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Abstract. Deterministic generation of per-signature randomness has
been a widely accepted solution to mitigate the catastrophic risk of ran-
domness failure in Fiat–Shamir type signature schemes. However, recent
studies have practically demonstrated that such de-randomized schemes,
including EdDSA, are vulnerable to differential fault attacks, which en-
able adversaries to recover the entire secret signing key, by artificially
provoking randomness reuse or corrupting computation in other ways.
In order to balance concerns of both randomness failures and the threat of
fault injection, some signature designs are advocating a “hedged” deriva-
tion of the per-signature randomness, by hashing the secret key, message,
and a nonce. Despite the growing popularity of the hedged paradigm in
practical signature schemes, to the best of our knowledge, there has been
no attempt to formally analyze the fault resilience of hedged signatures.

We perform a formal security analysis of the fault resilience of signature
schemes constructed via the Fiat–Shamir transform. We propose a model
to characterize bit-tampering fault attacks, and investigate their impact
across different steps of the signing operation. We prove that, for some
types of faults, attacks are mitigated by the hedged paradigm, while at-
tacks remain possible for others. As concrete case studies, we then apply
our results to XEdDSA, a hedged version of EdDSA used in the Sig-
nal messaging protocol, and to Picnic2, a hedged Fiat–Shamir signature
scheme in Round 2 of the NIST Post-Quantum standardization process.

1 Introduction

Deterministic Signatures and Fault Attacks Some signature schemes require a
fresh, secret random value per-signature, sometimes called a nonce. Nonce misuse
is a devastating security threat intrinsic to these schemes, since the signing key
can be computed after as few as two different messages are signed using the same
value. The vulnerability can result from either programming mistakes attempt-
ing to implement non-trivial cryptographic standards, or faulty pseudo-random
number generators. After multiple real-world implementations were found to
be surprisingly vulnerable to this attack [36, 22] researchers and practitioners
proposed deterministic signature schemes, such as EdDSA [16], as a countermea-
sure, in which per-signature randomness is derived from the message and secret
key as a defense-in-depth mechanism. However, it has been shown that simple



low-cost fault attacks during the computation of the derandomized signing oper-
ation can leak the secret key by artificially provoking nonce reuse or by corrupt-
ing computation in other ways [7, 68, 9, 3]. Recent papers have experimentally
demonstrated the feasibility of these attacks [66, 62, 67]. Moreover, [23] and
[64] extended such fault attacks to exploit deterministic lattice-based signature
schemes among round two candidates of the NIST Post-Quantum Cryptography
Standardization Process [2], where resistance to side-channel attacks is a design
goal. Despite these attacks, deterministic signature generation is still likely a
positive outcome in improving security, since fault attacks are harder to mount.

Fault Resilience of Hedged Signatures In order to balance concerns of both nonce
reuse and the threat of fault injection, some signature designs are advocating
deriving the per-signature randomness from the secret key sk, message m, and
a nonce n. The intention is to re-introduce some randomness as a countermea-
sure to fault injection attacks, and gracefully handle the case of poor quality
randomness, to achieve a middle-ground between fully-deterministic and fully-
probabilistic schemes. We call constructions following this paradigm hedged sig-
natures. Despite the growing popularity of the hedged paradigm in practical
signature schemes (such as in XEdDSA, VXEdDSA [61], qTESLA [17], and
Picnic2 [72]), to the best of our knowledge, there has been no attempt to for-
mally analyze the fault resilience of hedged signatures in the literature. While
the hedged construction intuitively mitigates some fault attacks that exploit the
deterministic signatures, it does add a step where faults can be injected, and
it has not been shown if faults to the hedging operation allow further attacks,
potentially negating the benefit. Therefore, we set out to study the following
question within the provable security methodology:

To what extent are hedged signatures secure against fault attacks?

Concretely, we study fault attacks in the context of signature schemes con-
structed from identification schemes using the Fiat–Shamir transform [40]. We
propose a formal model to capture the internal functioning of signature schemes
constructed in the hedged paradigm, and characterize faults to investigate their
impact across different steps of the signature computation.

We prove that for some types of faults, attacks are mitigated by the hedged
paradigm, while for others, attacks remain possible. This provides important
information when designing fault-tolerant implementations. We then apply our
results to hedged EdDSA (called XEdDSA) and the Picnic2 post-quantum sig-
nature scheme [72], both designed using the hedged construction. The XEdDSA
scheme is used in the Signal protocol [27] which is in turn used by instant mes-
saging services such as WhatsApp, Facebook Messenger and Skype.

Threat Model We consider a weaker variant of the standard adversary assumed
in the fault analysis literature [50], who is typically capable of injecting a fault
into an arbitrary number of values. Our adversary is capable of injecting a single-
bit fault each time a signature is computed. We further restrict the faults to be
injected at the interfaces between the typical commit, challenge, and response
phases of Fiat–Shamir signatures, i.e., only those function inputs and outputs
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can be faulted. This models transient faults injected into registers or memory
cells, but does not fully capture persisting faults that permanently modify values
in key storage, voltage glitches to skip instructions or micro-architectural attacks
to modify executed instructions (such as RowHammer and variants [56]).

We argue that, even if our model does not capture all possible fault attacks,
it provides a meaningful abstraction of a large class of fault attacks, and thus our
analysis provides an important first step towards understanding the security of
hedged signatures in the presence of faults. This way, designers and implementers
can focus on protecting the portions of the attack surface that are detected as
most relevant in practice. We observe that the effects of fault attacks found in
the literature targeting deterministic signatures can be essentially characterized
as simple bit-tampering faults on function input/output, even though some of
actual experiments cause faults during computation [23]. Moreover, an abstract
model is needed to prove general results, and the general functions common to
all Fiat–Shamir signatures are a natural candidate for abstraction.

We consider two single-bit tampering functions to set or flip individual bits,
respectively: flip_biti(x) to perform a logical negation of the i-th bit of x, and
set_biti,b(x) to set the i-th bit of x to b. This captures both stuck-at and bit-flip
fault injection attacks [51], introduced as data flows through the implementation.
Such attacks are practically targeted at various components of the device, e.g.,
memory cells, processor registers, or data buses.

1.1 Our Contributions

A new security model for analyzing fault attacks. We establish a formal secu-
rity model tailored to Fiat–Shamir type signatures (hedged, deterministic or
fully probabilistic). We survey the literature on fault attacks, showing that our
model captures many practical attacks. As a first step, we abstract real-world
hedged signature schemes, basing our formalization on Bellare and Tackmann’s
nonce-based signatures [15] and Bellare, Poettering and Stebila’s de-randomized
signatures [14]. We call this security notion unforgeability under chosen message
and nonce attacks UF-CMNA. In this security experiment, when submitting a
message to the signing oracle, the adversary may also choose the random input
to the hedged extractor, a function that derives the per-signature randomness
from a nonce, the secret key, and the message.

Then we extend UF-CMNA to include resilience to fault attacks. In this se-
curity experiment the adversary plays a game similar to the UF-CMNA game,
but the signing oracle also allows the attacker to specify a fault to be applied to
a specific part of the signing algorithm. We identify eleven different fault types
that the adversary can apply to the signing algorithm, and we denote them by
by f0, . . . , f10. For example, fault type f1 applies set_bit or flip_bit to the
secret key input to the hedged extractor. This notion is called unforgeability
under faults, chosen message and nonce attacks, and is denoted F -UF-fCMNA
where F is a set of fault types.

Fault resilience of hedged Fiat–Shamir signatures. We then prove that hedged
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Fig. 1: Overview of our results for hedged Fiat–Shamir type signature schemes.
3 indicates security against 1-bit fault on the corresponding wire value, and 7
indicates an attack or counterexample. A F (resp. N) indicates that security
only holds for the schemes derived from subset-revealing ID (resp. input-delayed
ID) protocols. The function components HE,Com,H,Resp, and CSF stand for
hedged extractor, commitment, hash function, response, and canonical serializa-
tion function, respectively (see Sections 2 and 3 for the formal definitions).

Fiat–Shamir signature schemes are secure against attacks using certain fault
types. Of the eleven fault types in our model, we found that the generic hedged
Fiat–Shamir signature scheme is resilient to six of them (summarized in Fig. 1).
As our model gives the attacker nearly full control of the RNG by default,
our main results indicate that the hedged scheme can resist additional faults
even in this (usually dire) scenario. The only constraint is that message-nonce
pairs do not repeat as otherwise the scheme degenerates to a pure deterministic
construction and attacks become trivial. When the underlying ID scheme has
an additional property that we call subset revealing, the corresponding hedged
signature scheme is secure against attacks that use eight of the eleven fault
types. Overall, our results give a full characterization of which fault attacks
are mitigated as intended by the hedged construction, and which fault attacks
remain. Our conclusion is that hedging is never worse than the deterministic
construction with respect to faults, plus it has the additional benefit of hedging
against poor randomness.

Fault resilience of XEdDSA and Picnic2. We use the Schnorr signature scheme
throughout the paper as an example. As an application of our results, we show
that hedged Schnorr resists attacks for six of the eleven fault types in our model.
One implication is that the hedged scheme XEdDSA does provide better re-
sistance to fault attacks than (deterministic) EdDSA. In particular, XEdDSA
resists all fault injection attacks against EdDSA described in the literature that
rely on nonce reuse without skipping nonce generation entirely [9, 66, 3, 62, 67].
We also show to what extent the Picnic2 signature scheme is secure against the
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fault attacks in our model. Because it is subset-revealing, resistance to eight of
the eleven fault types is immediately established by our results for generic ID
schemes. For the remaining three, we prove security for one (using specific details
of Picnic2), and show attacks for the other two.

1.2 Related Work

To the best of our knowledge, ours is the first work considering fault attacks on
hedged constructions. However, the modeling and construction of secure cryp-
tographic schemes in the presence of faults or tampering attacks has received
plenty of attention in recent years. We survey some of this work below. Related
work on fault attacks to deterministic signature schemes is given in Section 2.3.

De-randomized and Hedged Constructions. Bellare and Tackmann [15] studied
cryptography that is hedged against randomness failures. They also describe
the “folklore construction”, where the signing key and message to be signed
are used to derive the per-signature randomness, and additional randomness
may or may not be included in the derivation. Schnorr signatures with this
construction have been analyzed by M’Raihi et al. [59]. A generic version of the
folklore derandomization construction was proven UF-CMA secure by Bellare,
Pottering and Stebila [14]. Other works on hedged cryptography include [65] and
[11, 12, 19, 47] when considering hedged public-key encryption in particular.

Fault Attacks and Tamper-Resilient Signatures. Tamper-resilient cryptography
has received plenty of attention, both in the context of theoretical and practical
cryptographic research, dating back at least to the early paper of Boneh, Demillo
and Lipton [20] considering fault attacks on RSA signatures (here it is noted that
some attacks fail when a random padding is used, since it ensures that the same
message is never signed twice). Later Coron and Mandal [28] proved that RSA-
PSS is protected against random faults, and Barthe et al. [10] extends this
to non-random faults as well. All of the above works contain examples of how
randomization improves the security of signature schemes against fault attacks
(in a provable way).

Other early work includes Gennaro et al. [43] that provides an early frame-
work for proving tamper resilience, and Ishai et al. [49] which proposes generic
transformation for tamper-resilient circuits. In a later work by Faust et al. [39]
a different and incomparable model was considered, which in particular guaran-
tees security against tampering with arbitrary number of wires. We note that
our model is similar to theirs since it also considers adversaries that are allowed
to flip or reset each bit in the circuit. Similar ideas are also used in practice when
considering fault resilient masking (e.g., [32]).

In our model the adversary is only allowed to tamper with part of the com-
putation. Similar limitations have been considered before in the literature to cir-
cumvent impossibility results, in particular in the so called split-state model [35].
Several constructions have been proposed in this model including: non-malleable
codes (Dziembowski, Pietrzak and Wichs [35]), signature schemes (Faonio et
al. [37]), and more (Liu and Lysyanskaya [57]).
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Other related work on tamper resilient signature schemes includes [38, 42, 6,
31]. Most of this previous work has focused on constructing novel tamper resilient
signature schemes, or understanding the limits of tamper resilience, in theory.
Instead, we focus on analyzing the tamper resilience of a popular transformation
used in practice.

Related key attacks (RKA) can be seen as a special case of tampering. Bellare and
Kohno [13] initiated the formal study of related-key attacks. Morita et al. [58]
analyzed RKA security of Schnorr signatures.

Ineffective Fault Attacks (IFA) and Countermeasures. In this paper we consider
not only flip_bit fault attacks, but also set_bit faults for the following rea-
son. Clavier [26] proposed ineffective fault attacks (IFA), in which the adversary
forces a certain intermediate bit value to be stuck at 0 or 1, and tries to recover
the secret internal state by observing whether the correct output is obtained (i.e.,
the injected fault was ineffective). IFA is very powerful, and works even if the
target algorithm contains typical countermeasures against fault attacks, such as
a correctness check after redundant operations [8] and the infective countermea-
sure [71]. IFA has been recently superseded by statistical ineffective fault attacks
(SIFA) [34, 33], that use statistical analysis to enable mounting IFA with low-
precision bit-fixing, random or bit-flip faults. Daemen et al. [29] provided several
practical countermeasures against SIFA, and their abstract adversarial model is
close to ours in the sense that the adversaries are allowed to flip or set a single
bit wire value in the circuit per query, though their security argument does not
follow the provable security methodology.

Concurrent Work. An independent work by Fischlin and Günther [41] proposes
a memory fault model for digital signatures and authenticated encryption. Their
main result about a generic hedged signature scheme is two-fold: it is provably
secure when the nonce is fully faulted, or when the message, nonce, and hedged
extractor output are all differentially faulted in each signing query. The former
essentially coincides with our Lemma 3, but with a different proof technique.
For the latter, the outcome diverges because the adversarial power in our model
is different in the following ways: 1. the adversary can locally inject a fault into
sk as a hedged extractor input, 2. the adversary can inject a bit-fixing fault, not
only a bit-flip (i.e., differential) fault, 3. the adversary has nearly full control
over the nonce, instead of assuming nonces are randomly generated and subject
to bit flips later on, but 4. the adversary cannot inject multi-bit faults into
multiple variables in a query. We additionally consider fault attacks on other
various intermediate values inside the signing operation. Our treatment is then
more fine-grained and successfully captures typical existing attacks on deployed
deterministic schemes (like attacks that fault the challenge hash), while [41] does
not. The upside of the generic approach in [41] is that the result applies to more
signature schemes.
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Gen(1λ)

(pk, sk)← IGen(1λ)

return (pk, sk)

H(x)

If HT[x] = ⊥ :

HT[x]←$DH

return HT[x]

Sign(sk,m; ρ)

(a, St)← Com(sk; ρ)

e← H(a,m, pk)

z ← Resp(sk, e, St)

σ ← CSF(a, e, z)

return σ

Verify(pk,m, σ)

(a, e, z)← CDF(σ, pk)

return V(a, e, z, pk)
?
= 1

∧ H(a,m, pk)
?
= e

Fig. 2: The Fiat–Shamir transform applied to canonical ID with serialization
CSF, to construct the signature scheme FS[ID,CSF] = (Gen,Sign,Verify). The
function H : {0, 1}∗ → DH is constructed with a cryptographic hash function
which we model as a random oracle.

2 Preliminaries

Notation The notation | · | denotes two quantities depending on the context:
|S| denotes the cardinality of a set S, and |s| denotes the length of a bit string
s. The notation x←$X means that an element x is sampled from the set X
uniformly at random. We often use the notation [n] as a short hand for a set
{1, . . . , n} where n ∈ N. When we explicitly mention that an algorithm A is
randomized, we use the notation A(x; ρ) meaning that it is executed on input x
with random tape ρ. We also remark that if the lemmas/theorems are marked
with “(informal)”, then it means that asymptotic bounds are omitted. The full
version [5] includes more rigorous statements for all of them.

Fiat–Shamir type Signature Schemes This paper studies the robustness of Fiat–
Shamir type signature schemes against fault attacks. The details of these algo-
rithms appear in the full version. The Schnorr signature scheme [69] is one of the
most well-known signature schemes using the Fiat–Shamir transform, and Ed-
DSA and XEdDSA are essentially deterministic and hedged variants of Schnorr.
The Picnic2 signature scheme [72] is constructed by applying the Fiat–Shamir
transform to a three-round zero-knowledge proof system by Katz et al. [52],
which follows so-called “MPC-in-the-head” paradigm [48]. The hedging strategy
we study in this paper is recommended in its specification.

2.1 Definitions

In this subsection we recall several basic definitions related to digital signa-
tures constructed from the identification protocols. Since this paper deals with
Fiat–Shamir signatures, we always assume that the signing algorithm of digital
signature schemes takes some randomness as input.
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We now define a three-round public-coin identification protocol, the basis of
Fiat–Shamir-type signatures. The definition below essentially follows the formal-
ization of [54] unless explicitly stated.

Definition 1 (Canonical Identification Protocol). A canonical identifica-
tion protocol, denoted by a tuple of algorithms ID = (IGen,Com,Resp,V), is a
three-round protocol defined as follows:

– IGen(1λ), where λ is a security parameter, outputs a key pair (sk, pk). In
the context of identification protocols, pk and sk are sometimes called state-
ment and witness. We assume that IGen defines a hard-relation, and that
pk defines the parameters of the scheme including: randomness space Dρ,
commitment space A, challenge space DH and response space Z.

– Prover invokes a committing algorithm Com on a secret key sk and random-
ness ρ ∈ Dρ as input, and outputs a commitment a ∈ A and state St.

– Verifier samples a challenge e from the challenge space DH ⊆ {0, 1}∗.
– Prover executes a response algorithm Resp on (sk, e, St) to compute a re-

sponse z ∈ Z ∪ {⊥}, where ⊥ /∈ Z is a special symbol indicating failure. On
top of this standard formalization, we further require that Resp returns ⊥
whenever it receives a malformed challenge ẽ /∈ DH , as such a simple sanity
check is performed in most practical implementations.

– Verifier executes a verification algorithm V on (a, e, z, pk) as input, to output
1 (i.e., accept) or 0 (i.e., reject).

We call a triple (a, e, z) ∈ A×DH×Z∪{⊥,⊥,⊥} a transcript, and it is said to be
valid with respect to pk if V(a, e, z, pk) = 1. We say that ID is correct if for every
pair (pk, sk) output by IGen, for every ρ ∈ Dρ, and for every transcript (a, e, z)
from an honest execution of the protocol between Prover(sk; ρ) and Verifier(pk),
Pr[V(a, e, z, pk) = 1] = 1.

Remark The response algorithm in the above definition does not explicitly take
a commitment a as input. We decided to do so since a is generally not required
to compute z, such as in the Schnorr identification scheme and, if needed, we
assume that St contains a copy of a.

The following definition is adapted from [46, Chapter 6]. We explicitly dif-
ferentiate three flavors of the special HVZK property depending on a level of
indistinguishability, following the approach found in [44, Chapter 4]. Note that
εHVZK below is equal to 0 for special perfect HVZK.

Definition 2 (Special c/s/p-HVZK). Let ID = (IGen,Com,Resp,V) be a
canonical identification protocol. ID is said to be special computational/statisti-
cal/perfect honest-verifier zero knowledge (special c/s/p-HVZK) if there exists
a probabilistic polynomial-time simulator M, which on input pk and e outputs a
transcript of the form (a, e, z) that is computationally/statistically/perfectly in-
distinguishable from a real transcript between an honest prover and verifier on
common input pk. We also denote by εHVZK the upper bound on the advantage
of all probabilistic polynomial-time distinguishing algorithms.
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In our security analysis of specific hedged-signature schemes in the presence of
faults we will provide a concrete bound on the min-entropy of the associated
ID scheme. But here we present a useful lemma stating that the commitment
message a of any secure identification scheme must have high min-entropy. The
lemma might be folklore but we were unable to find a reference to it, so we
include it for completeness in the full version.

Lemma 1. Let ID be a canonical identification protocol as in Definition 1, sat-
isfying special-soundness and HVZK (as in Definition 2). Then, the min-entropy
α of the commitment message a (given the public key) is at least α = ω(log(λ))

Definition 3 (Subset Revealing Identification Protocol). Let ID = (IGen,
Com,Resp,V) be a canonical identification protocol. We say that ID is subset
revealing if ID satisfies the following. 1) St is a set of c states {St1, . . . , Stc}, 2)
Resp first derives an index set I ⊂ [c] using only e as input, and outputs Sti for
i ∈ I as z, and 3) |St| and |DH | are both polynomial in λ.

Remark. Similar definitions were previously given by Kilian et al. [53] and Chail-
loux [24], where they make zero-knowledge or identification protocols simply re-
veal a subset of committed strings. Our definition generalizes their notion so that
it can cover some protocols that reveal arbitrary values other than committed
strings. Also notice that the Resp function of subset revealing ID schemes does
not use sk at all. The above definition includes the Picnic2 identification protocol
(discussed in more detail in Section 6), and many classic three-round public-coin
zero-knowledge proof protocols, such as the ones for graph isomorphism, Hamil-
ton graphs, and 3-colorable graphs [45]. We also emphasize that |St| and |DH |
need to be restricted for efficiency reasons – otherwise any identification proto-
col (including Schnorr) could be made subset revealing by simply precomputing
(exponentially many) responses for every possible challenge and storing them in
the state.

Serialization of Transcripts. For efficiency purposes, most Fiat-Shamir based sig-
nature schemes do not include the entire transcript of the identification protocol
as part of the signature. Instead, redundant parts are omitted and recomputed
during the verification phase. Different signature schemes omit different parts of
the transcript: in some cases a is omitted and in others e is omitted. To cap-
ture this in our framework without loss of generality we introduce a serialization
function that turns the transcript of an identification protocol into a signature.

Definition 4 (Canonical Serialization Function). Let ID = (IGen,Com,
Resp,V) be a canonical identification protocol, and let pk be a public key output
by IGen. We call a function CSF : {0, 1}∗ → {0, 1}∗ a canonical serialization
function if CSF is efficiently computable and deterministic, and satisfies the fol-
lowing basic properties: 1) it is valid, meaning that there exists a corresponding
de-serialization function CDF which satisfies the following: for any transcript
(a, e, z) ∈ A × DH × Z ∪ {⊥,⊥,⊥} such that V(a, e, z, pk) = 1, it holds that
CDF(CSF(a, e, z), pk) = (a, e, z), and 2) it is sound with respect to invalid re-
sponses, meaning that it returns ⊥ upon receiving z = ⊥ as input.
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Definition 5 (Fiat–Shamir Transform). The Fiat–Shamir transform, de-
noted by FS, takes a canonical identification protocol ID and canonical serial-
ization function CSF as input, and outputs a signature scheme FS[ID,CSF] =
(Gen,Sign,Verify) defined in Fig. 2. For convenience, this paper refers to such
schemes as Fiat–Shamir type signature schemes.

Remarks By construction, it holds that if ID is correct, then FS[ID,CSF] is a
correct signature scheme. We assume ID is correct throughout the paper. In
Fig. 2, the verification condition may appear redundant. However, the above
definition allows us to capture several variations of the Fiat–Shamir transform.
For instance, a type of Fiat–Shamir transform found in some papers e.g., Ohta–
Okamoto [60] and Abdalla et al.[1] can be obtained by letting CSF(a, e, z) out-
put σ := (a, z) and letting CDF(σ, pk) call e ← H(a,m, pk) inside to recon-
struct the whole transcript. In contrast, if ID is commitment-recoverable [54],
one can instantiate its serialization as follows: CSF(a, e, z) outputs σ := (e, z)
and CDF(σ, pk) calls a← Recover(pk, e, z) inside to reconstruct the transcript.

2.2 Relation between UF-KOA Security and UF-CMA Security

The security notion unforgeability against key-only attacks (UF-KOA), is the same
as UF-CMA, but with the restriction that the adversary is only given the public
key, and no Sign oracle. The following result is a mild generalization of [55,
Lemma 3.8]: the original lemma only covers perfect HVZK and does not include
the serialization function which we use in this work. The proof is very similar
to the original one and is provided in the full version. In Section 4, we extend
this result, showing that for some signature schemes security against key-only
attacks implies security against certain fault attacks.

Lemma 2 (UF-KOA → UF-CMA (informal)). Let ID be a correct canonical
identification protocol and CSF be a canonical serialization function for ID. Sup-
pose ID is special c/s/p-HVZK and has α-bit min-entropy. If FS := FS[ID,CSF]
is UF-KOA secure, then FS is UF-CMA secure in the random oracle model.

2.3 Fault Attacks on Deterministic Fiat–Shamir Signatures

In recent years, several papers [9, 66, 3, 62, 67] presented differential fault at-
tacks against deterministic Fiat–Shamir-type schemes. We present the concep-
tual overview of those previous attacks. A more detailed survey is given in the
full version [5].

Special Soundness Attack (SSND) This type of attack exploits the special sound-
ness property of the underlying canonical identification protocol. That is, there
exists an efficient algorithm that extracts the witness sk corresponding to the
statement pk, given two accepting transcripts (a, e, z) and (a, e′, z′), where e 6=
e′ [30]. Note in fact that it is easier to extract the secret key for an attacker
than for a knowledge extractor in a proof of security, since the attacker can as-
sume that the prover honestly follows the protocol while the special soundness
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property considers possibly cheating provers. SSND can be cheaply achieved by
injecting a fault into commitment output, or hash input/output.

Large Randomness Bias Attack (LRB) This attack slightly modifies the random-
ness ρ to ρ′ = ρ+∆ using, e.g., flip_bit fault. The attack highly relies on the
deterministic property because the adversary knows that all signatures on the
same message m use the same ρ, and if ρ is slightly perturbed by some suffi-
ciently small ∆, he can find ∆ with an exhaustive search. Then the adversary
can recover the secret key by querying two deterministic signatures on the same
message, which were computed using correlated randomness ρ and ρ + ∆. LRB
can be cheaply achieved by injecting a fault into the deterministic randomness
derivation phase, or the randomness as response input.

3 Formal Treatment of Hedged Signatures

In this section, we give formal definitions for a hedged signature scheme and
its security notion, based on Bellare–Tackmann’s nonce-based signatures [15, §5]
and Bellare–Poettering–Stebila’s de-randomized signatures [14, §5.1]. Then we
define our new security notion for hedged Fiat–Shamir signature schemes, which
guarantees resilience against 1-bit faults on function inputs/outputs.

HSign(sk,m, n)

ρ← HE(sk, (m,n))

σ ← Sign(sk,m; ρ)

return σ

ExpUF-CMNA
HSIG,HE (A)

M ← ∅; HET← ∅

(sk, pk)← Gen(1λ)

(m∗, σ∗)← AOHSign,HE(pk)

v ← Verify(m∗, σ∗)

return (v = 1) ∧m∗ /∈M

OHSign(m,n)

σ ← HSign(sk,m, n)

M ←M ∪ {m}
return σ

HE(sk′, (m′, n′))

If HET[sk′,m′, n′] = ⊥ :

HET[sk′,m′, n′]←$Dρ

return HET[sk′,m′, n′]

Fig. 3: Hedged signature scheme HSIG = R2H[SIG,HE] = (Gen,HSign,Verify)
and UF-CMNA experiment. Key generation and verification are unchanged.

3.1 Security of Hedged Signature Schemes

We now consider a simple transformation R2H, which converts a randomized
signature scheme to a so-called “hedged” one, and its security notion UF-CMNA
(unforgeability against chosen message and nonce attacks). See Fig. 3 for the
full details. Parts of the transformation appear in the literature independently,
but by combining them, we can model the concrete hedged signature schemes of
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interest. We now describe the differences and similarities between R2H and the
transformations that appeared in previous works.

On one hand, a hedged signing algorithm HSign takes a nonce n along with a
message m, and derives the randomness ρ ∈ Dρ (of length `ρ bits) with a hedged
extractor HE with (sk, (m,n)) as input. We do not specify how the nonces are
generated here, but in practice they are the output of a pseudorandom number
generator. As we will see soon, low entropy nonces do not really degrade the
security of hedged signatures as long as the underlying randomized signature
scheme is secure. The hedged construction we presented is essentially based on
the approach taken in [15]. Note that HE is in practice a cryptographic hash
function, that we will model as a random oracle.

On the other hand, we use the signing key sk as the key for the hedged
extractor, whereas Bellare and Tackmann used a separately generated key (which
they called the “seed”), that must be stored with sk. We chose to do so in order
to model concrete hedged Fiat–Shamir type schemes, such as XEdDSA and
Picnic2. In fact, the security of the deterministic construction that hashes sk
and m to derive ρ (with no nonce) was formally treated by Bellare–Poettering–
Stebila [14], and our security proof in the next section extends their result.
Moreover, the signing oracle OHSign in our UF-CMNA experiment takes m and
n as input adaptively chosen by the adversary A. This can be regarded as the
strongest instantiation of the oracle provided in [15], where nonces are derived
via what they call a nonce generator (NG). Indeed, one of their results for nonce-
based signatures (Theorem 5.1) does not impose any restrictions on NG, and it
implicitly allows adversaries to fully control how the nonces are chosen in the
signing oracle.

Now we formally define a security notion for hedged signature schemes, as
a natural extension of the standard UF-CMA security definition. We also give
a tweaked version of Theorem 4 in [14], where they only consider the signing
oracle that doesn’t take adversarially chosen nonces. Note that Lemma 3 applies
to any secure signature schemes and hence it may be of independent interest.
We present a proof in the full version [5] for completeness.

Definition 6 (UF-CMNA). A hedged signature scheme HSIG = (Gen,HSign,
Verify) is said to be UF-CMNA secure in the random oracle model, if for any
probabilistic polynomial time adversary A, its advantage

AdvUF-CMNA
HSIG,HE (A) := Pr

[
ExpUF-CMNA

HSIG,HE (A) = 1
]

is negligible in security parameter λ, where ExpUF-CMNA
HSIG,HE (A) is described in Fig. 3.

Lemma 3 (UF-CMA→ UF-CMNA (informal)). Let SIG := (Gen,Sign,Verify)
be a randomized digital signature scheme, and let HSIG := R2H[SIG,HE] =
(Gen,HSign,Verify) be the corresponding hedged signature scheme with HE mod-
eled as a random oracle. If SIG is UF-CMA secure, then HSIG is UF-CMNA
secure.
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ExpUF-fCMA
FS (A) ExpUF-fCMNA

HFS,HE (A)

M ← ∅; HT← ∅; HET← ∅

(sk, pk)← Gen(1λ)

(m∗, σ∗)← AOFaultSign,H(pk)

(m∗, σ∗)← AOFaultHSign,H,HE(pk)

v ← Verify(m∗, σ∗)

return (v = 1) ∧m∗ /∈M

OFaultHSign(m,n, j, φ)

fj := φ; fk := Id for k 6= j

ρ← f2(HE(f1(sk), f0(m,n)))

(a, St)← f4(Com(f3(sk; ρ)))

â, m̂, p̂k ← f5(a,m, pk)

e← f6(H(â, m̂, p̂k))

z ← f8(Resp(f7(sk, e, St)))

σ ← f10(CSF(f9(a, e, z)))

M ←M ∪ {m̂}; return σ

Fig. 4: UF-fCMNA and UF-fCMA security experiments and faulty signing oracles
for both hedged (HFS) and plain (FS) Fiat–Shamir signature schemes. Id stands
for the identity function. The function H and HE (not shown), are the same as in
Fig. 2 and Fig. 3, respectively. The procedure OFaultSign(m, j, φ) (omitted) is the
same as OFaultHSign, but the line assigning to ρ is replaced with ρ←$Dρ; ρ ←
f2(ρ).

3.2 Security of Hedged FS Type Signature Schemes Against Fault
Adversaries

1-bit Transient Fault on Function Input/Output To model transient fault at-
tackers on data flow, recall that we consider the following 1-bit tampering func-
tions: 1) flip_biti(x), which does a logical negation of the i-th bit of x, and
set_biti,b(x), which sets the i-th bit of x to b. Using flip_biti(x) (for instance,
with a random position i), we can model a typical bit-flip induced from fault
injection to the memory cells, CPU register values, or data buses of the target
device. Beyond faults, we also wish to capture the case in which the random-
ness has a 1-bit bias, which has been shown to be a serious threat for some
Fiat–Shamir type signatures [4]. We can model this using set_biti,b: when this
function is applied to ρ, we can ensure that the first bit of ρ is “stuck” at zero by
setting i = 0 and b = 0 to model 1-bit bias. Moreover, set_bit is a typical way
to achieve so-called ineffective fault attacks [26, 34]. Our formalization covers
many fault attacks found in the surveyed literature (in the full version), as they
rely only on low precision faults like random bit flips of the function input or
output.

As a notable difference between our fault adversary model and actual attacks,
some surveyed papers caused faults on several bits/bytes of function input or
output when performing fault attack experiments. This is not to take advantage
of multiple-bit faults, but rather because reliably causing a fault on a specific
target memory cell is difficult in practical experiments. In fact, the attacks we
classified as SSND and LRB can be achieved with uncontrolled 1-bit flip faults,
and hence our model at least seems to capture the essence of previous attacks
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exploiting the deterministic nature of signing. A natural generalization is to
allow set_bit to work on multiple bits, for example to model word faults, or
word zeroing faults. We can also model stronger attacks that are uncommon
in the literature, such as setting words to arbitrary values. However, we focus
on 1-bit faults in this paper as a first attempt to perform the formal analyses.
We leave the security analysis against multi-bit faults for future work. In the
full version, we describe some more fault attacks that are not covered by our
model, to illustrate the limitations of our analysis. Each of these issues makes
an interesting direction for future work.

Equipping UF-CMNA Adversaries with Faults Now we are ready to define security
against fault adversaries using the above tampering functions. In Fig. 4, we
give the modified hedged signing oracle OFaultHSign, which additionally takes
a tampering function φ ∈ {set_biti,b, flip_biti, Id} and j ∈ [0, 10] as input,
where Id is the identity function. This way, the adversary can specify for each
query the tampering function (φ) as well as the target input/output position
(j) within the signing operation to be faulted. For example, when j = 6, φ is
applied to the output of the hash function H, and when j = 5 it is applied to the
input to H. The other positions are not faulted. Notice that we also allow the
adversary to set φ := Id in arbitrary signing queries, so OFaultHSign includes
the behavior of the non-faulty oracle OHSign as a special case. A generalization
we considered but decided against, is allowing faults on multiple wire values per
sign query. The combinatorial complexity of security analysis in this setting is
daunting, and we did not find this to be relevant in practice, based on our survey
of practical attacks.

Definition 7 (UF-fCMNA). A hedged Fiat–Shamir signature scheme

HFS := R2H[FS[ID,CSF],HE] = (Gen,HSign,Verify)

is said to be F -UF-fCMNA secure, if for any probabilistic polynomial time ad-
versary A who makes queries to OFaultHSign with a fault function fj ∈ F ⊆
{f0, . . . , f10} for each query (called F -adversary), its advantage

AdvUF-fCMNA
HFS,HE (A) := Pr

[
ExpUF-fCMNA

HFS,HE (A) = 1
]

is negligible in security parameter λ, where ExpUF-fCMNA
HFS,HE (A) is described in Fig. 4.

In the next section, we also use the following intermediate security notion, which
essentially guarantees the security of plain randomized Fiat–Shamir signature
scheme against fault adversaries.
Definition 8 (UF-fCMA). A Fiat–Shamir signature scheme

FS := FS[ID,CSF] = (Gen,Sign,Verify)

is said to be F -UF-fCMA secure, if for any probabilistic polynomial time ad-
versary A who makes queries to OFaultSign with a fault function fj ∈ F ⊆
{f2, . . . , f10} per each query (called F -adversary), its advantage

AdvUF-fCMA
FS (A) := Pr

[
ExpUF-fCMA

FS (A) = 1
]

14



is negligible in security parameter λ, where ExpUF-fCMA
FS (A) is described in Fig. 4.

Trivial Faults on the Root Input Wire Values We remark the existence of two
faults on the left most input wires in Fig. 1, which we do not explicitly consider
in our model, but its (in)security can be proven trivially. First, faulting message
m before it is loaded by the signing oracle can be regarded as a situation where
the adversary queries a faulty message m̂ to begin with, since the oracle stores
m̂ in M . Hence we can just treat such a query as one to non-faulty signing oracle
(OSign). Second, the adversary could easily recover the entire secret key after
roughly |sk| signing queries by injecting set_bit faults to sk before it is loaded
by the signing oracle, and the faulty secret key s̃k is globally used throughout
the signing operation: for example, if the most significant bit of sk is set to
0 at the very beginning of signing and its output still passed the verification,
then the adversary can conclude that sk has 0 in the most significant bit with
high probability. In doing so, the adversary iteratively recovers sk bit-by-bit if
the fault is transient. The attack above is essentially a well-known impossibility
result by Gennaro et al. [43] and such an attack can be practically achieved with
ineffective faults. To overcome this issue, one would require an additional strict
assumption on the upper-bound of faulty signing queries [31], or the signing
algorithm needs to have some sophisticated features like self-destruct or key-
updating mechanisms, which, however, are not yet widely implemented in real-
world systems and are beyond the scope of this paper.

Winning Condition of Fault Adversaries As described in Fig. 4, the UF-fCMNA
experiment keeps track of possibly faulty messages m̂ instead of queried messages
m, and it does not regard σ∗ as valid forgery if it verifies with m̂ that A caused
in prior queries. This may appear artificial, but we introduced this condition to
rule out a trivial forgery “attack”: if the experiment only keeps track of queried
message mi in i-th query, and adversaries target f5 at mi as hash input, they
obtain a valid signature σ̂i on message m̂i, yet m̂i is not stored in a set of
queried messages M . Hence the adversary can trivially win UF-fCMNA game by
just submitting (σ̂i, m̂i), which of course verifies. This is not an actual attack,
since what A does there is essentially asking for a signature on m̂i from the
signing oracle, and hence outputting such a signature as forgery should not be
considered as a meaningful threat.

Note that the OFaultHSign oracle in Fig. 4 stores all queried messages in
the same set M , whether the adversary A decides to inject a fault (i.e., φ ∈
{set_biti,b, flip_biti}) or not (i.e., φ := Id), and so a forgery (m∗, σ∗) output
by A is not considered valid even if m∗ was only queried to OFaultHSign to
obtain a faulty invalid signature. For some signature algorithms and fault types
this is required; for example with Fiat–Shamir type signatures (derived from a
commitment recoverable identification [54]), one can query OFaultHSign to get a
signature (e, z) with a single bit-flip in z, and create a valid forgery by unflipping
the bit.

Validity of Oracle Output The signature output by OFaultHSign does not need
to verify, but it may need to be well-formed in some way. Typically we show with
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a hybrid argument that OFaultHSign can be simulated without use of the private
key, in a similar way to OHSign. In order for simulated outputs of OFaultHSign to
be indistinguishable from real outputs, simulated signatures must be correctly
distributed. In [10, 28], the security proof shows that the faulty signature is
statistically close to a value drawn from the uniform distribution, so OFaultHSign
can output a random value. For the Fiat–Shamir type signature schemes we
study this is not the case, for some fault types the real output of OFaultHSign
verifies with an appropriately faulted hash function, and our proofs must take
care to maintain these properties when simulating OFaultHSign.

4 Security of Hedged Signatures Against Fault Attacks

In this section we establish the (in)security of the class of hedged Fiat–Shamir
signatures schemes. We give here a short overview of the main intuition behind
the results in Table 1: f0 faults (on the (message, nonce) pair which is input to the
hedged-extractor) cannot be tolerated since they allow the adversary to get two
signatures with the same randomness. On the other hand f1 faults (on the secret
key input to the hedged-extractor) can be tolerated since they do not significantly
change the distribution input to the hedged-extractor. If the adversary faults the
output of the hedged extractor (using f2), we cannot prove security in general
(and we can list concrete attacks e.g., against the Schnorr signature schemes),
but we can prove security for the specific case of Picnic2, since the output of
the hedged-extractor is not used directly, but is given as input to a PRG – thus
the small bias is “absorbed” by PRG security. We remark that, while present,
this attack is much less devastating than the large randomness bias LRB attack
on deterministic schemes (described in Section 2.3). With the LRB attack, the
adversary only needs two signatures to recover the full key, while the attack we
will show on Schnorr signature requires a significant amount of faulty biased
signatures as input in practice. This indicates that hedged constructions do, to
some extent, mitigate the effect of faults on the synthetic randomness.

The hedged approach does not help when the adversary faults the input to
the commitment function (via f3), since in this case the adversary can attempt to
set the bits of the secret key one at the time and check if the output signature is
valid or not. Note that in some kinds of ID schemes like Schnorr (known as input-
delayed protocols [25]) the secret key is not used in the commitment function.
Faulting the input of the commitment function can still lead to insecurity, e.g.,
in Schnorr the adversary can bias the randomness, which in turns leads to a
total break of the signature scheme. Next, the adversary can fault the output
of the commitment function (via f4): this leads to insecurity in general, e.g.,
in Schnorr this also leads to randomness bias. However, for a large class of ID
schemes (which we call subset-revealing), including Picnic2, this fault does not
lead to insecurity: intuitively either the adversary faults something that will be
output as part of the response (which can easily be simulated by learning a non-
faulty signature and then applying the fault on the result), or it is not part of the
output and therefore irrelevant. Attacking the input or the output of the random
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Table 1: Summary of results for UF-fCMNA security of the hedged Fiat–Shamir
type construction, for all fault types. 3 indicates a proof of UF-fCMNA security,
and 7 indicates an attack or counterexample.

Fault type ID is subset-revealing ID not subset-revealing XEdDSA Picnic2

f0 7 Lemma 11 7 7

f1 3 Lemma 4 3 Corollary 1 3 Corollary 3

f2 7 Lemma 13 7 3 Lemma 19

f3 7 Lemma 12 7 7 §6
f4 3 Lemma 10 7 Lemma 15 7

3 Corollary 3
f5 3 Lemma 7

3 Corollary 1
f6 3 Lemma 8
f7 3 Lemma 9 7 Lemma 14

f8, f9, f10 3 Lemma 6

oracle used to derive the challenge (f5 and f6) does not lead to insecurity, since
the distribution of the random oracle does not change due to the fault (note that
this would not be the case for deterministic signatures, where this kind of fault
would be fatal). Faults against the input of the response function (via f7) can
break non-subset revealing signatures (once again, we can show that this fault
can be used to break Schnorr signatures), but do not help the adversary in the
case of a subset-revealing signature like Picnic2: similar to the case of f4 faults,
we use the fact that if the response function only outputs subsets of its input,
faulting part of the input either has no effect or can be efficiently simulated
given a non-faulty signature. Similarly, faults against the output of the response
function or the input/output of the serialization function (fault types f8, f9, f10)
can also be easily simulated from a non-faulty signature.

We expand this high-level intuition into full proofs by carefully measuring
the concrete security loss in the reductions which is introduced by the different
kind of faults. More precisely, we present a concrete reduction from UF-KOA to
{f1, f4, . . . , f10}-UF-fCMNA security for schemes derived from subset-revealing
ID schemes, and to {f1, f5, f6, f8, f9, f10}-UF-fCMNA when ID is non-subset-
revealing. Our theorems generalize and adapt results from [14] and [55] without
introducing significant additional concrete security loss. Then in Section 4.7, we
describe attacks for the remaining fault types (f0, f2 and f3), completely char-
acterizing the security of generic R2H[FS[ID,CSF],HE] signature schemes for
fault types f0, . . . , f10.

4.1 Main Positive Result

Theorem 1 (UF-KOA → UF-fCMNA). Let ID be a canonical identification
protocol and CSF be a canonical serialization function for ID. Suppose ID satisfies
the same properties as in Lemma 2 and it is subset revealing, and moreover, let
us assume that A does not query the same (m,n) pair to OFaultHSign more
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than once. Then if FS := FS[ID,CSF] is UF-KOA secure, HFS := R2H[FS,HE]
is {f1, f4, . . . , f10}-UF-fCMNA secure in the random oracle model. Concretely,
given {f1, f4, . . . , f10}-adversary A against HFS running in time t, and making
at most Qs queries to OFaultHSign, Qh queries to H and Qhe queries to HE, one
can construct another adversary B against FS such that

AdvUF-fCMNA
HFS,HE (A) ≤ 2 ·

(
AdvUF-KOA

FS (B) +
(Qs +Qh)Qs

2α−1
+Qs · εHVZK

)
,

where B makes at most Qh queries to its hash oracle, and has running time
t plus Qhe · |sk| invocations of Sign and Verify of FS. Moreover, if we do not
assume the subset-revealing property of ID and assume all the other conditions
above, then we have that HFS is {f1, f5, f6, f8, f9, f10}-UF-fCMNA secure.

Proof. The proof is two-fold. See Lemmas 4 and 5.

For the rest of this section we will assume that ID satisfies the properties in
Lemma 2. As a first step, we give a reduction from UF-fCMA to UF-fCMNA se-
curity, and then we later give a reduction from UF-KOA to UF-fCMA. We observe
that the UF-CMA-to-UF-CMNA reduction in Lemma 3 is mostly preserved, even
in the presence of 1-bit faults on sk as a hedged extractor key. However, our proof
shows that such a fault does affect the running time of the adversary because
the reduction algorithm needs to go through all secret key candidates queried
to random oracle and their faulty bit-flipped variants. We present a proof in the
full version.

Lemma 4 (F -UF-fCMA→ F ∪{f1}-UF-fCMNA). Suppose the fault adversary
A does not query the same (m,n) pair to OFaultHSign more than once. If FS :=
FS[ID,CSF] is F -UF-fCMA secure, then HFS := R2H[FS,HE] is F ′-UF-fCMNA
secure in the random oracle model, where F ′ = F ∪ {f1}. Concretely, given an
F ′-adversary A against HFS running in time t, and making at most Qs queries
to OFaultHSign, Qh queries to H and Qhe queries to HE, one can construct
F -adversary B against FS such that

AdvUF-fCMNA
HFS,HE (A) ≤ 2 ·AdvUF-fCMA

FS (B),

where B makes at most Qs queries to its signing oracle OFaultSign and Qh
queries to its hash oracle, and has running time t′ ≈ t+Qhe · |sk|.

Remarks. Our reduction above crucially relies upon the assumption that adver-
saries are not allowed to query the same (m,n) pair. Without this condition,
OFaultHSign must return a faulty signature derived from the same randomness
ρ if the same (m,n) is queried twice, and thus one could not simulate it us-
ing OFaultSign as an oracle, since OFaultSign uses the fresh randomness even if
queried with the same message m. In fact, by allowing the same (m,n) query
the hedged construction HFS degenerates to a deterministic scheme and thus the
SSND or LRB type fault attacks would become possible as we saw in Section 2.3.
For the same reason, once we allow the adversaries to mount a fault f0 on (m,n)
right before HE is invoked during the signing query, the security is completely
compromised. We will revisit this issue as a negative result in Lemma 11.
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Lemma 5 (UF-KOA → UF-fCMA). Suppose ID is subset revealing. If FS :=
FS[ID,CSF] is UF-KOA secure, then FS is {f4, . . . , f10}-UF-fCMA secure in the
random oracle model. Concretely, given {f4, . . . , f10}-adversary A against FS
running in time t, and making at most Qs queries to OFaultSign, Qh queries to
H, one can construct another adversary B against FS such that

AdvUF-fCMA
FS (A) ≤ AdvUF-KOA

FS (B) +
(Qs +Qh)Qs

2α−1
+Qs · εHVZK ,

where B makes at most Qh queries to its hash oracle, and has running time t.
If we do not assume the subset-revealing property of ID and assume all the other
conditions above, then we have that FS is {f5, f6, f8, f9, f10}-UF-fCMA secure.

Proof. We obtain the results by putting together Lemmas 6 to 10 for FS derived
from subset-revealing ID, and Lemmas 6 to 8 for FS derived from non-subset-
revealing ID. The proofs for these lemmas appear in the full version.

Our proof extends the UF-KOA-to-UF-CMA reduction in [55]. We show that
UF-KOA security of a randomized Fiat–Shamir signature scheme FS can be bro-
ken by a successful UF-fCMA adversary A by constructing an adversary B that
uses A as a subroutine and simulates OFaultSign without using sk. We denote
the random oracle and hash table in UF-fCMA experiment (resp. UF-KOA ex-
periment) by H and HT (resp. H′ and HT′).

Preparation of Public Key Upon receiving pk in the UF-KOA game, B forwards
pk to A.

Simulation of Random Oracle Queries Upon receiving a random oracle query
H(a,m, pk) from A, B forwards the input (a,m, pk) to its own random oracle
(H′ from the UF-KOA game) and provides A with the return value.

Simulation of Faulty Signing Queries Suppose A chooses to use a fault function
fji in each faulty signing oracle query i ∈ [Qs]. Then B answers i-th query by
simulating the signature on mi (or m̂i if A chooses to apply f5 to the message
as hash input) using only pk as described in the lemma for fji . Notice that the
simulations are independent except they share the random oracle H and the set
M storing (possibly faulty) queried messages. The hash input (âi, m̂i, p̂k) in each
signature simulation has at least (α− 1) bits of min-entropy (see the simulation
in Lemma 7 in the full version). Because HT has at most Qh+Qs existing entries,
B fails to program the random oracle with probability at most (Qh +Qs)/2

α−1

for each query. Moreover, A distinguishes the simulated signature from the one
returned by the real signing oracle OFaultHSign with probability at most εHVZK

for each query, since we use the special c/s/p-HVZK simulator M to derive a
signature in every simulation.

Recalling that the number of signing queries is bounded by Qs, and by a
union bound, A overall distinguishes its simulated view from that in UF-fCMA
game with probability at most

(Qh +Qs)Qs
2α−1

+Qs · εHVZK .
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Forgery Suppose that at the end of the experimentA outputs its forgery (m∗, σ∗)
that verifies and m∗ /∈ M = {m̂i : i ∈ [Qs]}. (Recall from Fig. 4 that M
stores possibly faulty messages m̂i here instead of queried messages mi, and
thus A cannot win the game by simply submitting a signature on some faulty
message that has been used for random oracle programming.) This means that
the reconstructed transcript (a∗, e∗, z∗)← CDF(σ∗, pk) satisfies

V(a∗, e∗, z∗, pk) = 1 and H(a∗,m∗, pk) = e∗.

Here we can guarantee that the HT[a∗,m∗, pk] has not been programmed by
signing oracle simulation since m∗ is fresh, i.e., m∗ 6∈ M . Hence we ensure that
e∗ = HT[a∗,m∗, pk] has been directly set by A, and e∗ = HT′[a∗,m∗, pk] holds
due to the hash query simulation. This implies (m∗, σ∗) is a valid forgery in the
UF-KOA game as well.

4.2 Faulting Serialization Input/Output and Response Output

As a warm-up, we begin with the simplest analysis where faults do not have
any meaningful impact on the signing oracle simulation. As we will show below,
faulting with f8, f9 and f10 has no more security loss than the plain UF-KOA-
to-UF-CMA reduction [55] does.

Lemma 6 (UF-KOA→ {f8, f9, f10}-UF-fCMA (informal)). If FS := FS[ID,CSF]
is UF-KOA secure, then FS is {f8, f9, f10}-UF-fCMA secure in the random oracle
model.

Remark As we briefly remarked after Definition 5, Lemma 6 holds for any in-
stantiation of serialization as long as CSF and CDF are efficiently computable.

4.3 Faulting Challenge Hash Input

Recall that f5 is the fault type that allows the attacker to fault the input
(a,m, pk) to the hash function used to compute the challenge. Here we prove
that randomized Fiat–Shamir signature schemes are secure against this type
of fault attack, under the same conditions required for the plain UF-KOA-to-
UF-CMA reduction [55]. Note that the proof of lemma below introduces a slight
additional security loss compared to the plain UF-KOA-to-UF-CMA reduction be-
cause set_bit faults to the hash input increase the failure probability of random
oracle programming.

Lemma 7 (UF-KOA → {f5}-UF-fCMA (informal)). If FS := FS[ID,CSF] is
UF-KOA secure, then FS is {f5}-UF-fCMA secure in the random oracle model.

4.4 Faulting Challenge Hash Output

Recall that f6 is the fault type that allows the attacker to fault the challenge
hash function output, i.e., he can fault the bit string e = H(a,m, pk). We show
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that, unlike the fault with f5, this type of fault does not introduce any additional
loss in concrete security as long as the Resp function fails for invalid challenges
outside the challenge space DH .

Lemma 8 (UF-KOA → {f6}-UF-fCMA (informal)). If FS := FS[ID,CSF] is
UF-KOA secure, then FS is {f6}-UF-fCMA secure in the random oracle model.

Remarks The above lemma relies on the fact that faulty ẽi is necessarily a “well-
formed” challenge. For example, the challenge in some subset-revealing schemes
has a specific structure (e.g., a list of pairs (ci, pi) where the ci are distinct, as
in Picnic2). Computing Resp with a malformed challenge may cause σ to leak
private information. This is why we required Definition 1 to have the condition
that Resp validates ẽi ∈ Dh and otherwise returns ⊥. This way, the signing
algorithm does not leak information when a malformed challenge is input to the
response phase, and eventually outputs ⊥ as a signature because CSF is sound
with respect to invalid response (see Definition 4).

Note that the proof can be generalized to the multi-bit fault setting. More
specifically, the random oracle programming becomes unnecessary for output
replacement faults (i.e., f6 applies set_bit to every bit of e) because in that
case the fault adversary would no longer be able to observe any relation between
faulty ẽi and the original, unfaulty e.

4.5 Faulting Response Input

Next we prove the security against tampering function f7, which lets an attacker
fault the input (sk, e, St) to the Resp function. We only guarantee security as-
suming that the signature scheme is based on a subset revealing identification
protocol (see Definition 3), and Resp and CSF make sure to rule out invalid
challenge and response, respectively. As we will see in the next section, Picnic2
satisfies these additional properties.

Lemma 9 (UF-KOA→ {f7}-UF-fCMA (informal)). Suppose ID is subset re-
vealing. If FS := FS[ID,CSF] is UF-KOA secure, then FS is {f7}-UF-fCMA secure
in the random oracle model.

Remark Intuitively, subset revealing ID schemes are secure against faults on St
because the adversary only obtains what they could have computed by changing
non-faulty signatures by themselves. On the other hand, the Schnorr signature
scheme is not secure against tampering with f7 and we describe concrete fault
attacks in Lemma 14.

As we remarked after Definition 3, one can consider a highly inefficient version
of Schnorr signature that enumerates all possible responses in St and opens one
of them. In doing so, the Resp function avoids any algebraic operations involving
sk and ρ, and we can mitigate the risk of faulty response input attacks described
above. This countermeasure is of course impractical since the challenge space is
too large, but it illustrates a concrete case where subset revealing ID schemes
are more robust against fault attacks, in our model.
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4.6 Faulting Commitment Output

Recall that a fault of type f4 allows the attacker to fault the output of Com(sk; ρ),
the commitment function in the first step of the ID scheme. Here we prove that
randomized Fiat–Shamir signature schemes are secure against this type of fault
attack, under the same conditions as ones in Lemma 9.

Lemma 10 (UF-KOA → {f4}-UF-fCMA (informal)). Suppose ID is subset
revealing. If FS := FS[ID,CSF] is UF-KOA secure, then FS is {f4}-UF-fCMA
secure in the random oracle model.

4.7 Negative Results

Here we show that fault attacks of type f0, f2 and f3 are not mitigated by the
hedged construction for an ID scheme with the same properties as in Theorem 1.

Lemma 11. There exist canonical ID schemes such that R2H[FS[ID,CSF],HE]
is UF-CMNA-secure, but not {f0}-UF-fCMNA secure.

Proof. We consider the Schnorr scheme that returns (e, z) as a signature , for
which FS[ID,CSF] is known to be UF-CMA secure and therefore R2H[FS[ID,CSF],
HE] is UF-CMNA secure due to Lemma 3. Our {f0}-adversary’s strategy is as
follows. The adversary first calls OFaultHSign with some (m,n) without fault
(i.e., φ = Id) to obtain a legitimate signature (e, z). Next, the adversary calls
OFaultHSign with φ = flip_biti, j = 0 and (m′, n), where m′ is identical to m
except at the i-th bit. This way, it can fault m′ back to m before the invocation
of HE and hence the signature is derived from the same ρ as in the previous
query, while the challenge and response are different since e′ = H(a,m′, pk) and
z = ρ+e′ ·sk mod q. Hence we can recover sk with the SSND attack in Section 2.3
and break the scheme.

Lemma 12. There exist canonical ID schemes such that R2H[FS[ID,CSF],HE]
is UF-CMNA-secure, but not {f3}-UF-fCMNA secure.

Proof. We describe a simple attack that works for the Picnic ID scheme. Recall
that f3 is applied to input of Com(sk; ρ). When querying OFaultHSign, the at-
tacker uses set_bit to set the i-th bit of sk, denoted ski to 0, then observes
whether the signature output is valid. If so, then the true value of ski is 0, and if
not, then ski is one. By repeating this for each of the secret key bits, the entire
key may be recovered. Some ID schemes may include internal checks and abort
if some computations are detected to be incorrect relative to the public key, in
this case the attacker checks whether OFaultHSign aborts.

Note that Lemma 12 only applies to ID schemes where sk is used by the Com
function. For the Schnorr scheme and other so-called input delayed protocols [25],
sk is only used by the Resp function. In this way subset-revealing ID schemes
and input delayed ID schemes have the opposite behavior, since subset-revealing
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schemes do not use sk in the Resp function, but they must use it in the Com
function.

The sensitivity of ephemeral randomness ρ in Schnorr-like schemes is well
known, and once the attacker obtains sufficiently many biased signatures, the
secret key can be recovered by solving the so-called hidden number problem
(HNP) [21]. Previous works have shown that even a single-bit bias helps to
recover sk by making use Bleichenbacher’s solution to HNP [18, 4]. However, the
currently known algorithms for the HNP do not give an asymptotically efficient
attack, they only reduce the concrete security of the scheme sufficiently to allow
a practical attack on some parameter sets. For instance, with the current state-
of-the-art algorithm based on Bleichenbacher’s attack found in the literature [70,
Theorem 2], one can practically break 1-bit biased signatures instantiated over
192-bit prime order groups, using 229.6 signatures as input, and with 229.6 space
and 259.2 time, which is tractable for computationally well-equipped adversaries
as of today.

To attack Schnorr-like schemes with f3, the adversary would instead target
the randomness ρ to cause a single-bit bias in it, and this situation is essentially
same as faulting with f2. Such an attack would be also powerful enough to
recover the entire signing key, which we describe below.

Lemma 13. Relative to an oracle for the hidden number problem, there exist
a non-subset revealing canonical ID scheme such that R2H[FS[ID,CSF],HE] is
UF-CMNA-secure, but neither {f2}-UF-fCMNA nor {f3}-UF-fCMNA secure.

Proof. We describe an attack that works for the Schnorr signature scheme. Re-
call that both f2 and f3 can tamper with ρ in Schnorr, as its St contains the
randomness ρ. If f2 or f3 is set_bit and always targets at the most significant
bit of ρ to fix its value, the attacker can introduce 1-bit bias in ρ.

Relative to an oracle for the HNP, the Schnorr scheme with unbiased ρ re-
mains secure, however, the scheme with biased ρ is broken. We must assume
here that the HNP oracle does not help an attacker break the Schnorr scheme
with unbiased nonces (otherwise the Theorem is trivial). It is easy to see that
the HNP with uniformly random nonces does not give a unique solution – the
adversary is given a system of Qs equations with Qs + 1 unknowns, so a direct
application of the HNP oracle does not help. However, there may be other ways
to use the HNP oracle, so we must make the assumption.

For fault types f7 and f4, we have shown that R2H[FS[ID,CSF],HE] is secure
assuming ID is subset-revealing. The following two lemmas give counterexamples
when ID is not subset revealing, showing that canonical ID schemes are not
generically secure for faults f7 and f4.

Lemma 14. There exist non-subset-revealing canonical ID schemes such that
R2H[FS[ID,CSF],HE] is UF-CMNA-secure, but not {f7}-UF-fCMNA secure.

Proof. We describe two attacks that work for the Schnorr signature scheme.

23



– If f7 is set_bit and targeted at sk, the adversary can use the strategy of
Lemma 12 to learn each bit of sk by checking whether the faulty signatures
pass verification.

– If f7 is flip_bit and targeted at the most significant bit of St = ρ, the
adversary obtains (e, z′) such that z′ = e · sk+ f7(ρ), and he can recover the
“faulty” commitment a′ = [f7(ρ)]G. Recall that the non-faulty commitment
a = [ρ]G satisfies H(a,m, pk) = e, so the adversary can learn 1-bit of ρ by
checking whether H(a′ + [2`ρ−1]G,m, pk) = e or H(a′ − [2`ρ−1]G,m, pk) = e
holds, where `ρ is the bit length of ρ. Since we now have the most significant
bit of ρ, we use the same argument as in Lemma 13 to show the scheme is
vulnerable to fault attacks.

Lemma 15. There exist non-subset-revealing canonical ID schemes such that
R2H[FS[ID,CSF],HE] is UF-CMNA-secure, but not {f4}-UF-fCMNA secure.

Proof. Recall that f4 is applied to (a, St), the output of Com. In the Schnorr
signature scheme, St contains the per-signature ephemeral value ρ, which is
the output of the hedged extractor. Therefore, the same attack as described in
Lemma 14 for f7-faults can be mounted with an f4-fault.

5 Analysis of XEdDSA

In this section we apply the results of Section 4 to the XEdDSA signature
scheme. The scheme is presented in the full version [5]. The associated ID
scheme is the Schnorr ID scheme (denoted ID-Schnorr). Then we define Schnorr :=
FS[ID-Schnorr,CSF] and XEdDSA := R2H[Schnorr,HE], where CSF returns (a, z).
We start by establishing some well-known properties of ID-Schnorr. Proof is given
in the full version [5]. As noted in Section 2 ID-Schnorr is not subset-revealing.

Lemma 16. ID-Schnorr is perfect HVZK (therefore εHVZK = 0) and has 2λ bits
of min-entropy.

UF-KOA Security Let AdvUF-KOA
Schnorr (A) be the (concrete) UF-KOA security of

Schnorr against an adversary A running in time t. As non-hedged XEdDSA is
identical to Schnorr in the UF-KOA setting, the concrete analysis for Schnorr of
[55, Lemmas 3.5-3.7] and [63, Lemma 8] are applicable. We do not repeat those
results here (as they are lengthy and don’t add much to the present paper),
but instead state our results in terms of AdvUF-KOA

Schnorr (A). We can now apply the
results of Section 4.

Corollary 1. XEdDSA is {f1, f5, f6, f8, f9, f10}-UF-fCMNA secure.

Proof. We’ve shown above that ID-Schnorr is perfect HVZK (so εHVZK = 0) and
has α = 2λ bits of min-entropy. Then we can apply Theorem 1, to obtain

AdvUF-fCMNA
XEdDSA (A) ≤ 2

(
AdvUF-KOA

Schnorr (B) +
(Qs +Qh)Qs

22λ−1

)
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Remaining fault types. We now consider the faults of type f0, f2, f3, f4, and
f7 where we can’t prove security. For each of these, we have given an attack
elsewhere in the paper, for Schnorr signatures, but that also applies to XEdDSA.
For type f0 see Lemma 11, for types f2 and f3 see Lemma 13, for type f4 see
Lemma 15 and for type f7 see Lemma 14.

6 Analysis of Picnic2

In this section we analyze the Picnic2 variant of the Picnic signature scheme
using our formal model for fault attacks. Since Picnic is constructed from a
subset-revealing ID scheme, more of the results from Section 4 apply, reduc-
ing our effort in this section. We use ID-Picnic2 to denote the ID scheme, and
Picnic2 := FS[ID-Picnic2,CSF] and HS-Picnic2 := R2H[Picnic2,HE] to denote
the randomized and hedged signature schemes. Proofs for this section, and de-
tails of the signature scheme are in the full version [5]. We begin with some
general properties of Picnic2.

ID-Picnic2 is a subset-revealing ID scheme. Note that its St consists of {hj , h′j ,
seed∗j , {ẑj,α}, statej,i, comj,i,msgsj,i}j∈[M ],i∈[n] and Resp simply reveals a subset
of it depending on a challenge C and P.

The Picnic2 specification is an instance of R2H. The specification recommends
a hedging construction that is an instance of the R2H construction from Sec-
tion 3. In this case, the salt and random seeds are derived deterministically from
sk‖m‖pk‖n where n is a 2λ-bit random value (acting as the nonce in the notation
of Section 3). The function HE is instantiated with the SHA-3 based derivation
function SHAKE. The security analysis in [72] applies to the randomized ver-
sion of the signature scheme, so we must use Lemma 3 to establish UF-CMNA
security of the hedged variant.

Lemma 17. For security parameter λ, ID-Picnic2 has α ≥ 2λ + 256 bits of
min-entropy.

The next corollary shows that Picnic2 is secure against key-only attacks, and
it follows from the unforgeability security proof of Picnic2 from [72].

Corollary 2. The signature scheme Picnic2 is UF-KOA secure, when the hash
functions H0, H1, H2 and G are modeled as random oracles with 2λ-bit outputs,
and key generation function Gen is (t, εOW )-one-way.

In particular, we have that

AdvUF-KOA
Picnic2 (A) ≤ 3Qh

2

22λ
+ 2εOW +

Qh
2λ

.

Lemma 18. ID-Picnic2 is a special c-HVZK proof, under the following assump-
tions: the hash functions H0, H1 and H2 are modeled as random oracles, and
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the PRG is (t, εPRG)-secure. Simulated transcripts are computationally indistin-
guishable from real transcripts, and all polynomial-time distinguishing algorithms
succeed with probability at most

εHVZK ≤ (n+ 2)τ · εPRG +
q0τ + q2M

2λ
.

where q0 and q2 are the number of queries to H0 and H2, λ is the security
parameter, and (M,n, τ) are parameters of the scheme.

We can now apply our results from Section 4.

Corollary 3. HS-Picnic2 is {f1, f4, . . . , f10}-UF-fCMNA secure.

Proof. Recall that by Corollary 2, Picnic2 is UF-KOA secure with

AdvUF-KOA
Picnic2 (A) ≤ 3Qh

2

22λ
+ 2εOW +

Qh
2λ

and the min-entropy α is 2λ+ 256 as shown in Lemma 17.
We can apply Theorem 1, to obtain

AdvUF-fCMNA
HS-Picnic2 (A) ≤ 6Qh

2

22λ
+ 4εOW +

2Qh
2λ

+
(Qs +Qh)Qs

22λ+254
+ 2Qs · εHVZK ,

where εHVZK is given in Lemma 18.

Fault type f2 Recall that f2 is a fault on ρ, the output of the hedged extractor.
Intuitively, HS-Picnic2 is {f2}-UF-fCMNA secure since ρ is not used directly, ρ
is the list of seed∗j values, which are used as input to a PRG when deriving the
seedi,j values. Applying a 1-bit fault to a seed∗j value reduces the min-entropy
by at most one bit, so only a small change to the security proof and analysis is
required. Concretely we have:

Lemma 19. HS-Picnic2 is {f2}-UF-fCMNA secure. AdvUF-fCMNA
HS-Picnic2 (A) is the same

as given in Corollary 3, except that α is reduced by 1.

Fault type f3 Recall that f3 faults are applied to Com(f3(sk; ρ)). By setting bits
of sk, the attacker can recover sk with an IFA.

7 Concluding Remarks

This paper explored the effects of bit-tampering fault attacks on various internal
values in hedged Fiat–Shamir signing operations, within the provable security
methodology. Our security model is general enough to capture a large class of
signatures, but also fine-grained enough to cover existing attacks surveyed in
Section 2.3. We remark, however, that there are several more advanced, yet
practically relevant fault types that are not covered by our model: 1) faulting
global parameters, 2) multiple bit and word faults, 3) faults within the Com and
Resp functions, 4) multiple faults per signature query, and 5) persisting faults.
A detailed discussion for each is given in the full version [5], to illustrate the
limitations of our analysis. Each of these issues makes an interesting direction
for future work.
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