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Abstract. Threshold secret sharing allows a dealer to split a secret into
n shares such that any authorized subset of cardinality at least t of
those shares efficiently reveals the secret, while at the same time any
unauthorized subset of cardinality less than t contains no information
about the secret. Leakage-resilience additionally requires that the secret
remains hidden even if one is given a bounded amount of additional
leakage from every share.
In this work, we study leakage-resilient secret sharing schemes and prove
a lower bound on the share size and the required amount of randomness
of any information-theoretically secure scheme. We prove that for any
information-theoretically secure leakage-resilient secret sharing scheme
either the amount of randomness across all shares or the share size has
to be linear in n. More concretely, for a secret sharing scheme with p-bit
long shares, `-bit leakage per share, where t̂ shares uniquely define the
remaining n− t̂ shares, it has to hold that

p ≥ `(n− t)
t̂

.

We use this lower bound to gain further insights into a question that was
recently posed by Benhamouda et al. (CRYPTO’18), who ask to what
extend existing regular secret sharing schemes already provide protection
against leakage. The authors proved that Shamir’s secret sharing is 1-bit
leakage-resilient for reconstruction thresholds t ≥ 0.85n and conjectured
that it is also 1-bit leakage-resilient for any other threshold that is a
constant fraction of the total number of shares. We do not disprove their
conjecture, but show that it is the best one could possibly hope for.
Concretely, we show that for large enough n and any constant 0 < c < 1
it holds that Shamir’s secret sharing scheme is not leakage-resilient for
t ≤ cn/logn.
In contrast to the setting with information-theoretic security, we show
that our lower bound does not hold in the computational setting. That
is, we show how to construct a leakage-resilient secret sharing scheme in
the random oracle model that is secure against computationally bounded
adversaries and violates the lower bound stated above.
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1 Introduction

Threshold secret sharing, introduced by Shamir [Sha79] and Blakley [Bla79], is a
fundamental building block in modern cryptography. It allows a dealer to split a
secret into n shares such that any subset of cardinality at least t of those shares
efficiently reveals the secret, while at the same time any subset of cardinality
less than t contains no information about the secret in the information theoretic
sense. Due to its computational simplicity, its strong privacy guarantees, and its
information-theoretic security, it has found applications in various areas of cryp-
tography ranging from secure multiparty computation [BGW88, CCD88, RB89]
over threshold cryptography [Des88, DF90, Sho00] to attribute-based encryp-
tion [GPSW06, Wat11]. Stronger notions, like robust [RB89] and verifiable se-
cret sharing [CGMA85] address the lack of authenticity in the original definition
and prevent the participants or the dealer from tampering with the shares. All
these classical notions of secret sharing have in common that they assume that
any share is either fully corrupted or completely hidden from the adversary.

In contrast to these notions, a recent line of works [DP07, BGK14, GK18a,
GK18b, ADN+18, KMS18, SV18, BS18] considers secret sharing in the context
of side-channel attacks, where an adversary gets some form of restricted access
to all shares. Generally, these works consider two types of adversaries. Active
adversaries that may tamper with all shares and passive adversaries that may
leak some bounded amount of information from each share. Constructing secret
sharing schemes that remain secure in the presence of such powerful adversaries
is a challenging task and, unsurprisingly, existing constructions are less efficient
than regular secret sharing schemes in one way or another. Understanding what
price one has to pay for such strong security guarantees is a foundational theoret-
ical question and of significant practical importance when real-world resources
are limited. While the efficiency of regular threshold secret sharing is well un-
derstood [BGK16], little is known about the price of additional security against
side-channel attacks.

In this work, we focus on leakage-resilient secret sharing and we measure
efficiency in terms of share size and the amount of randomness needed for secret
sharing a value. The share size is an important measure to optimize, since it
directly affects the efficiency of cryptographic primitives, like multiparty com-
putation protocols, that are built on top of secret sharing. The celebrated BGW
protocol [BGW88] for secure multiparty computation, for instance, exhibits a
one-to-one correspondence between share size of the underlying secret sharing
scheme and overall communication complexity of the protocol. That is, an in-
crease of the share size by a factor of 2 directly translates to an increase of
the overall communication complexity of the protocol by the same factor. The
amount of randomness that cryptographic primitives require is an important
measure to optimize for real-world applications. In research, it is often assumed
that randomness is simply there when needed it, yet in reality it turns out to
be a precious resource with limited availability. Generating good randomness is
difficult and cryptographic primitives that required more randomness than what
was available have led to devastating large-scale attacks [HDWH12].
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1.1 Our Contribution

We prove that for any leakage-resilient secret sharing scheme with information-
theoretic security either the amount of randomness across all shares or the share
size has to be large.

Theorem 1 (Informal). Let S be a t-out-of-n secret sharing scheme, let p be
the bit length of each share, and let ` be the number of bits leaked from each
share. If S is leakage-resilient against a computationally unbounded adversary
and t̂ shares uniquely define the remaining n− t̂ shares, then

p ≥ `(n− t)
t̂

For instance, for a O (1)-out-of-n secret sharing scheme with 1-bit leakage,
where O (1) shares uniquely define the remaining shares, the theorem tells us
that the share size has to be linear in the number of shares. On the other hand,
if we want the share size to be o(n), then the theorem tells us that virtually all
shares have to contain some independent, yet meaningful information1.

We prove our lower bound by presenting a conceptually simple generic adver-
sary, who breaks the leakage-resilience of any secret sharing scheme that violates
our bound. More concretely, the adversary is given leakage from each share and
its goal is to determine the secret value. The high-level idea behind our attack
is to apply one separate uniformly random leakage function to each share. By
correctness of a secret sharing scheme, we know that any two vectors of secret
shares corresponding to two different secrets will always differ in at least n−t+1
positions. If the output of each leakage function is ` bits long, then two different
shares produce the same leakage with probability 2−`. The smaller the threshold
t, the larger the number of differing shares. The main observation behind our
lower bound is that, with an increasing n, we quickly reach a point, where the
leakage excludes all but one of the secrets that could have produced the given
leakage.

We use our lower bound to gain further insights into an intriguing question
that was recently posed by Benhamouda et al. [BDIR18], who ask to what extent
existing regular secret sharing schemes already provide protection against leak-
age. Among other results, the authors show that Shamir’s secret sharing scheme
over a field F2k with small characteristic is not leakage-resilient. Specifically, the
authors present an attack, which obtains one bit of the secret shared value from
1-bit leakage from each share. On the positive side, the authors show that t-out-
of-n Shamir secret sharing over a prime order field Fq is 1-bit leakage-resilient if
t ≥ 0.85n. The authors leave it open to prove or disprove the leakage-resilience
of Shamir secret sharing over Fq for other parameter ranges and conjecture:

Conjecture 1 ([BDIR18]) Let 0 < c ≤ 1 be a constant and let q ≈ n be a
prime. For large enough n, it holds that cn-out-of-n Shamir secret sharing over
Fq is 1-bit leakage-resilient.

1 We will precise define what we mean by meaningful information in Section 3.1
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Fig. 1. Overview of our results on the leakage-resilience of Shamir’s secret sharing
over a prime order field Fq for an arbitrary number of parties n. The y-axis depicts the
leakage per share in bits, the x-axis shows the reconstruction threshold. The red area
indicates parameter ranges in which it is not leakage-resilient. The green area indicates
parameter ranges where it is. The white area indicates parameter ranges, where we do
not know anything. n is the number of parties, log q is the number of bits per share,
and 0 < c < 1 is an arbitrary, but fixed constant.

We do not disprove their conjecture, but show that it is basically the best
one could hope for. More concretely, we show that for a large enough n and
any constant 0 < c < 1 it holds that Shamir’s secret sharing scheme is not
leakage-resilient for t ≤ cn/ log n. Our results regarding the leakage-resilience of
Shamir’s secret sharing scheme are illustrated in Figure 1. Whereas the negative
results above crucially rely on a computationally unbounded adversary, we also
show that for the specific case of 2-out-of-n Shamir secret sharing there exists a
computationally efficient attack.

Given the lower bound for information-theoretically secure secret sharing
schemes, it may be natural to hope the same bound may apply to schemes that
only need to be sure against a computationally bounded adversary. We show that
this is not the case by presenting a leakage-resilient secret sharing scheme in the
random oracle model that has a share size of p = O (n+ λ+ `) and is secure
against any computationally bounded adversary that runs in time poly(λ). By
setting, for instance, ` > n one can see that such a scheme violates our lower
bound from above for sufficiently large n.

2 Preliminaries

For random variables V and W we use V ≈ε W to denote that the distributions
of V and W are at most ε apart in L1 distance.
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Our definition of threshold secret sharing follows the definition of Beimel [Bei11].
We additionally define a full reconstruction threshold t̂, which defines how many
shares are needed to reconstruct all shares of a particular secret sharing. In other
words, the full reconstruction threshold t̂ can also be seen as an upper bound
on the total entropy among all shares of a secret sharing. In our definition and
the remainder of the paper we assume perfectly correct secret sharing schemes.
This is done for the sake of simplicity and all proofs easily extend to the case,
where the reconstruction may fail with some probability.

Definition 1 (Threshold Secret Sharing Scheme). Let Share : {0, 1}k →
({0, 1}p)n be an efficient randomized algorithm mapping k bit secrets into n
shares each of length p. Let Rec : ({0, 1}p)n → {0, 1}k be a deterministic algo-
rithm that maps a collection of t shares back to a secret. The notion generalises
in a straight forward manner to schemes Share : {0, 1}k →

∏n
i=1{0, 1}pi , where

the shares possibly have different length. The pair (Share,Rec) is called a t-
out-of-n secret sharing if:

1. Perfect Correctness: Any t-out-of-n shares can be used to reconstruct the
secret correctly. For any x ∈ {0, 1}k, for any set T ⊆ [n] with |T | ≥ t,

Pr[Rec(Share(x)T ) = x] = 1

where the probability is taken over the randomness of the sharing function
and Share(x)T denotes the restriction of the n shares produced by Share(x)
to the ones identified by the set T .

2. Perfect Privacy: Less than t shares reveal no information about the un-
derlying secret. More formally, for any two x, y ∈ {0, 1}k, any set T ⊆ [n]
with |T | < t, Share(x)T is identically distributed to Share(y)T .

3. Full Reconstruction: A secret sharing scheme has t̂-full-reconstruction if
Share(x) can be computed from any subset Share(x)T with |T | ≥ t̂.

The notion of Full Reconstruction is non-standard, but essential to our study.
Leakage-resilient secret sharing schemes like [SV18] with very high leakage re-
silience all seem to use some notion of non-trivial correlated randomness which
makes the full reconstruction threshold larger than the reconstruction threshold.
To some extend our results will explain why this is the case. If you have a scheme
with low full reconstruction threshold you get poor leakage resilience. So if you
have a scheme with a low reconstruction threshold and good leakage resilience,
then the full reconstruction threshold must be larger than the reconstruction
threshold.

To model leakage-resilient secret sharing, we use the local leakage model
as defined by Goyal and Kumar [GK18a] and Benhamouda et al. [BDIR18].
Intuitively, it allows the adversary to compute arbitrary independent leakage
functions on all shares, which are only restricted in the size of their leakage
output. For the sake of exposition, we split the definition in weak and regular
local leakage-resilience. In weak local leakage-resilience the adversary is only
given the output of the leakage functions. In regular local leakage-resilience, it is
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additionally given θ full shares. As such weak local leakage-resilience is a special
case of regular local leakage-resilience for θ = 0.

Definition 2 (Leakage Function). We call Leak = (Leak1, . . . ,Leakn)
an `-leakage function for (Share,Rec) if Share : {0, 1}k →

∏n
i=1{0, 1}pi

and Leaki : {0, 1}pi → {0, 1}`. For (sh1, . . . , shn) ← Share(s) we define
(b1, . . . , bn) = Leak(sh1, . . . , shn) by bi = Leaki(shi).

Definition 3 (Weak Local Leakage-Resilience). A secret sharing scheme
(Share,Rec) is said to be (ε, `)-weakly-local-leakage-resilient (W-IND-LLR) if
for every `-leakage function vector Leak and every pair of secrets x, y ∈ {0, 1}k
it holds that

Leak(Share(x)) ≈ε Leak(Share(y)).

We also define leakage-resilience against a class of adversaries. Let B be a possi-
bly randomized interactive algorithm. First the adversary outputs a pair of secrets
(x0, x1) and a leakage function Leak. Then the game flips a uniformly random
challenge bit c and inputs Leak(Share(xc)) to B. Then run B to get a guess
g ∈ {0, 1}. Let AdvB = 2|Pr[g = c] − 1/2|. We say that (Share,Rec) is (ε, `)-
weakly-local-leakage-resilient for a class B of adversaries if for all B ∈ B it holds
that

AdvB ≤ ε .

Definition 4 (Local Leakage-Resilience). A secret sharing scheme (Share,
Rec) is said to be (ε, `, θ)-local-leakage-resilient (IND-LLR) if for every `-leakage
function vector Leak, for any set T ⊆ [n] with |T | < θ, and every pair of secrets
x, y ∈ {0, 1}k it holds that

(Share(x)T ,Leak(Share(x))) ≈ε (Share(y)T ,Leak(Share(y))) .

We also add a one-way notion, which we will use for proving our lower bound.
We will make the notion as weak as possible while still being meaningful, which
makes our lower bound as strong as possible.

Definition 5 (Weak One-Way Local Leakage-Resilience). We define what
it means for a secret sharing scheme (Share,Rec) to be `-weakly one-way local-
leakage-resilient (WOW-LLR). Let A be a possibly randomized interactive algo-
rithm. Let x ∈ {0, 1}k be a secret. The game WOWA(x) proceeds as follows.
First the adversary outputs a leakage function Leak. Then the game samples
(sh1, . . . , shn)← Share(x) and we input Leak(Share(x)) to A, who outputs a
guess y ∈ {0, 1}k ∪{⊥}. The output of WOWA(x) is 1 if and only if y = x. We
call A admissible if it always holds for all x that y = x or y = ⊥. We require
that for all admissible A there exist x for which Pr[WOWA(x) = 1] < 1/2.

Note that one-wayness is a very weak security notion, it only requires that all
of the secret cannot be learned. Requiring that the adversary must only make
guesses it knows are correct further weakens the notion, as it limits the set of
adversaries, which in turn makes it easier to be WOW-LLR. We also weaken
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the notion by requiring only that Pr[WOWA(x) = 1] < 1/2, as opposed to
requiring that Pr[WOWA(x) = 1] is negligible. And finally we only require
that (Share,Rec) hides one x from the adversary, meaning that it might in
principle be possible for A to recover almost all x with certainty. It seems hard
to meaningfully further weaken the notion. Not surprisingly, W-IND-LLR implies
WOW-LLR, but for completeness we prove a technical lemma to this effect.

Lemma 1. Let (Share,Rec) be a secret sharing scheme. If (Share,Rec) is
(1/2, `)-W-IND-LLR then (Share,Rec) is `-WOW-LLR.

Proof. Assume that (Share,Rec) is not WOW-LLR. This means that there
exists an admissible A such that

Pr[WOWA(x) = 1] > 1/2

for all x. Now let B be W-IND-LLR adversary which first runs as follows. First
pick x0 and x1 to be any distinct secrets. Run A to get a leakage function Leak.
Output (x0, x1) and Leak. Get back

(b1, . . . , bn) = Leak(Share(xc)) .

Input (b1, . . . , bn) to A and get back a guess y. If y = ⊥, then output a uniform
random guess g. Otherwise, since A is admissible we know that y = xc for c = 0
or c = 1. In that case, output g = c. We know that the probability that A guesses
xc is larger than 1/2. So, clearly

AdvB = 2|Pr[g = c]− 1/2|
≥ 2(1 · Pr[y 6= ⊥] + 1/2 · Pr[y = ⊥]− 1/2)

> 2(1 · 1/2 + 1/2 · 1/2− 1/2)

= 1/2.

This implies that (Share,Rec) is not (1/2, `)-W-IND-LLR.

2.1 Shamir’s Secret Sharing

In t-out-of-n Shamir secret sharing [Sha79] the secrets and the shares come from
a field Fq, where q is usually chosen to be the smallest prime larger than n. Let
α1, . . . , αn ∈ Fq be distinct non-zero elements known to all parties. To share a
secret s ∈ Fq, the dealer picks a uniformly random polynomial P of degree t− 1
with p(0) = s. The share of party i is shi = P (αi).

To reconstruct the secret, a sufficiently large subset of parties interpolates
the polynomial P from their shares and evaluates the interpolated polynomial
at position 0. Correctness follows from the fact that, in a field, any t points
uniquely define a polynomial of degree t− 1. Privacy follows from the fact that
for any t− 1 points any secret s is still possible and all secrets are equally likely.
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3 Lower Bound

In this section we prove our main result.

Theorem 2. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme with
t̂-full-reconstruction. If S is `-WOW-LLR and ` ≥ 1, then

p ≥ `(n− t)
t̂

.

Proof. We prove the theorem by exhibiting an explicit admissible adversary that
breaks `-WOW-LLR of any secret sharing scheme with a share size p < `(n−t)/t̂.
We provide an inefficient, randomized algorithm A that exactly recovers the
secret shared value from the given leakage with probability at least 1/2. Note
that throughout the paper we give attacks succeeding with constant probability.
It with be enough to present attacks succeeding with non-negligible probability.
However, this does not seem to allow to strengthen our lower bounds.

The algorithmA proceeds as follows. Pick a random Leak = (Leak1, . . . ,Leakn)
where each Leaki : {0, 1}p → {0, 1}` is an independent, uniformly random func-
tion mapping p-bit strings to `-bit strings. Submit it to the leakage game and
get back

(b1, . . . , bn) = (Leak1(sh1), . . . ,Leakn(shn)) ,

where
(sh1, . . . , shn)← Share(s; r)

is a secret sharing of the secret s that the algorithm should try to recover. Now
iterate over all secrets s′ and randomizers r′ and compute

(sh′1, . . . , sh
′
n)← Share(s′; r′) .

Let
S = {s′ | ∃r : (b1, . . . , bn) = (Leak1(sh′1), . . . ,Leakn(sh′n))} .

This is the set of secrets s′ which are consistent with the leakage (b1, . . . , bm). If
|S| > 1, then output ⊥. Otherwise, let {s} = S and output s. Let succ be the
event that the output is not ⊥.

It is trivial to see that s ∈ S. Hence if |S| = 1, then indeed S = {s}. So when
A does not output ⊥, it outputs the correct secret s. Hence A is admissible.

We now prove that Pr[succ] ≥ 1/2. Let (sh1, . . . , shn)← Share(s; r) be the se-
cret sharing of the secret that A is trying to guess and denote by bi ← Leaki(shi)
the leakage from the i-th share. Let (sh′1, . . . , sh

′
n)← Share(s′; r′) be the secret

sharing of some arbitrary but fixed secret s′ with s 6= s′ and let b′i ← Leaki(sh
′
i)

be the corresponding leakage. By correctness of the secret sharing scheme, it is
guaranteed that there exists a set I ⊆ [n] with |I| ≥ n− t+1 such that shi 6= sh′i
for all i ∈ I. So it clearly holds that

Pr
Leak

[(b1, . . . , bn) = (b′1, . . . , b
′
n)] ≤ 2−`(n−t+1),
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where the randomness is taken over a random Leak.
Since each share is p bits long and since t̂ shares uniquely define any particular

secret sharing, it follows that there exists at most a total of 2pt̂ possible secret
sharings.

Let coll be the event that there exists any (s′, r′) with s′ 6= s such that
(b1, . . . , bn) = (Leak1(sh′1), . . . ,Leakn(sh′n)) when (sh′1, . . . , sh

′
n)← Share(s′; r′).

By a union bound we get that

Pr[coll] ≤ 2pt̂−`(n−t+1)

Pr[¬coll] ≥ 1− 2pt̂−`(n−t+1) .

Observe that the event succ = ¬coll. If all secret sharings of all values s′ 6= s
are inconsistent with the given leakage, then we can conclude that the secret
shared value is s. For the probability of ¬coll to be larger than 1/2, it suffices
that

1− 2pt̂−`(n−t+1) > 1/2

2pt̂−`(n−t+1) < 1/2

pt̂− `(n− t+ 1) < −1

`(n− t+ 1)− 1 > pt̂

`(n− t+ 1)− 1

t̂
> p

To prevent the attack described above, we therefore need that

`(n− t+ 1)− 1

t̂
≤ p

has to hold. Finally, we observe that when ` ≥ 1, then `(n− t+1)−1 ≥ `(n− t).
�

As an immediate corollary of the theorem it follows that any secret sharing
scheme, which only requires a constant number of shares for full reconstruction,
has to have a share size that is linear in the number of shares if it wants to be
leakage-resilient.

Corollary 1. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme with
t̂-full-reconstruction, where t and t̂ are constants. If S is (1/2, 1)-W-IND-LLR,
then its share size p is in Ω(n).

When given some complete shares in addition to the leakage, then we obtain
the following bound:

Theorem 3. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme with
t̂-full-reconstruction. If S is (1/2, `, θ)-IND-LLR, and ` ≥ 1, then

p ≥ `(n− t)
t̂− θ

.
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Proof. The proof here is almost identical to the proof of Theorem 2. In addition
to the leakage, we are now given θ complete shares. As before, let (b1, . . . , bn)
and (b′1, . . . , b

′
n) be the leakage of some arbitrary, but fixed secret sharings a =

Share(s; r) and a′ = Share(s′; r′) with s 6= s′. Let T ⊆ [n] with |T | < θ be the
subset of indices of shares that we get to see in addition to the leakage. We have
already established that

Pr[(b1, . . . , bn) = (b′1, . . . , b
′
n)] ≤ 2−`(n−t+1),

which implies

Pr[(b1, . . . , bn, aT ) = (b′1, . . . , b
′
n, a
′
T )] ≤ 2−`(n−t+1).

Let us now consider the event coll that, for an arbitrary but fixed (s, r),
there exists any (s′, r′) with s′ 6= s such that (b1, . . . , bn, aT ) = (b′1, . . . , b

′
n, a
′
T ).

There are at most 2pt̂ possible secret sharings and at most 2p(t̂−θ) possible secret
sharings that match the shares aT at the indices T . By a union bound we have

Pr[¬coll] ≥ 1− 2p(t̂−θ)−`(n−t+1).

For the probability of ¬coll to be larger than 1/2 it thus suffices that

`(n− t+ 1)− 1

t̂− θ
> p.

To prevent the attack described above it must therefore hold that

`(n− t+ 1)− 1

t̂− θ
≤ p,

which for ` ≥ 1 is true if

`(n− t)
t̂− θ

≤ p.

�

3.1 A Lower Bound via Randomness Complexity

In this section we prove a lower bound via randomness complexity. To motivate
it, consider the bound in Theorem 2 for the case t = o(n). In this case we have
that

p ≥ `n

t̂
.
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So, if we consider the relative leakage, then we have that

`

p
≤ t̂

n
.

This means that to have a constant leakage rate2, one still needs t̂ ∈ Ω(n). That
is, after having enough shares to reconstruct, there still needs to be randomness
left in many of the other remaining shares. This explains existing constructions
of leakage-resilient secret sharing schemes, where shares contain a lot more ran-
domness than what is actually needed to get privacy against t− 1 parties.

However, the above theorem does not give a quantitative enough handle on
this phenomenon. One could trivially get t̂ = n by adding an unused uniformly
random bit to each share. But intuitively, this should not help against leakage-
resilience. These bits are trivial in the sense that they could just be deleted.
Neither should it help if we added a little bit of non-trivial randomness to the
shares, as it could just be leaked. Below we prove a theorem which gets a better
quantative handle of how much randomness there must be in the shares.

The following definition will be helpful in removing trivial randomness from
consideration.

Definition 6. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme
where share number i has length pi. We call comp = (comp1, . . . , compn) a
compression of S if it holds for i = 1, . . . , n that compi : {0, 1}pi → {0, 1}qi and
qi ≤ pi. Define Sharecomp by

(sh′1, . . . , sh
′
n) = Sharecomp(s; r)

where
(sh1, . . . , shn) = Share(s; r)

and
(sh′1, . . . , sh

′
n) = (comp1(sh1), . . . , compn(shn)) .

We call a compression a correct compression of S if for some Rec′ it holds that
Scomp = (Sharecomp,Rec′) is again a t-out-of-n secret sharing scheme.

We now introduce a crude measure of the randomness complexity.

Definition 7. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme. Let

sizeS = |{Share(s; r)|s ∈ {0, 1}k, r ∈ {0, 1}∗}| .

Let
ranS = log min

comp
sizeScomp ,

where the minimum is taken over all correct compressions of S. We call a correct
compression comp for S for which it holds that log2 sizeScomp = ranS a max-
compression of comp.

2 The leakage rate is defined as the ratio between the number of bits leaked per share
and the share size in bits.
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Notice that the above measure is via max-entropy. This is a very crude notion
of randomness, but for illustrating the phenomenon that a lot of randomness is
left in each share, it works well and allows for a significantly simpler proof.

Notice that if you secret share a random secret s using a random r, then you
will hit all possible secret sharings with non-zero probability. So, the length of
the random s and r must be at least ranS. So, if we can lower bound ranS,
we also lower bounded the amount of randomness needed to sample a secret
sharing.

To connect the randomness complexity to the above theorems, notice that if
a secret sharing scheme S has share size p, then ranS ≤ t̂p.

Theorem 4. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme with
t̂-full-reconstruction. If S is (1/2, `)-weakly-leakage-resilient and ` ≥ 1, then

ranS ≥ `(n− t) .

Proof. We prove the theorem by showing a generic attack that breaks `-WOW-
LLR of any secret sharing scheme with ranS < `(n − t). The adversary A
proceeds as follows.

1. Let comp = (comp1, . . . , compn) be a max-compression for S = (Share,Rec),
where compi : {0, 1}pi → {0, 1}qi .

2. For i = 1, . . . , n, pick a uniformly random Leaki : {0, 1}qi → {0, 1}`.
3. For i = 1, . . . , n, let Leak′i = Leaki ◦ compi.
4. Submit Leak′ = (Leak′1, . . . ,Leak

′
n) to the WOW-LLR.

5. Get back (b1, . . . , bn) = (Leak1(comp1(sh1)), . . . ,Leakn(compn(shn))) where
(sh1, . . . , shn) ← Share(s; r) is a secret sharing of the secret s that the al-
gorithm should try to recover.

6. Call s′ ∈ {0, 1}k consistent with (b1, . . . , bn) if there exists r′ such that

(b1, . . . , bn) = (Leak1(sh′1), . . . ,Leakn(sh′n))

when
(sh′1, . . . , sh

′
n)← Sharecomp(s′; r′) .

Compute

S = {s′ ∈ {0, 1}k | s′ is consistent with (b1, . . . , bn)} .

7. If |S| > 1, then output ⊥. Otherwise, let {s} = S and output s.

Let succ be the event that the output is not ⊥. It is trivial to see that s ∈ S.
Hence if |S| = 1, then indeed S = {s}. So when A does not output ⊥, it outputs
the correct secret s and wins the WOW-LLR. We conclude the theorem by
proving that Pr[succ] ≥ 1/2.

Let (sh1, . . . , shn) ← Share(s; r) be the secret sharing of the secret that A
is trying to guess and denote by

bi ← Leaki(compi(shi))

12



the leakage from the i-th share. Let

(sh′1, . . . , sh
′
n)← Sharecomp(s′; r′)

be the secret sharing of some arbitrary but fixed secret s′ with s 6= s′ and let
b′i ← Leaki(sh

′
i) be the corresponding leakage. By correctness of comp we have

that (Sharecomp,Rec) is correct. This guarantees that there exists a set I ⊆ [n]
with |I| ≥ n− t+ 1 such that shi 6= sh′i for all i ∈ I. So it clearly holds that

Pr
Leak

[(b1, . . . , bn) = (b′1, . . . , b
′
n)] ≤ 2−`(n−t+1),

where the randomness is taken over a the random (Leak1, . . . ,Leakn).
Let coll be the event that there exists any (s′, r′) with s′ 6= s such that

(b1, . . . , bn) = (Leak1(sh′1), . . . ,Leakn(sh′n)) when (sh′1, . . . , sh
′
n)← Sharecomp(s′; r′).

Observe that succ = ¬coll. By definition there are at most 2ranS possible secret
sharings. So, by a union bound we get that

Pr[coll] ≤ 2ranS−`(n−t+1)

Pr[¬coll] ≥ 1− 2ranS−`(n−t+1)

1− 2ranS−`(n−t+1) > 1/2

2ranS−`(n−t+1) < 1/2

ranS − `(n− t+ 1) < −1

`(n− t+ 1)− 1 > ranS

To prevent the attack described above, we therefore need that

ranS ≥ `(n− t+ 1)− 1 = `(n− t) + `− 1 ≥ `(n− t) ,

where we used that ` ≥ 1.

�

To illustrate the theorem, consider a secret sharing scheme with constant
threshold t, share size p, which tolerates leakage ` = (1 − o(1))p. The theorem
tells us that it must be the case that

ranS ≥ p(n− 2) ≈ pn .

So on average there are p bits of randomness in each share. In particular, after
learning the constant number of shares needed to reconstruct, there is still about
p bits of randomness left in each share that was not used for reconstructing. This
quantifies that almost all randomness goes into achieving leakage-resilient and
not into privacy of the secret sharing.

As another example, consider a secret sharing scheme with t < cn for a
constant c < 1/2 and ` = dp for a constant d. We get that

ranS ≥ `(1− c)n .

13



We have that
n− t = (1− c)n

and thus
`(n− t) = dp(1− c)n .

So after learning t shares of length p the average number of bits of randomness
left per share is at least

dp(1− c)n− tp
n− t

=
dp(1− c)n− cnp

(1− c)n
= p

d(1− c)− c
(1− c)

= p

(
d− c

(1− c)

)
.

So if
d >

c

(1− c)
there is still randomness left in the shares.

4 Leakage-Resilience of Shamir’s Secret Sharing

Benhamouda et al. [BDIR18] investigate the local leakage-resilience of Shamir’s
secret sharing. Among other results, the authors show that Shamir’s scheme
is not leakage-resilient if either the number of parties is constant or the secret
sharing is done over a field with small characteristic. Using Fourier analytic
techniques and additive combinatorics they show that t-out-of-n Shamir secret
sharing is (negl(n), blog q/4c)-W-IND-LLR in prime order fields Fq, whenever t =
n − O (log n). In the recently published full version of the same paper3, the
authors further show that it is 1-bit leakage-resilient for t ≈ 0.85n. They leave
it open to find other parameter ranges in which local leakage-resilience does
or does not hold and postulate Conjecture 1, which was already stated in the
introduction.

Our lower bound does not disprove Benhamouda et al.’s conjecture, but it
does tell us how large n and thus the shares would have to be if the conjecture
is indeed true. By plugging in the concrete parameters from the conjecture into
Theorem 2, we get that

n− t
t
≤ p ⇔ n− cn

cn
≤ p ⇔ 1− c

c
≤ p ⇔ 1

c
− 1 ≤ p

has to hold for the conjecture to be true. Since p = log q = log n it follows
that the share size has to be in Ω(1/c) and thus n ∈ Ω(2

1
c ).

Furthermore, using Theorem 2, we can show that Shamir’s secret sharing is
not local leakage-resilient for a large range of parameters. Concretely, we show
that two natural strengthenings of Benhamouda et al.’s conjecture are not true.
In Lemma 2 we consider a mildly smaller reconstruction threshold of cn/logn. In
Lemma 3 we consider a larger leakage. See Figure 1 in the introduction for an
overview of these results. A possible interpretation of these results is that the
original conjecture of Benhamouda et al. is essentially the best one can hope for.

3 https://eprint.iacr.org/2019/653
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Lemma 2. Let q be the smallest prime larger than n. Then for any constant
0 < c < 1 and large enough n it holds that (cn/logn)-out-of-n Shamir secret
sharing over Fq is not (1/2, 1)-W-IND-LLR.

Proof. Via Theorem 2, we know that the adversary successfully breaks leakage-
resilience, whenever

p <
n− t
t

=
n

t
− 1

Combining this inequality with the parameters from the stated theorem, we get
that

p <
log n

c
− 1

has to hold, which is true for any 0 < c < 1 for large enough n, since p = log n.

�

Lemma 3. Let q be the smallest prime larger than n. For any constant 0 < c <
1/2 and any n, there exists a constant 0 < d < 1, such that cn-out-of-n Shamir
secret sharing over Fq is not (1/2, d log n)-W-IND-LLR.

Proof. For the attack from Theorem 2 to work we need that

`(n− cn)

cn
> p ⇔ `(1− c)

c
> p ⇔ ` >

c

1− c
p

Since p = log n, and (1 − c) > c, it follows that the inequality holds for any
` ≥ log n with any d < c/1−c .

�

Lemma 3 provides an interesting insight into the relationship between the
number of bits sufficient for reconstruction and the number of leaked bits suffi-
cient for breaking local leakage-resilience. In general, cn-out-of-n Shamir secret
sharing requires cn full shares and thus cn log n bits in total for reconstructing
the secret4. Reconstruction can be seen as a form of structured leakage, where cn
full shares are leaked. Lemma 3 shows that (inefficient) reconstruction is possible
from unstructured leakage when the leakage is a small constant fraction larger
than what is needed for reconstruction anyways, e.g. if c = 1/5, then we need
n/5 log n bits for regular reconstruction and n/4 log n bits for reconstruction from
the leakage.

4.1 An Efficient Attack for 2-out-of-n Shamir Secret Sharing

All the results described above only apply to secret sharing schemes with information-
theoretic security, since the proof of Theorem 2 relies on an adversary that can

4 Over certain fields reconstruction can be performed with significantly fewer bits,
but this approach does not work over general fields. See for example Guruswami and
Wootters [GW16].
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Fig. 2. Illustration of our efficient attack on 2-out-of-n Shamir secret sharing. The
secret shared value is s1 and the solid line represents the linear function that was
used during the secret sharing. The dashed lines depict the linear functions that are
interpolated from the shares under the assumption that the secret shared value is s0.
Two distinct incorrect points at x = α1 are extrapolated.

enumerate all possible secret sharings and thus runs in time at least exponential
in the share size p. In the following, we show that for the specific case of 2-out-
of-n Shamir secret sharing, we can break weak local leakage-resilience using only
a single bit of leakage per share in a highly efficient manner. Our attack only
requires O(n) field operations and does not depend on any particular properties
of the underlying field.

Theorem 5. For any δ < 1 − 2−n, 2-out-of-n Shamir secret sharing over an
arbitrary field Fq is not (δ, 1)-W-IND-LLR. More concretely, there exists a dis-
tinguisher B that performs O(n) field operations and breaks weak local leakage-
resilience with a success probability of 1− 2−n−1.

Proof. Let s0 and s1 be two arbitrary distinct secrets that are output by the
adversary. Let f1 be a uniformly random leakage function. For 2 ≤ i ≤ n, we
hardcode s0, public values (α1, αi), and f1 into the leakage function fi. On input
shi, the function fi interpolates a linear function Pi between the points (0, s0) and
(αi, shi). It outputs f1(Pi(α1)). The adversary receives the leaked bits b1, . . . , bn
and has to decide whether s0 or s1 was secret shared. If b1 = b2 = · · · = bn, then
the adversary outputs guess g = 0. Otherwise it outputs g = 1.

Let us consider two cases. If s0 was secret shared, then (0, s0) lies on a line
with all shares and thus, for 2 ≤ i ≤ n, each fi interpolates the P that was
initially used to compute the shares. Therefore, it holds that each Pi(α1) = sh1
and it follows that all leakage functions output the same bit f1(sh1). If s1 was
secret shared, then (s1, 0) does not lie on a line with the shares. It follows that, for
each 2 ≤ i ≤ n, fi interpolates a distinct line Pi. All these lines intersect in (s1, 0)
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and therefore if follows that all (Pi(α1), α1) are distinct. Since f1 is a uniformly
random function, we can conclude that the probability that b1 = b2 = · · · = bn
is 2−n. A visual illustration of the reasoning above is depicted in Figure 2. Let
sc be the secret shared value. Based on the above observations we get

AdvB = 2|Pr[g = c]− 1/2|
= 2(1 · 1/2 + 1/2 · (1− 2−n)− 1/2)

= 1− 2−n.

�

Assuming a stronger definition of leakage-resilience and thus a stronger ad-
versary, we can extent the attack described above to larger thresholds. The
basic idea behind the attack is that each leakage function can interpolate a lin-
ear function using a hardcoded candidate secret and the given share. Assuming
our adversary can first see t − 2 shares and then adaptively select the leakage-
functions, then the same attack goes through in a straightforward manner for
t-out-of-n Shamir secret sharing, because the adversary can hardcode t−2 shares
in addition to some candidate secret and let each leakage function interpolate a
degree t polynomial.

Corollary 2. For any δ < 1 − 2−n, t-out-of-n Shamir secret sharing over an
arbitrary field Fq is not (δ, 1)-W-IND-LLR against an distinguisher that sees
t − 2 shares before choosing the leakage functions. In particular, there exists a
distinguisher that performs O(n) field operations and breaks weak local leakage-
resilience with a success probability of 1− 2−n−1.

5 Computational Leakage-Resilient Secret Sharing

A natural question is whether our lower bound from Section 3 also applies to
computationally secure secret sharing schemes. In this section we answer this
question in the negative by presenting a leakage-resilient secret sharing scheme,
which violates our lower bound, in the random oracle model that is secure against
computationally bounded adversaries.5 More concretely we show:

Theorem 6. Let λ be a security parameter. In the random oracle model there ex-
ists a (negl(λ) , `)-W-IND-LLR 2-out-of-n secret sharing scheme S = (Share,Rec)

5 Note that our lower bound easily extends to information-theoretically secure secret
sharing schemes in the random oracle model. And unbounded distinguisher can learn
the entire RO, so the RO does not help more than an exponentially long, uniformly
random, common reference string (CRS). Our lower bound clearly generalises to the
case with a CRS, as it goes via counting the expected number of secret sharings
consistent with a given leakage. This counting argument is not affect by a public
CRS.
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for 1-bit secrets with share size p = O(`+ λ+ n) and full reconstruction thresh-
old t̂ = 2 that is secure against computationally bounded adversaries that run in
time poly(λ).

Remark 1. Note that, for instance for ` > n for sufficiently large n, such a secret
sharing scheme violates the bound for information-theoretically secure schemes.
For ` > n and n > λ the share size is p = O(`+ λ+ n) = O(`). And we have
that the secret sharing scheme tolerates `-bits of leakage from each share. When
t̂ = 2 and information theoretic (negl(λ) , `)-W-IND-LLR 2-out-of-n would need

to have share size p ≥ `(n−t)
t̂

= Θ(n`). So the computational version beats the
information theoretic one by a factor n in share size.

Proof. For the sake of simplicity, assume we have access to the following multiple
random oracles:

Hs :{0, 1}λ → {0, 1}2(λ+1)

HL :{0, 1}λ+dlogne → {0, 1}λ+`

HR :{0, 1}λ+dlogne → {0, 1}λ

He :{0, 1}λ → {0, 1}λ+`

We construct the secret sharing scheme for 1-bit secrets m ∈ {0, 1} from the
theorem statement as follows.

Share(m;s):

1. Pick a seed s← {0, 1}λ uniformly at random.
2. Compute s1‖s2 = Hs(s).
3. Define linear function g over Z2(λ+1) through g(1) = s1 and g(2) = s2
4. Extrapolate si = g(i) for i = 0, . . . , n.
5. Compute c = (s‖m)⊕ s0.
6. Compute Li = HL(s‖i) and Ri = HR(s‖i) for i = 1, . . . , n.
7. Compute R′i = He(Ri) for i = 1, . . . , n.
8. Compute ei,j = si ⊕ 〈Li, R′j〉 for i, j = 1, . . . , n with i 6= j.
9. Pi’s share shi is defined as (Li, Ri, {ei,j}j=1,...,n, c)

Reconstruction works as follows.

Rec(shi, shj):

1. Compute si = ei,j ⊕ 〈Li, He(Rj)〉 and sj = ej,i ⊕ 〈Lj , He(Ri)〉.
2. Interpolate g from si and sj and compute s0 = g(0).
3. Compute (s‖m) = c⊕ s0 and return m.

It is easy to see that the proposed scheme is correct.
Note that besides learning m in reconstruction we also learn the seed s. From

s we can recompute Share(m; s). The full reconstruction threshold t̂ is 2, since
given access to the random oracles, m, and s, any two parties can compute all
Li, Ri, ei,j , and thus all shares shi.
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Since each party Pi holds exactly one Li, one Ri, and n−1 bits ei,j , it follows
that the share size p is (`+ λ) + λ+ (n− 1) = O(`+ λ+ n).

It is straight forward to see that Share is a secret sharing scheme with
threshold 2. Assume we are given one share (Li, Ri, {ei,j}j=1,...,n, c). We have to
argue that the share leaks no information on m. There are two cases, the query
case and the no-query case. In the query case, at some point a query of one of
the following forms were made HR(s‖·), HL(s‖·), or Hs(a). The non-query case
is the complement.

If we are in the no-query case, then because we are in the random oracle
model we can replace the secret sharing procedure with this one:

Share2(m):

1. Pick a seed s← {0, 1}λ uniformly at random.
2. Sample uniformly random s1, s2 ∈ {0, 1}2(λ+1).
3. Define linear function g over Z2(λ+1) through g(1) = s1 and g(2) = s2
4. Extrapolate si = g(i) for i = 0, . . . , n.
5. Compute c = (s‖m)⊕ s0.
6. Sample uniformly random Li ∈ {0, 1}λ+` and Ri ∈ {0, 1}λ for i = 1, . . . , n.
7. Compute R′i = He(Ri) for i = 1, . . . , n.
8. Compute ei,j = si ⊕ 〈Li, R′j〉 for i, j = 1, . . . , n with i 6= j.
9. Pi’s share shi is defined as (Li, Ri, {ei,j}j=1,...,n, c)

It is straight forward to see that for all j 6= i we can replace He(Rj) by a
uniformly random string, as there is not enough information in shi to learn Rj
and query He on this point. Namely, even if the adversary is given si, the values
〈Li, R′j〉 leaks at most one bit on Rj . This gives this hybrid:

Share3(m):

1. Pick a seed s← {0, 1}λ uniformly at random.
2. Sample uniformly random s1, s2 ∈ {0, 1}2(λ+1).
3. Define linear function g over Z2(λ+1) through g(1) = s1 and g(2) = s2
4. Extrapolate si = g(i) for i = 0, . . . , n.
5. Compute c = (s‖m)⊕ s0.
6. Sample uniformly random Li ∈ {0, 1}λ+` and Ri ∈ {0, 1}λ for i and let
R′i = He(Ri).

7. Sample uniformly random Lj ∈ {0, 1}λ+` and R′j ∈ {0, 1}λ+` for j 6= i.
8. Compute ei,j = si ⊕ 〈Li, R′j〉 for i, j = 1, . . . , n with i 6= j.
9. Pi’s share shi is defined as (Li, Ri, {ei,j}j=1,...,n, c)

Now given shi without {ei,j}j=1,...,n all the values 〈Li, R′j〉 are statistically
close to uniformly random and independent. Hence we can jump to this hybrid:

Share4(m):

1. Pick a seed s← {0, 1}λ uniformly at random.
2. Sample uniformly random s1, s2 ∈ {0, 1}2(λ+1).
3. Define linear function g over Z2(λ+1) through g(1) = s1 and g(2) = s2
4. Extrapolate si = g(i) for i = 0, . . . , n.
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5. Compute c = (s‖m)⊕ s0.

6. Sample uniformly random Li ∈ {0, 1}λ+` and Ri ∈ {0, 1}λ for i and let
R′i = He(Ri).

7. Sample uniformly random Lj ∈ {0, 1}λ+` and R′j ∈ {0, 1}λ+` for j 6= i.

8. Sample uniformly random bits ei,j for i, j = 1, . . . , n with i 6= j.

9. Pi’s share shi is defined as (Li, Ri, {ei,j}j=1,...,n, c)

Now shi has no information on s1 and s2 and hence s0 is uniformly random given
shi. Therefore we can replace c = (s‖m) ⊕ s0 by a uniformly random value. At
this point shi contains no information on m or s.

This sequence of indistinguishable hubrids shows that when we are in the
no-query case, then shi is statistically close to independent from s and m, as
desired. Note in particular that during an execution it holds until the point in
time where we go into the query-case (because an oracle was queried on s for the
first time) that shi is statistically close to independent of s. This means that to
query an oracle on s the adversary has to guess close to λ bits of min-entropy on
s. This happens with probability at most 2−λ. Therefore the query case happens
with negligible probability. This concludes the proofs that Share is a secret
sharing scheme with t = 2.

We then argue that the secret sharing scheme is leakage resilient against ` bits
of leakage from each share. Here it is important that we are on the non-adaptive
leakage case, where all leakage functions are picked before any leakage is seen.
This ensures that when Leaki((Li, Ri, {ei,j}j=1,...,n, c) is computed the leakage
function has no information on s by the argument above that we are dealing with
a secret sharing scheme with threshold t = 2. Hence by the sequence of hybrids
above we see that R′j is uniformly random in the view of Leaki as it did not
query He(Rj) except with negligible probability in polynomial time. Now notice
that Leaki((Li, Ri, {ei,j}j=1,...,n, c) will leave λ bits of min-entropy in Ri, as Ri
has length `+ λ and the leakage is at most ` bits.

In guessing the values 〈Li, He(Rj)〉 the adversary is therefore playing the
following game.

Game1: Pick Li ∈ {0, 1}`+λ uniformly at random. Ask for ` bits of leakage on
Li. Then be given Rj and try to guess 〈Li, He(Rj)〉.

An adversary winning this game, can be modified to win the following game
by programming that random oracle at Rj .

Game2: Pick Li ∈ {0, 1}`+λ uniformly at random. Ask for ` bits of leakage on
Li. Then be given uniformly random R′j ∈ {0, 1}`+λ and try to guess 〈Li, R′j〉.

By the hard-core bit theorem, an adversary winning this game with non-
negligible probability can guess Li with non-negligible probability, a contradic-
tion.

At this point the argument follows the one for secret sharing. We can first
replace {ei,j}j=1,...,n by uniformly random values and then replace c by a uni-
formly random value. At this point there is no more information on m in the
secret sharing.
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