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Abstract. In this work, we present:

– the first adaptively secure ABE for DFA from the k-Lin assumption in prime-
order bilinear groups; this resolves one of open problems posed by Waters
[CRYPTO’12];

– the first ABE for NFA from the k-Lin assumption, provided the number of
accepting paths is smaller than the order of the underlying group; the scheme
achieves selective security;

– the first compact adaptively secure ABE (supporting unbounded multi-use of
attributes) for branching programs from the k-Lin assumption, which gen-
eralizes and simplifies the recent result of Kowalczyk and Wee for boolean
formula (NC1) [EUROCRYPT’19].

Our adaptively secure ABE for DFA relies on a new combinatorial mechanism
avoiding the exponential security loss in the number of states when naively com-
bining two recent techniques from CRYPTO’19 and EUROCRYPT’19. This re-
quires us to design a selectively secure ABE for NFA; we give a construction
which is sufficient for our purpose and of independent interest. Our ABE for
branching programs leverages insights from our ABE for DFA.

1 Introduction

Attribute-based encryption (ABE) [19,12] is an advanced form of public-key encryption
that supports fine-grained access control for encrypted data. Here, ciphertexts are asso-
ciated with an attribute x and keys with a policy Γ; decryption is possible only when
Γ(x) = 1. One important class of policies we would like to support are those speci-
fied using deterministic finite automata (DFA). Such policies capture many real-world
applications involving simple computation on data of unbounded size such as network
logging application, tax returns and virus scanners.

Since the seminal work of Waters [21] introducing ABE for DFA and providing the
first instantiation from pairings, substantial progress has been made in the design and
analysis of ABE schemes for DFA [4,5,1,11,2,3], proving various trade-offs between
security assumptions and security guarantees. However, two central problems posed by
Waters [21] remain open. The first question pertains to security and assumptions:

? Supported by NSFC-ISF Joint Scientific Research Program (61961146004) and ERC Project
aSCEND (H2020 639554).

?? Supported by ERC Project aSCEND (H2020 639554).



Q1: Can we build an ABE for DFA with adaptive security from static
assumptions in bilinear groups, notably the k-Lin assumption in prime-
order bilinear groups?

From both a practical and theoretical stand-point, we would like to base cryptography
on weaker and better understood assumptions, as is the case with the k-Lin assump-
tion, while also capturing more realistic adversarial models, as is the case with adaptive
security. Prior ABE schemes for DFA achieve either adaptive security from less de-
sirable q-type assumptions [21,4,5,1], where the complexity of the assumption grows
with the length of the string x, or very recently, selective security from the k-Lin as-
sumption [2,11]. Indeed, this open problem was reiterated again in the latter work [11],
emphasizing a security loss that is polynomial (and not exponential) in the size of the
DFA.

The next question pertains to expressiveness:

Q2: Can we build an ABE for nondeterministic finite automata (NFA)
with a polynomial dependency on the NFA size?

The efficiency requirement rules out the naive approach of converting a NFA to a DFA,
which incurs an exponential blow-up in size. Here, we do not know any construction
even if we only require selective security under q-type assumptions. Partial progress
was made very recently by Agrawal et al. [3] in the more limited secret-key setting,
where encryption requires access to the master secret key. Throughout the rest of this
work, we refer only to the standard public-key setting for ABE, and where the adversary
can make an a-priori unbounded number of secret key queries.

1.1 Our Results

In this work, we address the afore-mentioned open problems:

– We present an adaptively secure ABE for DFA from the k-Lin assumption in prime-
order bilinear groups, which affirmatively answers the first open problem. Our
scheme achieves ciphertext and key sizes with linear complexity, as well as se-
curity loss that is polynomial in the size of the DFA and the number of key queries.
Concretely, over the binary alphabet and under the SXDH (=1-Lin) assumption, our
ABE for DFA achieves ciphertext and key sizes 2–3 times that of Waters’ scheme
(cf. Fig 4), while simultaneously improving on both the assumptions and security
guarantees.

– We present a selectively secure ABE for NFA also from the k-Lin assumption,
provided the number of accepting paths is smaller than p, where p is the order
of the underlying group. We also present a simpler ABE for NFA with the same
restriction from the same q-type assumption used in Waters’ ABE for DFA. Both
ABE schemes for NFA achieve ciphertext and key sizes with linear complexity.

– Finally, we present the first compact adaptively secure ABE for branching programs
from the k-Lin assumption, which generalizes and simplifies the recent result of
Kowalczyk and Wee [15] for boolean formula (NC1). Here, “compact” is also re-
ferred to as “unbounded multi-use of attributes” in [5]; each attribute/input bit can
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appear in the formula/program an unbounded number of times. Our construction
leverages insights from our ABE for DFA, and works directly with any layered
branching program and avoids both the pre-processing step in the latter work for
transforming boolean formulas into balanced binary trees of logarithmic depth, as
well as the delicate recursive pebbling strategy for binary trees.

We summarize the state of the art of ABE for DFA, NFA and branching programs in
Fig 1, 2, 3, respectively.

In the rest of this section, we focus on our three ABE schemes that rely on the k-Lin
assumption, all of which follow the high-level proof strategy in [11,15]. We design a se-
ries of hybrids that traces through the computation, and the analysis carefully combines
(i) a “nested, two-slot” dual system argument [20,16,17,18,13,8], (ii) a new combinato-
rial mechanism for propagating entropy along the NFA computation path, and (iii) the
piecewise guessing framework [14,15] for achieving adaptive security. We proceed to
outline and motivate several of our key ideas. From now on, we use GWW to refer to
the ABE for DFA by Gong et al. [11].

Adaptively secure ABE for DFA. Informally, the piecewise guessing framework [14,15]
for ABE adaptive security says that if we have a selectively secure ABE scheme where
proving indistinguishability of every pair of adjacent hybrids requires only knowing
logL bits of information about the challenge attribute x, then the same scheme is adap-
tively secure with a security loss of L. Moreover, when combined with the dual system
argument, it suffices to consider selective security when the adversary only gets a single
key corresponding to a single DFA.

In the GWW security proof, proving indistinguishability of adjacent hybrids re-
quires knowing the subset of DFA states that are reachable from the accept states by
“back-tracking” the computation. This corresponds to logL = Q —we need Q bits
to specify an arbitrary subset of [Q]— and a security loss of 2Q. Our key insight for
achieving adaptive security is that via a suitable transformation to the DFA, we can
ensure that the subset of reachable states per input are always singleton sets, which cor-
reponds to logL = logQ and a security loss of Q. The transformation is very simple:
run the DFA “in reverse”! That is, start from the accept states, read the input bits in
reverse order and the transitions also in reverse, and accept if we reach the start state. It
is easy to see that this actually corresponds to an NFA computation, which means that
we still need to design a selectively secure ABE for NFA. Also, back-tracking along
this NFA corresponds to normal computation in the original DFA, and therefore always
reaches singleton sets of states during any intermediate computation.

ABE for NFA. Next, we sketch our ABE for NFA, which uses an asymmetric bilinear
group (G1, G2, GT , e) of prime order p where e : G1 × G2 → GT . As in Waters’
ABE for DFA [21], an encryption of x = (x1, . . . , x`) ∈ {0, 1}` contains random
scalars s0, . . . , s` ← Zp in the exponent in G1. In the secret key, we pick a random
scalar du ← Zp for each state u ∈ [Q]. We can now describe the invariant used during
decryption with g1, g2 being respective generators of G1, G2:
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– In Waters’ ABE for DFA, if the computation reaches a state ui ∈ [Q] upon reading
x1, . . . , xi, decryption computes e(g1, g2)sidui . In particular, the scheme allows the
decryptor to compute the ratios

e(g1, g2)sjdv−sj−1du , ∀j ∈ [`], u ∈ [Q], v = δ(u, xj) ∈ [Q] (1)

where δ : [Q]× {0, 1} → [Q] is the DFA transition function.
– The natural way to extend (1) to account for non-deterministic transitions in an

NFA is to allow the decryptor to compute

e(g1, g2)sjdv−sj−1du , ∀j ∈ [`], u ∈ [Q], v ∈ δ(u, xj) ⊆ [Q] (2)

where δ : [Q] × {0, 1} → 2[Q] is the NFA transition function. As noted by Waters
[21], such an ABE scheme for NFA is broken via a so-called “back-tracking attack”,
which we describe in the full paper.

– In our ABE for NFA, we allow the decryptor to compute

e(g1, g2)
sj(

∑
v∈δ(u,xj) dv)−sj−1du , ∀j ∈ [`], u ∈ [Q] (3)

A crucial distinction between (3) and (2) is that the decryptor can only compute
one quantity for each j, u in the former (as is the case also in (1)), and up to Q
quantities in the latter. The ability to compute multiple quantities in (2) is exactly
what enables the back-tracking attack.

We clarify that our ABE for NFA imposes an extra restriction on the NFA, namely that
the total number of accepting paths3 be non-zero mod p for accepting inputs; we use
NFA⊕p to denote such NFAs. In particular, this is satisfied by standard NFA where the
total number of accepting paths is less than p for all inputs. This is in general a non-
trivial restriction since the number of accepting paths for an arbitrary NFA can be as
large as Q`. Fortunately, for NFAs obtained by running a DFA “in reverse”, the number
of accepting paths is always either 0 or 1.

Indeed, the above idea, along with a suitable modification of Waters’ proof strat-
egy, already yields our selectively secure ABE for NFA⊕p under q-type assumptions in
asymmetric bilinear groups of prime order p. We defer the details to the full paper.

– To obtain a selectively secure scheme based on k-Lin, we apply the same modifica-
tions as in GWW [11]. For the proof of security, entropy propagation is defined via
back-tracking the NFA computation, in a way analogous to that for back-tracking
the DFA computation.

– To obtain an adaptively secure scheme based on k-Lin, we adapt the selectively
secure scheme to the piecewise guessing framework [15]. One naive approach
is to introduce a new semi-functional space. In contrast, we introduce one extra
components into master public key, secret key and ciphertext, respectively. With
the extra components, we can avoid adding a new semi-functional subspace, by
reusing an existing subspace as shown in previous unbounded ABE in [8]. Under

3 An accepting path on input x ∈ {0, 1}` is described by a sequence of states u0, . . . , u` ∈ [Q]
where u0 is the start state, u` is an accept state and uj ∈ δ(uj−1, xj) for all j ∈ [`].
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reference assumption security |sk| |ct|
[21] q-type selective O(Q) O(`)

[5,4,1] q-type + k-Lin adaptive X O(Q) O(`)

[11] k-Lin X selective O(Q) O(`)

[3] k-Lin X selective∗ O(Q2)O(`3)

ours k-Lin X adaptive X O(Q) O(`)

Fig. 1. Summary of ABE schemes for DFA. In the table,Q is the number of states in the DFA associated
with sk and ` is the length of x associated with ct, and where |Σ| = O(1).

reference |sk| |ct| type of NFA public key? assumption
[2] poly(Q)poly(`) standard X LWE X

ours O(Q) O(`) NFA⊕p X q-type

O(Q) O(`) NFA⊕p X k-LinX

Fig. 2. Summary of ABE schemes for NFA. In the table, Q
is the number of states in the NFA associated with sk and ` is
the length of x associated with ct.

reference assumption compact?
[7] k-Lin X

[5] q-type + k-Lin X

k-Lin X

ours k-Lin X X

Fig. 3. Summary of adaptively se-
cure ABE schemes for branching
programs (BP). Here “compact” is
also referred to “unbounded multi-
use” in [5].

k-Lin assumption, our technique roughly saves k · ` elements in the ciphertext and
k · (2|Σ| + 2)Q elements in the secret key over the general apporach. This way,
we obtain ciphertext and key sizes that are almost the same as those in the GWW
selectively secure scheme.

ABE for branching programs. We build our compact adaptively secure ABE for
branching program (BP) in two steps analogous to our adaptively secure ABE for DFA.
In particular, we first show how to transform branching programs to a subclass of non-
deterministic branching programs (NBP) and construct adaptively secure ABE for such
class of NBP. Note that the latter is sufficient to capture a special BP with permutation
transition function (without transforming BP to NBP) and readily simplify the result of
Kowalczyk and Wee [15] for boolean formula (NC1).

1.2 Technical Overview

We start by recalling the standard definitions of DFA and NFA using vector-matrix
notation: that is, we describe the start and accept states using the character vectors,
and specify the transition function via a transition matrix. The use of vector-matrix
notation enables a more compact description of our ABE schemes, and also clarifies
the connection to branching programs.
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reference |ct| |sk| assumption security

[21] (2`+ 3)|G1| (3|Σ|Q+ 4)|G2| q-type selective

[5] ((2k + 2)`+ 6k + 6)|G1| ((3k + 3)|Σ|Q+ 5k + 5)|G2| q-type +k-Lin adaptive X

(3`+ 12)|G1| (6|Σ|Q+ 10)|G2| q-type + SXDH adaptive X

[11] ((3k + 1)`+ 4k + 1)|G1| ((4k + 2)|Σ|Q+ (3k + 1)Q+ 2k + 1)|G2| k-Lin X selective

(4`+ 5)|G1| (6|Σ|Q+ 4Q+ 3)|G2| SXDHX selective

ours ((3k + 1)`+ 6k + 2)|G1| ((4k + 2)|Σ|Q+ (5k + 2)Q+ 2k + 1)|G2| k-Lin X adaptive X

(4`+ 8)|G1| (6|Σ|Q+ 7Q+ 3)|G2| SXDH X adaptive X

Fig. 4. Concrete parameter sizes of pairing-based ABE schemes for DFA. Note that [21,11] are selectively secure
whereas our scheme is adaptively secure; [3] is omitted from the table since the ciphertext and key sizes are asymp-
totically larger, see Fig 1. In the table,Q is the number of states in the DFA,Σ indicates the alphabet, ` is the length
of input x. All the schemes work over bilinear groups (G1, G2, GT , e) of prime order pwhere e : G1×G2 → GT .
We note that all the schemes shown in the table have mpk of O(|Σ|) group elements. In the |ct|-column, we omit
one GT element. In the assumption column, SXDH means 1-Lin.

NFA, DFA, NFA⊕p . An NFA Γ is specified using (Q,Σ, {Mσ}σ∈Σ ,u, f ) where Σ
is the alphabet and

Q ∈ N; Mσ ∈ {0, 1}Q×Q,∀σ ∈ Σ; u, f ∈ {0, 1}1×Q.

The NFA Γ accepts an input x = (x1, . . . , x`) ∈ Σ`, denoted by Γ(x) = 1, if

fMx` · · ·Mx2
Mx1

u> > 0 (4)

and rejects the input otherwise, denoted by Γ(x) = 0. We will also refer to the quantity
fMx` · · ·Mx2Mx1u

> as the number of accepting paths for x. The above relation (4) is
equivalent to

uM>x1
M>x2

· · ·M>x`f
> > 0

The unusual choice of notation is to simplify the description of our ABE scheme. Let
EQ be the collection of Q elementary row vectors of dimension Q.

– A DFA Γ is a special case of NFA where u ∈ EQ and each column in every matrix
Mσ is an elementary column vector (i.e., contains exactly one 1).

– An NFA⊕p , parameterized by a prime p, is the same as an NFA except we change
the accept criterion in (4) to:

fMx` · · ·Mx2
Mx1

u> 6= 0 mod p

Note that this coincides with the standard NFA definition whenever the total number
of accepting paths for all inputs is less than p.

Throughout the rest of this work, when we refer to NFA, we mean NFA⊕p unless stated
otherwise.
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ABE for NFA⊕p . Following our overview in Section 1.1, an encryption of x =
(x1, . . . , x`) ∈ Σ` contains random scalars s0, . . . , s` in the exponent, where the plain-
text is masked by e(g1, g2)s`α. To generate a secret key for an NFA⊕p Γ, we first pick
d = (d1, . . . , dQ) ← ZQp as before. We allow the decryptor to compute the following
quantities in the exponent over GT :

(i) s`(αf − d) (5)
(ii) sjdMxj − sj−1d, ∀j ∈ [`] (corresponds to (3))

(iii) s0du
>

If we write u>j,x = Mxj · · ·Mx1
u> for all j ∈ [`] and u0,x = u, then we have

s`α · fu>`,x =

(i)︷ ︸︸ ︷
s`(αf − d) ·u>`,x +

(∑̀
j=1

(

(ii)︷ ︸︸ ︷
sjdMxj − sj−1d) · u>j−1,x

)
+

(iii)︷ ︸︸ ︷
s0du

>
0,x

This means that whenever fu>`,x 6= 0 mod p, as is the case when Γ(x) = 1, the decryp-
tor will be able to recover e(g1, g2)s`α.

Indeed, it is straight-forward to verify that the following ABE scheme satisfies the
above requirements, where [·]1, [·]2, [·]T denote component-wise exponentiations in re-
spective groups G1, G2, GT [10].

msk =
(
wstart, wend, z, {wσ}σ∈Σ , α

)
(6)

mpk =
(

[wstart]1, [wend]1, [z]1,
{

[wσ]1
}
σ∈Σ , [α]T

)
ctx =

 [s0]1, [s0wstart]1{
[sj ]1, [sj−1z + sjwxj ]1

}
j∈[`]

[s`]1, [s`wend]1, [s`α]T ·m


skΓ =

 [du> + wstartru
>]2, [ru>]2{

[−d + zr]2, [dMσ + wσr]2, [r]2
}
σ∈Σ

[αf − d + wendr]2, [r]2

 , d, r← Z1×Q
p

In the full paper, we prove that this scheme is selectively secure under `-EBDHE as-
sumption; this is the assumption underlying Waters’ selectively secure ABE for DFA [21].

Selective security from k-Lin. Following the GWW proof strategy which in turn
builds on the dual system argument, we design a series of games G0, . . . ,G` such that
in Gi, the quantities si and d have some extra entropy in the so-called semi-functional
space (which requires first modifying the above scheme). The entropy in d is propagated
from G0 to G1, then G2, and finally to G` via a combination of a computational and com-
binatorial arguments. In G`, we will have sufficient entropy to statistically mask α in the
secret key, which allows us to argue that e(g1, g2)s`α statistically masks the plaintext.
In this overview, we focus on the novel component, namely the combinatorial argument
which exploits specific properties of our scheme for NFA⊕p ; the computational steps
are completely analogous to those in GWW.
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In more detail, we want to replace d with d+d′i in Gi, where d′i ∈ ZQp corresponds
to the extra entropy we introduce into the secret keys in the semi-functional space. Note
that d′i will depend on both the challenge attribute x∗ as well as the underlying NFA⊕p .
We have the following constraints on d′i’s, arising from the fact that an adversarial
distinguisher for G0, . . . ,G` can always compute what a decryptor can compute in (5):

– to mask α in G`, we set d′` = ∆f where ∆← Zp, so that

αf − (d + d′`) = (α−∆)f − d

perfectly hides α;
– (ii) implies that

Gi−1︷ ︸︸ ︷
sidMx∗i

− si−1(d + d′i−1) ≈s

Gi︷ ︸︸ ︷
si(d + d′i)Mx∗i

− si−1d

=⇒ −si−1d
′
i−1 ≈s sid′iMx∗i

to prevent a distinguishing attack4 between Gi−1 and Gi by computing sidMx∗i
−

si−1d in both games;
– (iii) implies that s0(d + d′0)u> = s0du

>, and therefore, d′0u
> = 0 mod p. This is

to prevent a distinguishing attack5 between the real keys and those in G0.

In particular, we can satisfy the first two constraints by setting6

d′i = ∆ · fMx∗`
· · ·Mx∗i+1

∀i ∈ [0, `]

where ≈s holds over ∆ ← Zp, as long as s0, . . . , s` 6= 0. Whenever Γ(x∗) = 0, we
have

fMx∗`
· · ·Mx∗1

u> = 0 mod p

and therefore the third constraint is also satisfied.
Two clarifying remarks. First, the quantity

fMx∗`
· · ·Mx∗i+1

used in defining d′i has a natural combinatorial interpretation: its u’th coordinate cor-
responds to the number of paths from the accept states to u, while back-tracking along
x∗` , . . . , x

∗
i+1. In the specific case of a DFA, this value is 1 if u is reachable from an ac-

cept state, and 0 otherwise. It is then easy to see that our proof strategy generalizes that
of GWW for DFA: the latter adds ∆ to du in Gi whenever u is reachable from accept
state while back-tracking along the last `− i bits of the challenge attribute (cf. [11, Sec.

4 Looking ahead to the proof of security in Section 4, this “simplified” attack corresponds
roughly to using cti−1,i

x∗ to distinguish ski−1,i
Γ and skiΓ; this comes up in the proof of

G2.i.2 ≈c G2.i.3 in Lemma 8.
5 In Section 4, this roughly corresponds to distinguish skΓ and sk0

Γ with ct0x∗ ; this comes up in
the proof of G1 ≈c G2.1.0 in Lemma 6.

6 We adopt the standard convention that the product of an empty sequence of matrices is the
identity matrix. This means d′` = ∆ · f .
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3.2]). Second, the “naive” (and insecure) ABE for NFA that captures non-deterministic
transitions as in (2) introduces more equations in (ii) in (5); this in turn yields more
–and ultimately unsatisfiable– constraints on the d′i’s.

Finally, we remark that our ABE for NFA⊕p (and ABE for DFA from GWW as
well) can be proved in the semi-adaptive model [9], which is weaker than adaptive
security but stronger than both selective and selective* model used in [3].

Adaptive security for restricted NFA⊕p and DFA. Fix a set F ⊆ ZQ. We say that
an NFA or an NFA⊕p is F-restricted if

∀ ` ∈ N, x ∈ Σ`, i ∈ [0, `] : fMx` · · ·Mxi+1 ∈ F

Note that fMx∗`
· · ·Mx∗i+1

corresponding to the challenge attribute x∗ is exactly what
is used to define d′i in the previous paragraph. Moreover, following GWW, knowing
this quantity is sufficient to prove indistinguishability of Gi−1 and Gi. This means that
to prove selective security for F-restricted NFAs, it suffices to know log |F| bits about
the challenge attribute, and via the piecewise guessing framework, this yields adaptive
security with a security loss of |F|. Unfortunately, |F| is in general exponentially large
for general NFAs and DFAs. In particular, DFAs are {0, 1}Q-restricted, and naively
applying this argument would yield adaptively secure DFAs with a 2Q security loss.

Instead, we show how to transform DFAs into EQ-restricted NFA⊕p , where EQ ⊂
{0, 1}Q is the collection of Q elementary row vectors of dimension Q; this yields adap-
tively secure ABE for DFAs with a security loss of |EQ| = Q. Concretely, our adap-
tively secure ABE for DFA uses an adaptively secure ABE for EQ-restricted NFA⊕p ,
and proceeds

– to encrypt x = (x1, . . . , x`), use the ABE for NFA to encrypt x> = (x`, . . . , x1);7

– to generate a secret key for a DFA Γ = (Q,Σ, {Mσ},u, f), use the ABE for NFA
to generate a key for Γ> = (Q,Σ, {M>σ}, f ,u).

Note that we reversed x during encryption, and transposed Mσ , and switched u, f dur-
ing key generation. Correctness essentially follows from the equality

Γ(x)︷ ︸︸ ︷
fMx` · · ·Mx1

u> = (fMx` · · ·Mx1
u>)> =

Γ>(x>)︷ ︸︸ ︷
uM>x1

· · ·M>x`f
> .

Furthermore Γ> = (Q,Σ, {M>σ}, f ,u) is indeed a EQ-restricted NFA⊕p . This follows
from the fact that for any DFA Γ:

∀ ` ∈ N, x ∈ Σ`, i ∈ [0, `] : (Mxi · · ·Mx1
u>)> ∈ EQ

which is implied by the property of DFA: u ∈ EQ and each column in every matrix Mσ

contains exactly one 1. We give an example of reversing DFA in the full paper.

7 We acknowledge that writing x> constitutes an abuse of notation, but nonetheless convenient
in analogy with M>σ .
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policy security decryption proof
direction information direction information

GWW [11] DFA selective forward reachability backward reachability
§ 5 DFA adaptive backward reachability forward reachability
Naive NFA broken forward reachability - -
§ 4 NFA selective forward # paths backward # paths

Fig. 5. Summary of tracing executions underlying GWW, our adaptively secure ABE for DFA,
our selectively secure ABE for NFA⊕p and naive extension of Waters’ ABE for DFA.

1.3 Discussion

Tracing executions. Recall that a DFA is specified using a transition function δ : [Q]×
Σ → [Q]. A forward computation upon reading σ goes from a state u to v = δ(u, σ),
whereas back-tracking upon reading σ goes from v to u if v = δ(u, σ).

– GWW selective ABE for DFA: Decryption follows normal “forward” computation
keeping track of whether a state is reachable from the start state, whereas the secu-
rity proof introduces entropy based on whether a state is reachable from the accept
states via “back-tracking”.

– Our adaptive ABE for DFA and branching programs: Decryption uses back-tracking
and keeps track of whether a state is reachable from the accept states, whereas the
security proof introduces entropy based on whether a state is reachable from the
start state via forward computation. To achieve polynomial security loss, we cru-
cially rely on the fact that when reading i input bits, exactly one state is reachable
from the start state via forward computation.

– Naive and insecure ABE for NFA⊕p : Decryption follows normal forward compu-
tation keeping track of whether a state is reachable from the start state.

– Our selective ABE for NFA⊕p : Decryption follows normal forward computation
keeping track of the number of paths from the start state, whereas the security
proof introduces entropy scaled by the number of paths that are reachable from the
accept states via back-tracking.

We summarize the discussion in Fig 5.

ABE for DFA vs branching programs. Our work clarifies that the same obstacle (hav-
ing to guess a large subset of states that are reached upon back-tracking) arose in con-
structing adaptive ABE for DFA and compact adaptive ABE for branching programs
from k-Lin, and presents a new technique that solves both problems simultaneously
in the setting of KP-ABE. Furthermore, our results and techniques can carry over to
the CP-ABE settings using more-or-less standard (but admittedly non-black-box) argu-
ments, following e.g. [4, Sec.8] and [6, Sec.4]. See the full paper for adaptively secure
CP-ABE for DFA and branching programs, respectively.

Interestingly, the very recent work of Agarwal et al. [3,2] shows a related con-
nection: namely that compact and unbounded adaptive KP and CP-ABE for branching
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programs8 –for which they do not provide any instantiations– yields compact adaptive
KP-ABE (as well as CP-ABE) for DFA. In particular, just getting to KP-ABE for DFA
already requires both KP and CP-ABE for branching programs and also incurs a larger
polynomial blow-up in the parameters compared to our constructions; furthermore, sim-
ply getting to compact, unbounded, adaptive KP-ABE for branching programs would
also require most of the technical machinery used in this work, notably the “nested,
two-slot” dual system argument and the piecewise guessing framework. Nonetheless,
there is significant conceptual appeal to having a generic and modular transformation
that also yields both KP-ABE and CP-ABE schemes. That said, at the core of our con-
structions and analysis is a very simple combinatorial object sketched in Section 1.2.
We leave the question of properly formalizing this object and building a generic com-
piler to full-fledged KP-ABE and CP-ABE schemes to further work; in particular, such
a compiler should (i) match or improve upon the concrete efficiency of our schemes, as
with prior compilers such as [7,5], and (ii) properly decouple the combinatorial argu-
ments that are specific to DFA, NFA and branching programs from the computational
arguments that are oblivious to the underlying computational model.

Organization. The next section gives some background knowledge. Section 3 shows
the transformation from DFA to E-restricted NFA⊕p . We show our selectively secure
ABE for NFA⊕p in Section 4 and upgrade to adaptive security for EQ-restricted NFA⊕p
in Section 5. The latter implies our adaptively secure ABE for DFA. See the full paper
for the concrete description and our basic selectively secure ABE for NFA⊕p from
q-type assumption. We also defer our compact adaptively secure ABE for branching
programs to the full paper.

2 Preliminaries

Notation. We denote by s ← S the fact that s is picked uniformly at random from
a finite set S; by U(S), we indicate uniform distribution over finite set S. We use ≈s
to denote two distributions being statistically indistinguishable, and ≈c to denote two
distributions being computationally indistinguishable. We use 〈A,G〉 = 1 to denote
that an adversary A wins in an interactive game G. We use lower case boldface to
denote row vectors and upper case boldcase to denote matrices. We use ei to denote
the i’th elementary (row) vector (with 1 at the i’th position and 0 elsewhere) and let EQ
denote the set of all elementary vectors of dimension Q. For matrix A, we use span(A)
to denote the row span of A and use basis(A) to denote a basis of column span of A.
Throughout the paper, we use prime number p to denote the order of underlying groups.

2.1 Attribute-based encryption

Syntax. An attribute-based encryption (ABE) scheme for some class C consists of four
algorithms:

8 The statement in [3] refers to monotone span programs, which is a more powerful object, but
we believe that branching program suffices.
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Setup(1λ, C)→ (mpk,msk). The setup algorithm gets as input the security parameter
1λ and class description C. It outputs the master public key mpk and the master
secret key msk. We assume mpk defines the message spaceM.

Enc(mpk, x,m)→ ctx. The encryption algorithm gets as input mpk, an input x and a
message m ∈M. It outputs a ciphertext ctx. Note that x is public given ctx.

KeyGen(mpk,msk,Γ) → skΓ. The key generation algorithm gets as input mpk, msk
and Γ ∈ C. It outputs a secret key skΓ. Note that Γ is public given skΓ.

Dec(mpk, skΓ, ctx) → m. The decryption algorithm gets as input skΓ and ctx such
that Γ(x) = 1 along with mpk. It outputs a message m.

Correctness. For all input x and Γ with Γ(x) = 1 and all m ∈M, we require

Pr

Dec(mpk, skΓ, ctx) = m :

(mpk,msk)← Setup(1λ, C)
skΓ ← KeyGen(mpk,msk,Γ)

ctx ← Enc(mpk, x,m)

 = 1.

Security definition. For a stateful adversary A, we define the advantage function

AdvABE
A (λ) := Pr

β = β′ :

(mpk,msk)← Setup(1λ, C)
(x∗,m0,m1)← AKeyGen(mpk,msk,·)(mpk)

β ← {0, 1}; ctx∗ ← Enc(mpk, x∗,mβ)

β′ ← AKeyGen(mpk,msk,·)(ctx∗)

− 1

2

with the restriction that all queries Γ thatA sent to KeyGen(mpk,msk, ·) satisfy Γ(x∗) =
0. An ABE scheme is adaptively secure if for all PPT adversaries A, the advantage
AdvABE

A (λ) is a negligible function in λ. The selective security is defined analogously
except that the adversary A selects x∗ before seeing mpk. A notion between selective
and adaptive is so-called semi-adaptive security [9] where the adversary A is allowed
to select x∗ after seeing mpk but before making any queries.

2.2 Prime-order Groups

A generator G takes as input a security parameter 1λ and outputs a description G :=
(p,G1, G2, GT , e), where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic groups
of order p, and e : G1×G2 → GT is a non-degenerate bilinear map. We require that the
group operations in G1, G2, GT and the bilinear map e are computable in deterministic
polynomial time in λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective
generators. We employ the implicit representation of group elements: for a matrix M
over Zp, we define [M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation
is carried out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T .
We recall the matrix Diffie-Hellman (MDDH) assumption on G1 [10]:

12



Assumption 1 (MDDHd
k,k′ Assumption) Let k′ > k ≥ 1 and d ≥ 1. We say that

the MDDHdk,k′ assumption holds if for all PPT adversaries A, the following advantage
function is negligible in λ.

Adv
MDDHd

k,k′

A (λ) :=
∣∣Pr[A(G, [M]1, [MS]1 ) = 1]− Pr[A(G, [M]1, [U]1 ) = 1]

∣∣
where G := (p,G1, G2, GT , e)← G(1λ), M← Zk′×kp , S← Zk×dp and U← Zk′×dp .

The MDDH assumption on G2 can be defined in an analogous way. Escala et al. [10]
showed that

k-Lin⇒ MDDH1
k,k+1 ⇒ MDDHdk,k′ ∀k′ > k, d ≥ 1

with a tight security reduction. We will use Advk-LIN
A (λ) to denote the advantage func-

tion w.r.t. k-Lin assumption.

3 DFA, NFA, and their Relationships

Let p be a global parameter and EQ = {e1, . . . , eQ} be the set of all elementary row
vectors of dimension Q. This section describes various notions of DFA and NFA and
studies their relationships.

Finite Automata. We use Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f ) to describe deterministic finite
automata (DFA for short), nondeterministic finite automata (NFA for short), p-bounded
NFA (NFA<p for short) and mod-pNFA (NFA⊕p for short), whereQ ∈ N is the number
of states, vectors u, f ∈ {0, 1}1×Q describe the start and accept states, a collection
of matrices Mσ ∈ {0, 1}Q×Q describe the transition function. Let x = (x1, . . . , x`)
denote an input, then,

– for DFA Γ, we have u ∈ EQ, each column in every matrix Mσ is an elementary
column vector (i.e., contains exactly one 1) and

Γ(x) = 1 ⇐⇒ fMx` · · ·Mx1
u> = 1;

– for NFA Γ, we have

Γ(x) = 1 ⇐⇒ fMx` · · ·Mx1
u> > 0;

– for NFA<p Γ, we have fMx` · · ·Mx1
u> < p and

Γ(x) = 1 ⇐⇒ fMx` · · ·Mx1
u> > 0;

– for NFA⊕p Γ, we have

Γ(x) = 1 ⇐⇒ fMx` · · ·Mx1
u> 6= 0 mod p.

We immediately have: DFA ⊂ NFA<p⊂ NFA ∩ NFA⊕p .
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EQ-restricted NFA⊕p . We introduce the notion of EQ-restricted NFA⊕p which is an
NFA⊕p Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f ) with an additional property: for all ` ∈ N and all
x ∈ Σ`, it holds that

fi,x := fMx` · · ·Mxi+1
∈ EQ, ∀i ∈ [0, `]

Here Mx` · · ·Mxi+1 for i = ` refers to I of size Q×Q.

Transforming DFA to EQ-restricted NFA⊕p . In general, a DFA is not necessarily
a EQ-restricted NFA⊕p . The next lemma says that we can nonetheless transform any
DFA into a EQ-restricted NFA⊕p :

Lemma 1 (DFA to EQ-restricted NFA⊕p ). For each DFA Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f ),
we have NFA⊕p Γ> = (Q,Σ, {M>σ}σ∈Σ , f ,u) such that

1. Γ> is EQ-restricted;
2. for all ` ∈ N and x = (x1, . . . , x`) ∈ Σ`, it holds that

Γ(x) = 1 ⇐⇒ Γ>(x>) = 1 where x> = (x`, . . . , x1) ∈ Σ`. (7)

Proof. Recall that the definition of DFA implies two properties:

f ∈ {0, 1}Q (8)
and (Mxi · · ·Mx1u

>)> ∈ EQ, ∀i ∈ [0, `]. (9)

Property (9) comes from the facts that u ∈ EQ and each column in every matrix Mσ is
an elementary column vector.

We parse x> = (x>1, . . . , x
>
` ) and prove the two parts of the lemma as below.

1. Γ> is EQ-restricted since we have

uM>x>`
· · ·M>x>i+1

= (Mx`−i · · ·Mx1
u>)> ∈ EQ, ∀i ∈ [0, `]

where the equality is implied by the structure of Γ>, x> and we use property (9).
2. To prove (7), we rely on the fact

Γ(x) = 1 ⇐⇒ fMx` · · ·Mx1
u> = 1

⇐⇒ fMx` · · ·Mx1
u> 6= 0 mod p

⇐⇒ uM>x>`
· · ·M>x>1 f

> 6= 0 mod p

⇐⇒ Γ>(x>) = 1.

The second ⇐⇒ follows from the fact that fMx` · · ·Mx1
u> ∈ {0, 1} which is

implied by property (8) and (9) while the third ⇐⇒ is implied by the structure of
Γ>, x>. ut
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4 Semi-adaptively Secure ABE for NFA⊕p

In this section, we present our ABE for NFA⊕p in prime-order groups. The scheme
achieves semi-adaptive security under the k-Lin assumption. Our construction is based
on GWW ABE for DFA [11] along with an extension of the key structure and decryp-
tion to NFA; the security proof follows that of GWW with our novel combinatorial
arguments regarding our NFA extension. (See Section 1.2 for an overview.) We remark
that our scheme and proof work well for a more general form of NFA⊕p where u, f ,Mσ

are over Zp instead of {0, 1}.

4.1 Basis

We will use the same basis as GWW [11]:

A1 ← Zk×(2k+1)
p , a2 ← Z1×(2k+1)

p , A3 ← Zk×(2k+1)
p (10)

and use (A‖1 | a
‖
2 | A

‖
3) to denote the dual basis so that AiA

‖
i = I (known as non-

degeneracy) and AiA
‖
j = 0 if i 6= j (known as orthogonality). For notational con-

venience, we always consider a‖2 as a column vector. We review SDG1

A1 7→A1,A3
and

DDHG2

d,Q assumption from [8] which are parameterized for basis (10) and tightly im-
plied by k-Lin assumption. By symmetry, we may permute the indices for A1,a2,A3.

Lemma 2 (MDDHk,2k ⇒ SDG1

A1 7→A1,A3
[8]). Under the MDDHk,2k assumption in

G1, there exists an efficient sampler outputting random ([A1]1, [a2]1, [A3]1) along with
base basis(A‖1), basis(a‖2), basis(A‖1,A

‖
3) (of arbitrary choice) such that the following

advantage function is negligible in λ.

Adv
SDG1

A1 7→A1,A3

A (λ) :=
∣∣Pr[A(D, [t0]1) = 1]− Pr[A(D, [t1]1) = 1]

∣∣
where

D := ( [A1]1, [a2]1, [A3]1, basis(A
‖
1), basis(a‖2), basis(A‖1,A

‖
3) ),

t0 ← span(A1) , t1 ← span(A1,A3) .

More concretely, we have, for allA, there exists B with Time(B) ≈ Time(A) such that

Adv
SDG1

A1 7→A1,A3

A (λ) ≤ Adv
MDDHk,2k
A (λ).

Lemma 3 (MDDHd
k,k+d ⇒ DDHG2

d,Q [8]). Let d,Q ∈ N. Under the MDDHdk,k+d as-
sumption in G2, the following advantage function is negligible in λ.

Adv
DDHG2

d,Q

A (λ) :=
∣∣Pr[A([WB]2, [B]2, [WR]2 , [R]2) = 1]

−Pr[A([WB]2, [B]2, [WR + U]2 , [R]2) = 1]
∣∣

where W ← Zd×kp , B ← Zk×kp , R ← Zk×Qp and U ← Zd×Qp . More concretely, we

have, for all A, there exists B with Time(B) ≈ Time(A) such that Adv
DDHG2

d,Q

A (λ) ≤
O(1) · AdvMDDHdk,k+d

A (λ).
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Lemma 4 (statistical lemma [8]). With probability 1−1/p over A1,a2,A3,A
‖
1,a
‖
2,A

‖
3,

the following two distributions are statistically identical.{
A1W,A3W, a2W

}
and

{
A1W,A3W, w

}
where W← Z(2k+1)×k

p and w← Z1×k
p .

4.2 Scheme

Our ABE for NFA⊕p in prime-order groups is described as follows:

– Setup(1λ, Σ) : Run G = (p,G1, G2, GT , e)← G(1λ). Sample

A1 ← Zk×(2k+1)
p ,k← Z1×(2k+1)

p , Wstart, Zb, Wσ,b, Wend ← Z(2k+1)×k
p

for all σ ∈ Σ and b ∈ {0, 1}. Output

mpk =
(

[A1, A1Wstart, {A1Zb, A1Wσ,b }σ∈Σ,b∈{0,1}, A1Wend ]1, [A1k
>]T

)
msk =

(
k, Wstart, {Zb, Wσ,b }σ∈Σ,b∈{0,1}, Wend

)
.

– Enc(mpk, x,m) : Let x = (x1, . . . , x`) ∈ Σ` and m ∈ GT . Pick s0, s1, . . . , s` ←
Z1×k
p and output

ctx =

 [s0A1]1, [s0A1Wstart]1{
[sjA1]1, [sj−1A1Zj mod 2 + sjA1Wxj ,j mod 2]1

}
j∈[`]

[s`A1]1, [s`A1Wend]1, [s`A1k
>]T ·m

 .

– KeyGen(mpk,msk,Γ) : Let Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f ). Pick D← Z(2k+1)×Q
p ,

R← Zk×Qp and output

skΓ =

 [Du> + WstartRu>]2, [Ru>]2{
[−D + ZbR]2, [DMσ + Wσ,bR]2, [R]2

}
σ∈Σ,b∈{0,1}

[k>f −D + WendR]2, [R]2

 .

– Dec(mpk, skΓ, ctx) : Parse ciphertext for x = (x1, . . . , x`) and key for Γ =
(Q,Σ, {Mσ}σ∈Σ ,u, f ) as:

ctx =

 [c0,1]1, [c0,2]1{
[cj,1]1, [cj,2]1

}
j

[c`,1]1, [cend]1, C

 and skΓ =

 [k>0]2, [r
>
0]2{

[Kb]2, [Kσ,b]2, [R]2
}
σ,b

[Kend]2, [R]2


We define

u>j,x = Mxj · · ·Mx1
u> mod p, ∀j ∈ [0, `] (11)

and proceed as follows:
1. Compute

B0 = e([c0,1]1, [k
>
0]2) · e([c0,2]1, [r

>
0]2)−1;
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2. For all j ∈ [`], compute

[bj ]T = e([cj−1,1]1, [Kj mod 2]2) ·e([cj,1]1, [Kxj ,j mod 2]2) ·e([−cj,2]1, [R]2)

and Bj = [bju
>
j−1,x]T ;

3. Compute

[bend]T = e([c`,1]1, [Kend]2) · e([−cend]1, [R]2) and Bend = [bendu
>
`,x]T ;

4. Compute

Ball = B0 ·
∏`
j=1Bj ·Bend and B = B

(fu>`,x)−1

all

and output the message m′ ← C ·B−1.

Correctness. For x = (x1, . . . , x`) and Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f ) such that
Γ(x) = 1, we have:

B0 = [s0A1Du>]T = [s0A1Du>0,x]T (12)
bj = sjA1DMxj − sj−1A1D (13)
Bj = [sjA1Du>j,x − sj−1A1Du>j−1,x]T (14)

bend = s`A1k
>f − s`A1D (15)

Bend = [s`A1k
>fu>`,x − s`A1Du>`,x]T (16)

Ball = [s`A1k
>fu>`,x]T (17)

B = [s`A1k
>]T (18)

Here (16) is trivial; (14) and (18) follow from

u>j,x = Mxju
>
j−1,x mod p, ∀j ∈ [`] and Γ(x) = 1⇐⇒ fu>`,x 6= 0 mod p (19)

by the definition in (11), the remaining equalities follow [7], more detail can be found
in the full paper.

Security. We have the following theorem stating that our construction is selectively
secure. We remark that our construction achieves semi-adaptive security as is and the
proof is almost the same.

Theorem 1 (Selectively secure ABE for NFA⊕p ). The ABE scheme for NFA⊕p in
prime-order bilinear groups described above is selectively secure (cf. Section 2.1) under
the k-Lin assumption with security loss O(` · |Σ|). Here ` is the length of the challenge
input x∗.

4.3 Game Sequence

The proof is analogous to GWW’s proof. We show the proof in the one-key setting
where the adversary asks for at most one secret key; this is sufficient to motivate the
proof in the next section. As in [11], it is straightforward to handle many keys, see
the full paper for more details. Let x∗ ∈ Σ` denote the selective challenge and let
¯̀ = ` mod 2. Without loss of generality, we assume ` > 1. We begin with some
auxiliary distributions.
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Auxiliary distributions. We describe the auxiliary ciphertext and key distributions
that we use in the proof. Throughout, the distributions are the same as the original
distributions except for the so-called a2-components which is defined as below.

a2-components. For a ciphertext in the following form, capturing real and all auxiliary
ciphertexts (defined below):

ctx =

 [c0]1, [c0Wstart]1{
[cjA1]1, [cj−1Zj mod 2 + cjWxj ,j mod 2]1

}
j

[c`]1, [c`Wend]1, [c`k
>]T ·m

 (20)

where cj = sjA1 + sja2 + s̃jA3 with sj , s̃j ∈ Zkp and sj ∈ Zp, we define its a2-
components, denoted by ctx[2], as follows:

ctx[2] =

 [s0]1, [s0a2Wstart]1{
[sj ]1, [sj−1a2Zj mod 2 + sja2Wxj ,j mod 2]1

}
j

[s`]1, [s`a2Wend]1, [s`a2k
>]T ·m

 .

For a key in the following form, capturing real and all auxiliary keys (defined below):

skΓ =

 [k>0]2, [r
>
0]2{

[Kb]2, [Kσ,b]2, [R]2
}
σ,b

[Kend]2, [R]2

 (21)

where k0 ∈ Z1×(2k+1)
p , Kb,Kσ,b,Kend ∈ Z(2k+1)×Q

p and r0 ∈ Z1×k
p ,R ∈ Zk×Qp , we

define its a2-components, denoted by skΓ[2], as follows:

skΓ[2] =

 [a2k
>
0]2, [r

>
0]2{

[a2Kb]2, [a2Kσ,b]2, [R]2
}
σ,b

[a2Kend]2, [R]2


For notation simplicity of ctx[2] and skΓ[2] with k,D,Wstart,Wend,Zb,Wσ,b, we write

α = a2k
>, d = a2D, wstart = a2Wstart, wend = a2Wend, zb = a2Zb, wσ,b = a2Wσ,b

and call them the a2-components of k>,D,Wstart,Wend,Zb,Wσ,b, respectively. We
also omit zeroes and adjust the order of terms in ctx[2]. Furthermore, for all A1,a2,A3,
mpk and various forms of ctx, skΓ we will use in the proof, we have

ctx[2], skΓ[2], {Aik
>,AiD,AiWstart,AiWend,AiZb,AiWσ,b }i∈{1,3},σ∈Σ,b∈{0,1}

≈s ctx[2], skΓ[2], {Aik̃
>,AiD̃,AiW̃start,AiW̃end,AiZ̃b,AiW̃σ,b }i∈{1,3},σ∈Σ,b∈{0,1}

where k̃ ← Z1×(2k+1)
p , D̃ ← Z(2k+1)×Q

p ,W̃start,W̃end, Z̃b,W̃σ,b ← Z(2k+1)×k
p are

fresh. This follows from Lemma 4 and the fact that all matrices W ∈ Z(2k+1)×k′
p with

k′ ∈ N can be decomposed as

W = A‖1 ·A1W + a‖2 · a2W + A‖3 ·A3W.

The property allows us to simulate mpk, ctx, skΓ from ctx[2], skΓ[2] and A1,a2,A3 so
that we can focus on the crucial argument over a2-components in the proofs, e.g., those
in Section 4.4, 4.5 and 4.6.
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Ciphertext distributions. We sample s0, s1, . . . , s` ← Zp and define:

– for i ∈ [0, `]: ctix∗ is the same as ctx∗ except we replace siA1 with siA1 + sia2;
– for i ∈ [`]: cti−1,i

x∗ is the same as ctx∗ except we replace si−1A1, siA1 with
si−1A1 + si−1a2, siA1 + sia2.

That is, we have: writing τ = i mod 2,

ctix∗ [2] =


[s0wstart]1, [s0]1, [s0z1]1 if i = 0

[siwx∗i ,τ
]1, [si]1, [siz1−τ ]1 if i ∈ [`− 1]

[s`wx∗
`
,¯̀]1, [s`]1, [s`wend]1, [s`α]T ·mβ if i = `

cti−1,i
x∗ [2] =



[s0wstart]1, [s0]1, [s0z1 + s1wx∗1 ,1
]1, [s1]1, [s1z0]1

if i = 1

[si−1wx∗i−1,1−τ ]1, [si−1]1, [si−1zτ + siwx∗i ,τ
]1, [si]1, [siz1−τ ]1

if i ∈ [2, `− 1]

[s`−1wx∗
`−1

,1−¯̀]1, [s`−1]1, [s`−1z¯̀+ s`wx∗
`
,¯̀]1, [s`]1, [s`wend]1, [s`α]T ·mβ

if i = `

They are exactly the same as those used in GWW’s proof [11].

Secret key distributions. Given x∗ ∈ Σ` and Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f ), we define

fi,x∗ = fMx∗`
· · ·Mx∗i+1

mod p, ∀i ∈ [0, `]. (22)

For all i ∈ [`], we sample ∆← Zp and define:

– sk0
Γ is the same as skΓ except we replace D with D + a‖2 · s

−1
0 ∆ · f0,x∗ in the term

[Du> + WstartRu>]2;
– skiΓ is the same as skΓ except we replace D with D + a‖2 · s

−1
i ∆ · fi,x∗ in the term

[DMx∗i
+ Wx∗i ,i mod 2R]2;

– ski−1,i
Γ is the same as skΓ except we replace −D with −D + a‖2 · s

−1
i−1∆ · fi−1,x∗

in the term [−D + Zi mod 2R]2;
– sk`,∗Γ is the same as skΓ except we replace −D with −D + a‖2 · s

−1
` ∆ · f`,x∗ in the

term [k>f −D + WendR]2.

That is, we have: writing τ = i mod 2,

sk0
Γ[2] =

 [(d + s−1
0 ∆ · f0,x∗ )u> + wstartRu>]2, [Ru>]2{

[−d + zbR]2, [dMσ + wσ,bR]2, [R]2
}
σ∈Σ,b∈{0,1}

[αf − d + wendR]2, [R]2



skiΓ[2] =


[du> + wstartRu>]2, [Ru>]2{

[−d + zτR]2, [(d + s−1
i ∆ · fi,x∗ )Mx∗i

+ wx∗i ,τ
R]2, [R]2

}{
[dMσ + wσ,τR]2

}
σ 6=x∗i{

[−d + z1−τR]2, [dMσ + wσ,1−τR]2, [R]2
}
σ∈Σ

[αf − d + wendR]2, [R]2
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ski−1,i
Γ [2] =


[du> + wstartRu>]2, [Ru>]2{

[−d + s−1
i−1∆ · fi−1,x∗ + zτR]2, [dMσ + wσ,τR]2, [R]2

}
σ∈Σ{

[−d + z1−τR]2, [dMσ + wσ,1−τR]2, [R]2
}
σ∈Σ

[αf − d + wendR]2, [R]2



sk`,∗Γ [2] =

 [du> + wstartRu>]2, [Ru>]2{
[−d + zbR]2, [dMσ + wσ,bR]2, [R]2

}
σ∈Σ,b∈{0,1}

[αf − d + s−1
` ∆ · f`,x∗ + wendR]2, [R]2


They are analogous to those used in GWW’s proof [11] with a novel way to change
a2-components9. Following the notations in Section 1.2, we use d′i = s−1

i ∆ · fi,x∗
rather than d′i = ∆ · fi,x∗ . We remark that they are essentially the same but the former
helps to simplify the exposition of the proof. Also, we note that si is independent of the
challenge input x∗ which will be crucial for the adaptive security in the next section.

Game sequence. As in GWW’s proof, we prove Theorem 1 via a series of games
summarized in Fig 6:

– G0: Identical to the real game.
– G1: Identical to G0 except that the challenge ciphertext is ct0x∗ .
– G2.i.0, i ∈ [`]: In this game, the challenge ciphertext is cti−1

x∗ and the secret key is
ski−1

Γ .
– G2.i.1, i ∈ [`]: Identical to G2.i.0 except that the secret key is ski−1,i

Γ .
– G2.i.2, i ∈ [`]: Identical to G2.i.1 except that the challenge ciphertext is cti−1,i

x∗ .
– G2.i.3, i ∈ [`]: Identical to G2.i.2 except that the secret key is skiΓ.
– G2.i.4, i ∈ [`]: Identical to G2.i.3 except that the challenge ciphertext is ctix∗ .
– G3: Identical to G2.`.4 except that secret key is sk`,∗Γ .

Note that G2.1.0 is identical to G1 except that the secret key is sk0
Γ and we have G2.i.0 =

G2.i−1.4 for all i ∈ [2, `]. The remaining of this section will be devoted to proving the
indistinguishability of each pair of adjacent games described above. The proofs will be
analogous to those for GWW, however, crucially use the property of f0,x∗ , . . . , f`,x∗ .
Due to lack of space, we focus on proofs using the properties; other proofs are com-
pletely analogous to GWW and can be found in the full paper.

Useful lemmas. Before proceed to the proof, we show the next lemma describing the
property of f0,x∗ , . . . , f`,x∗ .

Lemma 5 (Property of {fi,x∗}i∈[0,`]). For any NFA⊕p Γ = (Q,Σ, {Mσ},u, f) and
input x∗ ∈ Σ`, we have:

1. Γ(x∗) = 0 ⇐⇒ f0,x∗u
> = 0 mod p;

2. fi−1,x∗ = fi,x∗Mx∗i
mod p for all i ∈ [`];

3. f`,x∗ = f .

Proof. The lemma directly follows from the definitions of NFA⊕p in Section 3 and
f0,x∗ , . . . , f`,x∗ in (22). ut

9 We also change the definition of skiΓ, i ∈ [0, `], with the goal of improving the exposition.
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Game ctx∗ skΓ[2] Remark

? · u> + wstartRu> ? ·Mx∗
i−1

+ wx∗
i−1

,1−τR ? + zτR ? ·Mx∗
i

+ wx∗
i
,τR αf + ? + zendR

0 ctx∗ skΓ d d −d d −d real game

1 ct0x∗ skΓ d d −d d −d SD

2.1.0 ct0x∗ sk0
Γ d + s

−1
0 ∆ · f0,x∗ d −d d −d Lem 5 - 1

2.i.0 cti−1
x∗ ski−1

Γ d d + s−1
i−1∆ · fi−1,x∗ −d d −d i ∈ [2, `]

2.i.1 cti−1
x∗ ski−1,i

Γ d d −d + s
−1
i−1∆ · fi−1,x∗ d −d change of variables + DDH

2.i.2 cti−1,i
x∗ ski−1,i

Γ d d −d + s−1
i−1∆ · fi−1,x∗ d −d switching lemma

2.i.3 cti−1,i
x∗ skiΓ d d −d d + s

−1
i ∆ · fi,x∗ −d transition lemma, Lem 5 - 2

2.i.4 ctix∗ skiΓ d d −d d + s−1
i ∆ · fi,x∗ −d switching lemma

3 ct`x∗ sk`,∗Γ d d −d d −d + s
−1
` ∆ · f`,x∗ change of variables + DDH

Fig. 6. Game sequence for our selectively secure ABE for NFA⊕p where i ∈ [`]. In the table, we only show the a2-components of secret key. In the
Remark column, “SD” and “DDH” indicate SDG1

A1 7→A1,a2
and DDHG2

1,Q assumption, respectively; switching lemma and transition lemma were given in
GWW, cf. Lemma 7 and the full paper; “Lem 5 - x” refers to bullet x in Lemma 5.
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4.4 Initializing

It is standard to prove G0 ≈c G1, see the full paper. We only show the proof sketch for
G1 ≈c G2.1.0.

Lemma 6 (G1 = G2.1.0). For all A, we have

Pr[〈A,G1〉 = 1] = Pr[〈A,G2.1.0〉 = 1].

Proof. Roughly, we will prove that(
mpk, ct0x∗ , skΓ

)
=
(
mpk, ct0x∗ , sk0

Γ

)
where we have

skΓ[2] =

 [ du> + wstartRu>]2, [Ru>]2{
[−d + zbR]2, [dMσ + wσ,bR]2, [R]2

}
σ∈Σ,b∈{0,1}

[αf − d + wendR]2, [R]2

 ,

sk0
Γ[2] =

 [ (d + s−1
0 ∆ · f0,x∗)u> + wstartRu>]2, [Ru>]2{

[−d + zbR]2, [dMσ + wσ,bR]2, [R]2
}
σ∈Σ,b∈{0,1}

[αf − d + wendR]2, [R]2

 ,

and
ct0x∗ [2] =

(
[s0wstart]1, [s0]1, [s0z1]1

)
.

This follows from the statement:
skΓ[2]︷ ︸︸ ︷{

du> +wstartRu>,Ru>
}

=

sk0
Γ[2]︷ ︸︸ ︷{

(d+ s−1
0 ∆ · f0,x∗)u> +wstartRu>,Ru>

}
given d,

ct0x∗ [2]︷ ︸︸ ︷
wstart

which is implied by the fact Γ(x∗) = 0 ⇐⇒ f0,x∗u
> = 0 mod p (see Lemma 5). This

is sufficient for the proof. ut

4.5 Switching secret keys II

This section proves G2.i.2 ≈c G2.i.3 for all i ∈ [`] using the the transition lemma from
GWW [11].

Lemma 7 ((z,w)-transition lemma [11]). For all si−1, si 6= 0 and ∆̄ ∈ Zp, we have

aux, si−1z + siw, [ s−1
i−1∆̄ + zr>]2, [wr>]2, [r>]2

≈c aux, si−1z + siw, [zr>]2, [ s−1
i ∆̄ + wr>]2, [r>]2

where aux = ([zB,wB,B]2) and z,w ← Z1×k
p , B ← Zk×kp , r ← Z1×k

p . Concretely,
the advantage function AdvTRANS

B (λ) is bounded byO(1)·Advk-LIN
B0

(λ) with Time(B0) ≈
Time(B).

Lemma 8 (G2.i.2 ≈c G2.i.3). For all i ∈ [`] and all A, there exists B with Time(B) ≈
Time(A) such that

Pr[〈A,G2.i.2〉 = 1]− Pr[〈A,G2.i.3〉 = 1] ≤ AdvTRANS
B (λ).
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Overview. This roughly means(
mpk, cti−1,i

x∗ , ski−1,i
Γ

)
≈c
(
mpk, cti−1,i

x∗ , skiΓ
)
;

more concretely, we want to prove the following statement over a2-components:

[−d + s−1
i−1∆ · fi−1,x∗ + zτR ]2, [dMx∗i

+ wx∗i ,τ
R ]2, [R]2

≈c [−d + zτR ]2, [dMx∗i
+ s−1

i ∆ · fi,x∗Mx∗i
+ wx∗i ,τ

R ]2, [R]2

given d, ∆, si−1, si, si−1zτ +siwx∗i ,τ
revealed by cti−1,i

x∗ . The first row corresponds to
ski−1,i

Γ [2] while the second corresponds to skiΓ[2]. This can be handled by the (zτ ,wx∗i ,τ
)-

transition lemma and the fact that fi−1,x∗ = fi,x∗Mx∗i
mod p (see Lemma 5).

Proof. Recall that τ = i mod 2. By Lemma 4, it suffices to prove the lemma over
a2-components which roughly means:

ski−1,i
Γ [2] =


[du> + wstartRu>]2, [Ru>]2

[−d + s−1
i−1∆ · fi−1,x∗ + zτR ]2, [dMx∗i

+ wx∗i ,τ
R ]2, [R]2{

[dMσ + wσ,τR]2}σ 6=x∗i{
[−d + z1−τR]2, [dMσ + wσ,1−τR]2, [R]2

}
σ∈Σ

[αf − d + wendR]2, [R]2



≈c


[du> + wstartRu>]2, [Ru>]2

[−d + zτR ]2, [dMx∗i
+ s−1

i ∆ · fi,x∗Mx∗i
+ wx∗i ,τ

R ]2, [R]2{
[dMσ + wσ,τR]2}σ 6=x∗i{

[−d + z1−τR]2, [dMσ + wσ,1−τR]2, [R]2
}
σ∈Σ

[αf − d + wendR]2, [R]2

 = skiΓ[2]

in the presence of

cti−1,i
x∗ [2] =



[s0wstart]1, [s0]1, [s0z1 + s1wx∗1 ,1
]1, [s1]1, [s1z0]1

if i = 1

[si−1wx∗i−1,1−τ ]1, [si−1]1, [si−1zτ + siwx∗i ,τ
]1, [si]1, [siz1−τ ]1

if i ∈ [2, `− 1]

[s`−1wx∗
`−1

,1−¯̀]1, [s`−1]1, [s`−1z¯̀+ s`wx∗
`
,¯̀]1, [s`]1, [s`wend]1, [s`α]T ·mβ

if i = `

One can sample basis A1,a2,A3,A
‖
1,a
‖
2,A

‖
3 and trivially simulate mpk, cti−1,i

x∗ and
secret key using terms given out above. Furthermore, we prove this using (zτ ,wx∗i ,τ

)-
transition lemma. On input

aux, [ ∆̄0 + zτr
>]2, [ ∆̄1 + wx∗i ,τ

r>]2, [r
>]2

where (∆̄0, ∆̄1) ∈
{

(s−1
i−1∆̄, 0) , (0, s−1

i ∆̄)
}

and

aux = (∆̄, si−1, si, si−1zτ + siwx∗i ,τ
, [zτB,wx∗i ,τ

B,B]2)
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with zτ ,wx∗i ,τ
← Z1×k

p , B ← Zk×kp , r ← Z1×k
p and ∆̄ ← Zp, we sample α ←

Zp,wstart, z1−τ , wσ,1−τ ,wend ← Z1×k
p for all σ ∈ Σ and wσ,τ ← Z1×k

p for all σ 6= x∗i
and proceed as follows:

(Simulating challenge ciphertext) On input (m0,m1), we trivially simulate cti−1,i
x∗ [2]

using si−1, si, si−1zτ + siwx∗i ,τ
in aux and α, wstart, wσ,1−τ , z1−τ , wend as well.

(Simulating secret key) On input Γ, we want to return a secret key for Γ in the form:
[du> + wstartRu>]2, [Ru>]2

[−d +∆0 · fi−1,x∗ + zτR]2, [dMx∗i
+∆1 · fi−1,x∗ + wx∗i ,τ

R]2 , [R]2{
[dMσ + wσ,τR]2}σ 6=x∗i{

[−d + z1−τR]2, [dMσ + wσ,1−τR]2, [R]2
}
σ∈Σ

[αf − d + wendR]2, [R]2


where (∆0, ∆1) ∈

{
(s−1
i−1∆, 0) , (0, s−1

i ∆)
}

. Observe that

– when (∆0, ∆1) = (s−1
i−1∆, 0) , the distribution is identical to ski−1,i

Γ [2] ;

– when (∆0, ∆1) = (0, s−1
i ∆) , the distribution is identical to skiΓ[2] since fi−1,x∗ =

fi,x∗Mx∗i
mod p (see Lemma 5).

We sample d← Z1×Q
p and R̃← Zk×Qp and implicitly set

∆ = ∆̄, (∆0, ∆1) = (∆̄0, ∆̄1) and R = r> · fi−1,x∗ + B · R̃.

We then generate the key for Γ as follows:

– We simulate [R]2 from [r>]2, [B]2 and fi−1,x∗ , R̃.
– We rewrite the terms in the dashed box as follows:

[−d+(∆̄0+zτr
>)·fi−1,x∗+zτB·R̃]2, [dMx∗i

+(∆̄1+wx∗i ,τ
r>)·fi−1,x∗+wx∗i ,τ

B·R̃]2

and simulate them using [∆̄0 + zτr
>]2, [∆̄1 + wx∗i ,τ

r>]2, [zτB]2, [wx∗i ,τ
B]2 and

d, fi−1,x∗ , R̃.
– We simulate all remaining terms using [R]2 and α, d, wstart, z1−τ , {wσ,τ}σ 6=x∗i ,
{wσ,1−τ}σ∈Σ , wend.

Observe that, when (∆̄0, ∆̄1) = (s−1
i−1∆̄, 0) , we have (∆0, ∆1) = (s−1

i−1∆, 0) , then

the secret key is ski−1,i
Γ [2] and the simulation is identical to G2.i.2; when (∆̄0, ∆̄1) =

(0, s−1
i ∆̄) , we have (∆0, ∆1) = (0, s−1

i ∆) , then the secret key is skiΓ[2] and the
simulation is identical to G2.i.3. This completes the proof. ut
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4.6 Finalize

We finally prove that the adversary wins G3 with probability 1/2.

Lemma 9. Pr[〈A,G3〉 = 1] ≈ 1/2.

Proof. First, we argue that the secret key sk`,∗Γ in this game perfectly hides the a2-
component of k>, i.e., α = a2k

>. Recall the a2-components of the secret key:

sk`,∗Γ [2] =

 [du> + wstartRu>]2, [Ru>]2{
[−d + zbR]2, [dMσ + wσ,bR]2, [R]2

}
σ∈Σ,b∈{0,1}

[αf − d + s−1
` ∆ · f`,x∗ + wendR]2, [R]2

 .

By the property f`,x∗ = f (see Lemma 5), we can see that sk`,∗Γ [2] can be simulated
using α + s−1

` ∆, which means the secret key perfectly hides α = a2k
>. Therefore,

the unique term involving k in ct`x∗ , i.e., [s`A1k
> + s`a2k

>]T , is independently and
uniformly distributed and thus statistically hides message mβ . ut

5 Adaptively Secure ABE for EQ-restricted NFA⊕p and DFA

In this section, we present our adaptively secure ABE for EQ-restricted NFA⊕p . By our
transformation from DFA to EQ-restricted NFA⊕p (cf. Lemma 1), this readily gives us
an adaptively secure ABE for DFA. We defer the concrete construction to the full paper.

Overview. Our starting point is the selectively secure ABE scheme in Section 4. To
achieve adaptive security, we handle key queries one by one following standard dual
system method [20]; for each key, we carry out the one-key selective proof in Section 4
with piecewise guessing framework [15]. However this does not work immediately, we
will make some changes to the scheme and proof in Section 4.

Recall that, in the one-key setting, the (selective) proof in Section 4 roughly tells us

(mpk, skΓ, ctx∗) ≈c (mpk, sk`,∗Γ , ct`x∗ ). (23)

The two-key setting, for example, is expected to be handled by hybrid arguments:

(mpk, skΓ1 , skΓ2 , ctx∗) ≈c (mpk, sk`,∗Γ1
, skΓ2 , ct

`
x∗ ) ≈c (mpk, sk`,∗Γ1

, sk`,∗Γ2
, ct`x∗)

The first step seems to be feasible with some natural extension but the second one is
problematic. Since we can not switch the challenge ciphertext back to ctx∗ due to the
presence of sk`,∗Γ1

, the argument (23) can not be applied to the second key skΓ2 literally.
In more detail, recall that

ct`x∗ [2] =
(

[s`wx∗` ,
¯̀]1, [s`]1, [s`wend]1

)
(24)

leaks information of wx∗` ,
¯̀ and wend while we need them to be hidden in some steps

of the one-key proof; for example, Lemma 4.5 for G2.i.2 ≈c G2.i.3. We quickly argue
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that the natural solution of adding an extra subspace for fresh copies of wx∗` ,
¯̀ and wend

blows up the ciphertext and key sizes (see Section 1.1 for discussion).
Our approach reuses the existing a2-components as in [8]. Recall that, our one-

key proof (23) uses a series of hybrids with random coins s0, s1, . . . and finally stops
at a hybrid with s` (cf. (23) and (24)). Roughly, we change the scheme by adding an
extra random coin s into the ciphertext and move one more step in the proof so that we
finally stop at a new hybrid with the new s only. This allows us to release s` and reuse
wx∗` ,

¯̀,wend for the next key. More concretely, starting with the scheme in Section 4.2,

we introduce a new component [W]1 ∈ G(2k+1)×k
1 into mpk:

– during encryption, we pick one more random coin s ← Z1×k
p and replace the last

three components in ctx with

[sA1]1, [s`A1Wend + sA1W]1, [sA1k
>]T ·m;

this connects the last random coin s` with the newly introduced s; and s corresponds
to s in the proof;

– during key generation, we replace the last two components in skΓ with

[−D + WendR]2, [k
>f + WR]2, [R]2;

the decryption will recover [sA1k
>f −s`A1D]T instead of [s`A1k

>f −s`A1D]T ;
– during the proof, we extend the proof in Section 4.3 by one more step (see the

dashed box):

(mpk, skΓ, ctx∗)
§4.3
≈c (mpk, sk`,∗Γ , ct`x∗ ) ≈c (mpk, sk∗Γ , ct

∗
x∗ )

so that ct∗x∗ [2] is in the following form:

ct∗x∗ [2] =
(
[sw]1, [s]1, [sα]1 ·mβ

)
which leaks w = a2W instead of wx∗` ,

¯̀,wend; by this, we can carry out the one-
key proof (23) for the next key (with some natural extensions).

Conceptually, we can interpret this as letting the NFA move to a specific dummy state
whenever it accepts the input. Such a modification has been mentioned in [4] for sim-
plifying the description rather than improving security and efficiency. In our formal
description below, we will rename Wend,W, s, s as Zend,Wend, send, send, respectively.

5.1 Scheme

Our adaptively secure ABE for EQ-restricted NFA⊕p in prime-order groups use the
same basis as described in Section 4.1 and is described as follows:

– Setup(1λ, Σ) : Run G = (p,G1, G2, GT , e)← G(1λ). Sample

A1 ← Zk×(2k+1)
p , k← Z1×(2k+1)

p , Wstart,Zb,Wσ,b,Zend,Wend ← Z(2k+1)×k
p

for all σ ∈ Σ and b ∈ {0, 1}. Output

mpk =
(
[A1,A1Wstart, {A1Zb,A1Wσ,b}σ∈Σ,b∈{0,1},A1Zend,A1Wend ]1, [A1k

>]T
)

msk =
(
k,Wstart, {Zb,Wσ,b}σ∈Σ,b∈{0,1},Zend,Wend

)
.

26



– Enc(mpk, x,m) : Let x = (x1, . . . , x`) ∈ Σ` andm ∈ GT . Pick s0, s1, . . . , s`, send ←
Z1×k
p and output

ctx =

 [s0A1]1, [s0A1Wstart]1{
[sjA1]1, [sj−1A1Zj mod 2 + sjA1Wxj ,j mod 2]1

}
j∈[`]

[sendA1]1, [s`A1Zend + sendA1Wend]1, [sendA1k
>]T ·m

 .

– KeyGen(mpk,msk,Γ) : Let Γ = (Q,Σ, {Mσ}σ∈Σ ,u, f ). Pick D← Z(2k+1)×Q
p ,

R← Zk×Qp and output

skΓ =

 [Du> + WstartRu>]2, [Ru>]2{
[−D + ZbR]2, [DMσ + Wσ,bR]2, [R]2

}
σ∈Σ,b∈{0,1}

[−D + ZendR]2, [k
>f + WendR]2, [R]2

 .

– Dec(mpk, skΓ, ctx) : Parse ciphertext for x = (x1, . . . , x`) and key for Γ =
(Q,Σ, {Mσ}σ∈Σ ,u, f ) as

ctx =

 [c0,1]1, [c0,2]1{
[cj,1]1, [cj,2]1

}
j

[cend,1]1, [cend,2]1, C

 and skΓ =

 [k>0]2, [r
>
0]2{

[Kb]2, [Kσ,b]2, [R]2
}
σ,b

[Kend,1]2, [Kend,2]2, [R]2


We define u>j,x for all j ∈ [0, `] as (11) in Section 4.2 and proceed as follows:
1. Compute

B0 = e([c0,1]1, [k
>
0]2) · e([c0,2]1, [r

>
0]2)−1;

2. For all j ∈ [`], compute

[bj ]T = e([cj−1,1]1, [Kj mod 2]2) ·e([cj,1]1, [Kxj ,j mod 2]2) ·e([−cj,2]1, [R]2)

and Bj = [bju
>
j−1,x]T ;

3. Compute

[bend]T = e([c`,1]1, [Kend,1]2) · e([cend,1]1, [Kend,2]2) · e([−cend,2]1, [R]2)

and Bend = [bendu
>
`,x]T ;

4. Compute

Ball = B0 ·
∏`
j=1Bj ·Bend and B = B

(fu>`,x)−1

all

and output the message m′ ← C ·B−1.

It is direct to verify the correctness as in Section 4.2. See the full paper for more details.

27



Security. We prove the following theorem stating the adaptive security of the above
ABE for EQ-restricted NFA⊕p . This readily implies our adaptively secure ABE for
DFA thanks to Lemma 1.

Theorem 2 (Adaptively seucre ABE for EQ-restricted NFA⊕p ). The ABE scheme
for EQ-restricted NFA⊕p in prime-order bilinear groups described above is adaptively
secure (cf. Section 2.1) under the k-Lin assumption with security lossO(q ·` · |Σ|3 ·Q2).
Here ` is the length of the challenge input x∗ and q is the number of key queries.

5.2 Proof of Main Theorem

From a high level, we employ the standard dual system proof switching the challenge
ciphertext and keys into semi-functional forms in a one-by-one manner. To switch a
secret key, we employ the proof technique for one-key selective setting in Section 4 in
the piecewise guessing framework [15,14]. We will capture this by a core lemma. Let
x∗ ∈ Σ` denote the adaptive challenge. We begin with auxiliary distributions and use
the notation for a2-components in Section 4.3.

Auxiliary distributions. We sample send ← Zp, ∆ ← Zp and define semi-functional
ciphertext and key:

– ct∗x∗ is the same as ctx∗ except we replace sendA1 with sendA1 + senda2;
– sk∗Γ is the same as skΓ except we replace k> with k> + a‖2 · s

−1
end∆ in the term

[k>f + WendR]2.

That is, we have:

ct∗x∗ [2] =
(

[sendwend]1, [send]1, [sendα]T ·mβ

)
sk∗Γ[2] =

 [du> + wstartRu>]2, [Ru>]2{
[−d + zbR]2, [dMσ + wσ,bR]2, [R]2

}
σ∈Σ,b∈{0,1}

[−d + zendR]2, [αf + s−1
end∆ · f + wendR]2, [R]2


Game sequence and core lemma. We prove Theorem 2 via a series of games following
standard dual system method [20]:

– G0: Identical to the real game.
– G1: Identical to G0 except that the challenge ciphertext is semi-functional, i.e., ct∗x∗ .
– G2.κ for κ ∈ [0, q]: Identical to G1 except that the first κ secret keys are semi-

functional, i.e., sk∗Γ.
– G3: Identical to G2.q except that the challenge ciphertext is an encryption of a ran-

dom message.

Here we have G2.0 = G1. It is standard to prove G0 ≈c G1, G2.q ≈s G3 and show
that adversary in G3 has no advantage. We sketch the proofs in the full paper. To prove
G2.κ−1 ≈c G2.κ for all κ ∈ [q], we use core lemma:

28



Lemma 10 (Core lemma). For all A, there exists B with Time(B) ≈ Time(A) and

AdvCORE
A (λ) = Pr[〈A,H0〉 = 1]− Pr[〈A,H1〉 = 1] ≤ O(` · |Σ|3 ·Q2) · Advk-LIN

B (λ)

where, for all b ∈ {0, 1}, we define:

〈A,Hb〉 :=
{
b′ ← AOEnc(·),OKey(·)(mpk, aux1, aux2)

}
where

mpk =
(
[A1,A1Wstart, {A1Zb,A1Wσ,b}σ∈Σ,b∈{0,1},A1Zend,A1Wend]1, [A1k

>]T
)

aux1 =
(
[k,B,WstartB, {ZbB,Wσ,bB}σ∈Σ,b∈{0,1},ZendB,WendB]2

)
aux2 =

(
[r>,Wstartr

>, {Zbr>,Wσ,br
>}σ∈Σ,b∈{0,1},Zendr

>,a‖2 · s
−1
end∆+ Wendr

>]2
)

with Wstart,Z0,Z1,Wσ,0,Wσ,1,Zend,Wend ← Z(2k+1)×k
p , B ← Zk×kp , r ← Z1×k

p ,
send, ∆← Zp and the two oracles work as follows:

– OEnc(x∗,m): output ct∗x∗ using send in aux2;
– OKey(Γ): output skΓ if b = 0; output sk∗Γ using ∆ and send in aux2 if b = 1;

with the restrictions that (1) A makes only one query to each oracle; (2) queries Γ and
x∗ satisfy Γ(x∗) = 0.

It is direct to see that the core lemma implies G2.κ−1 ≈c G2.κ; here aux1 and aux2 are
sufficient to simulate other q− 1 keys which are either skΓ or sk∗Γ, see the full paper for
more details.
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