividing the halves into quarters, etc. This
results in a binary tree of hybrids of hight logQ, where a one-way communication
game is played at every non-leaf node. The leaves are completely independent
elements of [N ], whose concatenation is a stream sampled using a random func-
tion, as desired.4

3 In fact, the reduction is from the unique-disjointness problem which is a variant
of set-disjointness with the promise that if the sets of the players intersect, the
intersection size is 1.

4 A hybrid argument on a binary tree is also used to prove the security of the classical
pseudo-random function construction by Goldreich et al. [11]. However, the resem-
blance is superficial, as in [11] the construction itself is a binary tree, whereas in our
case, we build it artificially only in the proof.
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Summing up the advantages over the hybrids in each level of the tree gives
an upper bound of O(Q · S/N). The overall advantage is O(logQ ·Q · S/N), as
there are logQ levels in the tree.

3 Preliminaries

Unless stated explicitly, all parameters considered in this paper are positive
integers. We define [N ] = {1, 2, . . . , N} and [N ]K = [N ]× [N ]× . . .× [N ]︸ ︷︷ ︸

K

. Given

bit strings x and y, we denote their concatenation by x‖y. For a positive integer
K, we denote by x(K) the string x‖x . . . ‖x︸ ︷︷ ︸

K

, obtained by K repetitions of x. We

denote by HW (x) the Hamming weight of x.

Given a bit string a ∈ {0, 1}N such that HW (a) = K, we can treat it as
an incidence vector of a set {x1, x2, . . . , xK} such that xi ∈ [N ] and a[xi] = 1
for i ∈ [K]. We define SEQ : {0, 1}N → [N ]K as the sequence SEQ(a) =
x1, x2, . . . , xK (which includes the elements indicated by a in lexicographical
order). Given incidence vectors a ∈ {0, 1}N and b ∈ {0, 1}N , let a∩ b denote the
intersection of these sets, and |a ∩ b| the size of the intersection.

Given a distribution X on strings with finite support, we write x
$←− X to

denote a random variable x chosen from X . We write x ∼ X if x is a random
variable that is distributed as X .

For arbitrary distributions on strings D1 and D2, we denote by D1‖D2 the
distribution on strings obtained by concatenating two strings sampled indepen-
dently from D1 and D2.

Distinguishing between Streams We define our model for a randomized
algorithm whose goal is to distinguish between streams. The model is similar to
the one defined in [15], although we use slightly different notation.

For some parameters N,K, let X be some distribution over [N ]K . We denote
by O(X ) an oracle that samples x1, x2, . . . , xK from X . The oracle receives up to
K queries and answers query number i by xi. Note that once the oracle outputs
xi, it is not output again. This implies that an algorithm A that interacts with
O(X ) receives x1, x2, . . . , xK as a stream, i.e., if A requires access to xi after
issuing query i, it has to store xi in memory in some representation.

We denote by AO(X ) a randomized algorithm with oracle access to O(X ) and
by AO(X ) ⇒ b the event that the algorithm outputs the bit b ∈ {0, 1}.

We say that an algorithm A is S-bounded, if the size of each state maintained
by A during any execution is upper bounded by S bits.

Let X and Y be two distributions over [N ]K . The streaming distinguishing
advantage of an algorithm A between X and Y is defined as

AdvSTR
X ,Y (A) =

∣∣Pr[AO(X ) ⇒ 1]− Pr[AO(Y) ⇒ 1]
∣∣.
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We further define the optimal advantage for an S-bounded algorithm as

OptSTR
X ,Y (S) = max

A
{AdvSTR

X ,Y (A) | A is S − bounded}.

Sampling with and without Replacement For a parameter 0 < K ≤ N ,
let DKN be the distribution over [N ]K that is defined by a sampling procedure
which uniformly draws K elements from [N ] without replacement.

For parameters 0 < K ≤ N and R > 0, let DK×RN be the distribution
over [N ]K·R that is composed of R independent copies of DKN . For example,
DK×2N = DKN ‖DKN .

Note that sampling from D1×K
N is equivalent to choosing K items from [N ]

uniformly with replacement (i.e., from a random function), while sampling from
DKN is equivalent to choosing K items from [N ] uniformly without replacement
(i.e., from a random permutation).

The original switching lemma between a random permutation and a random
function [3, 13, 14] asserts that any algorithm that issues Q queries to the under-
lying primitive has distinguishing advantage bounded by Q2/2N . This bound
obviously holds in the (more restricted) streaming model.

Theorem 1 (switching lemma [3, 13, 14]). For any S and Q ≤ N ,

OptSTR
DQ

N ,D
1×Q
N

(S) ≤ Q2

2N
.

The Set-Disjointness and Unique-Disjointness Problems

The set-disjointness function DISJ : {0, 1}N × {0, 1}N → {0, 1} is defined as

DISJ(a, b) =

{
0, there exists i ∈ [N ] for which a[i] = b[i] = 1

1, otherwise.

We can view a and b as subsets of [N ], encoded as incidence vectors, and then
DISJ(a, b) = 1 if a and b are disjoint.

The set-disjointness problem (or disjointness in short) is a classical problem
in communication complexity.5 We consider its 2-player variant which is a game
between A and B that run a protocol Π. In an instance of disjointness A receives
a ∈ {0, 1}N , B receives b ∈ {0, 1}N and their goal is to output DISJ(a, b) with
minimal communication in the worst case. Namely, the communication cost of
Π is defined as the maximal number of bits communicated among all possible
protocol executions.

We consider a variant of the disjointness problem called unique-disjointness,
which is identical to disjointness, but with the promise that in a 0-instance, there
exists a single index i ∈ [N ] for which a[i] = b[i] = 1. We denote the correspond-
ing function by UDISJ , where we define UDISJ(a, b) =⊥ if a, b do not satisfy

5 For a (slightly outdated) survey on set-disjointness, refer to [8].
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the required promise. We will be interested in a public-coin randomized variant
of unique-disjointness in which A,B have access to a shared random string that
is independent of their inputs.

We denote the output of the protocol Π on inputs a, b as UDISJΠ(a, b).
Note that it is a random variable that depends on the shared randomness of
A,B. Disjointness and its variants are worst case problems. This motivates the
following notation for the error and advantage of the protocol.6

ErrUDISJ0
N (Π) = max

a,b
{Pr[UDISJΠ(a, b) 6= 0 | UDISJ(a, b) = 0]},

ErrUDISJ1
N (Π) = max

a,b
{Pr[UDISJΠ(a, b) 6= 1 | UDISJ(a, b) = 1]},

ErrUDISJ
N (Π) = max{ErrUDISJ0

N (Π),ErrUDISJ1
N (Π)},

AdvUDISJ
N (Π) =

∣∣1− ErrUDISJ1
N (Π)− ErrUDISJ0

N (Π)
∣∣.

The following is a classical result in communication complexity.

Theorem 2 ([2, 16, 22, adapted]). Any public-coin randomized protocol Π
that solves unique-disjointness on all inputs a, b ∈ {0, 1}N × {0, 1}N such that
UDISJ(a, b) ∈ {0, 1} with error probability ErrUDISJ

N (Π) ≤ 1/3, uses Ω(N) bits
of communication in the worst case.

Therefore, it is not possible to do much better than the trivial protocol in which
A sends B its entire input a, and B outputs UDISJ(a, b).

When analyzing the advantage γ of a protocol with communication cost of
o(N), we can repeat it with independent randomness and amplify its advantage
using a majority vote to obtain an error probability of at most 1/3. By applying
a Chernoff bound and using Theorem 2, we can lower bound the communication
cost required to achieve advantage of γ by Ω(γ2N). Unfortunately, this bound
is insufficient for our purpose of obtaining a tight streaming switching lemma.
On the other hand, relatively recent results [5, 12] prove a much stronger lower
bound of Ω(γN) on the communication cost by a more careful analysis. This
stronger bound (summarized in the theorem below) will allow us to prove a tight
streaming switching lemma. Nevertheless, we use the full power of the theorem
only in the multi-pass version of the lemma in Section 5, whereas the main
(single-pass) lemma only requires a weaker variant of the theorem for one-way
communication protocols.

Theorem 3 (unique-disjointness bound). There exists a constant M ≥ 1
for which any public-coin randomized protocol Π for unique-disjointness that
satisfies AdvUDISJ

N (Π) = γ must communicate at least 1
M γN −M logN bits in

the worst case.

The proof is heavily based on the proof of Theorem 2.2 in [5]. It is described in
Appendix A for the sake of completeness, where we prove it with M = 20.

6 Our notation for disjointness is consistent with the rest of the paper, yet it differs
from standard notation used in communication complexity.
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4 The Streaming Switching Lemma

Our main theorem is stated below. We refer to it as a “streaming switching
lemma” (for the sake of compatibility with previous results).

Theorem 4 (streaming switching lemma). There exists a constant M1 ≥ 1
such that any S-bounded randomized algorithm A for S ≥ logN with access to a
stream containing logN ≤ Q ≤ N/3 elements drawn from [N ] via either a ran-
dom permutation or a random function has a distinguishing advantage bounded
by

AdvSTR
DQ

N ,D
1×Q
N

(A) ≤ OptSTR
DQ

N ,D
1×Q
N

(S) ≤ M1 · dlogQe ·Q
N

· (S +M1 · logN).

Remark 1. The advantage is O(logQ ·Q · S/N) given than S = Ω(logN).

Remark 2. It follows from our proof that we can set M1 = 30. However, a smaller
value of M1 can be derived by low-level optimizations.

Theorem 4 follows from the lemma below, which is proved in Section 4.1.

Lemma 1. There exists a constant M1 ≥ 1 such that for any K ≤ N/3 and
S ≥ logN ,

OptSTR
D2K

N ,DK×2
N

(S) ≤ M1 ·K
N

· (S +M1 · logN).

Proof (of Theorem 4). Let M1 be the constant implied by Lemma 1. We denote
by Γ = Γ (N,S) = M1

N · (S + M1 · logN) the upper bound on OptSTR
D2K

N ,DK×2
N

(S)

deduced in Lemma 1, divided by K. Note that Γ (N,S) does not depend on K.
Let k be a positive integer such that K = 2k < 2N/3. We prove that for any
S-bounded algorithm A with S ≥ logN ,

AdvSTR
DK

N ,D
1×K
N

(A) ≤ k ·K
2
· Γ. (1)

The proof is by induction on k. The base case is for k such that K ≤ logN . It
follows from the original switching lemma (Theorem 1), since

AdvSTR
DK

N ,D
1×K
N

(A) ≤ K2

2N
≤ K · S

2N
≤ M1 · k ·K

2N
· (S +M1 · logN).
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Suppose that the hypothesis holds up to k′ = k. We prove it for k′ = k + 1
(assuming K ≤ N/3). We have

AdvSTR
D2K

N ,D1×2K
N

(A) =∣∣Pr[AO(D2K
N ) ⇒ 1]− Pr[AO(D1×2K

N ) ⇒ 1]
∣∣ =∣∣∣(Pr[AO(D2K

N ) ⇒ 1]− Pr[AO(DK×2
N ) ⇒ 1]

)
+(

Pr[AO(DK×2
N ) ⇒ 1]− Pr[AO(D1×2K

N ) ⇒ 1]
)∣∣∣ ≤∣∣∣Pr[AO(D2K

N ) ⇒ 1]− Pr[AO(DK×2
N ) ⇒ 1]

∣∣∣+∣∣∣Pr[AO(DK×2
N ) ⇒ 1]− Pr[AO(D1×2K

N ) ⇒ 1]
∣∣∣ ≤ (Lemma 1)

K · Γ+∣∣∣(Pr[AO(DK×2
N ) ⇒ 1]− Pr[AO(DK

N ‖D
1×K
N ) ⇒ 1]

)
+(

Pr[AO(DK
N ‖D

1×K
N ) ⇒ 1]− Pr[AO(D1×2K

N ) ⇒ 1]
)∣∣∣ ≤

K · Γ+∣∣∣Pr[AO(DK
N ‖D

K
N ) ⇒ 1]− Pr[AO(DK

N ‖D
1×K
N ) ⇒ 1]

∣∣∣+∣∣∣Pr[AO(DK
N ‖D

1×K
N ) ⇒ 1]− Pr[AO(D1×K

N ‖D1×K
N ) ⇒ 1]

∣∣∣ ≤ (hypothesis)

K · Γ + 2 · k ·K
2
· Γ =

(k + 1) · 2K
2

· Γ.

This completes the proof of the induction.

Finally, let A be S-bounded as in the theorem. Let q′ = dlogQe and Q′ = 2q
′

(note that Q ≤ Q′ ≤ 2Q). We have

AdvSTR
DQ

N ,D
1×Q
N

(A) ≤ AdvSTR

DQ′
N ,D1×Q′

N

(A) ≤ q′ ·Q′

2
· Γ ≤ dlogQe ·Q · Γ,

where the second inequality follows from (1). This concludes the proof of Theo-
rem 4. �

4.1 Reduction from Communication Complexity to Streaming

We now define the permutation-dependence problem and summarize the out-
come of the reduction from this problem to streaming in Proposition 1. We then
state a lower bound on the communication cost of the permutation-dependence
problem in Proposition 2 (which is proved in Section 4.2), and use it to prove
Lemma 1.
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The Permutation-Dependence Problem Permutation-dependence is a 2-
player game between A and B that run a protocol Π. For an even parameter
K ≤ N , we choose the K elements

x1, . . . , xK/2, y1, . . . , yK/2,

from either DKN , or from DK/2×2N . We give x1, . . . , xK/2 to A and y1, . . . , yK/2
to B. Note that regardless of the distribution from which the K elements are

chosen, the input to each player is taken from the (marginal) distribution DK/2N .
However, the inputs are either dependent (chosen from DKN ) or independent

(chosen from DK/2×2N ) and the goal of the players is to distinguish between these
cases.

After receiving their inputs x, y, players A,B run a communication protocol
Π and then one of the players outputs a bit which is the output of the protocol,
denoted by PDEPΠ(x, y). We say that Π has communication cost C if A,B
communicate at most C bits in all possible protocol executions. Similarly to the
disjointness problem, we will be interested in public-coin randomized protocols
for permutation-dependence.

Since it is a distributional communication complexity problem, we define the
following notation for permutation-dependence:

ErrPDEP0
N,K (Π) = Pr[PDEPΠ(x, y) 6= 0 | x, y $←− DK/2×2N ],

ErrPDEP1
N,K (Π) = Pr[PDEPΠ(x, y) 6= 1 | x, y $←− DKN ],

AdvPDEP
N,K (Π) =

∣∣1− ErrPDEP1
N,K (Π)− ErrPDEP0

N,K (Π)
∣∣,

OptPDEP
N,K (C) = max

Π
{ AdvPDEP

N,K (Π) | Π has communication cost C}.

We further denote by OptPDEP→
N,K (C) the optimal advantage of a one-way com-

munication protocol for permutation-dependence. Namely, we only consider pro-
tocols in which A sends a single message to B, which outputs the answer. Clearly,
OptPDEP→

N,K (C) ≤ OptPDEP
N,K (C).

The Reduction from Permutation-Dependence to Streaming The fol-
lowing proposition upper bounds the advantage of a (memory-bounded) stream-

ing algorithm in distinguishing between DKN and DK/2×2N by the advantage of
an optimal one-way permutation-dependence protocol (with limited communi-
cation cost). It is a standard reduction from a 2-player one-way communication
protocol to streaming (for example, refer to [18]).

Proposition 1. For any S and even K ≤ N ,

OptSTR

DK
N ,D

K/2×2
N

(S) ≤ OptPDEP→
N,K (S).

Proof. Given black-box access to an S-bounded streaming algorithm A1, players
A and B in the permutation-dependence protocol Π run A1 and answer its

13



oracle queries using their inputs: A answers the first batch of K/2 queries (using
x1, . . . , xK/2) and then communicates the intermediate state of A1 to B which
answers the second batch of K/2 queries (using y1, . . . , yK/2). Finally, B outputs
the same answer as A1.

Thus, A1 is given oracle access to O, where either O = O(DKN ) or O =

O(DK/2×2N ), depending on the distribution of the inputs x, y of A,B. Clearly,
Π is a one-way communication protocol. Moreover, since A1 is S-bounded and
its state is communicated once, the communication cost of Π is bounded by S.
Therefore,

AdvSTR

DK
N ,D

K/2×2
N

(A1) = AdvPDEP
N,K (Π) ≤ OptPDEP→

N,K (S).

The proposition follows since the above inequality holds for any S-bounded al-
gorithm A1. �

Remark 3. In case S > K/2, a trivial reduction (where one party sends its input
to the other) is more efficient than the one above. This gives

OptSTR

DK
N ,D

K/2×2
N

(S) ≤ OptPDEP→
N,K (K/2).

Using this observation, it is possible to obtain a limited improvement to the
streaming switching lemma (Theorem 4) in case S = NΩ(1).

Proof of Lemma 1 In order to prove Lemma 1, we use the following proposi-
tion (proved in Section 4.2) which bounds the advantage of any protocol Π for
permutation-dependence.

Proposition 2. There exists a constant M1 ≥ 1 such that for any K ≤ N/3
and C ≥ logN ,

OptPDEP
N,2K (C) ≤ M1 ·K

N
· (C +M1 · logN).

Proof (of Lemma 1). Let M1 be the constant implied by Proposition 2. Based
on Proposition 1 and Proposition 2 we have

OptSTR
D2K

N ,DK×2
N

(S) ≤ OptPDEP→
N,2K (S) ≤ OptPDEP

N,2K (S) ≤ M1 ·K
N

· (S +M1 · logN).

�

Remark 4. Proposition 2 upper bounds OptPDEP
N,2K (C), yet the proof of Lemma 1

only requires an upper bound on OptPDEP→
N,2K (S). This suggests that a (small)

improvement to the bound of Lemma 1 (and hence to the bound of Theorem 4)
may be possible.
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4.2 Reduction from Unique-Disjointness to Permutation-
Dependence

The proof of Proposition 2 is based on a reduction from the unique-disjointness
problem to the permutation-dependence problem, summarized by the proposi-
tion below.

Proposition 3. Let K ≤ N/3 and N ′ = bN/Kc. There exists a public-coin
randomized local reduction, f1, f2, where fi : {0, 1}N ′ → [N ]K , such that for any
a, b ∈ {0, 1}N ′ × {0, 1}N ′ ,

f1(a), f2(b) ∼

{
DK×2N , if UDISJ(a, b) = 0

D2K
N , if UDISJ(a, b) = 1.

Here, a public-coin randomized local reduction means that f1 only depends on
a and on public randomness (but not on b), and similarly, f2 does not depend
on a. Hence, if a, b intersect at exactly 1 index, then the output of the reduction
consists of two independent random permutation streams, each of K elements.
On the other hand, if a, b are disjoint, then the output of the reduction consists
of a single random permutation stream of 2K elements (that is split into two
halves).
Proof. We describe the reduction f1, f2 as a procedure executed by two parties
A,B that do not communicate, but share a random string.

1. Given incidence vector inputs (bit arrays) a, b ∈ {0, 1}N ′ × {0, 1}N ′ ,
let SA = a(K)‖0(N−N ′·K), SB = b(K)‖0(N−N ′·K). Namely, each party
locally duplicates its array K times and appends zero entries such that
SA ∈ {0, 1}N and SB ∈ {0, 1}N .

2. Using their joint randomness, the parties sample a sequence of K indices

i1, i2, . . . , iK
$←− DKN (chosen from [N ] without replacement). The parties

use the sampled indices to create new arrays: A defines an array TA ∈
{0, 1}K , where TA[j] = SA[ij ] for j ∈ {1, 2, . . . ,K}. Similarly, B defines
TB ∈ {0, 1}K , where TB [j] = SB [ij ] for j ∈ {1, 2, . . . ,K}.

3. Each party locally extends its array from size K to size N such that its
Hamming weight becomes K (the parties add disjoint 1 entries). More
specifically, A computes

T 2
A = TA‖1(K−HW (TA))‖0(N−2K+HW (TA)),

and B computes

T 2
B = TB‖0(K)‖1(K−HW (TB))‖0(N−3K+HW (TB)).

4. Each party applies (the same) uniform permutation σ : {0, 1}N →
{0, 1}N to its array of size N (σ is specified in the joint randomness),

T 3
A[i] = T 2

A[σ(i)], and T 3
B [i] = T 2

B [σ(i)],
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for each i ∈ [N ].
5. Finally, A selects a uniform permutation σ1 : {0, 1}K → {0, 1}K and

uses it to output the elements indicated by its array T 3
A (the 1 entries)

in uniform order. A outputs

f1(a)i = SEQ(T 3
A)σ1(i), for each i ∈ [K].

B selects a uniform permutation σ2 : {0, 1}K → {0, 1}K and outputs

f2(b)i = SEQ(T 3
B)σ2(i), for each i ∈ [K].

Analysis Observe that T 3
A ∈ {0, 1}N satisfies HW (T 3

A) = K and similarly
T 3
B ∈ {0, 1}N satisfies HW (T 3

B) = K. Therefore, each party outputs a sequence
of K elements.

Due to the randomization of σ (which randomizes the elements that are
output by f1, f2) and of σ1, σ2 (which randomize the order of the elements output
by f1, f2), we have the following property.

Property 1. Let a, b ∈ {0, 1}N ′ × {0, 1}N ′ and

x, y = x1, . . . , xK , y1, . . . , yK ∈ [N ]2K , x′, y′ = x′1, . . . , x
′
K , y

′
1, . . . , y

′
K ∈ [N ]2K ,

where each K element sequence (x, y, x′ and y′) contains distinct elements and
for some 0 ≤ t ≤ K,

|{x1, . . . , xK} ∩ {y1, . . . , yK}| = |{x′1, . . . , x′K} ∩ {y′1, . . . , y′K}| = t.

Then,
Pr[f1(a), f2(b) = x, y] = Pr[f1(a), f2(b) = x′, y′].

Hence, the distribution of f1(a), f2(b) is completely determined by the distribu-
tion of the size of the intersection of the sequences f1(a) and f2(b) as sets. The
intersection size is equal to |TA ∩ TB | (since |TA ∩ TB | = |T 3

A ∩ T 3
B |), thus we

analyze this variable below.
Observe that

|SA ∩ SB | = K · |a ∩ b|.
Consider the case that UDISJ(a, b) = 1, or |a ∩ b| = 0. We have |SA ∩ SB | = 0
and therefore |TA ∩ TB | = 0. Hence, f1(a) and f2(b) are disjoint as sets, and by
Property 1, f1(a), f2(b) ∼ D2K×1

N .
Otherwise, UDISJ(a, b) = 0, implying that |a ∩ b| = 1 and therefore |SA ∩

SB | = K. The number of options for selecting i1, i2, . . . , iK in the second step
such that they intersect the K common indices in SA, SB in exactly 0 ≤ t ≤ K
places is

(
K
t

)(
N−K
K−t

)
. Since the total number of options for selecting i1, i2, . . . , iK

is
(
N
K

)
,

Pr[|TA ∩ TB | = t] =

(
K
t

)(
N−K
K−t

)(
N
K

) .
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At the same time,

Pr
[∣∣{x1, . . . , xK} ∩ {y1, . . . , yK}∣∣ = t | x1, . . . , xK , y1, . . . , yK

$←− DK×2N

]
=(

K
t

)(
N−K
K−t

)(
N
K

) = Pr[|TA ∩ TB | = t].

Hence, by Property 1, f1(a), f2(b) ∼ DK×2N as claimed. �
Finally, Proposition 2 follows from Proposition 3 and Theorem 3.

Proof (of Proposition 2). We show that there exists a constant M1 such that
any permutation-dependence protocol Π ′ with communication cost C ≥ logN
satisfies AdvPDEP

N,2K (Π ′) ≤ M1·K
N · (C +M1 · logN). This proves Proposition 2.

Fix a permutation-dependence protocol Π ′ as above. We consider a protocol
Π for unique-disjointness, where given an input a, b ∈ {0, 1}N ′ × {0, 1}N ′ (for
N ′ = bN/Kc), each party independently applies the reduction of Proposition 3
to its input using the public randomness. The parties then run the permutation-
dependence protocol Π ′ on input f1(a), f2(b) with communication cost (at most)
C bits in the worst case and output the same value. In short,

UDISJΠ(a, b) = PDEPΠ′(f1(a), f2(b)).

Proposition 3 implies that for every a, b such that UDISJ(a, b) = 0,

Pr[UDISJΠ(a, b) = 1 | UDISJ(a, b) = 0] =

Pr[PDEPΠ′(f1(a), f2(b)) = 1 | UDISJ(a, b) = 0] = ErrPDEP0
N,2K (Π ′),

and a similar equality holds for every a, b such that UDISJ(a, b) = 1. Hence

ErrUDISJ0
N ′ (Π) = ErrPDEP0

N,2K (Π ′), and ErrUDISJ1
N ′ (Π) = ErrPDEP1

N,2K (Π ′).

Denote

α′ = 1− ErrUDISJ1
N ′ (Π), β′ = ErrUDISJ0

N ′ (Π),

and γ′ = α′ − β′. We have

AdvUDISJ
N ′ (Π) = α′ − β′ = γ′ =

1− ErrPDEP1
N,2K (Π ′)− ErrPDEP0

N,2K (Π ′) = AdvPDEP
N,2K (Π ′),

where we assume that α′−β′ ≥ 0 (otherwise, A,B in Π simply negate the output
of Π ′). Hence, γ′ is equal to the advantage of both the unique-disjointness and
permutation-dependence protocols.

We apply Theorem 3 to Π, and since C upper bounds the communication
cost of Π in the worst case, we conclude that C ≥ 1

M ·N
′ · γ′ −M logN ′. This

gives

γ′ ≤ M

N ′
· (C +M · logN ′) ≤ M

N ′
· (C +M · logN).
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Define M1 = 3/2 ·M . Note that since K ≤ N/3, then

N ′ =

⌊
N

K

⌋
≥ N −K

K
≥ 2N

3K
,

hence M
N ′ ≤

M1·K
N . Therefore,

γ′ ≤ M1 ·K
N

· (C +M1 · logN),

as claimed. �

5 The Multi-Pass Streaming Switching Lemma

For a parameter P ≥ 1, we consider a P -pass streaming algorithm which can
access an input stream of Q elements P times at the same order. The P -pass
algorithm attempts to distinguish between a stream chosen from a random per-
mutation or from a random function. In our model, the algorithm interacts with
an oracle that samples from one of the distributions defined below.

For 0 < K ≤ N , let DK×R⊗PN be the distribution over [N ]K·R·P that is

defined by a sampling procedure which first draws x
$←− DK×RN and then outputs

x‖x‖ . . . ‖x︸ ︷︷ ︸
P

. In case R = 1, we simply write DK⊗PN .

Theorem 5 (multi-pass switching lemma). There exists a constant M1 ≥ 1
such that any S-bounded randomized P -pass algorithm A for S ≥ logN with ac-
cess to a stream containing logN ≤ Q ≤ N/3 elements drawn from [N ] via
either a random permutation or a random function has a distinguishing advan-
tage bounded by

AdvSTR
DQ⊗P

N ,D1×Q⊗P
N

(A) ≤ OptSTR
DQ⊗P

N ,D1×Q⊗P
N

(S) ≤ M1 · dlogQe ·Q
N

·(P ·S+M1·logN).

The proof of Theorem 5 is based on the lemma below, which is a generalization
of Lemma 1.

Lemma 2. There exists a constant M1 ≥ 1 such that for any K ≤ N/3 and
S ≥ logN ,

OptSTR
D2K⊗P

N ,DK×2⊗P
N

(S) ≤ M1 ·K
N

· (P · S +M1 · logN).

We omit the proof of Theorem 5, as it is essentially identical to the one of
Theorem 4.

The proof of Lemma 2 uses the following proposition which generalizes Propo-
sition 1.

Proposition 4. For any S and even K ≤ N ,

OptSTR

DK⊗P
N ,DK/2×2⊗P

N

(S) ≤ OptPDEP
N,K (P · S).
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Proof. The proof is via a reduction from the (multi-round) permutation-dependence
problem to (multi-pass) streaming, which generalizes the proof of Proposition 1.
The only difference is that in order to simulate the P -pass streaming algorithm,
its state is communicated P times between the parties, hence the communication
cost of the permutation-dependence protocol is bounded by S · P . �
Proof (of Lemma 2). Let M1 be the constant implied by Proposition 2. Based
on Proposition 4 and Proposition 2 we have

OptSTR
D2K⊗P

N ,DK×2⊗P
N

(S) ≤ OptPDEP
N,2K (P · S) ≤ M1 ·K

N
· (P · S +M1 · logN).

�

6 Conclusions and Future Work

In this paper we proved an upper bound on the streaming distinguishing advan-
tage between a random permutation and a random function, which is tight up to
poly-logarithmic factors. Our proof is based on a hybrid argument that gives rise
to a reduction from the unique-disjointness communication complexity problem
to streaming. In the future, it would be interesting to apply our techniques to
additional streaming problems that are relevant to cryptography.
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A Concrete Parameters for Theorem 3

In this appendix Theorem 3 for M = 20, as restated below.

Theorem 3 (restated with M = 20). Any public-coin randomized protocol
Π for unique-disjointness that satisfies AdvUDISJ

N (Π) = γ must communicate at
least 1

20γN − 20 logN bits in the worst case.

We first describe information theory preliminaries, which are heavily used in
the proof (for more details refer to [9]). We then give an overview of the proof,
which is based on the proof of Theorem 2.2 in [5, revision 1].

A.1 Information Theory

We begin with notations and definitions. Consider discrete random variables
X,Y, Z. We denote the distribution of X by p(X). We denote by X (x) the
probability that a random variable drawn from the distribution X gets the value
x.

The entropy of X is

H(X) =
∑
x

Pr[X = x] log(1/Pr[X = x]).

The conditional entropy of X given Y is

H(X|Y ) =
∑
y

Pr[Y = x]H(X|Y = y) = H[X,Y ]−H[Y ].

The mutual information between X,Y is

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X),
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where I(X;Y ) = 0 if and only if X and Y are independent. The conditional
mutual information between X,Y given Z is

I(X;Y |Z) = H(X|Z)−H(X|Y,Z).

The Kullback-Leibler divergence (also known as the relative entropy) between
two distributions X ,Y is

D(X‖Y) =
∑
x

X (x) log(X (x)/Y(x)).

Next, we describe the properties that we use.
The chain rule of mutual information asserts that

I(X;Y,Z) = I(X;Z) + I(X;Y |Z).

Since (conditional) mutual information is non-negative, this implies that

I(X;Y,Z) ≥ I(X;Z).

We will use the following equalities:

I(X;Y ) =
∑
x

Pr[X = x]D(p(Y |X = x)‖p(Y )), and

I(X;Y |Z) =
∑
z

Pr[Z = z]D(p(X,Y |Z = z)‖p(X|Z = z), p(Y |Z = z)) =∑
y,z

Pr[Y = y, Z = x]D(p(X|Y = y, Z = z)‖p(X|Z = z)).

Finally, Pinsker’s inequality bounds the statistical distance between proba-
bility distributions as

∆(X ,Y) ≤
√

1/2 ·D(X‖Y).

A.2 Overview of the Proof

The main part of the proof (described in Section A.3) establishes a similar result
to Theorem 3 for private-coin protocols. It is based on the proof of Theorem 2.2
by Braverman and Moitra [5, revision 1]. Then, in Section A.4, we complete the
proof of the theorem by extending the result to public-coin protocols using the
standard sparsification technique of [19].

We now give a short overview of the lower bound proof for private-coin pro-
tocols. It uses the information complexity approach, which has become a stan-
dard technique for proving communication complexity lower bounds (cf., [2]). In
particular, we define a distribution on the inputs of the parties, which become
random variables, denoted by (A,B). We analyze the amount of information
that the concatenation of the messages in the protocol (namely, the protocol
transcript, denoted as Π(A,B)) reveals to each player about the other player’s
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input. This quantity is exactly I(A;Π | B) + I(B;Π | A) (known as the internal
information complexity of Π) and it immediately lower bounds H(Π) and hence
the communication cost of Π.

In order to lower bound I(A;Π | B) + I(B;Π | A), we break down the inputs
(A,B) into N mutually independent coordinates (Aj , Bj). This allows using a
direct sum property which reduces the task of proving an Ω(εN) lower bound for
the original problem (for 0 < ε ≤ 1) to the task of proving an Ω(ε) lower bound
for a small “gadget”. In particular, the disjointness function can be written as
DISJ(a, b) =

∨
j∈[N ](aj ∧ bj). Hence, in standard proofs that use this approach

the gadget is the AND (or NAND) gate.
Unfortunately, it is shown in [5] that there is a protocol for AND that achieves

an advantage of γ, but reveals only O(γ2) bits of information. This implies that
the standard reduction to the AND gate only allows to prove a lower bound of
Ω(γ2N) on the communication cost (which can also be obtained by straight-
forward majority amplification, as summarized in Section 3). We note that the
protocol of [5] for AND can also be viewed as a one-way communication pro-
tocol in which B outputs the answer. Therefore, the standard reduction to the
AND gate does not allow proving the required Ω(γN) communication cost lower
bound even for one-way protocols.

In order to prove a Ω(γN) lower bound, Braverman and Moitra use a more
complex gadget and the main part of the analysis involves proving that any
protocol for this gadget that achieves advantage of γ must reveal Ω(γ) bits of
information. The analysis essentially breaks the gadget down into 6 smaller AND
gadgets which interact in a way that allows proving the required bound.

A.3 A Lower Bound for Private-Coin Protocols

We consider private-coin protocols for unique-disjointness.

Theorem 6. Any private-coin protocol Π for unique-disjointness that satisfies
AdvUDISJ

N (Π) = γ must communicate at least 1
19.5γN bits in the worst case.

Theorem 3 is a concrete variant of Theorem 2.2 in [5, revision 1] and its proof
is very similar to that of [5]. However, we present the proof slightly differently
and additionally calculate the constants involved. We note that the proof in [5]
employed a so-called “smoothing” to the underlying disjointness protocol, yet
this not necessary to prove the theorem and hence is omitted.7

Consider a private-coin protocol Π such that AdvUDISJ
N (Π) = γ. We analyze

the information complexity of Π with respect to the following distribution on
inputs: we group the N bits into blocks of size exactly three, and for each pair
of three bits we generate aj , bj ∈ {0, 1}3 (for j ∈ [N/3]) uniformly at random
from the pairs of strings of length three bits where aj and bj have exactly one
1 and two 0’s, and aj and bj are disjoint. Consequently, there are 6 possible
aj , bj pairs. We define A,B as random variables for the inputs of the players

7 The fact that “smoothing” is not required is also mentioned in [24, Footnote 7].
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and Aj , Bj ∈ {1, 2, 3} as random variables for the location of the 1 bit in aj , bj ,
respectively.

We will be interested in lower bounding H(Π) = H(Π(A,B)) by proving a
lower bound on the internal information complexity I(A;Π | B) + I(B;Π | A)
using the following fact.

Fact 1 1
2

[∑
j I(Aj ;Π | A1...j−1, Bj...n) + I(Bj ;Π | A1...j , Bj+1...n)

]
≤ H[Π].

Proof. By the chain rule for mutual information we obtain∑
j

I(Aj ;Π | A1...j−1, Bj...n) ≤
∑
j

I(Aj ;Π,B1...j−1 | A1...j−1, Bj...n) =

∑
j

I(Aj ;B1...j−1 | A1...j−1, Bj...n) +
∑
j

I(Aj ;Π | A1...j−1, B) =

∑
j

I(Aj ;Π | A1...j−1, B) = I(A;Π | B) ≤ H(Π),

where I(Aj ;B1...j−1 | A1...j−1, Bj...n) = 0 by independence. Similarly,∑
j

I(Bj ;Π | A1...j , Bj+1...n) ≤ H(Π).

Therefore,

1

2

∑
j

I(Aj ;Π | A1...j−1, Bj...n) + I(Bj ;Π | A1...j , Bj+1...n)

 ≤ H(Π),

concluding the proof. �
We define Cj = A1...j−1, Bj+1...n and write

I(Aj ;Π | A1...j−1, Bj...n) = I(Aj ;Π | Cj , Bj) =∑
c,i

∑
t

Pr[Π = t, Cj = c,Bj = i]D(p(Aj | Π = t, Cj = c,Bj = i)‖p(Aj | Cj = c,Bj = i)),

and a similar equality holds for I(Bj ;Π | A1...j , Bj+1...n).
Choosing Cj according to the distribution on the inputs, we obtain

I(Aj ;Π | Cj , Bj) + I(Bj ;Π | Cj , Aj) =
∑
t

E[adv(t, Cj)], (2)

where the expectation is over Cj , and adv(t, Cj) is defined as

adv(t, Cj) =∑
i∈{1,2,3}

Pr[Π = t, Bj = i | Cj ]D(p(Aj | Π = t, Bj = i, Cj)‖p(Aj | Bj = i, Cj))+

Pr[Π = t, Aj = i | Cj ]D(p(Bj | Π = t, Aj = i, Cj)‖p(Bj | Aj = i, Cj)).
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Since Bj is independent of Cj and is uniform in {1, 2, 3} (and the same property
holds for Aj), then

adv(t, Cj) =

1

3

∑
i∈{1,2,3}

Pr[Π = t | Bj = i, Cj ]D(p(Aj | Π = t, Bj = i, Cj)‖p(Aj | Bj = i, Cj))+

Pr[Π = t | Aj = i, Cj ]D(p(Bj | Π = t, Aj = i, Cj)‖p(Bj | Aj = i, Cj)).

(3)

Our goal is to relate the expression
∑
t E[adv(t, Cj)] to the advantage of the

protocol, γ. For this purpose, we fix a transcript t where the output is one. We
consider a fixed block j, and the matrix N t(Cj) that gives the probability of
Π = t for each pair of inputs for the parties A and B, conditioned on the parts
of their input Cj that we have already fixed (the probability here is taken over
the randomness of the protocol and the remaining bits in the input of A and B).
To simplify notation we abbreviate N t(Cj) as N t and write

N t =

N t
11, N

t
12, N

t
13

N t
21, N

t
22, N

t
23

N t
31, N

t
32, N

t
33

 .
Since Π is a private-coin protocol, A and B can privately sample their re-

maining bits conditioned on Cj . Therefore (similarly to [2, Lemma 6.7]), N t is
a rank one matrix that can be expressed as N t = [a1, a2, a3][b1, b2, b3]T . In par-
ticular, bi is the probability over B1...j−1 and the private randomness of B that
B = B1...j−1, Bj = i;Bj+1...n is in the rectangle for Π = t.

Relating the terms in (3) to N t, observe that for i = 1, Pr[Π = t | Bj =
1, Cj ] = N t

21 +N t
31 = a2b1 + a3b1. Moreover, using the convention that 0/0 = 0,

p(Aj | Π = t, Bj = 1, Cj) is a Bernoulli distribution with parameter a2b1/(a2b1+
a3b1) (which we denote by Ba2b1/(a2b1+a3b1)), while p(Aj | Bj = 1, Cj) is a
Bernoulli distribution with parameter 1/2 (as Aj ∈ {2, 3} is uniform). Conse-
quently, we get the equality

Pr[Π = t | Bj = 1, Cj ]D(p(Aj | Π = t, Bj = 1, Cj)‖p(Aj | Bj = 1, Cj)) =

(a2b1 + a3b1)D(Ba2b1/(a2b1+a3b1)‖B1/2).

For any x, y, z ∈ [0, 1], define

IC(x, y, z) = (xy + xz)D(Bxy/(xy+xz)‖B1/2).

We generalize the above equality to all terms in (3), obtaining

adv(t, Cj) =
1

3
(IC(b1, a2, a3) + IC(a1, b2, b3) + IC(b2, a1, a3)+

IC(a2, b1, b3) + IC(b3, a1, a2) + IC(a3, b1, b2)).
(4)
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Let P be the ordered set of triplets (i1, i2, i3) ∈ {1, 2, 3}3 such that i1, i2, i3
are all distinct. Note that P contains 6 triples. Since IC(x, y, z) = IC(x, z, y),
we can write (4) as

adv(t, Cj) =
1

6

∑
(i1,i2,i3)∈P

(IC(ai1 , bi2 , bi3) + IC(bi2 , ai1 , ai3)). (5)

Each expression IC(ai1 , bi2 , bi3) + IC(bi2 , ai1 , ai3) can be thought of the infor-
mation revealed by the protocol for a small AND gadget. The sum of the 6
expressions in adv(t, Cj) can be thought of as a “covering” of the matrix N t(Cj)
with 6 AND gadgets.

For the following fact, we use the proof of [24, Lemma 4] to obtain a slightly
better constant than the one obtained in [5]. Let φ = (1 +

√
5)/2 ≈ 1.618 be the

golden ratio. Recall that φ2 = φ+ 1.

Fact 2 For any x, y, z, u ∈ [0, 1], IC(x, y, z)+IC(y, x, u) ≥ 1
2φ (xz+yu−xy−zu).

Proof. By Pinsker’s inequality for Bernoulli distributions, we have

D(Bxy/(zy+xz)‖B1/2) ≥ 2 ·
(

xy

xy + xz
− 1

2

)2

=
1

2

(
z − y
z + y

)2

(if xy + xz = 0 the inequality follows from the definition 0/0 = 0). Therefore,

IC(x, y, z) + IC(y, x, u) =

(xy + xz)D(Bxy/(xy+xz)‖B1/2) + (yx+ yu)D(Byx/(yx+yu)‖B1/2) ≥

1

2

(
(xy + xz)

(
z − y
z + y

)2

+ (yx+ yu)

(
x− u
x+ u

)2
)

=

1

2

(
x

y + z
· (z − y)2 +

y

x+ u
· (x− u)2

)
.

Denote

R =
x

y + z
· (z − y)2 +

y

x+ u
· (x− u)2,

L =xz + yu− xy − zu = (x− u)(z − y).

Thus, in order to complete the proof we show that R ≥ L/φ. If L is not positive,
then R ≥ L (since R is non-negative) and we are done. It remains to consider the
case that x ≥ u and z ≥ y (the remaining case, x ≤ u and z ≤ y, is symmetric).
If z ≤ (2φ+1)y (implying that y/(y+z) ≥ 1/(2φ+2)) then since x/(x+u) ≥ 1/2,
the product of the two terms of R is at least (x − u)2(z − y)2/(4φ + 4). Hence
by the AM-GM inequality, R ≥ 2(x− u)(z− y)/

√
4φ+ 4 = L/

√
φ+ 1 = L/φ. If

z ≥ (2φ+ 1)y then z + y ≤ (z − y)(φ+ 1)/φ = φ(z − y), hence the first term of
R is at least (x/φ(z − y))(z − y)2 = x(z − y)/φ ≥ L/φ. �

We can now prove Theorem 6.
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Proof (of Theorem 6). Combining (5) with Fact 2, we obtain

adv(t, Cj) =
1

6

∑
(i1,i2,i3)∈P

(IC(ai1 , bi2 , bi3) + IC(bi2 , ai1 , ai3)) ≥

1

12φ

∑
(i1,i2,i3)∈P

(ai1bi3 + bi2ai3 − ai1bi2 − bi3ai3) =

1

12φ

∑
i 6=i′

aibi′ − 2
∑

i∈{1,2,3}

aibi

 =

1

12φ

∑
i 6=i′

(N t
ii′(Cj)− 2

∑
i∈{1,2,3}

N t
ii(Cj))

 .

Therefore,

∑
t

E[adv(t, Cj)] ≥
1

12φ

∑
t

E

∑
i 6=i′

(N t
ii′(Cj)− 2

∑
i∈{1,2,3}

N t
ii(Cj))

 ≥ 1

12φ
· 6γ = γ/(2φ).

The second inequality follows since the advantage of Π is γ. In more detail,
for some α ≥ 0, for each i, i′ such that i 6= i′ we average the probability of
outputting 1 over disjoint inputs and therefore we have

∑
t E[N t

ii′(Cj)] ≥ α+ γ.
On the other hand, for each i ∈ {1, 2, 3} we average the probability of outputting
1 over inputs with intersection size of one and hence

∑
t E[N t

ii(Cj)] ≤ α.
Finally, combining with Fact 1 and (2),

H[Π] ≥ 1

2

∑
j

[I(Aj ;Π | Cj , Bj) + I(Bj ;Π | Cj , Aj)]] =

1

2

∑
j

∑
t

E[adv(t, Cj)] ≥
1

4φ

∑
j∈[N/3]

γ =
1

4φ
· γN/3 ≥ γN/19.5,

concluding the proof. �

A.4 The Proof of Theorem 3

We now use Theorem 6 to prove Theorem 3. The proof is based on the standard
sparsification technique of [19].
Proof (of Theorem 3). We start with a public-coin protocol Π ′ for unique-
disjointness with communication cost C ′ and advantage γ′ and convert it into a
private-coin protocol Π with communication cost at most C = C ′+2.7 logN+17
and advantage at least γ ≥ 0.99γ′. By Theorem 6, we have C ≥ γN/19.5, or
C ′ + 2.7 logN + 17 ≥ γ′N/20, implying that C ′ ≥ γ′N/20 − 2.7 logN − 17 ≥
γ′N/20− 20 logN and establishing Theorem 3 for M = 20.

Suppose Π ′ uses a string R as its randomness. For a parameter k, we pick
k independent random strings R1, . . . , Rk, distributed as R. Fix an input (a, b)
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such that UDISJ(a, b) = 0 and denote α = ErrUDISJ0
N (Π ′). Among R1, . . . , Rk,

the expected number of strings Ri for which Π ′(a, b) errs with randomness Ri
is at most αk. Hence, by a Chernoff bound, the probability that the number of
strings for which Π ′(a, b) errs is more than (α + γ′/256)k = (1 + γ′/(256α))αk

is at most e−(γ
′/(256α))2·αk/3 > e−(γ

′)2·k·2−16

. Since γ′ ≥ 1/N (otherwise, the

theorem is trivial), this probability is upper bounded by e−k·2
−16N−2

. A similar
bound can be shown for an input (a, b) such that UDISJ(a, b) = 1 by considering
β = ErrUDISJ1

N (Π ′).
We call a sequence of strings R1, . . . , Rk good if for any (legal) input (a, b) to

unique-disjointness, the fraction of strings for which Π ′ errs deviates from the
corresponding error probability of Π ′ (ErrUDISJ0

N (Π ′) or ErrUDISJ1
N (Π ′)) by at

most γ′/256. Otherwise, the sequence is called bad. Taking a union bound over
the (at most) 22N possible inputs, the probability that the sequence R1, . . . , Rk is

bad is at most 22N ·e−k·2−16N−2

. Setting k = 217N2.7 ensures that this probability
is less than 1, and therefore there exists a good sequence of k = 217N2.7 random
strings, which we fix.

In the private-coin protocol Π, A first samples a uniform index i ∈ [k] and
sends it to B with its first message. This requires log k = 17+2.7 logN additional
bits of communication. The parties then run Π ′ with randomness Ri. Since
R1, . . . , Rk is good, then the advantage of Π is at least γ′ − γ′/256− γ′/256 ≥
0.99γ′, as claimed. �
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