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Abstract. The cryptographic task of secure multi-party (classical) com-
putation has received a lot of attention in the last decades. Even in the
extreme case where a computation is performed between k mutually
distrustful players, and security is required even for the single honest
player if all other players are colluding adversaries, secure protocols are
known. For quantum computation, on the other hand, protocols allow-
ing arbitrary dishonest majority have only been proven for k = 2. In this
work, we generalize the approach taken by Dupuis, Nielsen and Salvail
(CRYPTO 2012) in the two-party setting to devise a secure, efficient
protocol for multi-party quantum computation for any number of play-
ers k, and prove security against up to k − 1 colluding adversaries. The
quantum round complexity of the protocol for computing a quantum cir-
cuit of {CNOT,T} depth d is O(k · (d + logn)), where n is the security
parameter. To achieve efficiency, we develop a novel public verification
protocol for the Clifford authentication code, and a testing protocol for
magic-state inputs, both using classical multi-party computation.

1 Introduction

In secure multi-party computation (MPC), two or more players want to jointly
compute some publicly known function on their private data, without revealing
their inputs to the other players. Since its introduction by Yao [Yao82], MPC has
been extensively developed in different setups, leading to applications of both
theoretical and practical interest (see, e.g., [CDN15] for a detailed overview).

With the emergence of quantum technologies, it becomes necessary to un-
derstand its consequences in the field of MPC. First, classical MPC protocols
have to be secured against quantum attacks. But also, the increasing number
of applications where quantum computational power is desired motivates proto-
cols enabling multi-party quantum computation (MPQC) on the players’ private
(possibly quantum) data. In this work, we focus on the second task. Informally,
we say a MPQC protocol is secure if the following two properties hold: 1. Dis-
honest players gain no information about the honest players’ private inputs. 2.
If the players do not abort the protocol, then at the end of the protocol they
share a state corresponding to the correct computation applied to the inputs of
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honest players (those that follow the protocol) and some choice of inputs for the
dishonest players.

MPQC was first studied by Crépeau, Gottesman and Smith [CGS02], who
proposed a k-party protocol based on verifiable secret sharing that is information-
theoretically secure, but requires the assumption that at most k/6 players are
dishonest. The fraction k/6 was subsequently improved to < k/2 [BOCG+06]
which is optimal for secret-sharing-based protocols due to no-cloning. The case
of a dishonest majority was thus far only considered for k = 2 parties, where
one of the two players can be dishonest [DNS10,DNS12,KMW17]4. These pro-
tocols are based on different cryptographic techniques, in particular quantum
authentication codes in conjunction with classical MPC [DNS10,DNS12] and
quantum-secure bit commitment and oblivious transfer [KMW17].

In this work, we propose the first secure MPQC protocol for any num-
ber k of players in the dishonest majority setting, i.e., the case with up to
k − 1 colluding adversarial players.5 We remark that our result achieves com-
posable security, which is proven according to the standard ideal-vs.-real defi-
nition. Like the protocol of [DNS12], on which our protocol is built, our pro-
tocol assumes a classical MPC that is secure against a dishonest majority, and
achieves the same security guarantees as this classical MPC. In particular, if
we instantiate this classical MPC with an MPC in the pre-processing model
(see [BDOZ11,DPSZ12,KPR18,CDE+18]), our construction yields a MPQC pro-
tocol consisting of a classical “offline” phase used to produce authenticated
shared randomness among the players, and a second “computation” phase, con-
sisting of our protocol, combined with the “computation” phase of the classi-
cal MPC. The security of the “offline” phase requires computational assump-
tions, but assuming no attack was successful in this phase, the second phase has
information-theoretic security.

1.1 Prior work

Our protocol builds on the two-party protocol of Dupuis, Nielsen, and Sal-
vail [DNS12], which we now describe in brief. The protocol uses a classical MPC
protocol, and involves two parties, Alice and Bob, of whom at least one is hon-
estly following the protocol. Alice and Bob encode their inputs using a technique
called swaddling : if Alice has an input qubit |ψ〉, she first encodes it using the
n-qubit Clifford code (see Definition 2.5), resulting in A(|0n〉 ⊗ |ψ〉), for some
random (n + 1)-qubit Clifford A sampled by Alice, where n is the security pa-
rameter. Then, she sends the state to Bob, who puts another encoding on top of
Alice’s: he creates the “swaddled” state B(A(|0n〉⊗|ψ〉)⊗|0n〉) for some random
(2n+ 1)-qubit Clifford B sampled by Bob. This encoded state consists of 2n+ 1
qubits, and the data qubit |ψ〉 sits in the middle.

4 In Kashefi and Pappa [KP17], they consider a non-symmetric setting where the
protocol is secure only when some specific sets of k − 1 players are dishonest.

5 In the case where there are k adversaries and no honest players, there is nobody
whose input privacy and output authenticity is worth protecting.
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If Bob wants to test the state at some point during the protocol, he simply
needs to undo the Clifford B, and test that the last n qubits (called traps) are
|0〉. However, if Alice wants to test the state, she needs to work together with
Bob to access her traps. Using classical multi-party computation, they jointly
sample a random (n + 1)-qubit Clifford B′ which is only revealed to Bob, and
compute a Clifford T := (I⊗n ⊗B′)(A† ⊗ I⊗n)B† that is only revealed to Alice.
Alice, who will not learn any relevant information about B or B′, can use T to
“flip” the swaddle, revealing her n trap qubits for measurement. After checking
that the first n qubits are |0〉, she adds a fresh (2n+ 1)-qubit Clifford on top of
the state to re-encode the state, before computation can continue.

Single-qubit Clifford gates are performed simply by classically updating the
inner key: if a state is encrypted with Cliffords BA, updating the decryption key
to BAG† effectively applies the gate G. In order to avoid that the player holding
the inner key B skips this step, both players keep track of their keys using a
classical commitment scheme. This can be encapsulated in the classical MPC,
which we can assume acts as a trusted third party with a memory [BOCG+06].

CNOT operations and measurements are slightly more involved, and require
both players to test the authenticity of the relevant states several times. Hence,
the communication complexity scales linearly with the number of CNOTs and
measurements in the circuit.

Finally, to perform T gates, the protocol makes use of so-called magic states.
To obtain reliable magic states, Alice generates a large number of them, so
that Bob can test a sufficiently large fraction. He decodes them (with Alice’s
help), and measures whether they are in the expected state. If all measurements
succeed, Bob can be sufficiently certain that the untested (but still encoded)
magic states are in the correct state as well.

Extending two-party computation to multi-party computation A nat-
ural question is how to lift a two-party computation protocol to a multi-party
computation protocol. We discuss some of the issues that arise from such an
approach, making it either infeasible or inefficient.

Composing ideal functionalities. The first naive idea would be trying to split the
k players in two groups and make the groups simulate the players of a two-party
protocol, whereas internally, the players run k

2 -party computation protocols for

all steps in the two-party protocol. Those k
2 -party protocols are in turn realized

by running k
4 -party protocols, et cetera, until at the lowest level, the players can

run actual two-party protocols.
Trying to construct such a composition in a black-box way, using the ideal

functionality of a two-party protocol, one immediately faces a problem: at the
lower levels, players learn intermediate states of the circuit, because they receive
plaintext outputs from the ideal two-party functionality. This would immediately
break the privacy of the protocol. If, on the other hand, we require the ideal two-
party functionality to output encoded states instead of plaintexts, then the size
of the ciphertext will grow at each level. The overhead of this approach would be
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O(nlog k), where n > k is the security parameter of the encoding, which would
make this overhead super-polynomial in the number of players.

Naive extension of DNS to multi-party. One could also try to extend [DNS12]
to multiple parties by adapting the subprotocols to work for more than two
players. While this approach would likely lead to a correct and secure protocol
for k parties, the computational costs of such an extension could be high.

First, note that in such an extension, each party would need to append n
trap qubits to the encoding of each qubit, causing an overhead in the ciphertext
size that is linear in k. Secondly, in this naive extension, the players would need
to create Θ(2k) magic states for T gates (see Section 2.5), since each party would
need to sequentially test at least half of the ones approved by all previous players.

Notice that in both this extension and our protocol, a state has to pass by
the honest player (and therefore all players) in order to be able to verify that it
has been properly encoded.

1.2 Our contributions

Our protocol builds on the work of Dupuis, Nielsen, and Salvail [DNS10,DNS12],
and like it, assumes a classical MPC, and achieves the same security guarantees
as this classical MPC. In contrast to a naive extension of [DNS12], requiring
Θ(2k) magic states, the complexity of our protocol, when considering a quantum
circuit that contains, among other gates, g gates in {CNOT,T} and acts on w
qubits, scales as O((g + w)k).

In order to efficiently extend the two-party protocol of [DNS12] to a general
k-party protocol, we make two major alterations to the protocol:

Public authentication test. In [DNS12], given a security parameter n, each
party adds n qubits in the state |0〉 to each input qubit in order to authenticate
it. The size of each ciphertext is thus 2n + 1. The extra qubits serve as check
qubits (or “traps”) for each party, which can be measured at regular intervals:
if they are non-zero, somebody tampered with the state.

In a straightforward generalization to k parties, the ciphertext size would
become kn+ 1 per input qubit, putting a strain on the computing space of each
player. In our protocol, the ciphertext size is constant in the number of players: it
is usually n+ 1 per input qubit, temporarily increasing to 2n+ 1 for qubits that
are involved in a computation step. As an additional advantage, our protocol
does not require that all players measure their traps every time a state needs to
be checked for its authenticity.

To achieve this smaller ciphertext size, we introduce a public authentication
test. Our protocol uses a single, shared set of traps for each qubit. If the protocol
calls for the authentication to be checked, the player that currently holds the
state cannot be trusted to simply measure those traps. Instead, she temporarily
adds extra trap qubits, and fills them with an encrypted version of the content of
the existing traps. Now she measures only the newly created ones. The encryption
ensures that the measuring player does not know the expected measurement
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outcome. If she is dishonest and has tampered with the state, she would have
to guess a random n-bit string, or be detected by the other players. We design
a similar test that checks whether a player has honestly created the first set of
traps for their input at encoding time.

Efficient magic-state preparation. For the computation of non-Clifford gates,
the [DNS12] protocol requires the existence of authenticated “magic states”,
auxiliary qubits in a known and fixed state that aid in the computation. In a
two-party setting, one of the players can create a large number of such states,
and the other player can, if he distrusts the first player, test a random subset of
them to check if they were honestly initialized. Those tested states are discarded,
and the remaining states are used in the computation.

In a k-party setting, such a “cut-and-choose” strategy where all players want
to test a sufficient number of states would require the first party to prepare
an exponential number (in k) of authenticated magic states, which quickly gets
infeasible as the number of players grows. Instead, we need a testing strategy
where dishonest players have no control over which states are selected for testing.
We ask the first player to create a polynomial number of authenticated magic
states. Subsequently, we use classical MPC to sample random, disjoint subsets
of the proposed magic states, one for each player. Each player continues to
decrypt and test their subset of states. The random selection process implies that,
conditioned on the test of the honest player(s) being successful, the remaining
registers indeed contain encrypted states that are reasonably close to magic
states. Finally, we use standard magic-state distillation to obtain auxiliary inputs
that are exponentially close to magic states.

1.3 Overview of the protocol

We describe some details of the k-player quantum MPC protocol for circuits con-
sisting of classically-controlled Clifford operations and measurements. Such cir-
cuits suffice to perform Clifford computation and magic-state distillation, so that
the protocol can be extended to arbitrary circuits using the technique described
above. The protocol consists of several subprotocols, of which we highlight four
here: input encoding, public authentication test, single-qubit gate application,
and CNOT application. In the following description, the classical MPC is treated
as a trusted third party with memory6. The general idea is to first ensure that
initially all inputs are properly encoded into the Clifford authentication code,
and to test the encoding after each computation step that exposes the encoded
qubit to an attack. During the protocol, the encryption keys for the Clifford
authentication code are only known to the MPC.

Input encoding. For an input qubit |ψ〉 of player i, the MPC hands each
player a circuit for a random (2n+ 1)-qubit Clifford group element. Now player

6 The most common way to achieve classical MPC against dishonest majority is in
the so called pre-processing model, as suggested by the SPDZ [BDOZ11] and MAS-
COT [KOS16] families of protocols. We believe that these protocols can be made
post-quantum secure, but that is beyond the scope of this paper.
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i appends 2n “trap” qubits initialized in the |0〉-state and applies her Clifford.
The state is passed around, and all other players apply their Clifford one-by-
one, resulting in a Clifford-encoded qubit F (|ψ〉

∣∣02n〉) for which knowledge of
the encoding key F is distributed among all players. The final step is our public
authentication test, which is used in several of the other subprotocols as well. Its
goal is to ensure that all players, including player i, have honestly followed the
protocol.

The public authentication test (details). The player holding the state
F (|ψ〉

∣∣02n〉) (player i) will measure n out of the 2n trap qubits, which should
all be 0. To enable player i to measure a random subset of n of the trap qubits,
the MPC could instruct her to apply (E⊗Xr)(I⊗Uπ)F † to get E(|ψ〉 |0n〉)⊗|r〉,
where Uπ permutes the 2n trap qubits by a random permutation π, and E is a
random (n + 1) qubit Clifford, and r ∈ {0, 1}n is a random string. Then when
player i measures the last n trap qubits, if the encoding was correct, she will
obtain r and communicate this to the MPC. However, this only guarantees that
the remaining traps are correct up to polynomial error.

To get a stronger guarantee, we replace the random permutation with an
element from the sufficiently rich yet still efficiently samplable group of invertible
transformations over F2n, GL(2n,F2). An element g ∈ GL(2n,F2) maybe be
viewed as a unitary Ug acting on computational basis states as Ug |x〉 = |gx〉
where x ∈ {0, 1}2n. In particular, Ug

∣∣02n〉 =
∣∣02n〉, so if all traps are in the

state |0〉, applying Ug does not change this, whereas for non-zero x, Ug |x〉 =
|x′〉 for a random x′ ∈ {0, 1}2n. Thus the MPC instructs player i to apply
(E ⊗ Xr)(I ⊗ Ug)F † to the state F (|ψ〉

∣∣02n〉), then measure the last n qubits
and return the result, aborting if it is not r. Crucially, (E ⊗ Xr)(I ⊗ Ug)F † is
given as an element of the Clifford group, hiding the structure of the unitary
and, more importantly, the values of r and g. So if player i is dishonest and
holds a corrupted state, she can only pass the MPC’s test by guessing r. If
player i correctly returns r, we have the guarantee that the remaining state is a
Clifford-authenticated qubit with n traps, E(|ψ〉 |0n〉), up to exponentially small
error.

Single-qubit Clifford gate application. As in [DNS12], this is done by simply
updating encryption key held by the MPC: If a state is currently encrypted with
a Clifford E, decrypting with a “wrong” key EG† has the effect of applying G
to the state.

CNOT application. Applying a CNOT gate to two qubits is slightly more
complicated: as they are encrypted separately, we cannot just implement the
CNOT via a key update like in the case of single qubit Clifford gates. Instead, we
bring the two encoded qubits together, and then run a protocol that is similar
to input encoding using the (2n + 2)-qubit register as “input”, but using 2n
additional traps instead of just n, and skipping the final authentication-testing
step. The joint state now has 4n+ 2 qubits and is encrypted with some Clifford
F only known to the MPC. Afterwards, CNOT can be applied via a key update,
similarly to single-qubit Cliffords. To split up the qubits again afterwards, the
executing player applies (E1 ⊗ E2)F †, where E1 and E2 are freshly sampled by
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the MPC. The two encoded qubits can then be tested separately using the public
authentication test.

1.4 Open problems

Our results leave a number of exciting open problems to be addressed in future
work. Firstly, the scope of this work was to provide a protocol that reduces
the problem of MPQC to classical MPC in an information-theoretically secure
way. Hence we obtain an information-theoretically secure MPQC protocol in the
preprocessing model, leaving the post-quantum secure instantiation of the latter
as an open problem.

Another class of open problems concerns applications of MPQC. For instance,
classically, MPC can be used to devise zero-knowledge proofs [IKOS09] and
digital signature schemes [CDG+17].

An interesting open question concerning our protocol more specifically is
whether the CNOT sub-protocol can be replaced by a different one that has
round complexity independent of the total number of players, reducing the quan-
tum round complexity of the whole protocol. We also wonder if it is possible to
develop more efficient protocols for narrower classes of quantum computation,
instead of arbitrary (polynomial-size) quantum circuits.

Finally, it would be interesting to investigate whether the public authenti-
cation test we use can be leveraged in protocols for specific MPC-related tasks
like oblivious transfer.

1.5 Outline

In Section 2, we outline the necessary preliminaries and tools we will make
use of in our protocol. In Section 3, we give a precise definition of MPQC. In
Section 4, we describe how players encode their inputs to setup for computation
in our protocol. In Section 5 we describe our protocol for Clifford circuits, and
finally, in Section 6, we show how to extend this to universal quantum circuits
in Clifford+T.
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2 Preliminaries

2.1 Notation

We assume familiarity with standard notation in quantum computation, such as
(pure and mixed) quantum states, the Pauli gates X and Z, the Clifford gates H
and CNOT, the non-Clifford gate T, and measurements.

We work in the quantum circuit model, with circuits C composed of elemen-
tary unitary gates (of the set Clifford+T), plus computational basis measure-
ments. We consider those measurement gates to be destructive, i.e., to destroy
the post-measurement state immediately, and only a classical wire to remain.
Since subsequent gates in the circuit can still classically control on those mea-
sured wires, this point of view is as general as keeping the post-measurement
states around.

For a set of quantum gates G, the G-depth of a quantum circuit is defined as
the minimal number of layers such that in every layer, gates from G do not act
on the same qubit.

For two circuits C1 and C2, we write C2 ◦ C1 for the circuit that consists of
executing C1, followed by C2. Similarly, for two protocols Π1 and Π2, we write
Π2 �Π1 for the execution of Π1, followed by the execution of Π2.

We use capital letters for both quantum registers (M , R, S, T, . . . ) and
unitaries (A, B, U , V , W, . . . ). We write |R| for the dimension of the Hilbert
space in a register R. The registers in which a certain quantum state exists, or
on which some map acts, are written as gray superscripts, whenever it may be
unclear otherwise. For example, a unitary U that acts on register A, applied
to a state ρ in the registers AB, is written as UAρABU†, where the registers
U† acts on can be determined by finding the matching U and reading the grey
subscripts. Note that we do not explicitly write the operation IB with which U
is in tensor product. The gray superscripts are purely informational, and do not
signify any mathematical operation. If we want to denote, for example, a partial
trace of the state ρAB , we use the conventional notation ρA.

For an n-bit string s = s1s2 · · · sn, define Us := Us1 ⊗ Us2 ⊗ · · · ⊗ Usn . For
an n-element permutation π ∈ Sn, define Pπ to be the unitary that permutes n
qubits according to π:

Pπ |ψ1〉 ... |ψn〉 =
∣∣ψπ(1)〉 ... ∣∣ψπ(n)〉 .

We use [k] for the set {1, 2, . . . , k}. For a projector Π, we write Π for its
complement I−Π. We use τR := I/|R| for the fully mixed state on the register
R.

Write GL(n, F ) for the general linear group of degree n over a field F . We
refer to the Galois field of two elements as F2, the n-qubit Pauli group as Pn,
and the n-qubit Clifford group as Cn. Whenever a protocol mandates handing
an element from one of these groups, or more generally, a unitary operation, to
an agent, we mean that a (classical) description of the group element is given,
e.g. as a normal-form circuit.
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Finally, for a quantum operation that may take multiple rounds of inputs
and outputs, for example an environment E interacting with a protocol Π, we
write E � Π for the final output of E after the entire interaction.

2.2 Classical multi-party computation

At this point, we are unaware of any formal analysis of the post-quantum security
of existing classical multi-party computation schemes. Establishing full post-
quantum security of classical multi-party computation is outside the scope of
this paper, but we discuss some possible directions in the full version. For the
purpose of this paper, we assume that a post-quantum secure classical multi-
party computation is available.

Throughout this paper, we will utilize the following ideal MPC functionality
as a black box:

Definition 2.1 (Ideal classical k-party stateful computation with abort).
Let f1, ..., fk and fS be public classical deterministic functions on k + 2 inputs.
Let a string s represent the internal state of the ideal functionality. (The first
time the ideal functionality is called, s is empty.) Let A ( [k] be a set of corrupted
players.

1. Every player i ∈ [k] chooses an input xi of appropriate size, and sends it
(securely) to the trusted third party.

2. The trusted third party samples a bit string r uniformly at random.
3. The trusted third party computes fi(s, x1, ..., xk, r) for all i ∈ [k] ∪ {S}.
4. For all i ∈ A, the trusted third party sends fi(s, x1, ..., xk, r) to player i.
5. All i ∈ A respond with a bit bi, which is 1 if they choose to abort, or 0

otherwise.
6. If bj = 0 for all j, the trusted third party sends fi(s, x1, ..., xk, r) to the other

players i ∈ [k]\A and stores fS(s, x1, ..., xk, r) in an internal state register
(replacing s). Otherwise, he sends an abort message to those players.

2.3 Pauli filter

In our protocol, we use a technique which alters a channel that would act jointly
on registers S and T , so that its actions on S are replaced by a flag bit into a
separate register. The flag is set to 0 if the actions on S belong to some set P,
or to 1 otherwise. This way, the new channel “filters” the allowed actions on S.

Definition 2.2 (Pauli filter). For registers S and T with |T | > 0, let UST be

a unitary, and let P ⊆
(
{0, 1}log |S|

)2
contain pairs of bit strings. The P-filter of

U on register S, denoted PauliFilterSP(U), is the map T → TF (where F is some
single-qubit flag register) that results from the following operations:

1. Initialize two separate registers S and S′ in the state |Φ〉〈Φ|, where |Φ〉 :=(
1√
2
(|00〉+ |11〉)

)⊗ log |S|
. Half of each pair is stored in S, the other in S′.
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2. Run U on ST .
3. Measure SS′ with the projective measurement {Π, I−Π} for

Π :=
∑

(a,b)∈P

(
XaZb

)S |Φ〉〈Φ| (ZbXa) .
If the outcome is Π, set the F register to |0〉〈0|. Otherwise, set it to |1〉〈1|.

The functionality of the Pauli filter becomes clear in the following lemma,
which we prove in the full version by straightforward calculation:

Lemma 2.3. For registers S and T with |T | > 0, let UST be a unitary, and

let P ⊆
(
{0, 1}log |S|

)2
. Write U =

∑
x,z(X

xZz)S ⊗ UTx,z. Then PauliFilterSP(U)
equals the map

(·) 7→
∑

(a,b)∈P

UTa,b(·)U
†
a,b ⊗ |0〉〈0|

F
+

∑
(a,b) 6∈P

UTa,b(·)U
†
a,b ⊗ |1〉〈1|

F

A special case of the Pauli filter for P = {(0log |S|, 0log |S|)} is due to Broadbent
and Wainewright [BW16]. This choice of P represents only identity: the opera-
tion PauliFilterP filters out any components of U that do not act as identity on
S. We will denote this type of filter with the name IdFilter.

In this work, we will also use XFilterS(U), which only accepts components
of U that act trivially on register S in the computational basis. It is defined by
choosing P = {0log |S|} × {0, 1}log |S|.

Finally, we note that the functionality of the Pauli filter given in Definition 2.2
can be generalized, or weakened in a sense, by choosing a different state than
|Φ〉〈Φ|. In this work, we will use the ZeroFilterS(U), which initializes SS′ in the

state |00〉log |S|, and measures using the projector Π = |00〉〈00|. It filters U by
allowing only those Pauli operations that leave the computational-zero state (but
not necessarily any other computational-basis states) unaltered:

(·) 7→ UT0 (·)U†0 ⊗ |0〉〈0|
F

+
∑
a6=0

UTa (·)U†a ⊗ |1〉〈1|
F
,

where we abbreviate Ua :=
∑
b Ua,b. Note that for ZeroFilterS(U), the extra

register S′ can also be left out.

2.4 Clifford authentication code

The protocol presented in this paper will rely on quantum authentication. The
players will encode their inputs using a quantum authentication code to prevent
the other, potentially adversarial, players from making unauthorized alterations
to their data. That way, they can ensure that the output of the computation is
in the correct logical state.

A quantum authentication code transforms a quantum state (the logical state
or plaintext) into a larger quantum state (the physical state or ciphertext) in
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a way that depends on a secret key. An adversarial party that has access to
the ciphertext, but does not know the secret key, cannot alter the logical state
without being detected at decoding time.

More formally, an authentication code consists of an encoding map EncM→MT
k

and a decoding map DecMT→M
k , for a secret key k, which we usually assume that

the key is drawn uniformly at random from some key set K. The message register
M is expanded with an extra register T to accommodate for the fact that the
ciphertext requires more space than the plaintext.

An authentication code is correct if Deck ◦ Enck = I. It is secure if the
decoding map rejects (e.g., by replacing the output with a fixed reject symbol
⊥) whenever an attacker tried to alter an encoded state:

Definition 2.4 (Security of authentication codes [DNS10]). Let (EncM→MT
k ,

DecMT→M
k ) be a quantum authentication scheme for k in a key set K. The

scheme is ε-secure if for all CPTP maps AMTR acting on the ciphertext and
a side-information register R, there exist CP maps Λacc and Λrej such that
Λacc + Λrej is trace-preserving, and for all ρMR:

∥∥∥∥ E
k∈K

[Deck (A (Enck (ρ)))] −
(
ΛRacc(ρ) + |⊥〉〈⊥|M ⊗ TrM

[
ΛRrej (ρ)

])∥∥∥∥
1

6 ε.

A fairly simple but powerful authentication code is the Clifford code:

Definition 2.5 (Clifford code [ABOE10]). The n-qubit Clifford code is de-
fined by a key set Cn+1, and the encoding and decoding maps for a C ∈ Cn+1:

EncC(ρM ) := C(ρM ⊗ |0n〉〈0n|T )C†,

DecC(σMT ) := 〈0n|T C†σC |0n〉+ |⊥〉〈⊥|M ⊗ TrM

∑
x6=0n

〈x|C†σC |x〉

 .
Note that, from the point of view of someone who does not know the Clifford
key C, the encoding of the Clifford code looks like a Clifford twirl (see the full
version) of the input state plus some trap states.

We prove the security of the Clifford code in ??.

2.5 Universal gate sets

It is well known that if, in addition to Clifford gates, we are able to apply any
non-Clifford gate G, then we are able to achieve universal quantum computation.
In this work, we focus on the non-Clifford T gate (or π/8 gate).

In several contexts, however, applying non-Clifford gates is not straightfor-
ward for different reasons: common quantum error-correcting codes do not allow
transversal implementation of non-Clifford gates, the non-Clifford gates do not
commute with the quantum one-time pad and, more importantly in this work,
neither with the Clifford encoding.
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In order to concentrate the hardness of non-Clifford gates in an offline pre-
processing phase, we can use techniques from computation by teleportation if
we have so-called magic states of the form |T〉 := T |+〉. Using a single copy of
this state as a resource, we are able to implement a T gate using the circuit in
Figure 1. The circuit only requires (classically controlled) Clifford gates.

|ψ〉

T |+〉 Xc Pc

c

T |ψ〉

Fig. 1: Using a magic state |T〉 = T |+〉 to implement a T gate.

The problem is how to create such magic states in a fault-tolerant way. Bravyi
and Kitaev [BK05] proposed a distillation protocol that allows to create states
that are δ-close to true magic states, given poly(log(1/δ)) copies of noisy magic-
states. Let

∣∣T⊥〉 = T |−〉. Then we have:

Theorem 2.6 (Magic-state distillation [BK05]). There exists a circuit of
CNOT-depth ddistill(n) 6 O(log(n)) consisting of pdistill(n) 6 poly (n) many
classically controlled Cliffords and computational-basis measurements such that

for any ε < 1
2

(
1−

√
3/7
)

, if ρ is the output on the first wire using input(
(1− ε) |T〉 〈T|+ ε

∣∣T⊥〉 〈T⊥∣∣)⊗n , (1)

then 1− 〈T| ρ |T〉 6 O
(
(5ε)n

c)
, where c = (log2 30)−1 ≈ 0.2.

As we will see in Section 6, our starting point is a bit different from the input
state required by Theorem 2.6. We now present a procedure that will allow us
to prepare the states necessary for applying Theorem 2.6 (see Circuit 2.8). We
prove Lemma 2.7 in ??.

Lemma 2.7. Let VLW = span{Pπ(|T〉⊗m−w
∣∣T⊥〉w) : w 6 `, π ∈ Sm}, and

let ΠLW be the orthogonal projector onto VLW . Let Ξ denote the CPTP map
induced by Circuit 2.8. If ρ is an m-qubit state such that Tr(ΠLW ρ) > 1 − ε,
then ∥∥Ξ(ρ)− (|T〉 〈T|)⊗t

∥∥
1
6 O

(
m
√
t

(
`

m

)O((m/t)c/2)

+ ε

)
,

for some constant c > 0.

Circuit 2.8 (Magic-state distillation) Given an m-qubit input state
and a parameter t < m:

1. To each qubit, apply Ẑ := PX with probability 1
2 .

2. Permute the qubits by a random π ∈ Sm.
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3. Divide the m qubits into t blocks of size m/t, and apply magic-state
distillation from Theorem 2.6 to each block.

Remark 2.9. Circuit 2.8 can be implemented with (classically controlled) Clif-
ford gates and measurements in the computational basis.

3 Multi-party Quantum Computation: Definitions

In this section, we describe the ideal functionality we aim to achieve for multi-
party quantum computation (MPQC) with a dishonest majority. As noted in
Section 2.2, we cannot hope to achieve fairness: therefore, we consider an ideal
functionality with the option for the dishonest players to abort.

Definition 3.1 (Ideal quantum k-party computation with abort). Let C
be a quantum circuit on W ∈ N>0 wires. Consider a partition of the wires into the
players’ input registers plus an ancillary register, as [W ] = Rin

1 t· · ·tRin
k tRancilla,

and a partition into the players’ output registers plus a register that is discarded
at the end of the computation, as [W ] = Rout

1 t · · · tRout
k tRdiscard. Let IA ( [k]

be a set of corrupted players.

1. Every player i ∈ [k] sends the content of Rin
i to the trusted third party.

2. The trusted third party populates Rancilla with computational-zero states.

3. The trusted third party applies the quantum circuit C on the wires [W ].

4. For all i ∈ IA, the trusted third party sends the content of Rout
i to player i.

5. All i ∈ IA respond with a bit bi, which is 1 if they choose to abort, or 0
otherwise.

6. If bi = 0 for all i, the trusted third party sends the content of Rout
i to the

other players i ∈ [k]\IA. Otherwise, he sends an abort message to those
players.

In Definition 3.1, all corrupted players individually choose whether to abort
the protocol (and thereby to prevent the honest players from receiving their
respective outputs). In reality, however, one cannot prevent several corrupted
players from actively working together and sharing all information they have
among each other. To ensure that our protocol is also secure in those scenarios,
we consider security against a general adversary that corrupts all players in IA,
by replacing their protocols by a single (interactive) algorithm A that receives
the registers Rin

A := R t
⊔
i∈IA R

in
i as input, and after the protocol produces

output in the register Rout
A := R t

⊔
i∈IA R

out
i . Here, R is a side-information

register in which the adversary may output extra information.

We will always consider protocols that fulfill the ideal functionality with
respect to some gate set G: the protocol should then mimic the ideal functionality
only for circuits C that consist of gates from G. This security is captured by the
definition below.
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C

Π

P1
. . . P` A

E

ΠMPQC
C,A

C

I

. . . S

E

IMPQC
C,S

(1) (2)

Fig. 2: (1) The environment interacting with the protocol as run by honest players
P1, . . . , P`, and an adversary who has corrupted the remaining players. (2) The
environment interacting with a simulator running the ideal functionality.

Definition 3.2 (Computational security of quantum k-party compu-
tation with abort). Let G be a set of quantum gates. Let ΠMPQC be a k-
party quantum computation protocol, parameterized by a security parameter n.
For any circuit C, set IA ( [k] of corrupted players, and adversarial (inter-
active) algorithm A that performs all interactions of the players in IA, define
ΠMPQC
C,A : Rin

At
⊔
i 6∈IA R

in
i → Rout

A t
⊔
i 6∈IA R

out
i to be the channel that executes the

protocol ΠMPQC for circuit C by executing the honest interactions of the players
in [k] \ IA, and letting A fulfill the role of the players in IA (See Figure 2, (1)).

For a simulator S that receives inputs in Rin
A, then interacts with the ideal

functionalities on all interfaces for players in IA, and then produces output in
Rout
A , let IMPQC

C,S be the ideal functionality described in Definition 3.1, for circuit
C, simulator S for players i ∈ IA, and honest executions (with bi = 0) for players
i 6∈ IA (See Figure 2, (2)). We say that ΠMPQC is a computationally ε-secure
quantum k-party computation protocol with abort, if for all IA ( [k], for all
quantum polynomial-time (QPT) adversaries A, and all circuits C comprised of
gates from G, there exists a QPT simulator S such that for all QPT environments
E, ∣∣∣Pr

[
1← (E � ΠMPQC

C,A )
]
− Pr

[
1← (E � IMPQC

C,S )
]∣∣∣ 6 ε.

Here, the notation b ← (E � (·)) represents the environment E, on input 1n,
interacting with the (real or ideal) functionality (·), and producing a single bit b
as output.

Remark 3.3. In the above definition, we assume that all QPT parties are poly-
nomial in the size of circuit |C|, and in the security parameter n.

We show in Section 6.2 the protocol ΠMPQC implementing the ideal function-
ality described in Definition 3.1, and we prove its security in Theorem 6.5.
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4 Setup and encoding

4.1 Input encoding

In the first phase of the protocol, all players encode their input registers qubit-
by-qubit. For simplicity of presentation, we pretend that player 1 holds a single-
qubit input state, and the other players do not have input. In the actual protocol,
multiple players can hold multiple-qubit inputs: in that case, the initialization is
run several times in parallel, using independent randomness. Any other player i
can trivially take on the role of player 1 by relabeling the player indices.

Definition 4.1 (Ideal functionality for input encoding). Without loss of
generality, let Rin

1 be a single-qubit input register, and let dim(Rin
i ) = 0 for all

i 6= 1. Let IA ( [k] be a set of corrupted players.

1. Player 1 sends register Rin
1 to the trusted third party.

2. The trusted third party initializes a register T1 with |0n〉〈0n|, applies a ran-
dom (n+ 1)-qubit Clifford E to MT1, and sends these registers to player 1.

3. All players i ∈ IA send a bit bi to the trusted third party. If bi = 0 for all
i, then the trusted third party stores the key E in the state register S of the
ideal functionality. Otherwise, it aborts by storing ⊥ in S.

The following protocol implements the ideal functionality. It uses, as a black
box, an ideal functionality MPC that implements a classical multi-party compu-
tation with memory.

Protocol 4.2 (Input encoding) Without loss of generality, let M := Rin
1 be

a single-qubit input register, and let dim(Rin
i ) = 0 for all i 6= 1.

1. For every i ∈ [k], MPC samples a random (2n+1)-qubit Clifford Fi and
tells it to player i.

2. Player 1 applies the map ρM 7→ F1

(
ρM ⊗

∣∣02n〉〈02n∣∣T1T2
)
F †1 for two

n-qubit (trap) registers T1 and T2, and sends the registers MT1T2 to
player 2.

3. Every player i = 2, 3, ..., k applies Fi to MT1T2, and forwards it to
player i+ 1. Eventually, player k sends the registers back to player 1.

4. MPC samples a random (n+ 1)-qubit Clifford E, random n-bit strings r
and s, and a random classical invertible linear operator g ∈ GL(2n,F2).
Let Ug be the (Clifford) unitary that computes g in-place, i.e., Ug |t〉 =
|g(t)〉 for all t ∈ {0, 1}2n.

5. MPC givesa

V := (EMT1 ⊗ (XrZs)T2)(I⊗ (Ug)
T1T2)(Fk · · ·F2F1)†

to player 1, who applies it to MT1T2.
6. Player 1 measures T2 in the computational basis, discarding the mea-

sured wires, and keeps the other (n + 1) qubits as its output in Rout
1 =

MT1.



16 Y. Dulek et al.

7. Player 1 submits the measurement outcome r′ to MPC, who checks
whether r = r′. If so, MPC stores the key E in its memory-state register
S. If not, it aborts by storing ⊥ in S.

a As described in Section 2.1, the MPC gives V as a group element, and the
adversary cannot decompose it into the different parts that appear in its defi-
nition.

If MPC aborts the protocol in step 7, the information about the Clifford encoding
key E is erased. In that case, the registers MT1 will be fully mixed. Note that this
result differs slightly from the ‘reject’ outcome of a quantum authentication code
as in Definition 2.4, where the message register M is replaced by a dummy state
|⊥〉〈⊥|. In our current setting, the register M is in the hands of (the possibly
malicious) player 1. We therefore cannot enforce the replacement of register M
with a dummy state: we can only make sure that all its information content
is removed. Depending on the application or setting, the trusted MPC can of
course broadcast the fact that they aborted to all players, including the honest
one(s).

To run Protocol 4.2 in parallel for multiple input qubits held by multiple
players, MPC samples a list of Cliffords Fi,q for each player i ∈ [k] and each
qubit q. The Fi,q operations can be applied in parallel for all qubits q: with k
rounds of communication, all qubits will have completed their round past all
players.

We will show that Protocol 4.2 fulfills the ideal functionality for input en-
coding:

Lemma 4.3. Let ΠEnc be Protocol 4.2, and IEnc be the ideal functionality de-
scribed in Definition 4.1. For all sets IA ( [k] of corrupted players and all
adversaries A that perform the interactions of players in IA with Π, there ex-
ists a simulator S (the complexity of which scales polynomially in that of the
adversary) such that for all environments E,

|Pr[1← (E � ΠEnc
A )]− Pr[1← (E � IEnc

S )| 6 negl (n) .

Note that the environment E also receives the state register S, which acts as the
“output” register of the ideal functionality (in the simulated case) or of MPC (in
the real case). It is important that the environment cannot distinguish between
the output states even given that state register S, because we want to be able to
compose Protocol 5.4 with other protocols that use the key information inside
S. In other words, it is important that, unless the key is discarded, the states
inside the Clifford encoding are also indistinguishable for the environment.

We provide just a sketch of the proof for Lemma 4.3, and refer to the full
version for its full proof.

Proof (sketch). We divide our proof into two cases: when player 1 is honest, or
when she is dishonest.

For the case when player 1 is honest, we know that she correctly prepares the
expected state before the state is given to the other players. That is, she appends
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2n ancilla qubits in state |0〉 and applies the random Clifford instructed by the
classical MPC. When the encoded state is returned to player 1, she performs the
Clifford V as instructed by the MPC. By the properties of the Clifford encoding,
if the other players acted dishonestly, the tested traps will be non-zero with
probability exponentially close to 1.

The second case is a bit more complicated: the first player has full control over
the state and, more importantly, the traps that will be used in the first encoding.
In particular, she could start with nonzero traps, which could possibly give some
advantage to the dishonest players later on the execution of the protocol.

In order to prevent this type of attack, the MPC instructs the first player
to apply a random linear function Ug on the traps, which is hidden from the
players inside the Clifford V . If the traps were initially zero, their value does
not change, but otherwise, they will be mapped to a random value, unknown
by the dishonest parties. As such, the map Ug removes any advantage that the
dishonest parties could have in step 7 by starting with non-zero traps. Because
any nonzero trap state in T1T2 is mapped to a random string, it suffices to
measure only T2 in order to be convinced that T1 is also in the all-zero state
(except with negligible probability). This intuition is formalized in Lemma ??
in the full version.

Other possible attacks are dealt with in a way that is similar to the case
where player 1 is honest (but from the perspective of another honest player).

In the full proof (see the full version), we present two simulators, one for
each case, that tests (using Pauli filters from Section 2.3) whether the adversary
performs any such attacks during the protocol, and chooses the input to the
ideal functionality accordingly. See Figure 3 for a pictorial representation of the
structure of the simulator for the case where player 1 is honest.

MPC

P1

R R

A

F2
. . . Fk

JEnc

P1 S

F ′2 F ′k. . .|Φ〉⊗(2n+1)

R

A(F ′2, . . . , F
′
k)

(F ′k . . . F
′
2)†

Bell

b2 . . . bk

Fig. 3: On the left, the adversary’s interaction with the protocol ΠEnc, ΠEnc
A in

case player 1 is the only honest player. On the right, the simulator’s interaction
with JEnc, JEnc

S . It performs the Pauli filter IdFilterMT1T2 on the adversary’s attack
on the encoded state.
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4.2 Preparing ancilla qubits

Apart from encrypting the players’ inputs, we also need a way to obtain encoded
ancilla-zero states, which may be fed as additional input to the circuit. Since
none of the players can be trusted to simply generate these states as part of
their input, we need to treat them separately.

In [DNS12], Alice generates an encoding of |0〉〈0|, and Bob tests it by entan-
gling (with the help of the classical MPC) the data qubit with a separate |0〉〈0|
qubit. Upon measuring that qubit, Bob then either detects a maliciously gener-
ated data qubit, or collapses it into the correct state. For details, see [DNS12,
Appendix E].

Here, we take a similar approach, except with a public test on the shared
traps. In order to guard against a player that may lie about the measurement
outcomes during a test, we entangle the data qubits with all traps. We do so using
a random linear operator, similarly to the encoding described in the previous
subsection.

Essentially, the protocol for preparing ancilla qubits is identical to Proto-
col 4.2 for input encoding, except that now we do not only test whether the
2n traps are in the |0〉〈0| state, but also the data qubit: concretely, the linear
operator g acts on 2n+ 1 elements instead of 2n. That is,

V := (E ⊗ P )Ug(Fk · · ·F2F1)†.

As a convention, Player 1 will always create the ancilla |0〉〈0| states and encode
them. In principle, the ancillas can be created by any other player, or by all
players together.

Per the same proof as for Lemma 4.3, we have implemented the following
ideal functionality, again making use of a classical MPC as a black box.

Definition 4.4 (Ideal functionality for encoding of |0〉〈0|). Let IA ( [k]
be a set of corrupted players.

1. The trusted third party initializes a register T1 with |0n〉〈0n|, applies a ran-
dom (n+ 1)-qubit Clifford E to MT1, and sends these registers to player 1.

2. All players i ∈ IA send a bit bi to the trusted third party. If bi = 0 for all
i, then the trusted third party stores the key E in the state register S of the
ideal functionality. Otherwise, it aborts by storing ⊥ in S.

5 Computation of Clifford and measurement

After all players have successfully encoded their inputs and sufficiently many
ancillary qubits, they perform a quantum computation gate-by-gate on their
joint inputs. In this section, we will present a protocol for circuits that consist
only of Clifford gates and computational-basis measurements. The Clifford gates
may be classically controlled (for example, on the measurement outcomes that
appear earlier in the circuit). In Section 6, we will discuss how to expand the
protocol to general quantum circuits.
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Concretely, we wish to achieve the functionality in Definition 3.1 for all cir-
cuits C that consist of Clifford gates and computational-basis measurements. As
an intermediate step, we aim to achieve the following ideal functionality, where
the players only receive an encoded output, for all such circuits:

Definition 5.1 (Ideal quantum k-party computation without decod-
ing). Let C be a quantum circuit on W wires. Consider a partition of the wires
into the players’ input registers plus an ancillary register, as [W ] = Rin

1 t · · · t
Rin
k tRancilla, and a partition into the players’ output registers plus a register that

is discarded at the end of the computation, as [W ] = Rout
1 t · · · tRout

k tRdiscard.
Let IA ( [k] be the set of corrupted players.

1. All players i send their register Rin
i to the trusted third party.

2. The trusted third party instantiates Rancilla with |0〉〈0| states.
3. The trusted third party applies C to the wires [W ].
4. For every player i and every output wire w ∈ Rout

i , the trusted third party
samples a random (n+1)-qubit Clifford Ew, applies ρ 7→ Ew(ρ⊗|0n〉〈0n|)E†w
to w, and sends the result to player i.

5. All players i ∈ IA send a bit bi to the trusted third party.
(a) If bi = 0 for all i, all keys Ew and all measurement outcomes are stored

in the state register S.
(b) Otherwise, the trusted third party aborts by storing ⊥ in S.

To achieve the ideal functionality, we define several subprotocols. The sub-
protocols for encoding the players’ inputs and ancillary qubits have already been
described in Section 4. It remains to describe the subprotocols for (classically-
controlled) single-qubit Clifford gates (Section 5.1), (classically controlled) CNOT
gates (Section 5.2), and computational-basis measurements (Section 5.3).

In Section 5.5, we show how to combine the subprotocols in order to compute
any polynomial-sized Clifford+measurement circuit. Our approach is inductive
in the number of gates in the circuit. The base case is the identity circuit, which
is essentially covered in Section 4. In Sections 5.1–5.3, we show that the ideal
functionality for any circuit C, followed by the subprotocol for a gate G, results
in the ideal functionality for the circuit G ◦ C (C followed by G). As such, we
can chain together the subprotocols to realize the ideal functionality in Defini-
tion 5.1 for any polynomial-sized Clifford+measurement circuit. Combined with
the decoding subprotocol we present in Section 5.4, such a chain of subpro-
tocols satisfies Definition 3.1 for ideal k-party quantum Clifford+measurement
computation with abort.

In Definition 5.1, all measurement outcomes are stored in the state register
of the ideal functionality. We do so to ensure that the measurement results
can be used as a classical control to gates that are applied after the circuit C,
which can be technically required when building up to the ideal functionality
for C inductively. Our protocols can easily be altered to broadcast measurement
results as they happen, but the functionality presented in Definition 5.1 is the
most general: if some player is supposed to learn a measurement outcome m`,
then the circuit can contain a gate Xm` on an ancillary zero qubit that will be
part of that player’s output.
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5.1 Subprotocol: single-qubit Cliffords

Due to the structure of the Clifford code, applying single-qubit Clifford is simple:
the classical MPC, who keeps track of the encoding keys, can simply update the
key so that it includes the single-qubit Clifford on the data register. We describe
the case of a single-qubit Clifford that is classically controlled on a previous
measurement outcome stored in the MPC’s state. The unconditional case can be
trivially obtained by omitting the conditioning.

Protocol 5.2 (Single-qubit Cliffords) Let Gm` be a single-qubit Clif-
ford to be applied on a wire w (held by a player i), conditioned on a mea-
surement outcome m`. Initially, player i holds an encoding of the state on
that wire, and the classical MPC holds the encoding key E.

1. MPC reads result m` from its state register S, and updates its internally
stored key E to E((Gm`)

† ⊗ I⊗n).

If m` = 0, nothing happens. To see that the protocol is correct for m` = 1, con-
sider what happens if the state E(ρ⊗ |0n〉〈0n|)E† is decoded using the updated
key: the decoded output is

(E(G† ⊗ I⊗n))†E(ρ⊗ |0n〉〈0n|)E†(E(G† ⊗ I⊗n)) = GρG† ⊗ |0n〉〈0n| .

Protocol 5.2 implements the ideal functionality securely: given an ideal imple-
mentation IC for some circuit C, we can implement Gm` ◦C (i.e., the circuit C
followed by the gate Gm`) by performing Protocol 5.2 right after the interaction
with IC .

Lemma 5.3. Let Gm` be a single-qubit Clifford to be applied on a wire w (held
by a player i), conditioned on a measurement outcome m`. Let ΠGm` be Pro-
tocol 5.2 for the gate Gm` , and IC be the ideal functionality for a circuit C as
described in Definition 5.1. For all sets IA ( [k] of corrupted players and all
adversaries A that perform the interactions of players in IA, there exists a sim-
ulator S (the complexity of which scales polynomially in that of the adversary)
such that for all environments E,

Pr[1← (E � (ΠGm` � IC)A)] = Pr[1← (E � IG
m`◦C
S )].

Proof (sketch). In the protocol ΠGm` � IC , an adversary has two opportunities
to attack: once before its input state is submitted to IC , and once afterwards.
We define a simulator that applies these same attacks, except that it interacts
with the ideal functionality IG

m`◦C .

Syntactically, the state register S of IC is provided as input to the MPC in
ΠGm` , so that the MPC can update the key as described by the protocol. As
such, the output state of the adversary and the simulator are exactly equal. We
provide a full proof in the full version.
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5.2 Subprotocol: CNOT gates

The application of two-qubit Clifford gates (such as CNOT) is more complicated
than the single-qubit case, for two reasons.

First, a CNOT is a joint operation on two states that are encrypted with sepa-
rate keys. If we were to classically update two keys E1 and E2 in a similar fashion
as in Protocol 5.2, we would end up with a new key (E1⊗E2)(CNOT1,n+2), which
cannot be written as a product of two separate keys. The keys would become
‘entangled’, which is undesirable for the rest of the computation.

Second, the input qubits might belong to separate players, who may not
trust the authenticity of each other’s qubits. In [DNS12], authenticity of the
output state is guaranteed by having both players test each state several times.
In a multi-party setting, both players involved in the CNOT are potentially
dishonest, so it might seem necessary to involve all players in this extensive
testing. However, because all our tests are publicly verified, our protocol requires
less testing. Still, interaction with all other players is necessary to apply a fresh
‘joint’ Clifford on the two ciphertexts.

Protocol 5.4 (CNOT) This protocol applies a CNOT gate to wires wi (con-
trol) and wj (target), conditioned on a measurement outcome m`. Suppose
that player i holds an encoding of the first wire, in register M iT i1, and player
j of the second wire, in register M jT j1 . The classical MPC holds the encoding
keys Ei and Ej.

1. If i 6= j, player j sends their registers M jT j1 to player i. Player i now
holds a (2n+ 2)-qubit state.

2. Player i initializes the registers T i2 and T j2 both in the state |0n〉〈0n|.
3. For all players h, MPC samples random (4n+2)-qubit Cliffords Dh, and

gives them to the respective players. Starting with player i, each player h
applies Dh to M ijT ij12,a and sends the state to player h+ 1. Eventually,
player i receives the state back from player i − 1. MPC remembers the
applied Clifford

D := Di−1Di−2 · · ·D1DkDk−1 · · ·Di .

4. MPC samples random (2n+1)-qubit Cliffords Fi and Fj, and tells player
i to apply

V := (Fi ⊗ Fj)CNOTm`
1,2n+2(E†i ⊗ I⊗n ⊗ E†j ⊗ I⊗n)D†.

Here, the CNOT acts on the two data qubits inside the encodings.
5. If i 6= j, player i sends M jT j12 to player j.
6. Players i and j publicly test their encodings. The procedures are identi-

cal, we describe the steps for player i:
(a) MPC samples a random (n+ 1)-qubit Clifford E′i, which will be the

new encoding key. Furthermore, MPC samples random n-bit strings
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si and ri, and a random classical invertible linear operator gi on
F2n
2 .

(b) MPC tells player i to apply

Wi := (E′i ⊗ (XriZsi)T
i
2 )U

T i
12

gi F †i .

Here, Ugi is as defined in Protocol 4.2.
(c) Player i measures T i2 in the computational basis and reports the n-bit

measurement outcome r′i to the MPC.
(d) MPC checks whether r′i = ri. If it is not, MPC sends abort to all

players. If it is, the test has passed, and MPC stores the new encoding
key E′i in its internal memory.

a We combine subscripts and superscripts to denote multiple registers: e.g., T ij
12

is shorthand for T i
1T

i
2T

j
1T

j
2 .

Lemma 5.5. Let ΠCNOTm` be Protocol 5.4, to be executed on wires wi and wj,
held by players i and j, respectively. Let IC be the ideal functionality for a circuit
C as described in Definition 5.1. For all sets IA ( [k] of corrupted players and
all adversaries A that perform the interactions of players in IA, there exists a
simulator S (the complexity of which scales polynomially in that of the adversary)
such that for all environments E,∣∣∣Pr[1← (E � (ΠCNOTm` � IC)A)] = Pr[1← (E � ICNOTm`◦C

S )]
∣∣∣ 6 negl (n) .

Proof (sketch). There are four different cases, depending on which of players i
and j are dishonest. In the full version, we provide a full proof by detailing the
simulators for all four cases, but in this sketch, we only provide an intuition for
the security in the case where both players are dishonest.

It is crucial that the adversary does not learn any information about the keys
(Ei, Ej , E

′
i, E
′
j), nor about the randomizing elements (ri, rj , si, sj , gi, gj). Even

though the adversary learns Wi,Wj , and V explicitly during the protocol, all
the secret information remains hidden by the randomizing Cliffords Fi, Fj , and
D.

We consider a few ways in which the adversary may attack. First, he may
prepare a non-zero state in the registers T i2 (or T j2 ) in step 2, potentially intending

to spread those errors into M iT i1 (or M jT j1 ). Doing so, however, will cause Ugi (or
Ugj ) to map the trap state to a random non-zero string, and the adversary would
not know what measurement string r′i (or r′j) to report. Since gi is unknown to
the adversary, Lemma ?? (see the full version) is applicable in this case: it states
that it suffices to measure T i2 in order to detect any errors in T i12.

Second, the adversary may fail to execute its instructions V or Wi ⊗ Wj

correctly. Doing so is equivalent to attacking the state right before or right after
these instructions. In both cases, however, the state in M iT i1 is Clifford-encoded
(and the state in T i2 is Pauli-encoded) with keys unknown to the adversary, so
the authentication property of the Clifford code prevents the adversary from
altering the outcome.
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The simulator we define in the full version tests the adversary exactly for the
types of attacks above. By using Pauli filters (see Definition 2.2), the simulator
checks whether the attacker leaves the authenticated states and the trap states
T i2 and T j2 (both at initialization and before measurement) unaltered. In the full
proof, we show that the output state of the simulator approximates, up to an
error negligible in n, the output state of the real protocol.

5.3 Subprotocol: Measurement

Measurement of authenticated states introduces a new conceptual challenge. For
a random key E, the result of measuring E(ρ⊗|0n〉〈0n|)E† in a fixed basis is in no
way correlated with the logical measurement outcome of the state ρ. However,
the measuring player is also not allowed to learn the key E, so they cannot
perform a measurement in a basis that depends meaningfully on E.

In [DNS10, Appendix E], this challenge is solved by entangling the state with
an ancilla-zero state on a logical level. After this entanglement step, Alice gets
the original state while Bob gets the ancilla state. They both decode their state
(learning the key from the MPC), and can measure it. Because those states are
entangled, and at least one of Alice and Bob is honest, they can ensure that
the measurement outcome was not altered, simply by checking that they both
obtained the same outcome. The same strategy can in principle also be scaled up
to k players, by making all k players hold part of a big (logically) entangled state.
However, doing so requires the application of k − 1 logical CNOT operations,
making it a relatively expensive procedure.

We take a different approach in our protocol. The player that performs the
measurement essentially entangles, with the help of the MPC, the data qubit
with a random subset of the traps. The MPC later checks the consistency of the
outcomes: all entangled qubits should yield the same measurement result.

Our alternative approach has the additional benefit that the measurement
outcome can be kept secret from some or all of the players. In the description
of the protocol below, the MPC stores the measurement outcome in its internal
state. This allows the MPC to classically control future gates on the outcome.
If it is desired to instead reveal the outcome to one or more of the players, this
can easily be done by performing a classically-controlled X operation on some
unused output qubit of those players.

Protocol 5.6 (Computational-basis measurement) Player i holds an
encoding of the state in a wire w in the register MT1. The classical MPC
holds the encoding key E in the register S.

1. MPC samples random strings r, s ∈ {0, 1}n+1 and c ∈ {0, 1}n.
2. MPC tells player i to apply

V := XrZsCNOT1,cE
†
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to the register MT1, where CNOT1,c denotes the unitary
∏
i∈[n] CNOT

ci
1,i

(that is, the string c dictates with which of the qubits in T1 the M register
will be entangled).

3. Player i measures the register MT1 in the computational basis, reporting
the result r′ to MPC.

4. MPC checks whether r′ = r ⊕ (m,m · c) for some m ∈ {0, 1}.a If so, it
stores the measurement outcome m in the state register S. Otherwise,
it aborts by storing ⊥ in S.

5. MPC removes the key E from the state register S.

a The · symbol represents scalar multiplication of the bit m with the string c.

Lemma 5.7. Let C be a circuit on W wires that leaves some wire w 6 W un-
measured. Let IC be the ideal functionality for C, as described in Definition 5.1,
and let Π be Protocol 5.6 for a computational-basis measurement on w. For
all sets IA ( [k] of corrupted players and all adversaries A that perform the
interactions of players in IA, there exists a simulator S (the complexity of which
scales polynomially in that of the adversary) such that for all environments E,∣∣Pr[1← (E � (Π � IC)A)]− Pr[1← (E � I ◦C

S )]
∣∣ 6 negl (n) .

Proof (sketch). The operation CNOT1,c entangles the data qubit in register M
with a random subset of the trap qubits in register T1, as dictated by c. In step 4
of Protocol 5.6, the MPC checks both for consistency of all the bits entangled by
c (they have to match the measured data) and all the bits that are not entangled
by c (they have to remain zero).

In ?? in the full version, we show that checking the consistency of a mea-
surement outcome after the application of CNOT1,c is as good as measuring the
logical state: any attacker that does not know c will have a hard time influenc-
ing the measurement outcome, as he will have to flip all qubits in positions i for
which ci = 1 without accidentally flipping any of the qubits in positions i for
which ci = 0. See the full version for a full proof that the output state in the
real and simulated case are negligibly close.

5.4 Subprotocol: Decoding

After the players run the computation subprotocols for all gates in the Clifford
circuit, all they need to do is to decode their wires to recover their output. At
this point, there is no need to check the authentication traps publicly: there is
nothing to gain for a dishonest player by incorrectly measuring or lying about
their measurement outcome. Hence, it is sufficient for all (honest) players to
apply the regular decoding procedure for the Clifford code.

Below, we describe the decoding procedure for a single wire held by one of
the players. If there are multiple output wires, then Protocol 5.8 can be run in
parallel for all those wires.
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Protocol 5.8 (Decoding) Player i holds an encoding of the state w in
the register MT1. The classical MPC holds the encoding key E in the state
register S.

1. MPC sends E to player i, removing it from the state register S.
2. Player i applies E to register MT1.
3. Player i measures T1 in the computational basis. If the outcome is not

0n, player i discards M and aborts the protocol.

Lemma 5.9. Let C be a circuit on W wires that leaves a single wire w 6 W
(intended for player i) unmeasured. Let IC be the ideal functionality for C, as
described in Definition 5.1, and let IMPQC

C be the ideal MPQC functionality for
C, as described in Definition 3.1. Let ΠDec be Protocol 5.8 for decoding wire w.
For all sets IA ( [k] of corrupted players and all adversaries A that perform the
interactions of players in IA, there exists a simulator S (the complexity of which
scales polynomially in that of the adversary) such that for all environments E,

Pr[1← (E � (ΠDec � IC)A)] = Pr[1← (E � IMPQC
C,S )].

Proof (sketch). If player i is honest, then he correctly decodes the state received
from the ideal functionality IC . A simulator would only have to compute the
adversary’s abort bit for IMPQC

C based on whether the adversary decides to abort
in either IC or the MPC computation in ΠDec.

If player i is dishonest, a simulator S runs the adversary on the input state
received from the environment before inputting the resulting state into the ideal
functionality IMPQC

C . The simulator then samples a key for the Clifford code and

encodes the output of IMPQC
C , before handing it back to the adversary. It then

simulates ΠDec by handing the sampled key to the adversary. If the adversary
aborts in one of the two simulated protocols, then the simulator sends abort to
the ideal functionality IMPQC

C .

5.5 Combining Subprotocols

We show in this section how to combine the subprotocols of the previous sections
in order to perform multi-party quantum Clifford computation.

Recalling the notation defined in Definition 3.1, let C be a quantum circuit
on W ∈ N>0 wires, which are partitioned into the players’ input registers plus an
ancillary register, as [W ] = Rin

1 t· · ·tRin
k tRancilla, and a partition into the players’

output registers plus a register that is discarded at the end of the computation,
as [W ] = Rout

1 t· · ·tRout
k tRdiscard. We assume that C is decomposed in a sequence

G1, ..., Gm of operations where each Gi is one of the following operations:

– a single-qubit Clifford on some wire j ∈ [M ];
– a CNOT on wires j1, j2 ∈ [M ] for j1 6= j2;
– a measurement of the qubit on wire j in the computational basis.
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In Sections 4 and 5.1–5.3, we have presented subprotocols for encoding single
qubits and perform these types of operations on single wires. The protocol for all
players to jointly perform the bigger computation C is simply a concatenation
of those smaller subprotocols:

Protocol 5.10 (Encoding and Clifford+measurement computation)
Let C be a Clifford + measurement circuit composed of the gates G1, . . . , Gm
on wires [W ] as described above.

1. For all i ∈ [k] and j ∈ Rin
i , run Protocol 4.2 for the qubit in wire j.

2. For all j ∈ Rancilla, run Protocol 4.2 (with the differences described
in Section 4.2).

3. For all j ∈ [m]:
(a) If Gj is a single-qubit Clifford, run Protocol 5.2 for Gj.
(b) If Gj is a CNOT, run Protocol 5.4 for Gj.
(c) If Gj is a computational-basis measurement, run Protocol 5.6 for

Gj.
4. For all i ∈ [k] and j ∈ Rout

i , run Protocol 5.8 for the qubit in wire j.

Lemma 5.11. Let ΠCliff be Protocol 5.10, and ICliff be the ideal functionality
described in Definition 3.1 for the special case where the circuit consists of (a
polynomial number of) Cliffords and measurements. For all sets IA ( [k] of
corrupted players and all adversaries A that perform the interactions of play-
ers in IA with Π, there exists a simulator S (the complexity of which scales
polynomially in that of the adversary) such that for all environments E,

|Pr[1← (E � ΠCliff
A )]− Pr[1← (E � ICliff

S )| 6 negl (n) .

Proof. The proof by induction on m is given in the full version.

6 Protocol: MPQC for general quantum circuits

In this section, we show how to lift the MPQC for Clifford operations (as laid
out in Sections 4 and 5) to MPQC for general quantum circuits.

The main idea is to use magic states for T gates, as described in Section 2.5.
Our main difficulty here is that the magic states must be supplied by the pos-
sibly dishonest players themselves. We solve this problem in Section 6.1 and
then in Section 6.2, we describe the MPQC protocol for universal computation
combining the results from Sections 5 and 6.1.

6.1 Magic-state distillation

We now describe a subprotocol that allows the players to create the encoding of
exponentially good magic states, if the players do not abort.

Our subprotocol can be divided into two parts. In the first part, player 1 is
asked to create many magic states, which the other players will test. After this
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step, if none of the players abort during the testing, then with high probability
the resource states created by player 1 are at least somewhat good. In the sec-
ond part of the subprotocol, the players run a distillation procedure to further
increase the quality of the magic states.

Protocol 6.1 (Magic-state creation) Let t be the number of magic states
we wish to create. Let ` := (t+ k)n.

1. Player 1 creates ` copies of |T〉 and encodes them separately using Pro-
tocol 4.2 (jointly with the other players).

2. MPC picks random disjoint sets S2, . . . , Sk ⊆ [`] of size n each.
3. For each i ∈ 2, . . . , k, player i decodes the magic states indicated by Si

(see Protocol 5.8), measures in the {|T〉 ,
∣∣T⊥〉}-basis and aborts if any

outcome is different from |T〉 .
4. On the remaining encoded states, the players run Protocol 5.10 for multi-

party computation of Clifford circuits (but skipping the input-encoding
step) to perform the magic-state distillation protocol described in Pro-
tocol 2.8. Any randomness required in that protocol is sampled by the
classical MPC.

We claim that Protocol 6.1 implements the following ideal functionality for
creating t magic states, up to a negligible error:

Definition 6.2 (Ideal functionality for magic-state creation). Let t be
the number of magic states we wish to create. Let IA ( [k] be a set of corrupted
players.

1. For every i ∈ IA, player i sends a bit bi to the trusted third party.
(a) If bi = 0 for all i, the trusted third party samples t random (n+ 1)-qubit

Clifford Ej for 1 6 j 6 t, and sends Ej(|T〉 ⊗ |0n〉) to Player 1.
(b) Otherwise, the trusted third party sends abort to all players.

2. Store the keys Ej, for 1 6 j 6 t in the state register S of the ideal function-
ality.

Lemma 6.3. Let ΠMS be Protocol 6.1, and IMS be the ideal functionality de-
scribed in Definition 6.2. For all sets IA ( [k] of corrupted players and all
adversaries A that perform the interactions of players in IA with Π, there ex-
ists a simulator S (the complexity of which scales polynomially in that of the
adversary) such that for all environments E,∣∣Pr[1← (E � ΠMS

A )]− Pr[1← (E � IMS
S )

∣∣ 6 negl (n) .

We prove this lemma in the full version.

6.2 MPQC protocol for universal quantum computation

Finally, we present our protocol for some arbitrary quantum computation. For
this setting, we extend the setup of Section 5.5 by considering quantum circuits
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C = Gm...G1 where Gi can be single-qubit Cliffords, CNOTs, measurements or,
additionally, T gates.

For that, we will consider a circuit C ′ where each gate Gi = T acting on
qubit j is then replaced by the T-gadget presented in Figure 1, acting on the
qubit j and a fresh new T magic state.

Protocol 6.4 (Protocol for universal MPQC) Let C be a polynomial-
sized quantum circuit, and t be the number of T-gates in C.

1. Run Protocol 6.1 to create t magic states.
2. Run Protocol 5.10 for the circuit C ′, which is equal to the circuit C,

except each T gate is replaced with the T-gadget from Figure 1.

Theorem 6.5. Let ΠMPQC be Protocol 6.4, and IMPQC be the ideal functionality
described in Definition 3.1. For all sets IA ( [k] of corrupted players and all
adversaries A that perform the interactions of players in IA with Π, there exists a
simulator S (the complexity of which scales polynomially in that of the adversary)
such that for all environments E,

|Pr[1← (E � ΠMPQC
A )]− Pr[1← (E � IMPQC

S )| 6 negl (n) .

Proof. Direct from Lemmas 6.3 and 5.11.

6.3 Round Complexity and MPC Calls

Recall that we are assuming access to an ideal (classical) MPC functionality
defined in Definition 2.1. One MPC call can produce outputs to all players si-
multaneously. In this section, we analyze the number of rounds of quantum
communication, and the number of calls to the classical MPC. The actual im-
plementation of the classical MPC is likely to result in additional rounds of
classical communication.

In the way we describe it, Lemma 4.2 encodes a single-qubit input (or an an-
cilla |0〉 state) using k rounds of quantum communication and O(1) MPC calls.
Note that this protocol can be run in parallel for all input qubits per player, si-
multaneously for all players. Hence, the overall number of communication rounds
for the encoding phase remains k, and the total number of calls to the MPC is
O(w) where w is the total number of qubits.

Lemma 5.2 for single-qubit Cliffords, Lemma 5.6 for measuring in the com-
putational basis and Lemma 5.8 for decoding do not require quantum commu-
nication and use O(1) MPC calls each, whereas Lemma 5.4 for CNOT requires
at most k + 2 rounds of quantum communication, and makes O(1) MPC calls.
Overall, Lemma 5.10 for encoding and Clifford+measurement computation re-
quire O(dk) rounds of quantum communication and O(w+ g) calls to the MPC,
where d is the CNOT-depth of the quantum circuit, and g is the total number
of gates in the circuit.

Lemma 6.1 for magic-state creation encodes ` := (t + k)n qubits in paral-
lel using k rounds of quantum communication (which can be done in parallel
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with the actual input encoding) and O((t + k)n) MPC calls. Then a circuit
of size pdistill(n) and CNOT-depth ddistill(n) classically controlled Cliffords and
measurements is run on each of the t blocks of n qubits each, which can be
done in parallel for the t blocks, requiring O(k · ddistill(n)) rounds of quantum
communication and O(tn · pdistill(n)) calls to the MPC.

Eventually, all T-gate operations in the original circuit C are replaced by
the T-gadget from Figure 1, resulting in one CNOT and classically controlled
Cliffords. Overall, our Lemma 6.4 for universal MPQC requires O(k ·(ddistill(n)+
d)) rounds of quantum communication and O(tn · pdistill(n) +w+ g) calls to the
classical MPC, where d is the {CNOT,T}-depth of the circuit, w is the total
number of qubits and g is the total number of gates in the circuit.

We notice that instead of evaluating each Clifford operation gate-by-gate, we
could evaluate a general w-qubit Clifford using O(k) rounds of quantum com-
munication, similarly to the CNOT protocol. This could improve the parameter
d to be the T depth of the circuit, at the cost of requiring significantly more
communication per round.
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