
On Instantiating the Algebraic Group Model
from Falsifiable Assumptions

Thomas Agrikola1,?, Dennis Hofheinz2,??, and Julia Kastner2,?

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
2 ETH Zurich, Switzerland

Work done while all authors were at
Karlsruhe Institute of Technology.

Abstract. We provide a standard-model implementation (of a relax-
ation) of the algebraic group model (AGM, [Fuchsbauer, Kiltz, Loss,
CRYPTO 2018]). Specifically, we show that every algorithm that uses
our group is algebraic, and hence “must know” a representation of its
output group elements in terms of its input group elements. Here, “must
know” means that a suitable extractor can extract such a representation
efficiently. We stress that our implementation relies only on falsifiable
assumptions in the standard model, and in particular does not use any
knowledge assumptions.
As a consequence, our group allows to transport a number of results
obtained in the AGM into the standard model, under falsifiable assump-
tions. For instance, we show that in our group, several Diffie-Hellman-like
assumptions (including computational Diffie-Hellman) are equivalent to
the discrete logarithm assumption. Furthermore, we show that our group
allows to prove the Schnorr signature scheme tightly secure in the random
oracle model.
Our construction relies on indistinguishability obfuscation, and hence
should not be considered as a practical group itself. However, our results
show that the AGM is a realistic computational model (since it can be
instantiated in the standard model), and that results obtained in the
AGM are also possible with standard-model groups.

Keywords: indistinguishability obfuscation, algebraic group model, Schnorr
signatures

1 Introduction

The generic group model. In order to analyze the plausibility and relative strength
of computational assumptions in cyclic groups, Shoup [38] and Maurer [31] have
proposed the generic group model (GGM). In the GGM, any adversary can only
interact with the modeled group through an oracle. In particular, all computations

? Supported by ERC Project PREP-CRYPTO 724307.
?? Supported by ERC Project PREP-CRYPTO 724307, and by DFG project GZ HO

4304/4-2.

2 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

in that group must be explicitly expressed in terms of the group operation. To
prevent an adversary from locally performing computations, that adversary gets
to see only truly random strings (in [38]) or independent handles (in [31]) as
representations of group elements.3

The discrete logarithm and even many Diffie-Hellman-style problems are hard
generically (i.e., when restricting group operations in the above way) [32, 38].
Hence, the only way to break such a generically hard assumption in a concrete
group is to use the underlying group representation in a nontrivial way. In
that sense, the GGM can be very useful as a sanity check for the validity of a
given assumption, or even the security of a given cryptographic scheme. However,
generic groups cannot be implemented: there exist cryptographic schemes that are
secure in the GGM, but insecure when instantiated with any concrete group [15].

The algebraic group model. The algebraic group model (AGM, [21]) is a relaxation
of the GGM that tries to avoid impossibilities as in [15] while preserving the
GGM’s usefulness. Specifically, the AGM only considers algebraic (rather than
generic) adversaries. An algebraic adversary A can make arbitrary use of the
representation of group elements, but must supply an explicit decomposition
for any of its output group elements in terms of input group elements. In other
words, A must also output an explanation of how any group element in its output
was computed from its input using the group operation.

Now [21] show that many GGM proofs only use this type of algebraicity of an
adversary, and carry over to the AGM. At the same time, GGM impossibilities
like [15] do not apply to the AGM, since algebraic adversaries are able to work
with the actual group (and not only with random or abstract representations of
group elements).

The AGM and knowledge assumptions. The AGM is closely related to the notions
of knowledge assumptions and extractability. To illustrate, assume that for any
(possibly non-algebraic) adversary A, we can find an extractor E that manages
to extract from A a decomposition of A’s output in terms of A’s input. Then,
composing E and A yields an algebraic adversary Aalg. In this situation, we can
then say that without loss of generality, any adversary can be assumed to be
algebraic.4 Conversely, any algebraic adversary by definition yields the results of
such an extraction in its output.

This observation also provides a blueprint to instantiating the AGM: simply
prove that any adversary A can be replaced by an algebraic adversary Aalg,
possibly using an extraction process as above. If this extraction requires A’s code
and randomness but no other trapdoor, we obtain an AGM instantiation based
on a knowledge assumption such as the knowledge of exponent assumption [14].
Indeed, this was recently done by [30] under a very strong generalized version of the

3 Other black-box abstractions of groups with similar ramifications exist [6, 34].
4 This observation about algebraic adversaries has already been made in [9, 35]. Also,

similar but more specific knowledge assumptions have been used to prove concrete
cryptographic constructions secure, e.g., [4, 14,16,25].

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 3

knowledge of exponent assumption. Unfortunately, such knowledge assumptions
are not falsifiable in the sense of Naor [33]. It is thus not entirely clear how to assess
the plausibility of such a universal and strong knowledge assumption. Naturally,
the question arises whether an AGM implementation inherently requires such
strong and non-falsifiable assumptions. Or, more generally:

Can we achieve knowledge-type properties
from falsifiable assumptions?

Note that in the AGM, the discrete logarithm assumption implies the existence
of extractable one-way functions (EOWFs) with unbounded auxiliary input. The
existence of such EOWFs, however, conflicts with the existence of indistinguisha-
bility obfuscation, [5]. Due to this barrier, we can only hope for an instantiation
of some suitably relaxed variant of the AGM from falsifiable assumptions.

Our strategy: private extraction. There is also another way to instantiate the
AGM: show that it is possible to extract a decomposition of A’s outputs from
these outputs and a suitable (secret) extraction trapdoor. In other words, our idea
is to avoid non-falsifiable knowledge assumptions by assuming that extraction
requires a special trapdoor that can be generated alongside the public parameters
of the group. This entails a number of technical difficulties (see below), but allows
us to rely entirely on falsifiable assumptions.

Specifically, our main result is an algebraic wrapper that transforms a given
cyclic group into a new one which allows for an extraction of representations. More
specifically, an element of the new group carries an encrypted representation of
this group element relative to a fixed basis (i.e., set of group elements). Upon group
operations, this representation is updated, and a special trapdoor (generated
alongside the public parameters) allows to extract it.

Our results. Our strategy allows us to retrieve several AGM results (from [21,22])
in the standard model, in the sense that the group can be concretely implemented
from falsifiable assumptions.5 In particular, we show that in our group,
– the discrete logarithm assumption, the computational Diffie-Hellman assump-

tion, the square Diffie-Hellman assumption, and the linear-combination Diffie-
Hellman assumption (see [21]) are all equivalent,

– the security of the Schnorr signature scheme [37] can be tightly reduced to
the discrete logarithm assumption escaping impossibility results due to [19].6

5 Note that by “standard model”, we mean that the group itself is formulated without
idealizations and can be concretely implemented. While our construction itself does
not rely on the ROM, we still can transfer some ROM proofs in the AGM to ROM
proofs using our concrete group instantiation. We stress that a standard model
instantiation of the (full-fledged) AGM from very strong non-falsifiable assumptions
is already known due to [30].

6 Tight security reductions provide a tight relation between the security of cryptographic
schemes and the hardness of computational problems. Apart from their theoretical
importance, tight reductions are also beneficial for practice, since they allow smaller
keylength recommendations.

4 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

While, on a technical level, the AGM proofs from [21, 22] need to be adapted,
the general AGM proof strategies (that rely on extraction) can be replicated.

Limitations. We note that not all known AGM proofs can be transported to
the standard model. For instance, [21] also prove the Boneh-Lynn-Shacham [7]
signature scheme tightly secure in the AGM. Their reduction relies on the
fact that the view of a signature forger is statistically independent of how
simulated signatures are prepared by the reduction. However, with our algebraic
wrapper, group elements (and thus BLS signatures) always carry an encrypted
representation of how they were generated. In this case, our private extraction
strategy also reveals additional (statistical, computationally hidden) information
to an adversary. This additional information is problematic in the AGM-based
BLS proof of [21]. We believe it is an interesting open problem to obtain a tight
security proof for the BLS scheme with our group.7

Furthermore, as we will detail below, the amount of information we can
extract from a group element is limited by the size of that group element. In
particular, in settings in which no a-priori bound on the size of a desired algebraic
representation is known, our techniques do not apply. This can be problematic,
e.g., for constructions that depend on q-type assumptions.

Our assumptions. We stress that our algebraic wrapper relies on a strong (but
falsifiable) computational assumption: the existence of subexponentially strong
indistinguishability obfuscation (subexp-iO).8 Additionally, we assume a re-
randomizable encryption scheme. Together with subexp-iO, this implies a number
of other strong primitives that we use: a variant of probabilistic iO (see [11]),
fully homomorphic encryption (see [11]), and dual-mode non-interactive zero-
knowledge (see [27]).

Interpretation. Due to their inefficiency, we view algebraic wrappers not as a tool
to obtain practical cryptographic primitives. Rather, we believe that algebraic
wrappers show that the AGM is a useful and realistic abstraction and not merely
an idealized model which heuristically captures known adversaries: we show that
AGM proofs can be replicated in the standard model, and even without resorting
to knowledge assumptions.

On implementing idealized models. Replacing idealized (heuristic) models with
concrete standard-model implementations is a widely studied intriguing problem.
A well-known example for this is the line of work on programmable hash functions.
A programmable hash function due to [26] is a cryptographic primitive which can
be used to replace random oracles in several cryptographic schemes. Following
their introduction, a line of work [20, 28, 29] leveraged multi-linear maps or

7 We note that impossibility results for tight reductions of schemes like BLS (e.g., [12])
do not apply in our case, as the representation of our group elements is not unique.

8 We note that iO and knowledge assumptions contradict each other [5]. However, we
stress that the notion of private extractability we obtain does not contradict iO.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 5

indistinguishability obfuscation to transport proofs from the random oracle
model to the standard model. Our results can be interpreted as following this
endeavor by leveraging indistinguishability obfuscation to replace the AGM with
a standard model implementation (from falsifiable assumptions). From this angle,
our algebraic wrapper relates to the AGM as programmable hash functions relate
to the ROM.

1.1 Technical overview

Algebraic wrappers. In the following, we speak of group schemes ([3], also called
encoding schemes in [23]) as a generalization of groups with potentially non-
unique encodings of group elements. This implies that a dedicated algorithm
is required to determine if two given group elements are equal.9 Our algebraic
wrapping process takes a group G (which we call “base group”) as input, and
outputs a new group scheme H which allows for an efficient extraction process.
Concretely, every H-element ĥ can be viewed as a G-element h ∈ G, plus auxiliary
information aux .

Intuitively, aux carries (encrypted) information that allows to express h as
a linear combination of fixed base elements b1, . . . , bn ∈ G. The corresponding
decryption key (generated alongside the group parameters) allows to extract this
information, and essentially yields the information any algebraic adversary (in
the sense of the AGM) would have to provide for any output group element.
However, we are facing a number of technical problems:
(a) The group operation algorithm should update aux (in the sense that the

linear combinations encrypted in the input elements should be added).
(b) Validity of aux should be ensured (so that no adversary can produce an H-

element from which no valid linear combination can be extracted from aux).
(c) It should be possible to switch the basis elements b1, . . . , bn to an application-

dependent basis. (For instance, to prove a signature scheme like Schnorr’s [37]
secure, one would desire to set the basis vectors to elements from an externally
given computational challenge.)

(d) To preserve tightness of reductions from the AGM (which is necessary in
some of our applications), it should be possible to re-randomize group element
encodings statistically.

Our solution largely follows the group scheme from [3]. In particular, (a) will
be solved by encrypting the coefficients z1, . . . , zn with h =

∑
i b
zi
i using a

homomorphic encryption scheme in aux . Hence, such coefficient vectors can
be added homomorphically during the group operation. For (b), we will add a
suitable non-interactive zero-knowledge proof of consistency in aux .10 For (c),
we adapt a “switching” lemma from [3]. In [3], that lemma allows to switch
between two different representations of the same group element, but under a

9 That is, formally, the group is defined as the quotient set of all well-formed bitstrings
modulo the equivalence relation induced by the equality test.

10 Note that this approach is related to [8] in the sense that we restrict the homomorphic
operations an adversary can perform on encodings by requiring a consistency proof.

6 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

fixed basis. In our case, we show that similar techniques allow to also switch
the group elements that form this basis. This switching property already implies
a notion of computational re-randomizability. Finally, for (d), we introduce a
re-randomization lemma using techniques from (c) in conjunction with a novel
notion for probabilistic iO.

At this point, one main conceptual difference to the line of work [1,3, 17] is
that the basis elements b1, . . . , bn appear as part of the functionality of the new
group scheme H, not only in a proof. In particular, our construction must be able
to deal with arbitrary bi that are not necessarily randomly chosen. This issue is
dealt with by additional linear randomization of the base group elements.

Another main conceptual difference to [1, 3, 17] is the notion of statistical
re-randomizability of group elements. The group schemes from [1,3,17] do not
satisfy this property. This will be resolved by developing a stronger notion of
statistically correct probabilistic iO which may be of independent interest.

We note, however, that our techniques are inherently limited in the following
sense: our extraction can only extract as much information as contained in (the
auxiliary information of) group elements. Technically speaking, we cannot treat
settings in which the size of the basis b1, . . . , bn is not known in advance (e.g., in
case of constructions based on q-type assumptions).

Applications. The applications we consider have already been considered for the
AGM in [21,22]. Hence, in this description, we focus on the technical differences
that our extraction approach entails for these proofs.

First, recall that in the AGM by [21], an adversary outputs an algebraic
representation of each output group element to the basis of its input group
elements. Therefore, this basis depends also on the respective security game. On
the other hand, in security proofs with our algebraic wrapper, a reduction needs
to select such a basis in advance. The appropriate selection of such a basis is one
of the main challenges when transferring proofs from the AGM to our setting.
Namely, even though the basis as well as the representation of each group element
is hidden, the choice of representations will still be information-theoretically
known to the adversary. Therefore, security games that are identically distributed
in the AGM might only be computationally indistinguishable in the wrapper,
depending on the choice of a basis.

When transferring proofs from the AGM to our new group scheme, we thus
use a technique we call symmetrization to extend the basis in such a way that
security games are identically distributed in the relevant situations. In a nutshell,
symmetrization achieves a uniform way to express challenge elements across most
games of a security proof, and yields statistical security guarantees.

Another challenge is the implementation of tight security reductions in the
wrapper. In some security reductions, the basis of the group and the algebraic rep-
resentations of oracle responses need to be switched in order to be able to extract
a useful algebraic representation. However, as we only achieve computationally
indistinguishable group element representations, switching the representations of
q oracle responses would lead to a q-fold computational loss, compromising the
tightness of the reduction.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 7

We show that it is possible to circumvent this loss by constructing oracle
responses via the group operation from so-called origin elements, reducing the
number of elements whose representation gets switched to a constant. In a nutshell,
we derive many coordinated oracle answers from just few group elements (the
“origin elements”), such that switching these origin elements affects (and changes)
all oracle answers.

1.2 Related work

This work builds upon the line of work [1,3,17] who build group schemes from
iO. [3] lays the conceptual foundations for the construction of group schemes
with non-unique encodings from iO and uses this framework to equip groups with
multilinear maps. [17] extends this approach by allowing partial evaluations of
the multilinear map yielding a graded encoding scheme. In contrast to [3, 17], [1]
does not extend the functionality of an underlying group, but builds a group
scheme with reduced functionality (group elements lack a unique representation).
The resulting group scheme allows to mimic commonly used proof techniques
from the generic group model. This is demonstrated by proving the validity of
an adaptive variant of the Uber assumption family [10] in the constructed group
scheme. Our results can hence be viewed as an extension of [1].

[30] make a first step towards instantiating the AGM. The authors identify
an equivalence between the AGM and a very strong generalized version of the
knowledge of exponent assumption [14], thus giving rise to the first instantiation
of the AGM.

Roadmap

In Section 2, we recall some preliminaries and develop the mentioned variant
of probabilistic iO. In Section 3, we present our notion of algebraic wrappers
and give an iO-based instantiation. Section 4 contains results transported from
the AGM to our wrapper setting, along with a description of how AGM proof
techniques can be adapted. In the full version of this paper [2], we provide
(besides further standard definitions and more motivation) an analysis of the
Schnorr-signed ElGamal encryption scheme with our algebraic wrapper.

Acknowledgments

We would like to thank the anonymous reviewers of EC20 for many helpful
comments and for pointing out an error in previous versions of Lemma 1 and the
proof of the switching property.

2 Preliminaries

Notation

Throughout this paper λ denotes the security parameter. For a natural number
n ∈ N, [n] denotes the set {1, . . . , n}. A function negl : N→ R is negligible in λ

8 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

if for every constant c ∈ N, there exists a bound nc ∈ R, such that for all n ≥ nc,
|negl(n)| ≤ n−c. Given a finite set S, the notation x ← S means a uniformly
random assignment of an element of S to the variable x. Given an algorithm A,
the notation y ← A(x) means evaluation of A on input of x with fresh random
coins and assignment to the variable y. The notation AO indicates that the
algorithm A is given oracle access to O. Given a random variable B, supp(B)
denotes the support of B.

Let G be a finite cyclic group with generator g and order p. For x ∈ Zp, the
notation [x]G denotes the group element gx. Note that using this notation does
not imply knowledge of x. Let K be a field and V be a vector space over K of
finite dimension n. For i ∈ [n], ei denotes the vector which carries 1 in its i-th
entry and 0 in all other entries.

In game based proofs, out i denotes the output of game Gi.

2.1 Subset membership problem

Let L = (Lλ)λ∈N be a family of families of languages L ⊆ Xλ in a universe
Xλ = X. Further, let R be an efficiently computable witness relation, such that
x ∈ L if and only if there exists a witness w ∈ {0, 1}poly(|x|) with R(x,w) = 1 (for
a fixed polynomial poly). We assume that we are able to efficiently and uniformly
sample elements from L together with a corresponding witness, and that we are
able to efficiently and uniformly sample elements from X \ L.

Definition 1 (Subset membership problem, [13]). A subset membership
problem L ⊆ X is hard, if for any PPT adversary A, the advantage

Advsmp
L,A (λ) := Pr[x← L : A(1λ, x) = 1]− Pr[x← X \ L : A(1λ, x) = 1]

is negligible in λ.

We additionally require that for every L and every x ∈ L, there exists exactly
one witness r ∈ {0, 1}∗ with R(x,w) = 1. Note that given a cyclic group G of
prime order p in which DDH is assumed to hold, the Diffie-Hellman language
L[(1,x)]G

:= {[(y, xy)]G | y ∈ Zp} (for randomly chosen generators [1]G , [x]G)
satisfies this definition. Another instantiation of Definition 1 is the language
containing all commitments to a fixed value using a perfectly binding commitment
scheme with unique opening.

2.2 Dual-mode NIWI

A dual-mode NIWI proof system is a variant of NIWI proofs [18] offering two
computationally indistinguishable modes to setup the common reference string
(CRS). A binding mode CRS provides perfect soundness guarantees whereas a
hiding mode CRS provides perfect witness indistinguishability guarantees.

Definition 2 (Dual-mode NIWI proof system (syntax), [3,24]). A dual
mode non-interactive witness-indistinguishable (NIWI) proof system for a relation
R is a tuple of PPT algorithms Π = (Setup,HSetup,Prove,Verify,Ext).

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 9

Setup(1λ). On input of 1λ, Setup outputs a perfectly binding common reference
string crs and a corresponding extraction trapdoor td ext.

HSetup(1λ). On input of 1λ, HSetup outputs a perfectly hiding common reference
string crs.

Prove(crs, x, w). On input of the CRS crs, a statement x and a corresponding
witness w, Prove produces a proof π.

Verify(crs, x, π). On of the CRS crs, a statement x and a proof π, Verify outputs
1 if the proof is valid and 0 otherwise.

Ext(td ext, x, π). On input the extraction trapdoor td ext, a statement x and a proof
π, Ext outputs a witness w.

We require Π to satisfy the CRS indistinguishability, perfect completeness, perfect
soundness, perfect extractability and perfect witness-indistinguishability.

For a more detailed definition, we refer the reader to the full version [2]. There
are several instantiations of dual-mode NIWI proof systems satisfying the above
definition (or statistical variants), [24, 27,36].

2.3 Probabilistic indistinguishability obfuscation

Let C = (Cλ)λ∈N be a family of sets Cλ of probabilistic circuits. A circuit sampler
for C is defined as a family of (efficiently samplable) distributions S = (Sλ)λ∈N,
where Sλ is a distribution over triplets (C0, C1, z) with C0, C1 ∈ Cλ such that C0

and C1 take inputs of the same length and z ∈ {0, 1}poly(λ).

Definition 3 (X-ind sampler, [11]). Let X(λ) be a function upper bounded
by 2λ. The class SX-ind of X-ind samplers for a circuit family C contains all
circuit samplers S = (Sλ)λ∈N for C such that for all λ ∈ N, there exists a set
Xλ ⊆ {0, 1}∗ with |X | ≤ X(λ), such that

X-differing inputs. With overwhelming probability over the choice of (C0, C1,
z)← Sλ, for every x 6∈ Xλ, for all r ∈ {0, 1}m(λ), C0(x; r) = C1(x; r).

X-indistinguishability. For all (non-uniform) adversaries A, the advantage

X(λ) ·
(

Pr[Expsel-ind
S,A (λ) = 1]− 1

2

)
is negligible, where Expsel-ind

S,A (λ) requires A to statically choose an input,
samples circuits C0, C1 (and auxiliary information z) afterwards, evaluates
the circuit Cb (for randomly chosen b) on the adversarially chosen input
(let the output be y) and outputs 1 if A on input of (C0, C1, z, y) guesses b
correctly.

Definition 4 (Probabilistic indistinguishability obfuscation for a class
of samplers S (syntax), [11]). A probabilistic indistinguishability obfuscator
(pIO) for a class of samplers S is a uniform PPT algorithm piO, such that
correctness and security with respect to S hold.

For a more detailed definition, we refer the reader to the full version [2].
[11] present the to date only known construction of pIO for X-ind samplers

over the family of all polynomial sized probabilistic circuits.

10 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

2.4 Re-randomizable and fully homomorphic encryption

We define an IND-CPA secure PKE scheme as a tuple of PPT algorithms PKE =
(KGen,Enc,Dec) in the usual sense. Furthermore, without loss of generality, we
assume that sk is the random tape used for key generation. Therefore, making
the random tape of KGen explicit, we write (pk , sk) = KGen(1λ; sk).

A re-randomizable PKE scheme additionally provides an algorithm Rerand
which re-randomizes a given ciphertext perfectly.

Finally, a fully homomorphic PKE scheme additionally provides an algorithm
Eval which given the public key pk , an circuit C (expecting a inputs from the
message space) and a ciphertexts C1, . . . , Ca, produces a ciphertext encrypting
C(Dec(sk , C1), . . . ,Dec(sk , Ca)).

Due to [11], probabilistic indistinguishability obfuscation in conjunction with
(slightly super-polynomially secure) perfectly correct and perfectly re-randomiz-
able public-key encryption yields a perfectly correct and perfectly re-randomizable
fully homomorphic encryption scheme.

We refer the reader to the full version [2] for more detailed definitions.

2.5 Statistically correct input expanding pIO

Looking ahead, instead of computationally correct pIO, we require a notion
of statistically correct pIO, i.e. statistical closeness between evaluations of the
original (probabilistic) circuit and the obfuscated (deterministic) circuit. Clearly,
in general, this is impossible since the obfuscated circuit is deterministic and
hence has no source of entropy other than its input. However, as long as a
portion of the circuit’s input is guaranteed to be outside the view of the adversary
(and has sufficiently high min-entropy), the output of the obfuscated circuit and
the actual probabilistic circuit can be statistically close. Therefore, we compile
probabilistic circuits such that they receive an auxiliary input aux but simply
ignore this input in their computation. Even though the obfuscated circuit is
deterministic, the auxiliary input can be used as a source of actual entropy.

First try. We recall that the pIO construction from [11] obfuscates a probabilistic
circuit C by using IO to obfuscate the deterministic circuit C(x) := C(x;FK(x)).
A natural idea to achieve statistical correctness is to modify this construction
such that the auxiliary input aux is directly XORed on the random tape which is
derived using F , i.e. to obfuscate the circuit C(x, aux ;FK(x)⊕aux). For uniform
auxiliary input aux , statistical correctness follows immediately. However, security
breaks down. Consider two circuits C1 and C2 such that C1 outputs the first bit
on its random tape and C2 outputs the second bit on its random tape. Since C1

and C2 produce identical output distributions, it is desirable that a probabilistic
indistinguishability obfuscator conceals which of the two circuits was obfuscated.
However, this construction admits a successful attack. An adversary can evaluate
the obfuscated circuit Λ on inputs (x, aux) and (x, aux ⊕ 1). If both evaluations
yield identical outputs, C2 was obfuscated, otherwise C1 was obfuscated.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 11

Using an extracting PRF. Our construction of statistically correct pIO applies an
extracting puncturable PRF on the entire input (including the auxiliary input) of
the circuit to derive the random tape for the probabilistic circuit. An extracting
PRF guarantees that PRF outputs are uniformly distributed (even given the
PRF key) as long as the input has high min-entropy. This is achieved using a
universal hash function and the leftover hash lemma. For more details, we refer
the reader to the full version [2].

Let {Cλ}λ∈N be a family of sets Cλ of probabilistic circuits of polynomial size
p(λ) expecting inputs from {0, 1}n′(λ) and randomness from {0, 1}r(λ). Let E`
denote a compiler which on input of a probabilistic circuit C ∈ Cλ appends `(λ)
input gates (without any additional edges) to the original circuit. The expanded

circuit Ĉ is of size p′(λ) = p(λ) + `(λ), expects inputs from {0, 1}n′(λ)+`(λ) and
randomness from {0, 1}r(λ). We refer to these additional input bits as auxiliary
input aux ∈ {0, 1}`(λ).

Our input expanding pIO scheme satisfies similar correctness and security
properties as defined in [11] but additionally guarantees statistical correctness.

Definition 5 (`-expanding pIO for the class of samplers S). An `-ex-
panding probabilistic indistinguishability obfuscator for the class of samplers
S over C = (Cλ)λ∈N is a uniform PPT algorithm piO?` , satisfying the following
properties.

Input expanding correctness. For all PPT adversaries A, all circuits C ∈ C,∣∣∣Pr[AOC(·,·)(1λ, C) = 1]− Pr[Λ← piO?` (1
p(λ), C) : AOΛ(·,·)(1λ, C) = 1]

∣∣∣
is negligible, where the oracles must not be called twice on the same input
(x, aux).

OC(x, aux)

r ← {0, 1}m
return C(x; r)

OΛ(x, aux)

return Λ(x, aux)

Security with respect to S. For all circuit samplers S ∈ S, for all PPT
adversaries A, the advantage

Adv
pio-ind(?)
piO?` ,S,A

(λ) :=∣∣∣Pr
[
(C0, C1, z)← S(1λ) : A(1λ, C0, C1, z, piO

?
` (1

p(λ), C0)) = 1
]

−Pr
[
(C0, C1, z)← S(1λ) : A(1λ, C0, C1, z, piO

?
` (1

p(λ), C1)) = 1
] ∣∣∣

is negligible in λ.
Support respecting. For all circuits C ∈ Cλ, all inputs x ∈ {0, 1}n′(λ), all

aux ∈ {0, 1}`(λ), all Λ ∈ supp(piO?` (1
p(λ), C)), Λ(x, aux) ∈ supp(C(x)).

Statistical correctness with error 2−e(λ). For all C ∈ Cλ and all joint dis-
tributions (X1, X2) over {0, 1}n′(λ) × {0, 1}`(λ) with average min-entropy

`(λ) ≥ H̃∞(X2 | X1) > m(λ) + 2e(λ) + 2, the statistical distance between{
Λ← piO?` (1

p(λ), C) : (Λ,Λ(X1, X2))
}

12 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

and
{
Λ← piO?` (1

p(λ), C) : (Λ,C(X1;Um(λ)))
}

is at most 2−e(λ).

We note that setting ` := 0 recovers the original definition of pIO for X-ind
samplers due to [11]. Looking ahead, our application does not require input
expanding correctness.

Let S be a circuit sampler and let Ŝ denote the circuit sampler which calls S
and outputs `-expanded circuits. Unfortunately, if S is an X-ind sampler does
not imply that Ŝ also satisfies the requirements to be an X-ind sampler. On a
high level this is because X̂(λ) := X(λ) · 2`(λ) is necessary for Ŝ to satisfy the
X-differing inputs property. Then, however, X-indistinguishability of S does not
suffice to prove X̂-indistinguishability of Ŝ. Thus, we introduce the notion of
`-expanding X-ind samplers.

Definition 6 (`-expanding X-ind sampler). Let S be a circuit sampler.

With Ŝ we denote the circuit sampler which on input of 1p(λ)+`(λ) samples
(C0, C1, z) ← S(1p(λ)) and outputs the circuits Ĉ0 := E`(C0), Ĉ1 := E`(C1) and

auxiliary information ẑ := (C0, C1, z). The class SX-(?)-ind
` of `-expanding X-ind

samplers for a circuit family C contains all circuit samplers S = (Sλ)λ∈N for C
such that the circuit sampler Ŝ is an X-ind sampler according to Definition 3,
i.e. Ŝ ∈ SX-ind.

On a high level, we instantiate the construction of pIO for X-ind samplers due
to [11] with a suitably extracting puncturable pseudorandom function (pPRF). By
suitably extracting we mean that the PRF output is guaranteed to be statistically
close to uniform randomness as long as the average min-entropy of the input of
the PRF is sufficiently high. Such a pPRF can be constructed by composing a
pPRF with a universal hash function.

Theorem 1. Let e be an efficiently computable function. Let F be a sub-ex-
ponentially secure special extracting PRF family with distinguishing advantage
2−λ

ε

(for some constant ε) and error 2−e(λ) mapping n(λ) = n′(λ) + `(λ) bits
to m(λ) bits which is extracting if the input average min-entropy is greater than
m(λ) + 2e(λ) + 2. Then, there exists a statistically correct input expanding pIO

piO?` for the class of samplers SX-(?)-ind
` .

For additional explanations and a formal proof, we refer the reader to the
full version [2].

3 How to simulate extraction – Algebraic Wrappers

In order to instantiate the AGM, we need to first find a way to conceptualize
what it means to be a group in a cryptographic sense. This is captured by the
notion of a group scheme or encoding scheme, [23]. In a nutshell, a group scheme
provides an interface of algorithms abstracting the handling of a cryptographic

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 13

group. As we want to prove hardness of certain problems based on hardness
assumptions in an already existing base group, we incorporate this existing group
into our group scheme.

More specifically, we introduce the concept of an algebraic wrapper, i.e. a
group scheme that allows to extract a representation which – similar to the AGM
– can be used in a security reduction. A similar approach has already been taken
by [30]. [30] define their group scheme as a linear subspace of G×G for an existing
group G in such a way that the Generalized Knowledge of Exponent Assumption
(GKEA) can be used to extract a representation (membership can for instance be
tested via a symmetric pairing). Hence, that group scheme can also be viewed as
an extension, or a wrapper, for the underlying base group. However, [30] relies on
GKEA in the base group which more or less directly yields an equivalence between
algebraic groups and GKEA. The existence of algebraic groups, however, implies
the existence of extractable one-way functions with unbounded auxiliary input
(since the AGM allows an additional unstructured input from {0, 1}∗) which in
turn conflicts with the existence of indistinguishability obfuscation, [5]. Due to
this contradiction and the difficulty to assess the plausibility of knowledge-type
assumptions, we strive for a weaker model which can purely be based on falsifiable
assumptions.

Extraction trapdoors. In [30], extraction is possible as long as the code and the
randomness which where used to produce a group element are known. Since we
strive to avoid knowledge-type assumptions, we need to find a different mechanism
of what enables extraction. We observe that in order to reproduce proof strategies
from the algebraic group model, extraction is only necessary during security
reductions. Since the reduction to some assumption in the base group is in control
of the group parameters of the wrapper, the reduction may use corresponding
trapdoor information which we define to enable extraction. We call this notion
private extractability.

3.1 Group schemes

A group scheme or encoding scheme [23] abstracts the properties of mathematical
groups used in cryptography. Group schemes have recently been studied in
[1, 3, 17,30]. In contrast to traditional groups, group elements are not bound to
be represented by a unique bitstring (henceforth referred to as encoding). This
allows to encode auxiliary information inside group elements.

Formally, a group scheme H consists of the algorithms (GGenH,SamH,ValH,
AddH,EqH,GetIDH). A group generation algorithm GGenH, which given 1λ, sam-
ples group parameters ppH. A sampling algorithm SamH, given the group param-
eters and an additional parameter determining the exponent of the desired group
element, produces an encoding corresponding to that exponent. A validation
algorithm ValH, given the group parameters and a bitstring, decides whether the
given bitstring is a valid encoding. The algorithm AddH implements the group
operation, i.e. expects the group parameters and two encodings as input and
produces an encoding of the resulting group element. Since group elements do not

14 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

necessarily possess unique encodings, the equality testing algorithm EqH enables
to test whether two given encodings correspond to the same group element
(with respect to the given group parameters). Note that EqH(ppH, ·) defines an
equivalence relation on the set of valid bitstrings. Finally, again compensating for
the non-unique encodings, a group scheme describes a “get-identifier” algorithm
which given the group parameters and an encoding of a group element, pro-
duces a bitstring which is unique for all encodings of the same group element.11

Note that EqH(ppH, a, b) can be implemented using GetIDH by simply comparing
GetIDH(ppH, a) and GetIDH(ppH, b) as bitstrings. The “get-identifier” algorithm
compensates for the potential non-uniqueness of encodings and allows to extract,
for instance, symmetric keys from group elements.

For a group scheme it is required that the quotient set

{a ∈ {0, 1}∗ | ValH(ppH, a) = 1}/EqH(ppH, ·)

equipped with the operation defined via AddH(ppH, ·, ·) defines a mathematical
group (with overwhelming probability over the choice of ppH ← GGenH(1λ)). We
say that an a is (an encoding of) a group element (relative to ppH), written as
a ∈ H, if and only if ValH(ppH, a) = 1.

A group scheme requires that encodings corresponding to the same group
element are computationally indistinguishable as formalized by the “Switching
Lemma(s)” in [1, 3, 17].

Due to the non-uniqueness of encodings, we henceforth use the notation ĥ to
denote an encoding of a group element.

3.2 An algebraic wrapper

Given a cyclic group, an algebraic wrapper is a group scheme which equips a given
group G with a notion of extractability while preserving its group structure and
complexity theoretic hardness guarantees. In particular, we achieve a property
which we refer to as “private extractability” with respect to a given set of group
elements in the base group. More precisely, the group generation algorithm expects
group parameters ppG of the base group together with a set of group elements
[b]G ∈ Gn in that base group, henceforth referred to as basis, and produces group
parameters ppH of the wrapper group together with a corresponding trapdoor
τH. This trapdoor enables to extract a representation with respect to the basis
[b]G from every encoding. Looking ahead, this property will allow to implement
proof strategies of the algebraic group model, [21].

More precisely, encodings can be seen to always carry computationally hidden
representation vectors with respect to the basis [b]G. The private extraction recov-
ers this representation vector. Given the trapdoor, we require that it is possible to
“privately” sample encodings which carry a specific dictated representation vector.
We require that publicly sampled encodings and privately sampled encodings are

11 Previous work refers to this algorithm as “extraction algorithm”. However, in order
not to overload the word “extraction”, we rename this algorithm in this work.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 15

computationally indistinguishable. We refer to this property as “switching”. In
order to preserve tightness of security reductions when implementing AGM proofs
with our algebraic wrapper, we require a statistical re-randomization property.
Furthermore, we require that representation vectors compose additively (in Znp)
with the group operation and do not change when encodings are re-randomized.

Let BnppG := {([1]G , [x2]G , . . . , [xn]G)ᵀ ∈ Gn | x2, . . . , xn ∈ Z×p } be the set of
what we call “legitimate basis vectors”. Note that we require the first group
element to be the generator of the group. This is necessary to allow public
sampling.

Definition 7 (Algebraic wrapper for G). An algebraic wrapper H for G
is a tuple of PPT algorithms (GGenH,SamH,ValH,AddH,EqH,GetIDH,RerandH,
PrivSamH,PrivExtH,UnwrapH) such that (GGenH,SamH,ValH,AddH,EqH,GetIDH)
constitutes a group scheme and the following properties are satisfied.

G-wrapping. The algorithm UnwrapH(ppH, ·) is deterministic and for all ppG ∈
supp(GGenG(1λ)), all [b]G ∈ BnppG , all (ppH, τH) ∈ supp(GGenH(ppG, [b]G)),
UnwrapH(ppH, ·) defines a group isomorphism from H to G.

Extractability. The algorithm PrivExtH is deterministic. Furthermore, for all
ppG ∈ supp(GGenG(1λ)), all [b]G ∈ BnppG , all (ppH, τH) ∈ supp(GGenH(ppG,

[b]G)), all ĥ ∈ H, we require that PrivExtH always extracts a representa-

tion of [x]G with respect to [b]G, i.e. for z := PrivExtH(τH, ĥ), [zᵀ · b]G =

UnwrapH(ppH, ĥ).
Correctness of extraction. For all ppG ∈ supp(GGenG(1λ)), all [b]G ∈ BnppG ,

all (ppH, τH) ∈ supp(GGenH(ppG, [b]G)), all ĥ0, ĥ1 ∈ H, we require that pri-

vate extraction respects the group operation in the sense that for all ĥ2 ∈
supp(AddH(ppH, ĥ0, ĥ1)), z(i) := PrivExtH(τH, ĥi) satisfy z(2) = z(0) + z(1).
Furthermore, for all ppG ∈ supp(GGenG(1λ)), all [b]G ∈ BnppG , all (ppH, τH) ∈
supp(GGenH(ppG, [b]G)), all ĥ ∈ H, we require that re-randomization does not

interfere with private extraction in the sense that for all ĥ′ ∈ supp(RerandH(

ppH, ĥ)), PrivExtH(τH, ĥ) = PrivExtH(τH, ĥ′).
Correctness of sampling. For all ppG ∈ supp(GGenG(1λ)), all [b]G ∈ BnppG ,

all (ppH, τH) ∈ supp(GGenH(ppG, [b]G)), we require that
– for all v ∈ Znp , Pr[PrivExtH(τH,PrivSamH(τH,v)) = v] = 1, and
– for all x ∈ Zp, Pr[PrivExtH(τH,SamH(ppH, x · e1)) = x · e1] = 1.

k-Switching. We say a PPT adversary A is a legitimate k-switching adversary

if on input of base group parameters ppG, A outputs two bases ([b]
(j)
G)j∈{0,1}

and two lists comprising k representation vectors (v(j),(i))i∈[k],j∈{0,1} (and

an internal state st) such that [b]
(0)
G , [b]

(1)
G ∈ BnppG and v(0),(i),v(1),(i) ∈ Znp

for some n ∈ N and all i ∈ [k] and
[
(v(0),(i))ᵀ · b(0)

]
G =

[
(v(1),(i))ᵀ · b(1)

]
G

for all i ∈ [k].
For all legitimate k-switching PPT adversaries A,

Advk-switchingH,A (λ) :=
∣∣∣Pr[Expk-switchingH,A,0 (λ) = 1]− Pr[Expk-switchingH,A,1 (λ) = 1]

∣∣∣

16 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

is negligible, where Expk-switchingH,A,b (λ) (for b ∈ {0, 1}) is defined in Figure 1.
Statistically re-randomizable. We say an unbounded adversary A is a legiti-

mate re-randomization adversary if on input of base group parameters ppG,
A outputs [b]G and a state st such that [b]G ∈ BnppG and, in a second phase,

A on input of (ppH, τH, st) outputs two valid encodings ĥ0, ĥ1 (and a state

st) such that PrivExtH(τH, ĥ0) = PrivExtH(τH, ĥ1).
For all unbounded legitimate re-randomization adversaries A,

Advrerand
H,A (λ) :=

∣∣Pr[Exprerand
H,A,0 (λ) = 1]− Pr[Exprerand

H,A,1 (λ) = 1]
∣∣ ≤ 1

2λ
,

where Exprerand
H,A,b (λ) (for b ∈ {0, 1}) is defined in Figure 1.

Exprerand
H,A,b (λ)

ppG ← GGenG(1λ)
([b]G , st)← A(1λ, ppG)
(ppH, τH)← GGenH(ppG, [b]G)

(ĥ0, ĥ1, st)← A(ppH, τH, st)

ĥ← RerandH(ppH, ĥb)

return A(ĥ, st)

Expk-switchingH,A,b (λ)

ppG ← GGenG(1λ)(
([b]

(j)
G)j∈{0,1},

(v(j),(i))i∈[k],j∈{0,1}, st
)
← A(1λ, ppG)

(ppH, τH)← GGenH(ppG, [b]
(b)
G)

ĥ∗i ← PrivSamH(τH,v
(b),(i))

return A(ppH, (ĥ
∗
i)i∈[k], st)

Fig. 1: The re-randomization and k-switching games.

For simplicity we require that encodings are always in {0, 1}penc(λ) for a fixed
polynomial penc(λ).

The k-switching property allows to simultaneously switch the representation
vectors of multiple group element encodings. It is necessary to switch all encodings
simultaneously since private sampling can only be simulated knowing the trapdoor
τH which is not the case in Expk-switchingH,A,b (λ).

3.3 Construction

Our construction follows the ideas from [1,3,17]. Let GGenG be a group generator
for a cyclic group G. Let T D be a family of hard subset membership problems.
Let FHE = (KGen,Enc,Dec,Eval,Rerand) be a perfectly correct and perfectly
re-randomizable fully homomorphic public-key encryption scheme. Let ppG be
group parameters for G and [Ω]G ∈ Gn for some n ∈ N. Let TD ⊆ X be a subset
membership problem from T D and y ← X \ TD and pk be a public key for FHE.
For ease of notation, we define pars := (ppG, TD, y, pk , [Ω]G). Let Π := (Setup,
Prove,Verify,HSetup,Ext) be a perfectly complete, perfectly sound and perfectly
witness-indistinguishable dual-mode NIZK proof system for the language

L :=
{
y := (pars, [x]G , C)

∣∣ ∃w : (y, w) ∈ R := R1 ∨R2 ∨R3

}
.

The relations R1,R2,R3 are defined as follows.

R1 =

(

(pars, [x]G , C), (sk ,v)
) ∣∣∣∣∣∣∣∣

KGen(1λ; sk) = (pk , sk)
∧ Dec(sk , C) = v
∧ [Ωᵀ · v]G = [x]G

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 17

R2 =

{(
(pars, [x]G , C), (r,v)

) ∣∣∣∣∣ Enc(pk ,v; r) = C
∧ [Ωᵀ · v]G = [x]G

}
R3 =

{ (
(pars, [x]G , C), (wy)

) ∣∣∣ (y, wy) ∈ RTD

}
With m′(λ) we denote a polynomial upper bound on the number of random
bits FHE.Rerand(1λ, ·, ·) expects and with m′′(λ) we denote a polynomial upper
bound on the number of random bits Π.Prove(1λ, ·, ·, ·) expects. Let `(λ) :=
m′(λ) +m′′(λ) + 2(λ+ 1) + 3. Let piO be a pIO scheme for the class of samplers
SX-ind and let piO?` be an `-expanding pIO scheme for the class of samplers

SX-(?)-ind
` . Further, let padd(λ) denote a polynomial upper bound on the size of

addition circuits and prerand(λ) denote a polynomial upper bound on the size of
re-randomization circuits which are used during the proof, see the full version [2]
for details.

GGenH(ppG, [b]G = [(b1, . . . , bn)ᵀ]G)

α1 := 1, α2, . . . , αn ← Z×p
[Ω]G := ([b1]α1

G , . . . , [bn]αnG)ᵀ

(pk , sk)← FHE.KGen(1λ)
crs← Π.Setup(1λ),TD← T D, y ← TD

ΛAdd ← piO(1padd(λ), CAdd)
Λrerand ← piO?` (1

prerand(λ), Crerand)
pars := (ppG, TD, y, pk , [Ω]G)
ppH := (crs, pars, ΛAdd, Λrerand)
τH := (ppH, sk , α1, . . . , αn, [b]G)
return (ppH, τH)

SamH(ppH,v ∈ Znp)

C = Enc(pk ,v; r)
[x]G := [Ωᵀ · v]G
π = Prove(crs, (pars, [x]G , C), (r,v))

return ĥ := ([x]G , C, π)H

ValH(ppH, ĥ)

parse x̂ =: ([x]G , C, π)H
return Π.Verify(crs, (pars, [x]G , C), π)

UnwrapH(ppH, ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
return [x]G

EqH(ppH, ĥ1, ĥ2)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
return [x1]G = [x2]G

GetIDH(ppH, ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
return [x]G

AddH(ppH, ĥ1, ĥ2)

return ΛAdd(ĥ1, ĥ2)

CAdd[pars, crs, sk](ĥ1, ĥ2; r)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
[xout]G := [x1]G · [x2]G
Cout ← FHE.Eval(pk , C(+)[Znp], C1, C2)

// C(+)[Znp] computes addition in Znp
vi ← Dec(sk , Ci)
vout := v1 + v2

πout ← Prove(crs,
(pars, [xout]G , Cout), (sk ,vout))

return ĥout := ([xout]G , Cout, πout)

(a) Definition of the algorithms GGenH,SamH,ValH,EqH,GetIDH,AddH,UnwrapH and the
circuit CAdd.

Our algebraic wrapper H is composed of the PPT algorithms (GGenH,SamH,
ValH,AddH,EqH,RerandH,PrivExtH,PrivSamH,GetIDH,UnwrapH) which are defined
in Figures 2a and 2b. We note that the algorithm ValH which is evaluated inside

18 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

PrivSamH(τH,v ∈ Znp)

v∗ := (v1 · α−1
1 , . . . , vn · α−1

n)ᵀ

[x]G := [bᵀ · v]G = [Ωᵀ · v∗]G
C = Enc(pk ,v∗; r)
π = Prove(crs, (pars, [x]G , C), (sk ,v∗))
return ([x]G , C, π)H

PrivExtH(τH, ĥ)

if ¬ValH(ppH, ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
(v1, . . . , vn)ᵀ =: v = Dec(sk , C)
return (v1 · α1, . . . , vn · αn)ᵀ

RerandH(ppH, ĥ)

u← {0, 1}`(λ)

return Λrerand(ĥ, u)

Crerand[pars, crs, sk](ĥ; r1, r2)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
v := Dec(sk , C)
Cout := FHE.Rerand(pk , C; r1)
πout ← Prove(crs,

(pars, [x]G , Cout), (sk ,v); r2)

return ĥout := ([x]G , Cout, πout)H

(b) Definition of the algorithms PrivSamH,PrivExtH,RerandH and the circuit Crerand.

Fig. 2: Algorithms of our algebraic wrapper construction.

CAdd and Crerand only requires a certain part of the public parameters as input.
In particular, ValH does not depend on ΛAdd and Λrerand.

During “honest” use of our algebraic wrapper, encodings carry proofs produced
for relation R1 or relation R2. Relation R2 enables sampling without knowledge
of any trapdoors. Re-randomized encodings always carry proofs for relation R1.
Relation R3 is a trapdoor branch enabling simulation. Note that during “honest”
use of the algebraic wrapper y 6∈ TD and, hence, due to perfect soundness of Π,
there exists no proof for relation R3.

Differences to [1,3,17]. [3,17] introduce similar constructions of a group scheme
featuring a multilinear map and of a graded encoding scheme, respectively. More
precisely, [3,17] equip a base group with encodings carrying auxiliary information
which can be used (in an obfuscated circuit) to “multiply in the exponent”. We
observe that these constructions already wrap a given base group in the sense
that “unwrapping” encodings yields a group isomorphism to the base group.

Our construction builds upon these group schemes. In order to enable ex-
tractability with respect to a dynamically chosen basis12, our group parameters
must be generated depending on that basis.

This modification, however, comes at the cost of the multilinear map function-
ality. This is because any implementation of a multilinear map requires knowledge
of discrete logarithms of each group element encoding to a fixed generator. This
is undesirable for our purposes, since we want to be able to use sets of group
elements as basis which we do not know discrete logarithms of (for instance group
elements provided by a reduction). Thus, we have to give up the multiplication
functionality.

Furthermore, looking ahead, we crucially require that the basis can be altered
via computational game hops during proofs. We solve this problem by linearly
perturbing the given basis [b]G (except for its first entry to enable meaningful

12 With basis we mean a set of group elements in the base group.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 19

public sampling). We refer to this perturbed basis as [Ω]G. Our group element
encodings are defined to carry representation vectors with respect to [Ω]G. By
construction of CAdd, these representation vectors are treated homomorphically
by the group operation.

To preserve tightness of security reductions, we additionally introduce a
statistical re-randomization mechanism.

As opposed to [3, 17], [1] uses a quite different approach. In [1], the group
scheme is constructed from scratch, meaning there is no necessity for an underly-
ing group. The consequences are twofold. On one hand, very strong decisional
assumptions can be proven to hold in the resulting group scheme. On the other
hand, however, the group scheme from [1] lacks a GetIDH algorithm limiting its
applicability.

Theorem 2. Let (i) GGenG be a group generator for a cyclic group G, (ii) T D
be a family of hard subset membership problems, (iii) FHE = (KGen,Enc,Dec,
Eval,Rerand) be a perfectly correct and perfectly re-randomizable fully homomor-
phic public-key encryption scheme, (iv) Π := (Setup,Prove,Verify,HSetup,Ext)
be a perfectly complete, perfectly sound and perfectly witness-indistinguishable
dual-mode NIZK proof system for the language L, (v) piO be a pIO scheme for
the class of samplers SX-ind and (vi) piO?` be an `-expanding pIO scheme for the

class of samplers SX-(?)-ind
` . Then, H defined in Figures 2a and 2b is an algebraic

wrapper.

Here we provide a formal proof of the statistical re-randomization property
and a high-level idea for the remaining properties. For a formal analysis of the
remaining properties, we refer the reader to the full version [2].

Proof (sketch). Since piO is support respecting, the algorithms defined in Fig-
ure 2a equip the base group G with non-unique encodings but respect its group
structure. Thus, the tuple (GGenH,SamH,ValH,EqH,AddH,GetIDH) forms a group
scheme such that UnwrapH(ppH, ·) defines a group isomorphism from H to G.
Therefore, H satisfies G-wrapping. Extractability follows (more or less) directly
by the soundness of the consistency proof and correctness of FHE. Correctness of
extraction follows by construction and the correctness of FHE and the fact that
piO and piO?` are support respecting. Correctness of sampling follows directly by
correctness of FHE.

Since our construction builds upon techniques developed in [3], we also employ
similar strategies to remove information about the secret decryption key from the
public group parameters ppH. To prove k-switching, we next use the IND-CPA
security of FHE to remove all information about the basis from the group element
encodings. Finally, the only remaining information about the basis used to setup
the group parameters resides in [Ω]G which thus looks uniformly random to even
an unbounded adversary.

A crucial technical difference to previous work [1, 3, 17] is the ability to
statistically re-randomize encodings. The key ingredient enabling this is our
statistically correct pIO scheme due to Theorem 1.

20 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

Lemma 1. The group scheme H defined in Figures 2a and 2b satisfies statistical
re-randomizability.

Proof (of Lemma 1). The circuit Crerand takes inputs from {0, 1}penc(λ) and expects
a randomness from {0, 1}m′(λ)×{0, 1}m′′(λ). We recall that piO?` is an `-expanding
pIO scheme for `(λ) = m′(λ) +m′′(λ) + 2(λ+ 1) + 3. Since for every distribution

X1 over {0, 1}penc(λ), H̃∞(U`(λ) | X1) = `(λ) > m′(λ) +m′′(λ) + 2(λ+ 1) + 2, the
statistical distance between{

Λrerand ← piO?` (Crerand) : (Λrerand, Λrerand(X1, X2))
}

and
{
Λrerand ← piO?` (Crerand) : (Λrerand, Crerand(X1;Um′(λ)+m′′(λ)))

}
is at most 2−(λ+1).

Let ĥ0 =: ([x0]G , C0, π0)H, ĥ1 =: ([x1]G , C1, π1)H ∈ H be the encodings
chosen by the adversary A. Since A is a legitimate re-randomization adversary,

PrivExtH(τH, ĥ0) = PrivExtH(τH, ĥ1). Due to perfect correctness of FHE and since
α1, . . . , αn ∈ Z×p are invertible, Dec(sk , C0) = Dec(sk , C1). Due to perfect re-

randomizability of FHE, the ciphertexts produced by Crerand(ĥ0) and Crerand(ĥ1)

are identically distributed. Furthermore, since Crerand(ĥb) produces the consistency

proof using the witness (sk ,Dec(sk , Cb)), the distributions produced by Crerand(ĥ0)

and Crerand(ĥ1) are identical. Therefore, Advrerand
H,A (λ) ≤ 2 · 2−(λ+1) = 2−λ.

Note that since G has unique encodings, A is unable to extract auxiliary
information from the encodings of UnwrapH(ppH, ĥ). This is crucial since such

auxiliary information may be used to distinguish whether ĥ0 or ĥ1 was used to
derive ĥ. ut

ut

4 How to use Algebraic Wrappers – Implementing proofs
from the AGM

In the following, we demonstrate how proof techniques from the algebraic group
model can be implemented with our algebraic wrapper. Mainly, we want to use
the extracted representation provided by the algebraic wrapper in a similar way
as in AGM proofs. We adapt the proofs of Diffie-Hellman assumptions from [21] in
Section 4.1 as well as the proof for the EUF-CMA security of Schnorr signatures
from [22] in Section 4.2. Before we demonstrate how to use the algebraic wrapper,
we sketch two modifications which will be necessary when we replace the AGM
with the algebraic wrapper.

The symmetrization technique. Information-theoretically, the basis13 the algebraic
wrapper enables extraction for, as well as the representation vectors inside

13 With basis we mean the set of group elements in the base group to which we can
extract.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 21

group element encodings are known to the adversary. However, several security
reductions in [21] employ case distinctions where different reduction algorithms
embed their challenge in different group elements. For instance, in the CDH
game, the discrete logarithm challenge Z can be embedded either in [x]H or [y]H,
leading to two different security reductions. Due to the ideal properties of the
AGM, both reductions simulate identically distributed games.

However, transferring this strategy directly using algebraic wrappers fails,
since the two reductions are information-theoretically distinguishable depending
on the choice of basis. An unbounded adversary who knows which game he is
playing could therefore influence the representation of his output in such a way
that it always becomes impossible for the reduction to use the representation
to compute the discrete logarithm. We call such a situation a bad case. It is
necessary that the different reduction subroutines have mutually exclusive bad
cases, so that extraction is always possible in at least one game type. Thus, we
need find a way that even these representations (and the basis used to generate
ppH) are identically distributed.

We therefore introduce a proof technique which we call symmetrization. We
extend the basis and group element representations in such a way that the games
played by different reduction subroutines are identically distributed (as they
would be in the AGM). This is done by choosing additional base elements to
which the reduction knows the discrete logarithm (or partial logarithms), so that
these additional base elements do not add any unknowns when solving for the
discrete logarithm. With this technique, we achieve that the games defined by
the different reduction algorithms are identically distributed but entail different
mutually-exclusive bad cases. For the CDH reduction, this means that both
challenge elements [x]H and [y]H are contained in the basis, so that it is not
known to the adversary which one is the reduction’s discrete logarithm challenge.
This allows to adopt the proofs from AGM.

The origin element trick. Applying the algebraic wrapper to AGM proofs where
an oracle (e.g. a random oracle or a signing oracle) is present, entails the need to
change the representation vectors of all oracle responses. One possibility to realize
this is to apply Q-switching, where Q denotes a polynomial upper bound on
the number of oracle queries. However, as the switching property only provides
computational guarantees, this naive approach results in a non-tight reduction.
Since we are interested in preserving the tightness of AGM proofs when applying
the algebraic wrapper, we use so-called origin elements from which we construct
the oracle responses using the group operation. This enables to use n-switching
for a constant number n of origin elements instead of Q-switching for Q oracle
responses.

Limitations of our techniques. While our algebraic wrapper provides an extraction
property that is useful for many proofs in the AGM, it also has its limitations.
Mainly, the base elements to which the PrivExt algorithm can extract need to
be fixed at the time of group parameter generation. Therefore, we cannot mimic
reductions to assumptions with a variable amount of challenge elements, where

22 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

extraction needs to be possible with respect to all these challenge elements. For
instance, q-type assumptions which are used in [21] to prove CCA1-security of
ElGamal and the knowledge-soundness of Groth’s ZK-SNARK.

Furthermore, there are security proofs in the AGM that rely on the rep-
resentation used by the reduction being information-theoretically hidden from
the adversary. An example for this is the tight reduction for the BLS scheme
from [21]. As the reduction can forge a signature for any message, it relies on
the representations provided by the adversary being different from what the
reduction could have computed on its own. In the AGM, it is highly unlikely
that the adversary computes the forged signature in the exact same way as the
reduction simulates the signing oracle, because the reduction does not provide the
adversary with an algebraic representation. However, since we need to be able to
extract privately from group element encodings, the group elements output by the
reduction information theoretically contain algebraic representations. Therefore,
information-theoretically, an adversary sees how the reduction simulates hash
responses and signatures, and thus could provide signatures with a representation
that is useless to the reduction.

This problem is circumvented in the Schnorr proof in Section 4.2 due to
the representation provided by the adversary already being fixed by the time it
receives a challenge through the Random Oracle. We leave it as an open problem
to transfer the BLS proof to the algebraic wrapper.

Another limitation is that due to the reduction being private, we cannot use
the extraction in reductions between problems in the same group. That is, our
wrapper does not allow for “multi-step” reductions as in the AGM.

4.1 Diffie-Hellman Assumptions

We show how to adapt the security reductions for Diffie-Hellman problems
from [21] to our algebraic wrapper (see Figure 3 for the definitions). The main
proof idea, namely to use the representation of the adversary’s output to compute
the discrete logarithm, stays the same; however, due to the nature of our wrapper,
we need to apply the symmetrization technique to achieve the same distributions
as in the AGM.
cdh

x, y ← Zp
s← A([1]G , [x]G , [y]G)
return s = [xy]G

sqdh

x← Zp
s← A([1]G , [x]G)
return s =

[
x2
]
G

lcdh

x, y ← Zp
u, v, w, s← A([1]G , [x]G , [y]G)
return s =

[
u · x2 + v · xy + w · y2

]
G

Fig. 3: The different types of Diffie-Hellman games shown in [21]

Theorem 3. Let G be a group where the discrete logarithm is hard. Then, the
computational Diffie-Hellman assumption holds in an algebraic wrapper H for G
of dimension ≥ 3.

We sketch the proof here and refer the reader to the full version [2] for the
full proof.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 23

G0

ppG ← GGenG(1λ)
β2, β3 ← Zp
(ppH, τH)← GGenH(ppG, ([1]G , [β2]G , [β3]G)ᵀ)
x, y ← Zp
1̂ = RerandH(ppH,SamH(ppH, 1))
x̂ = RerandH(ppH, SamH(ppH, x))
ŷ = RerandH(ppH, SamH(ppH, y))
s← A(ppH, 1̂, x̂, ŷ)
return EqH(x̂y, s)
G1

ppG ← GGenG(1λ)
X ← G
z ← Zp
(ppH, τH)← GGenH(ppG, ([1]G , [x]G , [y]G)ᵀ)

1̂ = RerandH(ppH, SamH(ppH, 1))
x̂ = RerandH(ppH,PrivSamH(τH, (0, 1, 0)ᵀ))
ŷ = RerandH(ppH,PrivSamH(τH, (0, 0, 1)ᵀ))

s← A(ppH, 1̂, x̂, ŷ)
return EqH([xy]G , s)

Fig. 4: The CDH games used in the security proof. G0 corresponds to the honest
CDH-game. Games of type G1 allow the reduction to embed its discrete logarithm
challenge and extract a useful representation.

Proof (sketch). We use an algebraic wrapper with basis [1]G , [x]G , [y]G. Initially,
we perform game hops starting from the CDH game (where every encoding carries
representation vectors in the first component), see G0 in Figure 4 and reach
a game, where the encodings produced as CDH challenge carry representation
vectors of e1, e2 and e3, respectively, see G1 in Figure 4. These game hops are
justified by 2-switching and rerand.

The reduction flips a coin whether to embed the DLOG challenge Z as [x]G
or [y]G, i.e. it applies the symmetrization technique. In both cases, the view of
the CDH adversary is identical. When the CDH adversary outputs a solution,
the reduction is able to compute the discrete logarithm of the embedded DLOG
challenge from the representation vector extracted from the solution. ut

We additionally show the following in the full version [2].

Theorem 4. Let G be a group where the discrete logarithm is hard. Then, the
square Diffie-Hellman assumption holds in an algebraic wrapper H of dimension
≥ 2 for G.

Theorem 5. Let G be a group where DLOG is hard and H be an algebraic
wrapper of dimension ≥ 3 for G. Then, the linear-combination Diffie-Hellman
problem is hard in H.

24 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

4.2 Schnorr Signatures

We apply the algebraic wrapper to mimic the proof of tight EUF-CMA security
of Schnorr Signatures from [22].

Theorem 6. Let GGenG be a group generator for a cyclic group G such that
DLOG is hard relative to GGenG and let H be an algebraic wrapper of dimension
≥ 2 for G. Then, the Schnorr signature scheme in H is tightly EUF-CMA secure
in the random oracle model.

More precisely, for all PPT adversaries A, there exists a PPT adversary B
and a legitimate switching adversary A′′ both running in time T (B) ≈ T (A) +
(qs + qh) · poly(λ) and T (A′′) ≈ T (A) + (qs + qh) · poly(λ) such that

Adveuf-cma
Σschnorr,A (λ) ≤ AdvDLOG

B,G (λ) + Adv
1-switching
A′′,H (λ) +

O(qs(qs + qh))

2λ
,

where qh is a polynomial upper bound on the number of random oracle queries,
qs is a polynomial upper bound on the number of signing queries and poly is a
polynomial independent of qs and qh.

KGen(ppH)

x← Zp
1̂ := RerandH(ppH, SamH(ppH, 1))

X̂ := RerandH(ppH,SamH(ppH, x))

pk := (ppH, 1̂, X̂)
sk := (pk , x)
return (pk , sk)

Sign(sk ,m)

r ← Zp
R̂← RerandH(ppH,SamH(ppH, r))

c := H(R̂,m)
s := r + c · x mod p
return σ := (R̂, s)

Ver(pk = (ppH, 1̂, X̂),m, σ = (R̂, s))

c := H(R̂,m)

return EqH(ppH, SamH(ppH, s), R̂ · X̂c)

Fig. 5: The Schnorr signature scheme Σschnorr. Note that to compensate for the
non-uniqueness of group element encodings, the (random oracle) hash value of
a group element encoding is computed for the unique identifier produced by
GetIDH(ppH, ·).

Expeuf-cma
Σschnorr,A(λ)

ppG ← GGenG(1λ)
(ppH, τH)← GGenH(ppG, ([1]G , [β2]G)ᵀ)
x← Zp
ξ1 ← RerandH(ppH, SamH(ppH, 1))
ξ2 ← RerandH(ppH, SamH(ppH, x))
pk := (ppH, ξ1, ξ2)
Q := ∅, T := []

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
c∗ = H(R̂∗,m∗)

return EqH(ppH, SamH(ppH, s
∗), R̂∗ · ξc

∗
2)

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp
return T [(GetIDH(ppH, R̂),m)]

Sign(m)

r ← Zp
R̂← RerandH(ppH, SamH(ppH, r))

c := H(R̂,m)
s := r + cx
Q := Q ∪ {m}
return (R̂, s)

Fig. 6: The EUF-CMA game for Schnorr signatures. Note that β2 can be chosen
arbitrarily.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 25

G1 G2 G3 G4 G5

ppG ← GGenG(1λ)
(ppH, τH)← GGenH(ppG, ([1]G ,

[β2]G [x]G)ᵀ)

x← Zp
ξ1 ← RerandH(ppH, SamH(ppH, 1))

ξ2 ← RerandH(ppH, SamH(ppH, x)

PrivSamH(τH, (x, 0)))

pk := (ppH, ξ1, ξ2)

Q := ∅, T := [] U := []

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0

if U [(GetIDH(ppH, R̂
∗),m∗)] 6= ⊥ then

(γ∗, ζ∗) := U [(GetIDH(ppH, R̂
∗),m∗)]

if ζ∗ = −T [(GetIDH(ppH, R̂
∗),m∗)] then return 0

c∗ = H(R̂∗,m∗)

return EqH(ppH, SamH(ppH, s), R̂
∗ · ξc

∗
2)

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp
U [(GetIDH(ppH, R̂),m)] = PrivExtH(τH, R̂)

return T [(GetIDH(ppH, R̂),m)]

Sign(m)

r c, s ← Zp

R̂1 ← SamH(ppH, r)

c := H(R̂1,m)

s := r + cx

R̂2 ← RerandH(ppH, SamH(ppH, s− cx))

R̂2 ← RerandH(ppH, ξ
s
1 · ξ−c2)

R̂2 = RerandH(ppH, ξ
s
1 · ξ−c2)

if T [(GetIDH(ppH, R̂2),m)] = ⊥ then

T [(GetIDH(ppH, R̂2),m)] := c

else

abort

Q := Q ∪ {m}

return (R̂2 , s)

Fig. 7: Games G1, G2, G3. Boxed content happens in the corresponding games
and following games if no replacement is defined. The randomness for signa-
tures is drawn using an x-component in G1. G1 is identically distributed to
Expeuf-cma

Σschnorr,A(λ). In G2, the second origin element is sampled through private
sampling and the random part of the signatures is generated through origin
elements. G2 is statistically close to G1 due to re-randomizability. In G3, we
switch the basis and representation of ξ2; this hop is justified by 1-switching.

Proof. We use the origin element trick to avoid using qs-switching (see Defi-
nition 7) which would compromise tightness of the reduction. Figure 6 shows
the EUF-CMA game with Schnorr signatures instantiated with the algebraic
wrapper. We note that for groups with non-unique encodings, the hash function
hashes the unique identifier returned by GetIDH, hence, encodings corresponding
to the same group element are mapped to the same hash value. The reduction
uses a table T to keep track of previously made hash queries and their responses,
as well as a set Q to keep track of the messages the adversary has requested
signatures for.

Game hop from Expeuf-cma
Σschnorr,A(λ) G1. Since r = s − cx mod p and hence

GetIDH(ppH, R̂1) = GetIDH(ppH, R̂2), these two games are identically distributed.

Game hop G1 G2. In G2 (see Figure 7), we construct R̂2 from origin
elements through the group operation instead of sampling. This game hop is

26 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

justified by the re-randomizability of the algebraic wrapper. A reduction to this
property works as a series of qs + 1 hybrids where H0 is G1, where qs denotes
a polynomial upper bound on the number of signing queries. In Hi, the first i
signature queries are answered as in G2 and the i+1-th to qs-th signature queries
are answered as in G1. In the last hybrid, the public key is also changed to private
sampling. If there is an (unbounded) adversary that distinguishes Hi and Hi+1,
the reduction A′ uses this adversary to attack the re-randomizability as follows.
On input of base group parameters ppG, A′ picks a basis ([1]G , [β2]G) and gives it
to the rerand challenger. It receives public parameters and the trapdoor. Then,
it simulates Hi to the adversary for the first i signature queries, i.e. it samples
R̂2,j ← RerandH(ppH, ξ

sj
1 · ξ

−cj
2) for j < i. For the i + 1-th signature query, A′

sends the two elements ĥ0 = SamH(ppH, si+1 − ci+1 · x) and ĥ1 = ξ
si+1

1 · ξ−ci+1

2

to the challenger and receives a challenge Ĉ. It uses this challenge Ĉ as R̂2,i+1

to answer the i+ 1-th hash query and responds to the remaining queries as in
Hi+1, i.e. it samples R̂j ← RerandH(ppH,SamH(ppH, sj − cj · x)) for j > i + 1.

Depending on the challenge encoding Ĉ, A′ either simulates Hi or Hi+1 perfectly
and outputs the output of the corresponding game.

In hybrid Hqs , all signature queries are answered as in game G2. The last step
to game Hqs+1 = G2 changes how ξ2 (which is part of the public key) is sampled.
An adversary distinguishing Hqs and Hqs+1 can be used to build an adversary
A′ in rerand similarly as above. More precisely, A′ outputs the encodings

ĥ0 ← SamH(ppH, x) and ĥ1 ← PrivSamH(τH, x) (note that τH is known during
the rerand game) and uses the challenge encoding from the rerand challenger
as ξ2. We note that this last game hop paves the way to apply 1-switching.

Due to correctness of sampling and correctness of extraction, the representa-
tion vectors of the elements used in the rerand game are identical and hence A′
is a legitimate adversary in the rerand game and its advantage is upper bounded
by 1

2λ
. Therefore,

|Pr [out1 = 1]− Pr [out2 = 1]| ≤ qs + 1

2λ
.

Game hop G2 G3. In game G3 (see Figure 7) we switch the basis and the
representation of the origin element ξ2. This game hop is justified by 1-switching.
LetA be an adversary distinguishingG2 andG3. We construct an adversaryA′′ on

1-switching as follows. Initially, A′′ on input of ppG, outputs [b]
(G2)
G = [(1, β2)ᵀ]G

and [b]
(G3)
G = [(1, x)ᵀ]G and the representation vectors v(G2) := (x, 0)ᵀ and

v(G3) := (0, 1)ᵀ. In return, A′′ receives public parameters ppH and an encoding Ĉ

and samples ξ2 ← RerandH(ppH, Ĉ). The trapdoor τH is not necessary to simulate
G3 and G4 (except for sampling ξ2). Hence, A′′ perfectly simulates G3 or G4 for
A depending on the challenge provided by the 1-switching challenger. Thus,
|Pr[out3 = 1]− Pr[out2 = 1]| ≤ Adv

1-switching
H,A′′ (λ). Note that A′′ is a legitimate

switching adversary since [(1, β2)]G · (x, 0)ᵀ = [x]G = [(1, x)]G · (0, 1)ᵀ and hence

Adv1-switching
H,A′′ (λ) is negligible.

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 27

Game hop G3 G4. In G4 (see Figure 7), we introduce a list U to keep track of
the representations of group elements used in Random Oracle queries. The games
G3 and G4 differ in the fact that G4 extracts the representation vectors contained
in the encoding of a group element when this group element message tuple is
queried for the first time and stores this representation in a list. Furthermore,
G4 introduces an abort condition which is triggered if the representation of R̂∗

originally used to query the random oracle on (R̂∗,m∗) already contained the
response in the second component ζ∗. This corresponds to the game hop from
G0 to G1 in [22]. The game only aborts if the hash T [(GetIDH(ppH, R̂

∗),m∗)] is

the same as the second component ζ∗ of the representation extracted from R̂∗.
Since the hash T [(GetIDH(ppH, R̂

∗),m∗)] is chosen uniformly at random after
the representation (γ∗, ζ∗) is fixed, the probability that an unbounded adversary

can find such an (R̂∗,m∗) is upper bounded by qh
p ≤

qh
2λ

, where qh denotes
a polynomial upper bound on the number of random oracle queries. Hence,
|Pr[out4 = 1]− Pr[out3 = 1]| ≤ qh

2λ
.

Game hop G4 G5. In game G5 (see Figure 7), we change how signature
queries are answered such that it is not necessary anymore to know the discrete
logarithm of the public key. This game hop corresponds to the hop from G1 to
G2 in [22]. On one hand, since GetIDH(ppH, R̂1) = GetIDH(ppH, R̂2), replacing

R̂1 with R̂2 does not change the distribution. On the other hand, as we are
only able to answer a signing query if we can program the random oracle
at (R̂2,m) (for randomly chosen R̂2), the signing oracle has to abort in case

the hash was already queried before. Since R̂2 is a independently sampled
uniformly random group element, this happens only with probability 1

p ≤
1
2λ

.

Hence, by a union bound, this abort occurs at most with probability qs(qs+qh)
2λ

cases, where qs denotes a polynomial upper bound on the number of signing
queries and qh denotes a polynomial upper bound on the number of random
oracle queries. Conditioned on the event that no abort occurs, G4 and G5 are
distributed identically. Hence, by the Difference Lemma due to Shoup [39], we

have |Pr[out5 = 1]− Pr[out4 = 1]| ≤ qs(qs+qh)
2λ

. As in [22], on extraction of the

initial representation (γ∗, ζ∗) of R̂∗ from a valid signature (R̂∗, s∗) output by

the adversary, the reduction can use that R̂∗ = [γ∗]H · [ζ∗ · z]H = [s∗ − c∗ · z]H.
Therefore,

z =
s∗ − γ∗

ζ∗ − c∗
.

Due to the added check in G4, an adversary can only win G4 or G5 when
ζ∗ − c∗ 6= 0 which concludes the proof. ut

References

1. Agrikola, T., Hofheinz, D.: Interactively secure groups from obfuscation. In: Abdalla,
M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 341–370. Springer,
Heidelberg (Mar 2018)

28 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

2. Agrikola, T., Hofheinz, D., Kastner, J.: On instantiating the algebraic group model
from falsifiable assumptions. Cryptology ePrint Archive, Report 2020/070 (2020),
https://eprint.iacr.org/2020/070

3. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear
maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A, Part I.
LNCS, vol. 9562, pp. 446–473. Springer, Heidelberg (Jan 2016)

4. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 273–289. Springer, Heidelberg (Aug 2004)

5. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 505–514. ACM
Press (May / Jun 2014)

6. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to
cryptography (extended abstract). In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol.
1109, pp. 283–297. Springer, Heidelberg (Aug 1996)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17(4), 297–319 (Sep 2004)

8. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption
for restricted computations. In: Goldwasser, S. (ed.) ITCS 2012. pp. 350–366. ACM
(Jan 2012)

9. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT’98. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (May / Jun 1998)

10. Boyen, X.: The uber-assumption family. In: Pairing-Based Cryptography - Pair-
ing 2008, Second International Conference, Egham, UK, September 1-3, 2008.
Proceedings. pp. 39–56 (2008), https://doi.org/10.1007/978-3-540-85538-5_3

11. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (Mar 2015)

12. Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (Aug 2000)

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (Apr / May 2002)

14. Damg̊ard, I.: Towards practical public key systems secure against chosen cipher-
text attacks. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (Aug 1992)

15. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic
group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109.
Springer, Heidelberg (Dec 2002)

16. Dent, A.W.: The Cramer-Shoup encryption scheme is plaintext aware in the standard
model. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 289–307.
Springer, Heidelberg (May / Jun 2006)

17. Farshim, P., Hesse, J., Hofheinz, D., Larraia, E.: Graded encoding schemes from
obfuscation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770,
pp. 371–400. Springer, Heidelberg (Mar 2018)

18. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd ACM STOC. pp. 416–426. ACM Press (May 1990)

19. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. Journal of Cryptology 32(2), 566–599 (Apr 2019)

https://eprint.iacr.org/2020/070
https://doi.org/10.1007/978-3-540-85538-5_3

On Instantiating the Algebraic Group Model from Falsifiable Assumptions 29

20. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (Aug 2013)

21. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Heidelberg (Aug 2018)

22. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures in the algebraic
group model. Cryptology ePrint Archive, Report 2019/877 (2019), http://eprint.
iacr.org/2019/877

23. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17.
Springer, Heidelberg (May 2013)

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (Apr 2008)

25. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 408–423. Springer, Heidelberg
(Aug 1998)

26. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. Journal
of Cryptology 25(3), 484–527 (Jul 2012)

27. Hofheinz, D., Ursu, B.: Dual-mode nizks from obfuscation. In: Proceedings of
ASIACRYPT 2019 (2019), https://eprint.iacr.org/2019/475

28. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (Aug
2013)

29. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (May
2014)

30. Kastner, J., Pan, J.: Towards instantiating the algebraic group model. Cryptology
ePrint Archive, Report 2019/1018 (2019), https://eprint.iacr.org/2019/1018

31. Maurer, U.M.: Abstract models of computation in cryptography (invited paper).
In: Smart, N.P. (ed.) 10th IMA International Conference on Cryptography and
Coding. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (Dec 2005)

32. Maurer, U.M., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg,
K. (ed.) EUROCRYPT’98. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg
(May / Jun 1998)

33. Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (Aug
2003)

34. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55(2), 165–172 (1994)

35. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to
discrete log. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (Dec 2005)

36. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learning
with errors. In: Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part I. pp. 89–114 (2019), https://doi.org/10.1007/978-3-030-26948-7_4

http://eprint.iacr.org/2019/877
http://eprint.iacr.org/2019/877
https://eprint.iacr.org/2019/475
https://eprint.iacr.org/2019/1018
https://doi.org/10.1007/978-3-030-26948-7_4

30 Thomas Agrikola, Dennis Hofheinz, Julia Kastner

37. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology
4(3), 161–174 (Jan 1991)

38. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(May 1997)

39. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004), http://eprint.iacr.org/
2004/332

http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

	On Instantiating the Algebraic Group Model from Falsifiable Assumptions

