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Abstract. Zero-knowledge (ZK) proofs (ZKP) have received wide at-
tention, focusing on non-interactivity, short proof size, and fast verifica-
tion time. We focus on the fastest total proof time, in particular for large
Boolean circuits. Under this metric, Garbled Circuit (GC)-based ZKP
(Jawurek et al., [JKO], CCS 2013) remained the state-of-the-art tech-
nique due to the low-constant linear scaling of computing the garbling.
We improve GC-ZKP for proof statements with conditional clauses. Our
communication is proportional to the longest branch rather than to
the entire proof statement. This is most useful when the number m of
branches is large, resulting in up to factor m× improvement over JKO.
In our proof-of-concept illustrative application, prover P demonstrates
knowledge of a bug in a codebase consisting of any number of snippets of
actual C code. Our computation cost is linear in the size of the code-
base and communication is constant in the number of snippets. That is,
we require only enough communication for a single largest snippet!
Our conceptual contribution is stacked garbling for ZK, a privacy-free
circuit garbling scheme that can be used with the JKO GC-ZKP protocol
to construct more efficient ZKP. Given a Boolean circuit C and computa-
tional security parameter κ, our garbling is L ·κ bits long, where L is the
length of the longest execution path in C. All prior concretely efficient
garbling schemes produce garblings of size |C|·κ. The computational cost
of our scheme is not increased over prior state-of-the-art.
We implement our GC-ZKP and demonstrate significantly improved
(m× over JKO) ZK performance for functions with branching factor m.
Compared with recent ZKP (STARK, Libra, KKW, Ligero, Aurora, Bul-
letproofs), our scheme offers much better proof times for larger circuits
(35-1000× or more, depending on circuit size and compared scheme).
For our illustrative application, we consider four C code snippets, each
of about 30-50 LOC; one snippet allows an invalid memory dereference.
The entire proof takes 0.15 seconds and communication is 1.5 MB.

Keywords: Garbled circuits, inactive branch elimination, ZK, proof of C bugs.

1 Introduction

Zero-knowledge (ZK) proofs (ZKP) have a number of practical applica-
tions; reducing their cost is an active research direction. Many efficient



schemes were recently proposed, focusing on small proofs and fast ver-
ification. These works are largely motivated by blockchain applications
[AHIV17,BCR+19,BBB+18,WTs+18,XZZ+19,BBHR19, etc.] and also by post-
quantum signatures [CDG+17,KKW18].

Our focus, in contrast, is on the classical setting of fastest total proof time,
including (possibly interactive) proof generation, transmission, and verification.
In this total-time metric, Yao’s garbled circuits (GC) is the fastest and one of
the most popular techniques for proving general NP statements (expressed as
Boolean circuits) in ZK. GC offers low-overhead linear prover complexity, while
other techniques’ provers are either superlinear or have high constants.

[JKO13] and [FNO15] demonstrate how to use GC for ZK without the costly
cut-and-choose technique, while [ZRE15] proposes an efficient garbling technique
that requires only 1 cryptographic ciphertext per AND gate in the ZK setting.
As a result, GC-ZKP can process 20 million AND gates per second or more on a
regular laptop (XOR gates are essentially free [KS08]). Unfortunately, while the
computational cost of GC-ZKP is low, the communication is high. Even a fast
1Gbps LAN can support only ≈ 6 million AND gates per second (XOR gates are
free in communication). While this rate is higher than all recent NIZK systems,
further communication improvements would make the approach even stronger.

In this work we achieve such a communication improvement. We reduce the
cost of sending a GC when the proof statement contains logically disjoint clauses
(i.e. conditional branches in if or switch constructs). In particular, if a logical
statement contains disjoint clauses, then the cost to transmit the GC is bounded
by the size of the largest clause rather than the total size of all clauses.

Our key idea is that the proof verifier (who is the GC generator) garbles
from seeds all the clauses and then XORs together, or stacks, the garblings
before sending them to the prover for evaluation. The prover receives via OT
the seeds for the inactive clauses, reconstructs their garblings, and then XORs
them out to obtain the target clause’s garbling. By stacking the garblings, we
decrease the cost to transmit the GC from the verifier to the prover.

In Section 3, we formally present our approach as a garbling scheme, which we
call Privacy-Free Stacked (PFS) garbling. Accompanying proofs are in Section 4.
We implement our approach in C++ and evaluate its performance against state-
of-the-art techniques in Section 6 (see also discussion in Section 1.6).

1.1 Use Cases: Hash Trees and Existence of Bugs in Program Code

Our technique is useful for proving in ZK one of several statements.
Consider proving arbitrary statements in ZK, represented as Boolean circuits.

These can be straightline programs or, more generally and quite typically, will
include logical combinations of basic clauses. Several lines of work consider ZK of
general functions, including MPC-in-the-head, SNARKs/STARKs, JKO, Sigma
protocols [CDS94]; the latter specifically emphasizes proving disjoint statements,
e.g., [Dam10,CDS94,CPS+16,GK14].

We now briefly present our two main applications (cf. Sections 6 and 7):
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App 1: Existence of Bugs. Our most exciting application allows a prover
P to demonstrate knowledge of a bug in a potentially large codebase. We stress
that ours is not a full-strength automated application, but rather a proof of
concept. Still, we are able to handle C code with pointers, standard library calls,
and simple data structures (see Section 7).

We consider a number of code snippets motivated by real code used in operat-
ing systems, standard algorithms, etc. The snippets we consider contain between
30 and 50 lines of code, but this number can be easily increased. We manually
instrument each snippet with program assertions. Each snippet outputs a single
bit that indicates if any assertion failed, and hence whether there is a bug.

We used and extended the EMP toolkit [WMK16] to compile instrumented
snippets to Boolean circuits. Now, P can demonstrate she knows an input to a
snippet, resulting in output 1. We envision that the mechanical tasks of instru-
menting a codebase and splitting it into snippets will be automated in a practical
tool; we leave further development as important and imminent future work.

Our approach excels in this use case because it features (1) high concrete
performance and (2) communication that is constant in the number of code
snippets. We further elaborate on this use case in Section 7.

App 2: Merkle Tree Membership. We wish to compare the performance
of our PFS garbling to recent ZKP systems. We therefore consider a typical
application considered in the literature: proof of membership in a Merkle tree.

Specifically, Alice wishes to assert properties of her record R embedded in
a certificate signed by one of several acceptable authorities (CAs). Each CA Ai
includes a number of different players’ records Ri1, ..., Rin in a Merkle tree, and
securely publishes its root. Alice receives her record Rkj (which may embed a
secret) and the Merkle tree hashes on the path to root. Now, Alice can prove
statements in ZK about Rkj with respect to any set of the published roots. CAs
may use different hash functions for Merkle trees, or, in general, differ in other
aspects of the proof, thus creating a use case for proving one of many clauses. In
Section 6, we compare our performance to recent work based on this use case.

1.2 Key Contributions

• Conceptual contribution: A novel GC technique, which we call stacked, or
PFS, garbling, requiring garbled material linear in the longest execution path,
rather than in the full size of the circuit. Specifically, the same material sent
from the verifier to the prover can represent the execution of any of the
disjoint clauses. Note, Free IF technique [Kol18] does not work in our setting.
• High concrete performance, improving over the state-of-the art baseline

(JKO+half-gates) approximately by the function branching factor; improve-
ment over recent SNARKs is 35× – 1000× or more, depending on function
size, branching, and compared scheme. Our technique has low RAM require-
ments (146 MB for 7M gate circuit).
• A proof of concept system that allows proving knowledge of a bug in C code.

We use realistic C code snippets, which include pointers and standard library
calls, and prove a bug related to incorrect use of sizeof() on a pointer.

3



1.3 Preliminaries

Free IF review: First, we review Kolesnikov’s Free IF approach [Kol18]. Free IF
decouples circuit topology (i.e. wire connections among the gates) from cryp-
tographic material used to evaluate gates (i.e. encrypted gate tables). While a
topology is needed to evaluate a circuit, it is assumed to be conveyed to the eval-
uator, Eval, separately from the garbled tables, or by implicit agreement between
the participants Eval and GC generator Gen.

Let S = {C1, ..., Cm} be a set of Boolean circuits. Let (only) Gen know which
circuit in S is evaluated, and let Ct be this target circuit. The key idea of [Kol18]
is that Gen constructs cryptographic material for Ct, but does not construct
material for the other circuits. Let Ĉ be the constructed cryptographic material.
The circuits in S may have varying topologies, but Ĉ is a collection of garbled
tables that can be interpreted as the garbling of any of these topologies. Eval
knows S, but does not know which circuit is the target. For each Ci ∈ S, Eval
interprets Ĉ as cryptographic material for Ci and evaluates, obtaining garbled
output. Only the output labels of Ct encrypt truth values; the other output labels
are garbage. Eval cannot distinguish the garbage labels from the valid labels, and
hence cannot distinguish which of the circuits in S is the target circuit Ct.

Next, Eval obliviously propagates (only) the target output labels to Gen via
an output selection protocol. As input to the protocol, Eval provides all output
labels (including the garbage outputs), and Gen provides the index t as well
as Ct’s zero labels on output wires. The output selection protocol outputs (re-
encoded) labels corresponding to the output of Ct.

While our technique is different, PFS garbling is inspired by the key ideas
from Free IF: (1) Separating the topology of a circuit from its garbled tables and
(2) using the same garbling to securely evaluate several topologies.

Superficially, both [Kol18] and we omit inactive clauses when one of the
players (Gen in [Kol18] and Eval in our work) knows the target clause. Indeed, in
GC ZK, Gen must not know the evaluated branch. This is a critical distinction
that requires a different approach. We present this new approach in this work.

Garbled Circuits for Zero Knowledge: Until the work of Jawurek et al. [JKO13],
ZK research focused on proofs of algebraic statements. Generic ZKP techniques
were known, but were based on generic NP reductions and were inefficient.
[JKO13] provides an efficient generic ZKP technique based on garbled circuits.

The construction works as follows: The Verifier, V, and the Prover, P, run a
passively-secure Yao’s GC protocol, where V acts as the circuit generator and P
acts as the circuit evaluator. The agreed upon Boolean circuit, C, is an encoding
of the proof relation where (1) the input is a witness supplied by P, (2) the
output is a single bit, and (3) if the output bit is 1, then the witness satisfies
the relation. V garbles C and sends the garbling to P. P evaluates the GC and
sends V the output label. The security of Yao’s protocol (namely the authenticity
property [BHR12]) ensures that a computationally bounded P can only produce
the correct output label by running the circuit with a valid witness as input. By
computing C, P and V have achieved a ZK proof in the honest verifier setting.
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A malicious V can violate ZK security by sending an invalid circuit or invalid
OT inputs, which can leak P’s inputs. [JKO13] solves this as follows: P does
not immediately send the output label to V, but instead commits to it. Then V
sends the seed used to generate the GC. P uses the seed to verify that the GC
was honestly constructed. If so, P can safely open the commitment to the output
label, completing the proof. [JKO13] consider a generalization of the above that
does not require V to construct GCs from seeds. Instead, they define the no-
tion of verifiable garbling. Verifiability prevents V from distinguishing different
witnesses used by the prover, and therefore from learning something about P’s
input. Specifically, a garbling scheme is verifiable if there is a verification proce-
dure such that even a malicious V cannot create circuits that both (1) satisfy the
procedure and (2) output different values depending on the evaluator’s witness.

In this work, we deal with explicit randomness and generate GCs from seeds.
It is possible to generalize our work to the verifiable formulation of [JKO13].

Subsequent to the [JKO13] work, [FNO15] observes that weaker privacy-free
garbling schemes are sufficient for the ZK construction of [JKO13]. [FNO15]
construct a more efficient privacy-free garbling, whose cost is between 1 and
2 ciphertexts per AND gate. Zahur et al. [ZRE15] present a privacy-free vari-
ant of their half gates scheme, which requires only 1 ciphertext per AND gate,
and is compatible with the JKO/FNO schemes. In our implementation, we use
these state-of-the-art constructions. Because our work leverages the protocol
from [JKO13], we will include their protocol in the full version of this paper.

1.4 High-level Approach

Our main contribution is a new ZKP technique in the [JKO13] paradigm. The
key characteristic of our construction is that for proof relations with disjoint
clauses (i.e. conditional branches), communication is bounded by the size of the
largest clause rather than the total size of the clauses. In Section 3, we present
our approach in technical detail as a garbling scheme which can be plugged into
the [JKO13] protocol. For now, we explain our approach at a high level.

Consider the proof of a statement represented by a Boolean circuit C with
conditional evaluation of one of several clauses. In Section 1.3, we reviewed exist-
ing work that demonstrates how to efficiently evaluate C if the circuit generator
knows the active clause. However, the [JKO13] ZK approach requires the gen-
erator to be V. Unfortunately, V has no input and therefore does not know the
target clause. Instead, P must select the target clause.

As a näıve first attempt, P can select 1-out-of-m garbled circuits via OT.
However, this involves transferring all GC clauses, resulting in no improvement.

Instead, we propose the following idea, inspired by a classic two-server pri-
vate information retrieval approach [CGKS95].1 Let S = {C1, .., Cm} be the set
of circuits implementing clauses of the ZK relation. Let Ct ∈ S be the target
1 [CGKS95] includes a PIR protocol where two non-colluding servers separately re-

spond to a client’s two random, related queries by XORing elements of their result
sets (and the client XORs out the true answer).
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clause that P wants to evaluate. For simplicity, suppose all clauses Ci are of the
same size, meaning that they each generate GCs of equal size. Our approach
naturally generalizes to clauses of different sizes (we discuss this in more detail
in Section 3.7). The players proceed as follows.

V generates m random seeds s1..sm and generates from them m GCs, Ĉ1..Ĉm.
V then computes Ĉ =

⊕
Ĉ1..Ĉm and sends Ĉ to P. Informally, computing Ĉ can

be understood as stacking the different garbled circuits for space efficiency.
The key idea is that we will allow P to reconstruct (from seeds received via

OT) all but one of the stacked GCs and then XOR these reconstructions out to
retrieve the target GC, which P can evaluate with the witness she has. We must
prevent P from receiving all m GCs and thus forging the proof. To do so, we
introduce the notion of a ‘proof of retrieval’ string por. P receives por via OT
only when she does not choose to receive a clause seed. P proves that she has not
forged the proof by showing that she knows por. This is put together as follows.

V generates a random proof of retrieval string por. For each i ∈ {1..m},
the players run 1-out-of-2 OT, where V is the sender and P is the receiver.
Players use committing OT for this phase [KS06]. For the ith OT, V’s input
is a pair (si,por). P selects 0 as her input in all instances, except for instance
t, where she selects 1. Therefore P receives por and seeds si 6=t, from which P
can reconstruct all GCs Ĉi 6=t. P reconstructs the garbled material for the target
clause by computing Ĉt = Ĉ ⊕ (

⊕
i6=t Ĉi).

Now, P received the garbling of the target clause, but we have not yet de-
scribed how P receives input encodings for the target clause. We again simplify
by specifying that each clause must have the same number, n, of input bits. Our
approach generalizes to clauses with different numbers of inputs, as we discuss
in Section 3.7. V’s random seed si is used to generate the n pairs of input labels
for each corresponding clause Ĉi. Let Xi be the vector of n label pairs used to
encode the input bits for clause i. V generates m such vectors, X1..Xm. As an op-
timization similar to stacking the garbled circuits, V computes X =

⊕
X1..Xm.

V and P now perform n committing 1-out-of-2 OTs, where in each OT V provides
the two (stacked) possible input labels for a bit (a label corresponding to 0 and
to a 1) and P provides the bit for that input. P uses the seeds obtained in the
first step to reconstruct each Xi 6=t and computes Xt = X ⊕ (

⊕
i 6=tXi).

P now has the garbling Ĉt and appropriate input labels Xt. Therefore, P
can evaluate Ĉt with the input labels and receive a single output label Yt. For
security, we must prevent V from learning t, so we must hide which clause P
received output from. We accomplish this by allowing P to compute the correct
output label for every clause. Recall that P has the seeds for every non-target
clause. P can use the garblings constructed from these seeds to obtain the output
labels Yi6=t. P computes Y = por ⊕ (

⊕
Y1..Ym) and commits to this value (as

suggested in [JKO13]). Next, V opens all commitments made during rounds of
OT. From this, P checks that por is consistent across all seed OTs and obtains
the final seed st. P checks that the circuits are properly constructed by regarbling
them from the seeds (and checking the input labels and garbled material) and,
if so, completes the proof by opening the output commitment.
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1.5 Generality of top-level clauses

Our approach optimizes for top-level clauses. That is, possible execution paths
of the proof relation must be represented by separate clauses. Top-level clauses
are general: Even nested conditionals can be represented by performing program
transformations that lift inner conditionals into top-level conditionals.

Unfortunately, over-optimistically lifting conditionals can sometimes lead to
an exponential number of clauses. In particular, if two conditionals occur se-
quentially in the relation, then the number of possible execution paths is the
product of the number of paths through both conditionals. Of course, it is not
necessary to fully lift all conditionals in a program; individual clauses can include
(unstacked) conditional logic. Our approach will yield improvement for any sep-
aration of top level clauses. Improving the described protocol to handle nested
and sequential conditionals directly is a potential direction for improvement.

We emphasize that the notion of top-level clauses matches nicely with the
target use case of proving the existence of program bugs: Programs can be split
into various snippets, each of which may contain a bug. Each snippet can then
be presented as a top-level proof clause.

1.6 Related Work

Our work is a novel extension of GC-based ZK [JKO13] which we reviewed in
Section 1.3. Here we review other related work and provide brief comparisons
in Section 1.7. We focus on recent concrete-efficiency protocols.

ZK. ZKP [GMR85,GMW91] is a fundamental cryptographic primitive. ZK
proofs of knowledge (ZKPoKs) [GMR85,BG93,DP92] allow a prover to convince
a verifier, who holds a circuit C, that the prover knows an input, or witness,
w for which C(w) = 1. There are several flavors of ZK proofs. In this work we
do not distinguish between computational and information-theoretic soundness,
and thus refer to both arguments and proofs simply as ‘proofs.’

ZK proofs were investigated both theoretically and practically in largely
non-intersecting bodies of work. Earlier practical ZK protocols focused on al-
gebraic relations, motivated mainly by signatures and identification schemes,
e.g. [Sch90,CDS94]. More recently, these two directions have merged. Today,
ZKPoKs and non-interactive ZKPoK (NIZKPoK) for arbitrary circuits are effi-
cient in practice. Two lines of work stand out:

Garbled RAM combines GC with ORAM to repeatedly perform individual pro-
cessor cycles instead of directly computing the program as a circuit [LO13].
Because the circuit needed to handle a cycle has fixed size, this groundbreaking
technique has cost proportional to the program execution rather than to the
full program. Garbled RAM must interface the GC with ORAM, making it not
concretely efficient. While our approach is not as general as Garbled RAM, we
achieve high concrete efficiency for conditions.
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Efficient ZK from MPC. Ishai et al. (IKOS) [IKOS07], introduced the ‘MPC-in-
the-head’ approach. Here, the prover emulates MPC evaluation of C(w) among
several virtual players, where w is secret-shared among the players. The verifier
checks that the evaluation outputs 1 and asks the prover to open the views of
some virtual players. A prover who does not have access to w must cheat to
output 1; opening random players ensures a cheating prover is caught with some
probability. At the same time, ZK is preserved because (1) not all virtual players
are opened, (2) the witness is secret shared among the virtual players, and (3)
MPC protects the inputs of the unopened virtual players.

Based on the IKOS approach, Giacomelli et al. [GMO16] implemented a pro-
tocol called ZKBoo that supports efficient NIZKPoKs for arbitrary circuits. Con-
currently, Ranellucci et al. [RTZ16] proposed a NIZKPoK with similar asymp-
totics. Chase et al. [CDG+17] introduced ZKB++, which improves the perfor-
mance of ZKBoo; they also showed that ZKB++ could be used to construct
an efficient signature scheme based on symmetric-key primitives alone. Katz et
al. [KKW18] further improved the performance of this approach by using MPC
with precomputation. A version of the [CDG+17] scheme called Picnic [ZCD+17]
was submitted to the NIST post-quantum standardization effort. The Picnic sub-
mission was since updated and is now based on [KKW18].

Ligero [AHIV17] offers proofs of length O(
√
|C|), and asymptotically outper-

forms ZKBoo, ZKB++ and [KKW18] in communication. The break-even point
between [KKW18] and Ligero depends on function specifics, and is estimated in
[KKW18] to be ≈ 100K gates.

SNARKs/STARKs. Succinct non-interactive arguments of knowledge (SNARK)
[GGPR13,PHGR13,BCG+13,CFH+15,Gro16] offer proofs that are particularly
efficient in both communication and verification time. They construct proofs
that are shorter than the input itself. Prior work demonstrated the feasibility
of ZK proofs with size sublinear in the input [Kil92,Mic94], but were concretely
inefficient. Earlier SNARKs require that their public parameters be generated
and published by some semi-trusted party. This disadvantage motivated devel-
opment of STARKs (succinct transparent arguments of knowledge) [BBHR18].
STARKs do not require trusted set up and rely on more efficient primitives.
STARKs are succinct ZKP, and thus are SNARKs. In this work, we do not sep-
arate them; rather we see them as a body of work focused on sublinear proofs.
Thus, Ligero [AHIV17], which is an MPC-in-the-head ZKP, is a SNARK.

In our comparisons, we focus on JKO, [KKW18], and recent SNARKs Ligero,
Aurora, Bulletproofs [BBB+18], STARK [BBHR19], and Libra [XZZ+19].

1.7 Comparison with prior work

We present detailed experiment results in Section 6; here we reiterate that our
focus and the main metric is fastest total proof time, including (possibly interac-
tive) proof generation, transmission and verification. In this total-time metric,
GC is the fastest technique for proving statements expressed as Boolean cir-
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cuits. This is because GC offers low-overhead linear prover complexity, while
other techniques’ provers are superlinear, have high constants, or both.

In Section 1.1, we presented an exciting application where a prover demon-
strates knowledge of a program bug. However, for comparison with prior work,
the Merkle hash tree evaluation is most convenient, since many other works
report on it. In Section 6, we implement our GC-ZK of Merkle hash tree and
compare the results to JKO (which we reimplement as JKO was measured on
older hardware), as well as to a variety of modern ZKP systems: KKW, Ligero,
Aurora, Bulletproofs, STARK, and Libra.

As expected, our total time is improved over [JKO13] by a factor approxi-
mately equal to the branching factor. Indeed, our communication cost is linear
in the longest execution path, while [JKO13,KKW18] are linear in |C|, and our
constants are similar to that of [JKO13] and significantly smaller than [KKW18].

Our total time outperforms current SNARKS by 35× – 1, 000× or more. Like
JKO, and unlike KKW and SNARKs, our technique is interactive and requires
higher bandwidth.

2 Notation

The following are variables related to a given disjoint proof statement:

• t is the target index. It specifies the clause for which the prover has a witness.
• m is the number of clauses.
• n is the number of inputs. Unless stated otherwise, each clause has n inputs.

We simplify much of our notation by using ⊕ to denote a slight generalization
of XOR: Specifically, if one of the inputs to XOR is longer than the other, the
shorter input is padded by appending 0s until both inputs have the same length.
We use

⊕
xi..xj as a vectorized version of this length-aware XOR:⊕

xi..xj = xi ⊕ xi+1 ⊕ . . . xj−1 ⊕ xj

We discuss in Section 3.7 that this generalization is not detrimental to security
in the context of our approach.

x || y refers to the concatenation of strings x and y. We use κ as the compu-
tational security parameter. We use V , he, him, his, etc. to refer to the verifier
and P , she, her, etc. to refer to the prover. We use . for namespacing; pack.proc
refers to a procedure proc defined as part of the package pack.

3 Our Privacy-Free Stacked Garbling Construction

We optimize the performance of ZK proofs for circuits that include disjoint
clauses. In this section, we present our approach in technical detail.

We present our approach as a verifiable garbling scheme [BHR12,JKO13].
A verifiable garbling scheme is a tuple of functions conforming to a specific
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1 Proc Stack.Gb (1κ, f, R):
2 (f1..fm)← f
3 (por||s1..sm)← R
4 for i ∈ 1..m do
5 (Fi, ei, di)← Base.Gb (1κ, fi, si)
6 F ← f ||

(⊕
F1..Fm

)
7 d← por⊕

(⊕
d1..dm

)
8 e← por||s1..sm||e1..em
9 return (F, e, d)

1 Proc Stack.En (e, x):
2 (por || s1..sm || e1..em)← e
3 (t || xt)← x
4 for i ∈ 1..m do
5 if i 6= t then
6 ri ← si
7 else
8 ri ← por
9 Xi ← Base.En(ei, xt)

10 X ← r1..rm ||
(⊕

X1..Xm
)

11 return X

1 Proc Stack.De (Y, d):
2 y ← Y = d
3 return y

1 Proc Stack.ev (f, x):
2 (f1..fm)← f
3 (t || xt)← x
4 y ← Base.ev (ft, xt)
5 return y

1 Proc Stack.Ev (F,X, x):
2 (f1..fm || F )← F
3 (r1..rm || X)← X
4 (t || xt)← x
5 for i ∈ 1..m do
6 if i 6= t then
7 (Fi, ei, di)← Base.Gb (1κ, fi, ri)
8 Xi ← Base.En (ei, xt)
9 else

10 (Fi, di, Xi)← (0,0,0)
11 Ft ← F ⊕

(⊕
F1..Fm

)
12 Xt ← X ⊕

(⊕
X1..Xm

)
13 Yt ← Base.Ev (Ft, Xt)
14 Y ← Yt ⊕

(⊕
d1..dm

)
⊕ rt

15 return Y

1 Proc Stack.Ve (f, F, e):
2 (por || s1..sm || ·)← e
3 (F ′, e′, d′)←

Stack.Gb (1κ, f, por || s1..sm)
4 return e = e′ ∧ F = F ′

Fig. 1. PFS garbling scheme Stack. Stack is defined as six procedures: Stack.Gb,
Stack.Ev, Stack.ev, Stack.En, Stack.De, and Stack.Ve.

interface and satisfying certain properties such that protocols can be defined
with the garbling scheme left as a parameter. Thus, new garbling schemes can
be easily plugged into existing protocols. That is, a garbling scheme does not
specify a protocol. Instead, it specifies a modular building block.

We specify an efficient verifiable garbling scheme, where the function encod-
ing, F , is proportional to the longest program execution path, rather than to
the entire program2. Our scheme satisfies the security properties required by ex-
2 To be more precise, in the notation of Kolesnikov [Kol18], the function encoding
F = (T,E) consists of function topology T (thought of as the Boolean circuit)
and cryptographic material E (e.g., garbled tables). In our work, the cryptographic
material E is proportional to the longest execution path.

For the reader familiar with the BHR notation, we provide the following discus-
sion. In BHR, the function encoding F must (implicitly) include a full description
of the function, i.e., it must include a description of each clause. In this sense, F is
also proportional to the full size of the function. However, compared to the crypto-
graphic material needed for the longest clause, this function description (which can
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isting ZK constructions [JKO13,FNO15]. This results in an efficient ZK scheme
whose communication is proportional to the longest program execution path.

A verifiable garbling scheme is a tuple of six algorithms:

(ev,Gb,En,Ev,De,Ve)

The first five algorithms define a garbling scheme [BHR12], while the sixth adds
verifiability [JKO13]. In the ZK context, a garbling scheme can be seen as a
specification of the functionality computed by V and P. Loosely speaking, V
uses Gb to construct the garbled circuit sent to P. V defines input labels by
using En, and decodes the output label received from P by using De. P uses
Ev to compute the garbled circuit with encrypted inputs and uses Ve to check
that the circuit was honestly constructed. Finally, ev provides a reference against
which the other algorithms can be compared. The key idea is that if (1) a garbling
is constructed using Gb, (2) the inputs are encoded using En, (3) the encoded
output is computed using Ev, and (4) the output is decoded using De, then the
resulting bit should be the same as calling ev directly.

A verifiable garbling scheme must satisfy the formal definitions of correct-
ness, soundness, and verifiability. We present these definitions, as well as
formal proofs that our scheme satisfies these properties in Section 4.

Since we are primarily concerned with reducing the cost of disjoint clauses,
we can offload the remaining work (i.e. processing a single clause) to another
garbling scheme. Therefore, our scheme is parameterized over another garbling
scheme, Base. We place the following requirements on this underlying scheme:

• The scheme must be correct and sound.
• The scheme must be projective [BHR12]. In a projective garbling scheme,

each bit of the prover’s input is encoded by one of two cryptographic labels.
The truth value of that bit is used to decide which label the prover will
receive. Projectivity allows us to stack input labels from different clauses.
We can lift this requirement by compromising on efficiency: The verifier can
send an input encoding for each clause rather than a stacked encoding.

• The scheme must output a single cryptographic label and decoding must be
based on an equality check of this label. This property is important because
it allows us to stack the output labels from each clause. Again, we can lift this
requirement by compromising efficiency: The prover can send each output
label rather than the stacked value.

These requirements are reasonable and are realized by existing schemes, includ-
ing state-of-the-art privacy-free half gates [ZRE15].

In the following text, we describe our construction, the PFS verifiable garbling
scheme Stack. Pseudocode for each of our algorithms is given in Figure 1.

be thought of as a Boolean circuit C computing f) is small. Formally, the size of the
circuit description is constant in κ. Most importantly, implementations can assume
that circuit descriptions are known to both players, and therefore need not transmit
them (or treat them separately).
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3.1 Reference Evaluation

ev maps the computed function f and an input x to an output bit. Informally,
ev provides a specification that the garbled evaluation can be compared to: The
garbled evaluation should yield the same output as running ev. In our setting,
the input can be split into a clause selection index t and the remaining input.
Stack.ev delegates to Base.ev on the t-th clause. For many practical choices of
Base (including privacy-free half gates) the procedure Base.ev simply applies the
function to the input: That is, it returns f(x).

3.2 Garble

Gb maps the given function, f , to a garbled function F , an encoding string e,
and a decoding string d. At a high level, Gb corresponds to the actions taken
by V to construct the proof challenge for P. Typically, e contains input labels
(conveyed to P via OT), F contains cryptographic material needed to evaluate
the individual logic gates, and in the ZK setting d contains a single label corre-
sponding to a secret that will convince the verifier that the prover has a witness.
The objective of the prover is to use her witness to construct d.

Gb is usually described as an algorithm with implicit randomness. However,
for the purposes of our scheme it is important that Gb is explicitly parameterized
over its randomness. Gb takes as parameters the unary string 1κ, the desired
function f , and a random string, R. It generates a three-tuple of strings, (F, e, d).

At a high level, Stack.Gb (Figure 1) delegates to Base.Gb for each clause and
XORs3 the obtained garbling strings, thus reducing the GC length to that of a
single (largest) clause. First, it deconstructs f into its various clauses and ex-
tracts from the randomness (1) m different random seeds and (2) the random
string por which we refer to as the proof of retrieval. The proof of retrieval is
a security mechanism that allows our approach to cleanly interact with existing
MPC protocols. Later, in Section 3.3 we will see that the prover receives via OT
the garbling seed for each of m clauses, except for the target clause. por prevents
P from simply taking all m seeds and trivially constructing a proof (we enforce
that if P takes all seeds, then she will not obtain por). Next, each seed is used
to garble its respective clause using the underlying scheme (Stack.Gb line 5).
The cryptographic material from each clause is XORed together and concate-
nated with the function description4 (Stack.Gb line 6). This is a key step in our
approach: Since the cryptographic material has been XORed together, we have
reduced the cost of sending the garbling F compared to sending each garbling
separately. Similarly, the output labels from each clause are XORed together.
The por string is also XORed onto the latter value. Finally, the encoding string
e contains por, each random string si, and each encoding string ei.
3 As discussed in Section 2, by XOR we mean length-aware XOR, where shorter clauses

are padded with zeros so that all clauses are bitstrings of the same length.
4 Including the function description f is a formality to fit the BHR interface. In prac-

tice, f is often known to both parties and need not be explicitly handled/transmitted.
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3.3 Encode

En maps the encoding string, e, and the function input, x, to an encoded input,
X. En describes which input encoding the verifier should send to the prover.
Typically, En is implemented by OT.

Stack.En ensures that the prover receives (1) the proof of retrieval string por,
(2) each random seed si6=t, and (3) stacked garbled inputs for the target clause.
Section 3.2 described how e contains por, s1..sm, and e1..em.

First, Stack.En deconstructs e into the above parts. It also deconstructs the
circuit input into t (the target clause index) and xt (the input for the target
clause). Next, a vector of secrets, r1..rm is constructed. This vector contains
por and si 6=t. Finally, we use the underlying scheme to construct m encodings
of xt and XOR the encodings together (Stack.En line 10). Stack.En outputs the
vector of secrets and the stacked input encodings.

We remark that Stack.En defines the encoding functionality, not an imple-
mentation. As mentioned earlier, Stack.En is implemented using OT. Our imple-
mentation realizes this functionality in the following way:

• For each clause, V generates n pairs of labels, one pair for each bit and one
label for each configuration of that bit.5
• V stacks these labels, yielding n pairs of stacked labels.
• For each i ∈ 1..m, V constructs the pair (si,por).
• Now, P and V participate in m+n executions of 1-out-of-2 OT, such that P

receives por, non-target seeds, and stacked garbled inputs according to En.

By running this protocol, V obliviously transfers encoded input, including the
seeds and por, to P.

3.4 Evaluate

Ev maps an encoded function, F , and encoded inputs, X, to the encoded output,
Y . In the ZK setting we (as do [JKO13] and [FNO15]) allow Ev to take the
unencoded input, x, as a parameter (in practice Ev is run by P who knows the
witness). Informally, Ev describes the actions of the prover to construct a proof
string, given the garbling of the function and input labels.

The bulk of the work done by Stack.Ev is concerned with ‘undoing’ the stack-
ing of the encoded functions F1..Fm and of the encoded inputs X1..Xm, in order
to extract the encoded function Ft, and inputs Xt for the target clause. First,
Stack.Ev deconstructs all inputs into their constituent parts. It then uses the ran-
dom strings included in the encoded input to re-garble each non-target clause
by calling Base.Gb (Stack.Ev line 7). Note that since Base.Gb is called with the
same random strings in both Stack.Ev and Stack.Gb, the resulting encodings
5 In fact, since we use half gates we can use the Free XOR extension [KS08]. Therefore,

each clause has only one label for each input bit and one global∆ value that separates
0 bit labels from 1 bit labels. Our implementation stacks the ∆ from each clause as
part of the stacked projective garbling.
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are the same. Stack.Ev cannot call Base.Gb on the target clause because the in-
put encoding does not include the corresponding random string. Instead, rt is
the proof of retrieval por. Stack.Ev XORs out the garblings of the non-target
clauses to obtain the encoded function (Stack.Ev line 11) and encoded input
(Stack.Ev line 12) for the target clause. Now, the prover can use Ft and Xt to
compute the output Yt by calling Base.Ev. Finally, the prover XORs together Yt,
d1..dm, and por and returns the result.

3.5 Decode

De maps an encoded output, Y , and an output encoding string, d, to an unen-
coded output. In the ZK setting, both Y and d are labels encoding a single bit.
Stack.De checks that the values are the same, and if so returns 1 (and 0 if not).

3.6 Verify

Ve maps an input function f , the garbled function F , and the encoding string e
to a bit. Informally, the function should return 1 if (F, e) is correctly constructed.

Stack.Ve extracts the proof of retrieval por and input seeds s1..sm from e.
It uses these strings to garble the computed functions and checks that it indeed
matches the provided garbling.

In our implementation, we take advantage of an optimization available in
Stack.Ve. To verify V’s messages, the prover must reconstruct the garbling of
each clause. However, the prover already garbled each circuit except the target
while computing Ev, so we simply reuse these already computed values and only
garble the target during verification. This is noteworthy because our approach
not only transmits less information, it involves less computation on the part of
P as well: Under previously defined ZK garbling schemes (e.g. [ZRE15]), P must
both garble and evaluate every clause. Under our scheme the prover needs to
garble every clause, but need only evaluate the target clause.

3.7 Generalizing to Diverse Clauses

In Section 1.4, we simplified the discussion by presenting our approach as han-
dling clauses of the same size and with the same number of inputs. However,
our formal presentation does not need these simplifications. Here, we discuss
generalization to clauses with different sizes and numbers of inputs.

Our approach supports clauses of various sizes. The only implementation
detail that relates to the size of the clauses is the XOR stacking of the garbled
material from each clause (Stack.Gb line 6 and Stack.Ev line 11). In Section 2, we
describe how we use ⊕ to denote a length-aware variant of XOR (i.e. the shorter
string is padded with 0s). Therefore, there is no correctness concern with stacking
mismatched length of material. The only potential concern is security. Our proofs
formally alleviate this concern; informally, stacking material is secure because
we can safely allow the prover to obtain material for each clause Fi. Indeed, even
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sending each clause Fi separately is secure, although inefficient. Giving P access
to the garbled material provides no aid in constructing a proof. Specifically, only
having a witness and running the garbled circuit will allow P to construct the
correct Yt. Therefore, clause stacking does not hinder security.

We support clauses with different numbers of inputs. Regardless of her clause
choice t, the prover will append the input string xt with 0s until xt is appropriate
for an input of length n. This is secure for a similar reason as having crypto-
graphic material of different lengths. Our technique allows P to learn every input
encoding Xi 6=t and therefore to learn Xt. This is desirable: We must allow P to
learn Xt in order to evaluate the target clause on their input.

4 Proofs of Security

Jawurek et al. [JKO13] introduced a methodology for using garbling schemes
to build maliciously secure ZKP protocols. In this section, we prove that our
construction satisfies the [JKO13] requirements. Thus, we can directly leverage
the work of [JKO13] to construct a maliciously secure ZKP scheme with efficient
disjoint clause handling.

[JKO13] requires the garbling scheme to be correct, sound, and verifiable.
We use slightly simpler formulations of these definitions presented in [FNO15],
a follow-up work on [JKO13].

We now explicitly state the definitions of these properties in our notation. We
prove our garbling scheme Stack (Figure 1) satisfies each property (Theorems 1
to 3) if the underlying scheme Base is correct and sound (We do not require
Base to be verifiable, since we explicitly manage the scheme’s randomness).

4.1 Correctness

Correctness ensures that the prover can construct a valid proof if she, in fact, has
a valid witness. More precisely, Definition 1 states that if a garbling is constructed
by calling Gb, then Ev will always6 yield the correct output label, d, when called
with the encoding of a valid witness. Recall, we work with explicit randomness.
Thus, Gb takes a random string R as an additional input.

Definition 1 (Correctness). A garbling scheme is correct if for all n =
poly(κ), all functions f : {0, 1}n → {0, 1}, all inputs x ∈ {0, 1}n such that
ev (f, x) = 1, and all random strings R ∈R {0, 1}κ:

(F, e, d) = Gb (1κ, f, R)⇒ Ev (F,En (e, x) , x) = d

Theorem 1. If the underlying garbling scheme Base is correct, then the garbling
scheme Stack (Figure 1) is correct (Definition 1).
6 In the full version of this paper, we will discuss probabilistic correctness and the

changes to our approach that are necessary to account for this probabilistic notion.
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Proof. By correctness of the underlying garbling scheme. Stack.Gb constructs
the output label d by XORing together the output label of each clause, di, and
the proof of retrieval string, por. Therefore, it suffices to show that a prover, P ,
with satisfying input obtains each di and por. Recall that P ’s input includes the
bits that select a clause, t, concatenated with her remaining input x. We show
that she obtains each output label di and por in three steps:

1. P obtains di for all i 6= t by garbling fi. This is immediate from the fact that
P receives every seed si for i 6= t as a part of her encoded input (Stack.En,
line 6). P garbles clause fi with seed si and obtains di (Stack.Ev, line 7).

2. P obtains dt by evaluating ft on her input x. We show this in three parts:
(1) P obtains the garbling of the selected clause, Ft, (2) P obtains encoded
inputs for the selected clause, Xt, and (3) P computes dt.
First, Stack.Gb constructs the XOR sum of the garbling of each clause, Fi
(Stack.Gb, line 6). Therefore, to show that P obtains Ft, it suffices to show
that she obtains Fi for all i 6= t and F . F is given as a parameter to Stack.Ev
and so is trivially available. P obtains the garblings of all clauses Fi by
calling Stack.Gb with the seeds in her encoded input.
Second, Stack.En constructs X by XORing together the encodings of each
clause Xi (Stack.En, line 10). Similar to the previous step, P computes each
Xi by garbling clause i with si. She then uses the encoding ei to compute
Xi = Base.En (ei, x) (Stack.Ev, line 8). She XORs these encodings with X to
get the appropriate input for clause t, Xt.
Finally, P computes Yt = Base.Ev(Ft, Xt, x). The underlying garbing scheme
is correct by assumption. Therefore, Yt = dt.

3. P obtains por. This string is immediately available as rt (Stack.En line 8).

P XORs together each of these elements (Stack.Ev line 14), obtaining the output
Y which has the same value as d. That is, Stack.Ev (F,Stack.En (e, x) , x) = d.
Therefore, Stack is correct.

4.2 Soundness

Definition 2 (Soundness). A garbling scheme is sound if for all n = poly(κ),
all functions f : {0, 1}n → {0, 1}, all inputs x ∈ {0, 1}n such that ev (f, x) = 0,
and all probabalistic polynomial time adversaries A the following probability is
negligible in κ:

Pr (A (F,En (e, x) , x) = d : (F, e, d)← Gb (1κ, f))

Soundness is a more succinct version of authenticity [BHR12], restricted to
the ZK setting. Informally, soundness ensures that a prover who does not have a
valid witness cannot convince the verifier otherwise. More specifically, we require
that no malicious evaluator can extract the garbling scheme’s secret d unless she
knows an input x such that f(x) = 1.

In our garbling scheme, d combines 1-labels of all clauses and the proof of
retrieval por. We show that an adversarial P who is given (F,Stack.En (e, x) , x),
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such that Stack.ev (f, x) = 0, cannot obtain at least one of the components of d
and hence cannot output d, except with negligible probability.

Theorem 2. If the underlying garbling scheme Base is sound, then the garbling
scheme Stack (Figure 1) is sound (Definition 2).

Proof. By soundness of the underlying garbling scheme. Recall that d =
(
⊕
d1..dm) ⊕ por. That is, the output label is the XOR sum of the output

labels for each clause and the proof of retrieval. Consider an arbitrary input
(t || xt)← x, such that Stack.ev (f, x) = 0. We proceed by case analysis on t.

Suppose t is invalid (i.e., t 6∈ [1..m]) and thus Stack.En(x) outputs all seeds
s1..sm. Then by the definition of Stack.En, A will not receive por and hence
cannot construct d (except with negligible probability).

Suppose that t ∈ [1..m], i.e. t is valid. Because Stack.ev (f, x) = 0, it must be
that Base.ev (ft, xt) = 0. Now, A’s input includes the proof of retrieval por, as
well as the seeds for each clause except for clause t. Therefore, an adversary can
easily obtain each output label except dt. We must therefore demonstrate that
our scheme prevents an adversary without a witness from successfully construct-
ing dt, and thereby prevent construction of d. dt is independent of all values in
the scheme except for the values related to the clause itself: st, ft, Ft, Xt, and et.
By assumption, Base is sound. Therefore, since xt is not a witness for clause t, the
adversary cannot obtain dt (except with negligible probability), and therefore
cannot construct d (except with negligible probability).

Therefore Stack is sound.

4.3 Verifiability

Definition 3 (Verifiability). A garbling scheme is verifiable if there exists
an expected polynomial time algorithm Ext such that for all x where f(x) = 1,
the following probability is negligible in κ:

Pr (Ext(F, e) 6= Ev(F,En(e, x), x) : (F, e, ·)← A(1κ, f),Ve(f, F, e) = 1)

Informally, verifiability prevents even a malicious verifier from learning the
prover’s inputs. In the ZK protocol, the prover checks the construction of the
garbling via Ve. Verifiability ensures that this check is reliable. That is, it guar-
antees that if f(x) = 1, then the output value Ev (F,En (e, x) , x) is unique and
moreover can be efficiently extracted given the encoding. This implies that the
verifier has access to the secret d ahead of time. Therefore, V learns nothing by
receiving d from the prover, except for the fact that f(x) = 1. This holds also for
maliciously generated circuits, as long as they pass the verification procedure.

Theorem 3. If the underlying garbling scheme Base is correct, then the garbling
scheme Stack is verifiable (Definition 3).

Proof. By correctness of Stack. Let (F ′, e′) be a garbling of f constructed by A.
Let x satisfy f(x) = 1. Let Y be the value obtained by evaluating this garbling:

Y = Ev (F ′,En (e′, x) , x)
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1 Proc Stack.Ext (F, e):
2 (f1..fm || ·)← F
3 (por || s1..sm || ·)← e
4 (·, ·, d)← Stack.Gb (1κ, f1..fm, por || s1..sm)
5 return d

Fig. 2. The Stack.Ext algorithm that demonstrates verifiability of Stack.

Let R be the randomness included in e′ (i.e. R = por || s1..sm). Let (F, e, d) be
the result of calling Stack.Gb on this randomness:

(F, e, d) = Stack.Gb (1κ, f, R)

We first claim that Y must be equal to d.
Suppose not, i.e. suppose Y 6= d. By correctness (Theorem 1), Ev always re-

turns d; therefore it must be the case that (F ′, e′) is different from (F, e), i.e. ei-
ther F ′ 6= F or e′ 6= e. But if so, Stack.Ve would have returned 0 (Stack.Ve line 4).
Verifiability assumes that Stack.Ve returns 1, so we have a contradiction. There-
fore Y = d.

Now, we must prove that there exists a poly-time extraction algorithm
Stack.Ext, which probabilistically extracts the output label from (F ′, e′). This
construction and proof is immediate: Stack.Ext delegates to Stack.Gb. Namely
(see Figure 2 for full description of Stack.Ext), on input (F, e), Stack.Ext parses
(R, ·) ← e′, runs (·, ·, d) ← Stack.Gb (1κ, f, R) and outputs d. We have already
shown that d constructed this way satisfies Y = d.

Therefore Stack is verifiable.

5 Instantiating Our Scheme

We built our implementation on the publicly available EMP-Toolkit [WMK16].
We use privacy-free half gates as the underlying garbling scheme [ZRE15]. That
is, XOR gates are free (requiring no cryptographic material or operations) and
all AND gates are implemented using fixed-key AES [BHKR13]. Each AND gate
costs 1 ciphertext in cryptographic material, 2 AES encryptions to garble, and
1 AES encryption to evaluate. We use security parameter κ = 128.

We instantiate all [JKO13] ingredients, including committing OT. We use
the maliciously-secure OT extension of [ALSZ15] in our implementation both
because it is efficient and because an implementation with support for commit-
ting OT is available in EMP.

6 Performance Evaluation

Recent advances in non-interactive ZK proofs (NIZK) are astounding. The
blockchain use case motivates intense focus on small proof size (as short as
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work Experiment 1. Fig. 4 Experiment 2. [XZZ+19]
time (s) comm. (MB) time (s) comm. (MB)

Stack [this work]
LAN 0.395 4.205

sh. LAN 2.473 13.426 32.04 182.2
WAN 3.525 24.52

[JKO13]
LAN 0.782 4.205

sh. LAN 5.567 31.180 32.04 182.2
WAN 6.208 24.52

[KKW18] 140 20 840 120
Ligero [AHIV17] 60 0.3 404 1.5
Aurora [BCR+19] 1,000 0.15 3,214 0.174
Bulletproofs [BBB+18] 1,800 0.002 13,900 0.006
STARK [BBHR19] 40 0.5 300 0.6
Libra [XZZ+19] 15 0.03 202 0.051

Fig. 3. Experimental performance of our approach compared to state-of-the-art ZKP
systems. 1. We compare circuit C from Figure 4 which makes calls to AES, SHA-1 and
SHA-256 and has 7,088,734 gates (1,887,628 AND). 2. We compare based on an exper-
iment from [XZZ+19] where the prover builds a depth 8 Merkle tree from the leaves.
The circuit invokes SHA-256 511 times. Resulting timings include prover computa-
tion, verifier computation, and all communication. For our and the [JKO13] GC-based
approaches we separate timing results for LAN, Shared LAN, and WAN networks. Re-
sults for works other than ours and [JKO13] are either approximate interpolations from
related works [KKW18,BBHR19] or taken directly from the reporting of [XZZ+19].

several hundred bytes!) and fast verifier computation time. Prover computation
time is usually superlinear (O(|C| log |C|) or higher in most schemes, with Libra
and Bulletproofs offering linear time) with relatively large constants. As proof
circuits grow larger, the high constants and superlinear computational scaling
becomes burdensome and GC-based proof systems become more efficient thanks
to linear computation scaling with small constants.

We focus our performance comparison on JKO and the fastest NIZK sys-
tems, such as [KKW18,BBHR19], Bulletproofs [BBB+18], Ligero [AHIV17], Au-
rora [BCR+19], and Libra [XZZ+19]. Figure 3 shows that GC-based approaches
(Stack and JKO) scale better than current NIZKs at the cost of interactivity,
and Figure 5 shows how Stack improves on JKO w.r.t. the branching factor.

A reader familiar with recent GC research and related work discussed in Sec-
tion 1.6 may already have a very good sense for the performance of our scheme
Stack, both in computation and communication. Indeed, Stack simply calls
privacy-free half gates and XORs the results. Compared to Free IF [Kol18] (a
GC protocol using topology-decoupling, not a ZK scheme), our communication
is 2× smaller, since we use 1-garbled-row privacy free garbling.

Our and the baseline systems. We implemented and ran our scheme
Stack and [JKO13] instantiated with privacy-free half gates [ZRE15], as the
state-of-the-art baseline. Most of the code (except for handling stacking) is
shared between the two sytems. By comparing the performance of these two pro-
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tocols, we isolate the effect of stacking garbled material. In addition, we include
detailed comparison to performance numbers reported by other state-of-the-art
systems [BBB+18,KKW18,AHIV17,BCR+19,BBHR19,XZZ+19] in Section 6.2.

Boolean vs Arithmetic/R1CS representations are difficult to compare.
Arithmetic operations are costly in Boolean world; program control flow and
other operations (e.g., bit operations in hash functions and ciphers) often cannot
be done in arithmetic, and a costly bit decomposition is required. Because of this,
we focus on the benchmark that emerged as universal in recent literature: SHA-
256 evaluations. We use standard SHA-256 Boolean circuits available as part of
EMP, and other works use R1CS representations optimized for their work.

System and experiment setup. We implemented our and JKO protocols
based on EMP [WMK16]. We ran both P and V single-threaded on the same
machine, a ThinkPadTM Carbon X1 laptop with an IntelR© CoreTM i7-6600U
CPU @ 2.60GHz and 16GB of RAM. We record the total communication and
the total wall clock time. Each experimental result was averaged over 5 runs.
We use the Linux command tc to simulate three network settings (shared LAN
models the setting where LAN is shared with other traffic):

Network Setting bandwidth (mbps) latency (ms)
LAN 1000 2
Shared LAN 50 2
WAN 100 100

RAM and CPU consumption. GC-based ZK proofs can be performed
with very low RAM and CPU. This is because GC generation and evaluation is
a highly serializable and streamlined process: Gen only needs to keep in RAM
the amount of material proportional to the largest cross-section of the GC. Wire
labels and garbled gates can be discarded once they no longer appear in future
gates. Further, each AND gate garbling requires only 2 AES calls.

In contrast, recent NIZK systems are resource-hungry. They execute their ex-
periments on high-end machines with very high RAM. For example, STARK was
run on a powerful server with 32 3.2GHz AMD cores and 512GB RAM. In Ex-
periment 2, Libra uses 24.7GB of RAM while running on 64GB machine [Zha19].

We execute all our experiments on a standard laptop with 16GB RAM (of
which 146MB is used in Experiment 1, as reported by Linux time command).
We do not adjust our numbers to account for the hardware differences.

6.1 Experiment 1: Merkle Tree Proof (JKO comparison focus)

We first evaluate our approach against prior work using a Merkle tree member-
ship benchmark, discussed in Section 1.1. This experiment is designed to show
how our scheme compares to JKO. We include comparison to state-of-the-art
NIZK as an additional point of reference.

For the sake of concreteness, we constructed a scenario whereby P’s record is
certified by inclusion in a Merkle tree whose root is published by an authority.
There are several such roots published, and P wishes to hide which root certifies
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Circuit # AND # XOR # INV
Clause C1: proof w.r.t. tree 1 812936 519699 986677
Clause C2: proof w.r.t. tree 2 546089 2243643 55237
Clause C3: proof w.r.t. tree 3 528601 944039 451828
C = (C1 ∨ C2 ∨ C3) 1887628 3707381 1493725

Fig. 4. Clause and circuit sizes in our experiment. Clauses are defined in Section 6.1.

her. P’s record, in addition to arbitrary data fields, contains a 128-bit secret
key, which P may use as a witness to prove statements about its record. In our
experiment, P wishes to prove membership of her record in one of three Merkle
trees, as well as properties of her record. We will explain the exact details of this
benchmark in the full version of this paper.

The resulting circuit C (cf. Figure 4) consists of three conditional branches,
each clause corresponding to a proof for a specific Merkle tree. The clauses
execute various combinations of calls to SHA256, SHA-1 and AES. Total circuit
size (i.e. what JKO and other ZK systems would evaluate) is over 7 million gates.

Figure 3 tabulates results and includes the estimated performance of
the NIZK systems [BBB+18,KKW18,AHIV17,BCR+19,BBHR19,XZZ+19]. The
larger proof statement sizes we consider were not reported in prior works (e.g.,
[KKW18,BCR+19]); we estimate their performance by considering their asymp-
totic complexity and extrapolating their reported numbers. The tabulation in-
cludes 4 metrics. This experiment explores JKO comparison, and below we dis-
cuss metrics w.r.t. JKO. (We discuss at length other NIZKs in Section 6.2.)

• Total communication (in MB). Our reported communcication includes
performing commitments, OTs, and sending the circuit garbled material.
Discussion. Stacking yields a 2.3× improvement over JKO. This is optimal
for stacked garbling: total circuit size is 2.3× larger than the largest clause.
• Total LAN wall clock time used to complete each protocol in a simulated

LAN setting. The simulated LAN has 1gbps bandwidth and 2ms latency.
Discussion. Our approach yields a 2.0× speedup over JKO, due to reduced
communication. Our total speedup does not quite match the 2.3× proof size
improvement because our computation cost is same as JKO. As 1gbps is
extremely fast, computation takes a noticeable portion of the overall time.
• Total shared LAN wall clock time in a setting where LAN is shared

with other traffic and approximately 50Mbps of bandwidth is available.
Discussion. Our approach yields a 2.25× speedup, close to the optimal 2.3×.
In shared LAN the cost of computation becomes less important.
• Total WAN wall clock time with 100mbps bandwidth and 100ms latency.

Discussion. Our approach yields a 1.76× speedup. As network latency in-
creases, the number of rounds becomes important. Both [JKO13] and our
approach have the same number of rounds, and hence our performance im-
provement is less pronounced than in the shared LAN setting.
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6.2 Experiment 2: Merkle Tree Building (NIZK comparison focus)

As discussed above, Boolean/arithmetic/R1CS representations each have their
advantages, and their comparison is highly nuanced. SHA-256 evaluation has
become an informal standard by which recent NIZKs compare their performance.
We use a standard Boolean circuit for SHA-256 that is included with EMP.

Libra [XZZ+19] includes a benchmark where P computes the root of a depth-
8 Merkle tree (256 leaves; total 511 SHA-256 evaluations) as part of a proof.
When compiled as a Boolean circuit, this benchmark includes ≈ 60 million gates.
Figure 3 includes results for this benchmark; our focus is on the relative efficiency
of our approach against Libra and other state-of-the-art NIZKs. Performance
numbers for NIZKs were obtained from [XZZ+19], except in the case of [KKW18]
and [BBHR19] which were not tabulated by [XZZ+19]. The numbers for these
two works were extrapolated based on their reported performance.

Discussion. This experiment does not present an opportunity to take advan-
tage of stacking since there is no conditional branching. Therefore, our approach
reduces to [JKO13] equipped with privacy-free half gates. Still, this helps to
demonstrate the high concrete efficiency of the GC-based ZKP approach. We
(and [JKO13]) are several orders of magnitude faster (over LAN; one or more
orders over WAN) in this second benchmark than each reported NIZKs except
Libra. We outperform Libra by 6× over WAN and nearly 50× over LAN.

We now present more detailed comparison of Figure 3 results with the indi-
vidual NIZK schemes, each of which offers different advantages and trade offs.

• Ligero, Aurora and STARK are NIZK proof systems in the ‘interactive or-
acle proof’ paradigm (IOP). Among these three superlinear-runtime works,
STARK is most competitive in total runtime due to better constants. Our
work outperforms STARK by 10-100×, depending on the network. Our ad-
vantage would be higher for cases with branching (cf. Sections 6.1 and 6.3).
• [KKW18] is linear both in computation and proof size with moderate con-

stants. It may be preferable for smaller-size statements ([KKW18] suggest
their scheme can be used as a signature scheme based on AES or LowMC ci-
pher), or for proofs of very large statements due to linear scaling of the prover
work. Our work outperforms [KKW18] in the proof time metric because
[KKW18] has constants much higher than us: [KKW18] simulates 40-100-
player MPC and also repeats the proof multiple times. We are two orders of
magnitude faster than [KKW18]. Further, our approach yields smaller proof
size in Experiment 1 due to our ability to stack the three clauses.
• Bulletproofs [BBB+18] features linear proof time and staggeringly small

proofs, logarithmic in the size of the witness! It has high constants due the
use of public key operations. We are 1,000s of times faster than Bulletproofs.
• Libra [XZZ+19] not only constructs small proofs (with size second only to

Bulletproofs amongst the considered works), but also features linear prover
time with low-moderate constants. Notably (and unlike all other considered
works), Libra requires one time trusted setup, which somewhat limits its
applicability. We outperform Libra by 6× over WAN and nearly 50× over
LAN. Our advantage will increase as the branching increases.
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Fig. 5. Plotted results of Experiment 2, evaluating 1-out-of-n randomly generated
clauses each of size 500K AND/2M total gates. Each data point plots the total wall
clock time needed to perform a proof.

6.3 Experiment 3: Scaling to Many Clauses

We explore how our approach scales in overall proof time as the number of
proof disjuncts increases. This metric helps quantify our advantage over [JKO13].
In this experiment, we measure performance of proof statements with different
numbers of disjoint clauses and plot total proof times in Figure 5. To ensure
there are no shortcuts in proofs (e.g. exploiting common subcircuits across the
branches), we generate all clauses randomly (details will be included in the full
version of this paper). Each circuit has 500,000 AND gates and 2 million total
gates. We focus on total proof time, and compare our performance to [JKO13].

Discussion. This experiment shows the benefit of reduced communication
and its relative cost to computation. In a single-thread execution on a LAN,
our approach can complete the 1-out-of-15 clause proof (8M AND gates and
30M total gates) in 1s. This is less than 15× communication improvement over
[JKO13] due to relatively high computation cost. As we scale up computation
relative to communication (by multi-threading, or, as in our experiment, by
consuming only 50Mbps bandwidth on a shared LAN), our performance relative
to [JKO13] increases. In single-threaded execution on shared LAN we are 10×
faster than [JKO13] with 15× smaller communication.

7 Proving Existence of Bugs in Program Code

We present a compelling application where our approach is particularly effective:
P can demonstrate in ZK the existence of a bug in V’s program code. In par-
ticular, V can arrange a corpus of C code into various snippets, annotated with
assertions. Some assertions, such as array bounds checks and division by zero
checks can be automatically inserted. In general, assertions can include arbitrary
Boolean statements about the program state. Once the program is annotated,
P can demonstrate that she knows an input that causes a program assertion in
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1: static const char* SMALL BOARD = "small board v11";
2: int* alloc resources(const char* board type) {
3: int block size;
4: // The next line has a bug!!
5: if (!strncmp(board type, SMALL BOARD, sizeof(SMALL BOARD))) {
6: block size = 10;
7: } else { block size = 100; }
8: return malloc(block size * sizeof(int)); }
9: int incr clock(const char* board type, int* resources) {
10: int clock loc;
11: if (!strncmp(board type, SMALL BOARD, strlen(SMALL BOARD))) {
12: clock loc = 0;
13: } else { clock loc = 64 }
14: (*(resources + clock loc))++;
15: return resources[clock loc]; }
16: void snippet(const char* board type) {
17: int* res = alloc resources(board type);
18: incr clock(board type, res); }

Fig. 6. An example C snippet that the prover can demonstrate has a bug. Lines 5 and
11 contain inconsistent string comparisons that can cause undefined behavior.

a snippet to fail. We stress that the instrumentation alone, which can be auto-
mated, does not help V to find the bug. P’s secret is the snippet ID and input
which exercises the error condition caught by an assertion.

As a simple example, consider the following piece of C code:
1: char example(const char* s) { return s[1]; }
Once the program has been instrumented to detect invalid memory dereferences,
the prover can submit the input "" (the empty string) as proof that this program
has a bug: The input is empty, but the program attempts to access index 1.

Ours is the best-in-class ZK approach to this application for two reasons:

1. Common programs contain seemingly innocuous constructs, such as pointer
dereferences and array accesses, that compile to very large circuits and hence
result in very large proof statements. As we have demonstrated, the JKO
paradigm, and hence our proof system, is particularly well suited for proving
large statements as quickly as possible.

2. Many organizations have truly enormous repositories of code. This is prob-
lematic even for fast interactive techniques like JKO because larger code
bases require more communication.
In contrast, our approach remains realistic as the repository grows larger:
Communication is constant in the number of snippets (it is proportional to
the maximum snippet length). We believe that this advantage opens the
possibility of implementing this application in industrial settings.
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experiment LAN time (s) WAN time (s) comm. (MB) compilation (s)
4 snippets 0.107 2.327 1.542 0.054
1,000 snippets 4.953 6.716 1.600 10.468

Fig. 7. Results for running Stack for the bug proving application with 4 and 1,000
snippets. We record LAN and WAN time to complete the proof, total communication,
and the time to compile all snippets to Boolean circuits.

We include a proof of concept of this use case. Further expanding this is
an exciting direction for future work, both in the area of cryptography and of
software engineering/compiler design.

At the same time, we can already handle relatively complex code. One of
the snippets we implemented (Figure 6) contains a mistake inspired by a real-
world bug in the in MITRE Common Weakness Enumeration (CWE) CWE-
467 [cwe19]. This bug is potentially dangerous: For example, MITRE illustrates
how it can lead to overly permissive password checking code. We implemented
this C code snippet and three others that range between 30 and 50 lines of code.

Consider Figure 6 Lines 5 and 11. These two lines both perform string com-
parisons using strncmp. However, Line 5 incorrectly compares the first n char-
acters where n is the result of the sizeof call. This call returns the size of a
pointer (8 on 64 bit systems) rather than the length of the string. The compari-
son should have used strlen in place of sizeof. An observant prover can notice
that a malicious input like "small boERROR" will cause inconsistent behavior
that leads to a dereference of unallocated memory.

We instrumented this snippet and three others. Together, these four snip-
pets exercise everyday programming tasks such as user input validation, string
parsing, nontrivial memory allocation, and programming against a specification.
We will include the source code for all four snippets in the full version of this
paper. When compiled to Boolean circuits, these four snippets range between
70,000 and 90,000 AND gates. The number of AND gates is largely determined
by the operations performed; e.g. dereferencing memory (array lookup) is ex-
pensive while adding integers is cheap. We use the snippets to exercise Stack in
two experiments:

1. First, we had P demonstrate that she knows a bug in at least 1 out of the 4
snippets. In particular, her input is the string "small boERROR" and triggers
an assertion in the code shown in Figure 6.

2. Second, we simulated a larger code base with 1,000 snippets of 30-50 LOC.
Ideally, this code base would contain 1,000 or more unique snippets, but
since in this work we hand-code instrumentations, this would be an unreal-
istic effort. We approximate real performance by including multiple copies
of each of our four snippets (250 copies each) in the proof disjunction and
carefully ensuring that we don’t take replication-related shortcuts. P proves
the existence of the bug in the first copy of the snippet from Figure 6.

In both experiments we recorded (1) the total LAN proof time, (2) the total
WAN proof time, (3) the total message transmission, and (4) the total time to
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compile each snippet to a Boolean circuit using the EMP toolkit [WMK16]. The
results reflect our expectations and are tabulated in Figure 7. Note, the 1, 000
snippet experiment is less than 250× slower than the 4 snippet experiment due
to constant costs such as setting up a channel and evaluating OTs.

Communication stays nearly constant between the two experiments despite
a large increase in the size of the proof challenge. This is a direct result of
our contribution of clause stacking. The small change in communication is a
result of additional OTs needed for P to select 1 target out of 1,000. Because of
the relatively small proof size, both experiments run fast, even on our modest
hardware: The 4-snippet proof takes a tenth of a second and the 1,000 snippet
proof takes fewer than 5 seconds. We also ran the same two experiments against
[JKO13]. In the 4 snippet experiment, JKO took 0.2211s on LAN and 3.056s
on WAN, consuming 5.253MB of communication. The 1,000 snippet experiment
crashed our modest hardware as JKO tried to allocate an enormous piece of
memory to hold the garblings of the large circuit. Therefore, we tried again
with only 500 snippets. Here, JKO took 13.868s on LAN and 86.356s on WAN,
using 645.9MB of communication. Again, our approach significantly outperforms
[JKO13] due to clause stacking. Performance may already be realistic for some
use cases and will likely improve through future work.

Compiling C programs into Boolean circuits is currently the slowest part
of our proof. Compilation speed has largely been ignored in prior work; it is
unsurprising that the EMP-toolkit is not heavily optimized for it. We believe
future work will significantly improve compilation.

7.1 Snippet Instrumentation

We instrument the snippets by extending EMP [WMK16] with pointers (and
arrays to facilitate pointers) and implementations of C standard library func-
tions. These features are critical to handling realistic program code and Figure 6
prominently uses them. We briefly discuss how these features are implemented.

First, we examine pointers and arrays. Our implementation of pointers is
greatly simplified, and we leave more general and efficient handling of pointers
for future work. In our implementation, a pointer consists of a triple of:

1. A cleartext pointer to an array. This array is allocated to a fixed publicly
known size by calls to our instrumentation of malloc.

2. An encrypted index into the array. Pointer operations (e.g., pointer offset by
an integer) operate over this index. Calls to malloc set this index to 0.

3. An encrypted maximum index. malloc determines this maximum value
based on the size argument.

Pointer dereferences contain an instrumented assertion that checks that the pri-
vate index is ≥ 0 and is less than the maximum index. It is this assertion that
allows the prover to demonstrate Figure 6 has a bug: The dereference on Line
14 triggers this assertion on particular inputs. After this assertion is checked,
the pointer dereference is implemented as a linear scan over the array. For each
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index of the array, we perform an equality check against the encrypted index.
We multiply the output of each equality check by the array entry at that index.
Therefore, the result of each multiplication is 0, except for at the target in-
dex, where the result is the dereferenced value. We add all multiplication results
together using XOR, which returns the dereferenced value.

This pointer handling is limited. For example, we cannot handle a program
that conditionally assigns a pointer to one of two different memory locations
constructed by different calls to malloc: Each pointer can only hold one cleartext
array pointer. Additionally, it is likely possible to concretely improve over linearly
scanning the entire cleartext array.

Second, we discuss C standard library functions. In fact, with the availability
of pointers this instrumentation is mostly uninteresting. The implementations
are relatively straightforward pieces of C code that we instrument in a manner
similar to the snippets. For example, our instrumentation of strlen takes an
instrumented pointer as an argument. It walks the cleartext array of the pointer
and increments an encrypted counter until the null character is reached.

Notably, we allow functions to contain loops, but place hard-coded upper
bounds on the number of allowed iterations for any loop.
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