
Which Languages Have 4-Round Fully Black-Box
Zero-Knowledge Arguments from One-Way Functions?

Carmit Hazay1, Rafael Pass2, and Muthuramakrishnan
Venkitasubramaniam3

1 Bar-Ilan University
2 Cornell Tech

3 University of Rochester

Abstract. We prove that if a language L has a 4-round fully black-box zero-
knowledge argument with negligible soundness based on one-way functions, then
L ∈ MA. Since coNP ⊆ MA implies that the polynomial hierarchy collapses,
our result implies that NP-complete languages are unlikely to have 4-round fully
black-box zero-knowledge arguments based on one-way functions. In TCC 2018,
Hazay and Venkitasubramaniam, and Khurana, Ostrovsky, and Srinivasan demon-
strated 4-round fully black-box zero-knowledge arguments for all languages in
NP based on injective one-way functions. Their results also imply a 5-round pro-
tocol based on one-way functions. In essence, our result resolves the round com-
plexity of fully black-box zero-knowledge arguments based on one-way func-
tions.

Keywords: One-Way Functions, Zero-Knowledge Arguments, Black-Box Constructions

1 Introduction

Zero-knowledge (ZK) interactive proofs [GMR89] are paradoxical constructs
that allow one player (called the prover) to convince another player (called the
verifier) of the validity of a mathematical statement x ∈ L, while providing
zero additional knowledge to the verifier. Security against a cheating prover is
formalized via soundness, which bounds its success probability to convince of
the truthfulness of an incorrect statement. Whereas the zero-knowledge property
is formalized by requiring that the view of every “efficient” adversary verifier V∗
interacting with the honest prover P be simulated by an “efficient” machine S
(a.k.a. the simulator). The idea behind this definition is that whatever V∗ might
have learned from interacting with P , it could have actually learned by itself
(by running the simulator S). As “efficient” adversaries are typically modeled
as probabilistic polynomial-time machines (PPT), the traditional definition of
ZK models both the verifier and the simulator as PPT machines.

Several different flavors of ZK systems have been studied in the literature.
In this work, we are interested in computational ZK argument systems with

black-box simulation, where the soundness is required to hold only against non-
uniform PPT provers whereas the zero-knowledge property holds against PPT
verifiers which get an auxiliary input. Such systems are referred to as compu-
tational zero-knowledge argument systems. We will further focus on the case
of fully black-box constructions4 and black-box simulation.5 The main ques-
tion we are interested in this work is the round-complexity of computational
zero-knowledge argument systems based on minimal assumptions via a fully
black-box construction.

We begin with a survey of prior work in this area. Goldreich, Micali and
Wigderson [GMW91] constructed the first zero-knowledge proof system for
all of NP based on any commitment scheme (which can be instantiated via a
2-round protocol based on one-way functions [Nao91,HILL99]), where they
required polynomially many rounds to achieve negligible soundness. For ar-
guments, Feige and Shamir [FS89] provided a 4-round zero-knowledge sys-
tem based on algebraic assumptions. In [BJY97], Bellare, Jackobson and Yung,
showed how to achieve the same assuming only one-way functions.

In this work, we are interested in fully black-box constructions based on
the underlying assumptions. Pass and Wee [PW09] provided the first black-
box construction of a 6-round zero-knowledge argument for NP based on one-
way permutations,6 and seven rounds based argument on one-way functions.
Ishai, Mahmoody and Sahai provided the first black-box zero-knowledge argu-
ments based on collision-resistant hash-functions that has total sublinear com-
munication complexity [IMS12]. Ostrovsky, Richelson and Scafuro [ORS15]
showed how to construct black-box two-party secure computation protocols
in four rounds where only one party receives the output, based on enhanced
trapdoor permutations. More recently, in two independent works by Hazay and
Venkitasubramaniam [HV18] and Khurana, Ostrovsky and Srinivasan [KOS18],
4-round fully black-box zero-knowledge arguments based on injective one-way
function were demonstrated for all of NP.

On the negative side, Goldreich and Oren [GO94] demonstrated that three
rounds are necessary for designing zero-knowledge arguments for any non-
trivial language (i.e. outside BPP) against non-uniform verifiers. When further
restricting to black-box simulation, Goldreich and Krawczyk [GK96] showed
that four rounds are necessary for achieving zero-knowledge arguments of non-
trivial languages. For the specific case of proofs, Katz [Kat12] showed that
only languages in MA can have 4-round zero-knowledge proof systems. As

4 Where the construction is agnostic of the specific implementation and relies only on its in-
put/output behavior.

5 Where the simulator is only allowed to make black-box use of the verifier’s code.
6 Where injective one-way functions are sufficient.

2

such, the works of [BJY97] and [GK96] identify the round-complexity of zero-
knowledge arguments as four, when restricting to black-box simulation. The
sequence of prior works leaves the following fundamental question regarding
zero-knowledge arguments open:

What is the weakest hardness assumption for a fully black-box construc-
tion of a 4-round zero-knowledge argument system for all of NP?
or
Is there an inherent black-box barrier to design 4-round ZK arguments
for all of NP based on one-way functions?

We remark that when considering non-black-box simulation, a recent work
due to Bitansky, Tauman Kalai and Paneth [BKP18] demonstrated how to obtain
3-round zero-knowledge arguments for NP based on multi-collision resistant
hash functions. On the negative side, Fleischhacker, Goyal and Jain [FGJ18]
proved that 3-round private-coin ZK proofs for NP do not exist, even with re-
spect to non-black-box simulation assuming the existence of certain program
obfuscation primitives.

Our results. In this work we prove the infeasibility of 4-round black-box ZK
arguments for all of NP from one-way functions. More formally, the main the-
orem we prove in this work is:

Theorem 1.1 (Main result.) If L has a fully black-box construction of 4-round
computational zero-knowledge argument for L with negligible soundness based
on one-way functions, then L ∈ MA.

We remark that our result is essentially optimal on several fronts. In par-
ticular, if we relax the requirement of a black-box construction, then the work
of [BJY97] showed how to construct 4-round ZK argument based on one-way
functions. If we only required inverse polynomial soundness (as opposed to neg-
ligible soundness), then the classic GMW protocol [GMW91] when repeated in
parallel a logarithmic number of times gives a 4-round ZK proof based on one-
way functions with inverse polynomial soundness. If we relaxed one-way func-
tions to injective one-way functions, then the works of [HV18,KOS18] demon-
strates a 4-round zero-knowledge arguments for all of NP that is fully black-box
based on one-way permutations. We highlight here that our impossibility result
only requires that the zero-knowledge property holds w.r.t. one-way functions.
In other words, we can show L ∈ MA even if the soundness of the underly-
ing argument is based on one-way permutations. This matches the construction
of [HV18]. Finally, we cannot hope to improve the theorem from MA to BPP
as there exist languages (that are believed to be) outside of BPP (e.g., graph
non-isomorphism) that have unconditional 4-round ZK proofs.

3

1.1 Our Techniques

On a high-level, our technique follows very closely the lower bound result of
Katz [Kat12]. In this work, Katz proves that if a language L has a 4-round
black-box zero-knowledge proof, then L ∈ MA. As a warmup, we begin with
an overview of this proof.

Suppose that we have a 4-round zero-knowledge proof for a language L.
The main idea is to design a malicious verifier V∗ that satisfies the following
properties:

– On a true statement x ∈ L, SV∗
will output an accepting transcript with

high probability, where S is the simulator for this argument system.
– On a false statement x ̸∈ L, SV∗

outputs an accepting transcript with a small
probability.

Given such an algorithm V∗, one can consider the following procedure to
decide L: Run SV∗

. Then, reject if it outputs an accepting transcript and ac-
cept otherwise. If this procedure can be carried out via a PPT algorithm then
it would imply L ∈ BPP. Since we know there are languages outside BPP
which have 4-round zero-knowledge proofs (e.g., languages in SZKP), it is un-
likely that we will be able to construct a V∗ for which this decision procedure
will be efficiently computable. Indeed, the algorithm V∗ that is constructed in
[Kat12] cannot be sampled via a PPT algorithm. Recall that the goal is to de-
sign an MA proof system for L. Katz shows that with some limited help from
an unbounded Merlin, Arthur will be able to run the decision procedure, namely
SV∗

. More concretely, Merlin will sample a string m from a prescribed distri-
bution and send it to Arthur. Using m, Arthur will be able to run SV∗

. On a true
statement (i.e. x ∈ L), Merlin will (honestly) provide the single message with
the right distribution and Arthur will be able to decide correctly. Soundness,
on the other hand, will require to argue that, for any arbitrary message sent
by Merlin, Arthur rejects the statement with high probability. If the underlying
zero-knowledge argument system admits perfect completeness then it becomes
easy to argue that Merlin cannot provide “bad” messages that will make Arthur
accept a false statement. The imperfect completeness case is more challenging.
To make the proof system sound in the case of imperfect completeness, Katz
showed a mechanism for Arthur to discard “bad” messages from Merlin. We
now proceed to describe in more detail the lower bound in the case of imperfect
completeness as we follow the ideas in this case closely.

We begin with a description of the malicious verifier V∗ and then give our
MA proof system. Roughly speaking, the malicious verifier V∗ generates the
first message according to the honest verifier V and will generate the third mes-
sage depending on the second message of the prover by randomly sampling a

4

random tape consistent with its first message. In more detail, we will consider
V∗ that takes as an auxiliary input random strings r1, . . . , rs under the promise
that for every i, V(x; ri) generates the same first message α. V∗ then sends α
as the first message and upon receiving the second message β from the prover,
applies a pseudo-random function (a poly-wise independent hash-function is
sufficient) on β to obtain an index i ∈ [s]. Finally, V∗ uses ri to generate the
third message γ by running V with random tape ri and the partial transcript so
far.

We will need a procedure to sample a uniform α that is in the support of the
verifier’s first messages and then sample r1, . . . , rs uniformly over all consis-
tent random tapes. This procedure will not be PPT computable (as otherwise,
it would imply SV∗

is efficiently computable and consequently L ∈ BPP). As
we only need to design an MA proof system, we will have Merlin (who is com-
putationally unbounded) sample r1, . . . , rs and send these to Arthur. Before we
describe the MA proof system, we first argue two properties:

1. If α is distributed according to the honest verifier algorithm with a uniform
random tape, and ri’s are uniformly sampled conditioned on α, then the
marginal distribution of any ri will be uniform. This implies that, for x ∈
L, if the ri’s were sampled correctly then for any i, SV(x;ri) will output
an accepting transcript with high probability. We show below that by the
zero-knowledge property of the proof system, this implies that SV∗(x,r1,...,rs)

outputs an accepting transcript with high probability.
2. For x ̸∈ L and ri’s sampled correctly, SV∗

does not output an accepting tran-
script with high probability. This is argued by showing that if SV∗(x,r1,...,rs)

outputs an accepting transcript with high probability, then there exists a
cheating prover P∗ that can break soundness on input x with non-negligible
probability. The idea here is, P∗ will emulate SV∗(x,r1,...,rs) internally and
forward the outside execution inside in one of the rewinding sessions made
by S. In more detail, upon receiving the first message α from the verifier,P∗

first samples r1, . . . , rs that are consistent with α as explained above. Next,
it internally emulates SV∗(x,r1,...,rs), with the exception that it forwards the
messages of a random rewinding session to an external verifier. Now, if the
chosen session is an accepting session then P∗ convinces the external ver-
ifier to accept. Specifically, the analysis shows that P∗ will convince the
external verifier with probability at least µ/s where µ is the probability that
SV∗(x,r1,...,rs) outputs an accepting transcript.

Now consider the following MA proof system for L: Merlin samples a ran-
dom first message α for the honest verifier and then samples several consistent
random tapes r1 . . . , rs, and sends them to Arthur. Arthur will run SV∗(x,r1,...,rs).

5

If S outputs an accepting transcript, Arthur rejects and accepts otherwise. Com-
pleteness follows directly from Item 2, as Merlin will follow its actions honestly,
making Arthur accept. Soundness, as mentioned before, requires that r1 . . . , rs
are generated with the right distribution. If the underlying zero-knowledge pro-
tocol had perfect completeness, then arguing soundness becomes easy because
for any set of random tapes r1, . . . , rs sent by Merlin, if they all are consis-
tent with the same first message for the verifier, then by perfect completeness
we will have that SV∗

will output an accepting transcript with high probabil-
ity. We discuss the case of imperfect completeness as it is more relevant to our
techniques.

Handling imperfect completeness. If the original zero-knowledge system has
imperfect completeness, then Merlin could select random tapes r1 . . . , rs that
makes SV∗

not output an accepting transcript, causing Arthur to accept.
To tackle this issue, as mentioned before, Katz introduces a procedure with

which Arthur checks whether the ri values are “good”. First, we observe that
if these strings were sampled correctly, then the marginal distribution of any of
the ri’s will be uniform (Item 1). This implies that when running the simulator
with the honest verifier with random tape ri on a true statement, the simulator
is expected to output an accepting transcript with high-probability.

Second, from the zero-knowledge property we have that for every set of
random tapes r1, . . . , rs:

{i← [t] : SV(x;ri)} ≈ {i← [t] : ⟨P(x),V(x; ri)⟩} and,

{SV∗(x,r1,...,rs)} ≈ {⟨P(x),V∗(x, r1, . . . , rs)⟩}.

Since the Verifier chooses ri in its second round via pseudo-random function,
we have that:7

{i← [t] : ⟨P(x),V(x; ri)⟩} ≈ {⟨P(x),V∗(x, r1, . . . , rs)⟩

This implies that, for any message r1, . . . , rs received from Merlin, if SV(x;ri)
outputs an accepting transcript for a randomly chosen i with high-probability,
then SV∗(x,r1,...,rs) must output an accepting transcript with high-probability.
This gives rise to a checking procedure that can now be incorporated into the
MA proof system. In more detail, the MA proof system is modified by asking
Arthur to first check if SV(x;ri) outputs an accepting transcript for a random
i and reject otherwise. Only if the check passes, namely SV(x;ri) outputs an
accepting transcript, Arthur runs SV∗(x,r1,...,rs) and decides accordingly. This
gives an MA proof system that is sound. However, this modification alters the

7 In fact, the distibutions are identical if the verifier uses poly-wise independent hash-functions.

6

completeness of the proof system, as x ̸∈ L could imply that SV(x;ri) might not
output an accepting transcript causing Arthur to reject immediately. This can
be fixed by having Arthur first check if the simulator outputs an accepting tran-
script with the honest verifier on a uniformly sampled random tape by Arthur.
More precisely, the final MA proof system has Arthur perform the following:

1. Run SV(x;r) several times. If S fails to output an accepting transcript with
high probability where r is uniformly chosen in each trial, then accept and
halt. Otherwise, proceed to the next step.

2. Pick a random index i and run SV(x;ri). If S does not output an accepting
transcript then reject and halt. Otherwise, proceed to the next step.

3. Run SV∗(x,r1,...,rs). If S outputs an accepting transcript with high probability
then reject, otherwise accept.

Our Approach. We now discuss how we extend this lower bound to our set-
ting where we have a fully black-box construction of a 4-round zero-knowledge
argument for L. First, we observe that to consider the malicious verifier V∗ as
in Katz’s proof, we need to provide r1, . . . , rs consistent with the first message
in the presence of a one-way function oracle. Given an arbitrary oracle, we will
not be able to sample randomness r1, . . . , rs even in unbounded time, if we are
only allowed to make polynomially many queries to the oracle (which will be
required as eventually, we want to use V∗ to break soundness which is computa-
tional based on the one-wayness of the oracle). Instead, we will prescribe a joint
distribution over r1, . . . , rs and random oracles for which we can carry out the
proof. More precisely, given a statement x, we will specify a joint distribution
over random oracles O and r1, . . . , rs such that for all i, VO(x; ri) will output
the same message and the following two properties hold:

Property P1 On a true statement x, SO,V∗O(x,r1,...,rs) will output an accepting
transcript with high probability, where S is the simulator for this argument
system.

Property P2 On a false statement x, SO,V∗O(x,r1,...,rs) outputs an accepting
transcript with negligible probability.

Description of a malicious verifier strategy V∗. We now proceed to describe
our malicious verifier strategy and the corresponding random oracle distribution.

1. Run VO(x; r) where we emulate O as a random oracle and choose the veri-
fier’s random tape uniformly at random. Let α be the message output by V .
Discard r and the oracle O.

7

2. Consider the oracle PPT algorithm A• that on random tape (r, r′) outputs
whatever S•,V•(x;r)(x; r′) outputs. We will next rely on the “heavy-query”
learning procedure due to Barak and Mahmoody [BM07] who give a pro-
cedure to identify the most frequent queries made by an algorithm to the
random oracle conditioned on its output being fixed to a particular message.
We apply the heavy query learning procedure to the honest verifier algo-
rithm V subject to the condition that it outputs α as its first message. Let Q
be the set of queries output by this procedure for some oracleO′ sampled as
a random oracle.

3. Let Rα be the set that contains all the pairs (r′,Q′) such that V(x; r′) outputs
α as its first message while making queries only in Q ∪ Q′ (where Q′ are
the non-frequent queries). Now, sample s elements {(ri,Qi)}i∈[s] from Rα

uniformly at random.
4. Output (r1, . . . , rs) and (Q,Q1, . . . ,Qs).

Given a sample (r1, . . . , rs) and (Q,Q1, . . . ,Qs), the distribution of oracles
will be random oracles whose queries in (Q,Q1, . . . ,Qs) are fixed and set to be
random on all other points. Such oracles were previously considered in [MP12]
and referred to as partially-fixed random oracles. The malicious verifier V∗ is
specified as a PPT algorithm that takes as auxiliary information (r1, . . . , rs) and
proceeds as follows. For the first message, it runs V(x; r1) and outputs whatever
V does, say α. Given a second message β sent by the prover V∗ applies a poly-
wise independent hash function (also supplied as auxiliary information) h(β)
to a chosen index i ∈ [s]. Then it runs V(x; ri) on the partial transcript α, β
to output the third message δ and forwards that to the prover. Any oracle query
made by V is forwarded to the oracle attached to V∗.

Proving P1 follows essentially the same way as in [Kat12]. So we argue P2
next.

Proving P2. Just as in [Kat12], we will show that if the simulator can simu-
late V∗ on a false statement with non-negligible probability, then there exists a
cheating prover P∗ that can break the soundness of the zero-knowledge argu-
ment, which, in turn, establishes the property P2 specified at the beginning of
the outline. As before, in the security reduction, P∗ will internally emulate the
simulator with V∗ and forward the message from the external interaction inside,
for one of the random rewindings made by the simulator. Recall that P∗ and the
external verifier are equipped with an oracle O (for the one-way function).

Observe that P∗ will not be able to use O for internally emulating SV∗
, as

in the internal execution P∗ it needs to run S and V∗ from a prescribed distribu-
tion over r1, . . . , rs and random oracles. By applying the same learning heavy-

8

query algorithm we can show that P∗ will be able to sampleQ,Q1, . . . ,Qs and
r1, . . . , rs and an oracle O′ where

– Q is consistent with O.
– O′ is consistent with Q∪Q1 ∪ · · · ∪ Qs and with O everywhere else.
– If O is sampled according to a random oracle, then the distribution of O′

and r1, . . . , rs is identical to the prescribed distribution.

Next, if the random rewinding chosen by P∗ is the one that the simulator
outputs as an accepting transcript, then we want to conclude that P∗ succeeds
in convincing the external verifier. There are two (related) issues to make this
argument work:

– First, forwarding the messages from the external verifier internally in a ran-
dom rewinding session could result in skewing the distribution internally
simulated by P∗.

– Second, the external oracle O and the internally emulated oracle O′ are not
identical. In particular, they could be different on Q1, . . . ,Qs.

We argue that the first item is not an issue and the distribution is, in fact,
correct because we can view the random tape and queries made by the outside
verifier as one of the elements in Rα. The second issue is problematic because
if the messages generated by the simulator in the forwarded session makes the
external verifier make one of the conflicting queries (namely a query on Q1 ∪
· · ·∪Qs), then we cannot claim that the external verifier will accept if the internal
emulation results in an accepting transcript on that session. To resolve this issue,
we weaken property P2 as follows:

P2’ On a false statement x, SO,V∗O(x,r1,...,rs) outputs an accepting transcript
while not making conflicting queries with negligible probability. In particu-
lar, if a particular rewinding session (where rj was used as the random tape)
is the accepting transcript then the verifier on that transcript should not make
any query to Qi for i ̸= j.

This modification will be the crux of making our MA proof system work.

MA proof system. Upon receiving r1, . . . , rs,Q,Q1, . . . ,Qs, Arthur continues
as follows:

1. Emulate SO,VO(x;r) where r is chosen at random and O according to the
random oracle. If it does not output an accepting transcript, then accept and
halt. Otherwise proceed.

9

2. Pick a random i← [s] and emulate SO,VO(x;ri) whereO is sampled accord-
ing to a partially fixed random oracle, fixed on the set Q ∪ Q1 ∪ · · · ∪ Qs.
If it either does not output an accepting transcript or outputs an accepting
transcript with conflicting queries, then reject and halt. Otherwise, proceed.

3. Emulate SO,V∗O(x,r1,...,rs). If it either does not output a transcript or an ac-
cepting transcript is output with conflicting queries then accept. Otherwise,
reject.

2 Preliminaries

Basic notations. We denote the security parameter by n. We say that a function
µ : N→ N is negligible if for every positive polynomial p(·) and all sufficiently
large n it holds that µ(n) < 1

p(n) . We use the abbreviation PPT to denote prob-
abilistic polynomial-time. We further denote by a← A the random sampling of
a from a distribution A, and by [n] the set of elements {1, . . . , n}. For an NP
relation R, we denote by Rx the set of witnesses of x and by LR its associated
language. That is,Rx = {ω | (x, ω) ∈ R} and LR = {x | ∃ ω s.t. (x, ω) ∈ R}.
We specify next the definition of computationally indistinguishable.

Definition 2.1 Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N
be two distribution ensembles. We say that X and Y are computationally indis-
tinguishable, denoted X

c
≈ Y , if for every PPT machine D, every a ∈ {0, 1}∗,

every positive polynomial p(·) and all sufficiently large n:∣∣Pr [D(X(a, n), 1n, a) = 1]− Pr [D(Y (a, n), 1n, a) = 1]
∣∣ < 1

p(n)
.

We assume familiarity with the basic notions of an Interactive Turing Ma-
chine (ITM for brevity) and a protocol (in essence a pair of ITMs). We denote
by PPT the class of probabilistic polynomial-time Turing machines. We denote
by M• an oracle machine; we sometimes drop • when it is clear from the con-
text. As usual, if M• is an oracle machine, MO denotes the joint execution of
M with oracle access to O.

Definition 2.2 (Random Oracle) A random oracle RO is a randomized state-
ful oracle that given a query x ← {0, 1}n outputs y if the pair (x, y) is stored
or outputs a random element y′ from {0, 1}|x| and stores (x, y′).

Following [BR93,MP12], we use randomized oracles as opposed to fixing a
random oracle by sampling it once as in [IR89] as this is sufficient for refuting
black-box constructions.

10

We recall the properties of the “heavy-query” learning algorithm (verbatim)
from [BM07] that have typically been used in separation from one-way func-
tions [IR89,MP12].

Lemma 2.1 (Learning Heavy Queries Efficiently [BM07]) Let A be a ran-
domized oracle algorithm which asks up to m oracle queries, denoted byQ(AO)
and outputs some message C. Let 0 < ε < 1 be a given parameter. There is a
learning algorithm G in PSPACE (in fact, BPPNP) which learns a list of Y of
query-answer pairs from the oracle O such that:

1. |Y| ≤ 10m/ε2.
2. With probability at least 1−ε over the choice ofO from RO and the random

coins of A and G, for every u that is not part of any query-answer pair in
Y ,it holds that Pr[u ∈ Q(A)|(C,Y)] < ε where the latter probability is
over the remaining randomness of RO and A conditioned on (C,Y).

Next, we recall the property about random oracles that they cannot be in-
verted by any oracle algorithm (possibly unbounded) that makes only poly-
nomially many queries to the oracle. The following is repeated verbatim from
[MP12].

Definition 2.3 (Security Threshold) A primitive P has security threshold τP
if an adversary “breaking” P has to “win” in the security game of P with
probability τP + ε for a non-negligible ε.

Lemma 2.2 ([BM07,MP12]) Let P and Q be two cryptographic primitives and
P has security threshold zero. For a randomized oracle O, suppose one can
break the black-box security of any implementation QO of Q with non-negligible
probability and asking poly(n) oracle queries to O. Suppose also that there
exists a black-box secure implementation PO of P from O. Then there is no
black-box construction of Q from P .

Definition 2.4 (Partially-Fixed Random Oracles) We call a randomized func-
tion f a k(n)-partially-fixed random oracle if it is fixed over some sub-domain
S and chooses its answers similarly to the random oracle RO at any point q
out of S and it holds that |S ∩ {0, 1}n| ≤ k(n) for every n. We simply call f
partially-fixed random if it is 2o(n)-partially-fixed random.

Lemma 2.3 ([MP12]) One-way functions can be black-box securely realized
from all partially-fixed random oracles.

11

2.1 Fully Black-box Constructions

Following the terminology of [RTV04], we consider fully black-box construc-
tions of zero-knowledge arguments from the underlying primitive.

Definition 2.5 (Fully black-box construction) A black-box implementation of
a primitive Q from a primitive P is an oracle algorithm Q (referred to as the
implementation) such that QP is an implementation of Q whenever P is an im-
plementation of P . QP is said to have a black-box proof of security, if there
exists an efficient machine R such that for any oracle P implementing P and
machineA that breaks QP with non-negligible advantage for some security pa-
rameter n, then RP,A breaks the security of P over some security parameter
n′ = poly(n). A black-box construction Q from P requires a black-box imple-
mentation Q and a black-box proof of securityR.

2.2 Interactive Systems

We denote by ⟨A(ω), B(z)⟩(x) the random variable representing the (local) out-
put of machine B when interacting with machine A on common input x, when
the random-input to each machine is uniformly and independently chosen, and
A (resp., B) has auxiliary input ω (resp., z).

A round of an interactive proof system consists of a message sent from
one party to the other, and we assume that the prover and the verifier speak in
alternating rounds. Following [BM88], we let MA denote the class of languages
having a 1-round proof system and in this case refer to the prover as Merlin and
the verifier as Arthur; that is:

Definition 2.6 (MA) L ∈ MA if there exists a probabilistic polynomial-time
verifier V , a non-negative function s, and a polynomial p such that the following
hold for all sufficiently-long x:

– If x ∈ L then there exists a string w (that can be sent by Merlin) such that

Pr[V(x,w) = 1] ≥ s(|x|) + 1/p(|x|).

– If x /∈ L then for all w (sent by a cheating Merlin) it holds that

Pr[V(x,w) = 1] ≤ s(|x|).

Definition 2.7 (Interactive argument system) A pair of PPT interactive ma-
chines (P,V) is called an interactive proof system for a language L if there
exists a negligible function µ(·) such that the following two conditions hold:

12

1. COMPLETENESS: For every x ∈ L there exists a string ω such that for every
z ∈ {0, 1}∗,

Pr[⟨P(ω),V(z)⟩(x) = 1] ≥ c(|x|)

where c is the acceptance probability.
2. SOUNDNESS: For every x /∈ L, every interactive PPT machine P∗, and

every ω, z ∈ {0, 1}∗

Pr[⟨P∗(ω),V(z)⟩(x) = 1] ≤ s(|x|).

where s is the soundness error and will be negligible in this paper.

Definition 2.8 (Computational zero-knowledge (CZK)) Let (P,V) be an in-
teractive proof system for some language L. We say that (P,V) is a computa-
tional zero-knowledge with respect to an auxiliary input if for every PPT inter-
active machine V∗ there exists a PPT algorithm S, running in time polynomial
in the length of its first input, such that

{⟨P(ω),V∗(z)⟩(x)}x∈L,ω∈Rx,z∈{0,1}∗
c
≈ {⟨S⟩(x, z)}x∈L,z∈{0,1}∗

(when the distinguishing gap is considered as a function of |x|). Specifically, the
left term denotes the output of V∗ after it interacts with P on common input x
whereas, the right term denotes the output of S on x.

Black-Box Construction of Zero-Knowledge Arguments

Definition 2.9 A black-box construction of a zero-knowledge argument sys-
tem for a language L from one-way functions is a tuple of oracle algorithms
(P,V,S) such that for any oracle f = {fm : {0, 1}m → {0, 1}m}, P,V and
S are oracle algorithms where completeness holds w.r.t to any oracle O and
the soundness and zero-knowledge property are proved via a reduction to the
underlying function f as follows:

Soundness: There is an efficient oracle reduction algorithm Rs, such that for
every oracle f , every malicious prover P∗ (that could arbitrarily depend
on f), if P∗ convinces the verifier on input x ∈ {0, 1}n\L with probability

1/p(n) for some polynomial p(·),Rf,P∗f
s inverts f with probability 1/q(m)

for some polynomial q(·) over a polynomially related m = nθ(1), namely,

Pr[y ← f(Um) : Rf,P∗f

s (y) ∈ f−1(y)] ≥ 1

q(m)

13

Zero Knowledge: This is defined analogously to the soundness property. There
is an efficient oracle reduction algorithmRzk, such that for every oracle f ,
every malicious verifier V∗ (that could arbitrarily depend on f), if V∗ distin-
guishes the real execution from the simulation on input x ∈ L∩{0, 1}n with

probability 1
p(n) for some polynomial p(·),Rf,V∗f

zk inverts f with probability

1/q(m) for some polynomial q(·) over a polynomially related m = nθ(1),
namely,

Pr[y ← f(Um) : Rf,V∗f

zk (y) ∈ f−1(y)] ≥ 1

q(m)

We remark that, by view of the verifier we include the transcript of the messages,
random tape and the query and answers obtained by the verifier from its oracle.

Terminology. We will be concerned with 4-round CZK argument systems, where
the verifier sends the first message and the prover sends the final message. We
use α, β, γ, δ to denote the first, second, third, and fourth messages, respectively.
We let P (resp., V) denote the honest prover (resp., honest verifier) algorithm
when the common input is x.

3 Implausibility of 4-Round BB ZK Arguments from OWFs

We begin with an outline of the proof. Recall that any separation cannot rule out
the existence of 4-round arguments with a random oracle, as a random oracle
with high probability acts as a “one-way permutation” and we do know 4-round
arguments based on one-way permutations [HV18,KOS18]. Instead, we follow
the approach of [MP12], by considering partially-fixed random oracles that cru-
cially rely on the fact that the distribution of oracles is not a permutation. A
partially fixed random oracle behaves essentially as a random oracle with the
exception that for a pre-specified subset F of its domain the answers are fixed.

3.1 Main Result

We are ready to prove our main result.

Theorem 3.1 If L has a fully black-box construction of 4-round computational
zero-knowledge argument for L with negligible soundness based on one-way
functions, then L ∈ MA.

Proof. Assume for contradiction, there is a fully black-box construction of a 4-
round ZK argument (P,V) from a one-way function with black-box simulator
S.

14

In the proof system, Merlin (namely, the prover) and Arthur (namely, the
verifier) share in advance an input x of length n. Let c(·) be the completeness
of ⟨P,V⟩. The soundness of ⟨P,V⟩ is negligible. Let Ts(n) be a bound on the
expected running time of the simulator. Let m(n) be the total number of queries
made by the prover and the verifier on inputs of length n. Let Tv(n) be a bound
on the runtime of the honest verifier. Let η(n) denote the length of the prover’s
second message. We set ε(n) = c(n)/20, and s′(n) = 4(Ts(n))

2(ε)−3. For
sake of succinctness, we define m = m(n), c = c(n), T = Ts(n), ℓ = Tv(n),
η = η(n), ε = ε(n) and s = s′(n). Finally, let S̃ be the algorithm that proceeds
identically to S with the exception that it halts after 2T/ε steps on inputs of
length n.

We will first describe a distribution of a malicious verifier V∗ and oraclesO
and then describe and analyze the MA proof system.

Specifying the distribution of malicious verifier and the oracle.

1. Run VO(x; r) where we emulate O as a random oracle and choose the veri-
fier’s random tape uniformly at random. Let α be the message output by V .
Discard r and the oracle O.

2. Consider the oracle PPT algorithm A that on random tape (r, r′) outputs
what S•,V•(x;r)(x; r′) outputs. We execute the heavy-query learning proce-
dure for the algorithm A from Lemma 2.1 with parameter ϵ

(2s2·ℓ) subject
to the condition that the output contains the view of the verifier where the
first message generated by V is α. Let Q be the set of queries output by this
procedure.

3. Let Rα be the set that contains all the pairs (r′,Q′) such that V(x; r′) outputs
α as its first message while only making oracle queries insideQ∪Q′. Now
sample s elements {(ri,Qi)}i∈[s] from Rα uniformly at random.

4. Output (r1, . . . , rs) and (Q,Q1, . . . ,Qs).

Description of a malicious verifier strategy V∗: Given r1, . . . , rs from the
distribution above, we consider an oracle PPT algorithm V∗, that given an input
x and auxiliary input r1, . . . , rs, h, where ri represents random coins for the
honest verifier algorithm and h is a hash function, proceeds as follows:

1. V∗ internally emulates the honest verifier oracle algorithm V on input x and
random tape r1 to generate its first message α which it forwards externally
to the prover. If at any point during the emulation, V makes a query to its
oracle, V∗ forwards that query to its oracle and the response back to V .

2. Upon receiving a message β from the prover, the verifier computes i = h(β)
and emulates V on input x with random tape ri. It obtains α as V’s first
message and feeds β as the prover’s message. It then obtains γ as the third
message and V∗ forwards γ to the external prover.

15

3. V∗ receives the last message δ from the prover. Finally, V∗ outputs its view.

Description of the family of oracles. Given Q,Q1, . . . ,Qs, we consider a
partially-fixed random oracle Õ that is defined as follows. It contains oracles
that are fixed over the queries in Q ∪ Q1 ∪ . . . ∪ Qs and chooses its answers
similarly to the random oracle RO at any point q not in the subdomain defined
by Q ∪ Q1 ∪ . . . ∪ Qs. We remark that such a family is well defined only if
no two sets among Q,Q1, . . . ,Qs have conflicting queries, where a query u is
conflicting for query-answer sets A and B, if there exists v1, v2 (possibly equal)
such that (u, v1) ∈ A and (u, v2) ∈ B. Looking ahead, by the properties of the
learning algorithm employed in the sampling procedure described above, we
will have that there will be no conflicting queries with high probability.

Before proceeding with the proof we introduce some notation, borrowed
verbatim from [Kat12]. For a given randomized experiment Expt that can be
run in polynomial-time and outputs a bit, we let Estimateε(Pr[Expt]) denote a
procedure that outputs an estimate to the given probability (taken over random-
ness used in the Expt) to within an additive factor of ε, except with probability
at most ε. That is:

|Pr
[
Estimateε(Pr[Expt = 1])− Pr[Expt = 1]| ≥ ε

]
≤ ε.

This can be done in the standard way using Θ(ε−2 log 1
ε) independent execu-

tions of Expt. Observe that if ε is non-negligible then the estimation runs in
polynomial time whenever Expt is a polynomial-time sampleable.

Description of the MA proof system: We are now ready to describe an MA
proof for L. On input x, Arthur proceeds as follows:

1. Upon receiving Merlin’s first message, Arthur interprets the message as
strings r1, . . . , rs ∈ {0, 1}ℓ and sets of query-answer pairs Q,Q1, . . . ,Qs.
Next, it proceeds as follows:
(a) Estimate the probability:

p1 = Estimateε

(
Pr

r′,r,O

[
S̃O,VO(x;r′)(x; r) outputs an accepting transcript

])
where r and r′ are chosen uniformly at random from {0, 1}T and {0, 1}ℓ
respectively, andO is sampled according to RO. We remark that the es-
timation procedure requires sampling a random execution of S̃O,VO(x;r′)(x; r)
and this can be done in polynomial time by emulating O distributed ac-
cording to a random oracle RO. If p1 < c − 2ε then accept and halt.
Otherwise, proceed to the next step.

16

(b) If any pair of the setsQ,Q1, . . . ,Qs have conflicting queries then reject
and halt. Else, emulate the honest verifier algorithm V on input x and
random tape r1 until it generates its first message α. In this emulation,
if V makes a query inside Q ∪ Q1 we respond with the corresponding
answer from the set. If V makes a query outside Q ∪ Q1, then Arthur
rejects. For every i ∈ [s], internally emulate V(x; ri) and reject if it
does not output the same α as its first message or makes a query outside
Q∪Qi.

(c) Denote by Õ the distribution of partially-fixed random oracles fixed on
the set Q ∪ Q1 ∪ · · · ∪ Qs. Let E(v) denote the event when a view v
of the verifier is consistent with V(x; ri) for some i ∈ [s] and contains
no query from Qj for any j ̸= i (where consistent with V(x; ri) means
that transcript in v can be regenerated when the prover messages in v
are fed to the honest verifier’s code on input x and randomness ri). Pick
a random i ∈ [s] and emulate S̃O,VO(x;ri)(x; r) where the oracle O is
emulated according to Õ. Such an oracle can be emulated by answering
all queries in the fixed set according to the query-answer pair and any
other query randomly (but consistently). If either S̃ does not output an
accepting transcript or E(v) does not hold for the view v output by S̃,
then reject.

(d) Let H denote a family of 2T/ε-wise independent hash function h :
{0, 1}η → {1, . . . , s}. We next estimate:

p2 = Estimateε

(
Pr

r,h,O

[
v ← S̃O,V∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)

])
,

where r ← {0, 1}T , h ← H and O ← Õ. If p2 < c − 10ε accept,
otherwise reject.

We now proceed to proving the completeness and soundness arguments of the
above proof.

Lemma 3.1 For any x ̸∈ L∩{0, 1}n and sufficiently large n, and any message
r1, . . . , rs,Q,Q1, . . . ,Qs sent by Merlin, the probability that Arthur accepts is
at most c− 6ε.

Proof: In this case, we have x ∈ L, so it must hold that for any oracle O that
the probability with which the honest prover convinces the honest verifier on
input x and oracle O is at least c. From the zero-knowledge property we have
that, for sufficiently large n, x ∈ {0, 1}n ∩ L, we have

Pr
r,r′,O

[
S̃O,VO(x;r′)(x; r) outputs an accepting transcript

]
≥ c− ε

17

This means that with probability at most ε, the estimate p1 obtained by Arthur
will be smaller than c − 2ε. In other words, Arthur accepts the statement with
probability at most ε in Step 1a.

Next recall that if the message sent by Merlin does not meet the conditions
in Step 1b, then it rejects. Thus we will assume that these conditions hold. Now
consider the following probability

p̂ = Pr
i,r,h,O

[
v ← S̃O,VO(x;ri)(x; r) : v is accepting ∧ E(v)

]
where i ← [s], r ← {0, 1}T , h ← H and O ← Õ. Recall that if p2 < c − 10ε
then Arthur accepts, and otherwise rejects. There are two cases depending on p̂.

Case p̂ < c− 7ε: Recall that, in Step 1c, Arthur picks a random i, emulates
S̃O,VO(x;ri)(x; r) and rejects if the simulator does not output an accepting
transcript. Therefore, in this case, the probability with which Arthur accepts
is at most the probability that Arthur proceeds beyond Step 1c which is at
most c− 7ε.

Case p̂ ≥ c− 7ε: In this case, by the zero-knowledge property, we have that
the probability that the honest prover convinces the verifier with O and E
does not occur, is at least c− 8ε. In other words,

Pr
i,O

[
v ← ViewV(⟨PO,VO(ri)⟩(x)) : v is accepting ∧ E(v)

]
≥ c− 8ε.

where i ← [s] and O ← Õ. Recall that Õ is partially-fixed random oracle
fixed over a polynomial-sized subdomain and from Lemma 2.3 (as shown
in [MP12]) we know it implies one-way functions. We remark that here we
rely on the fact that the zero-knowledge property holds w.r.t such one-way
functions.
By our construction of V∗ and 2T/ε-wise independence of H , it holds that

Pr
h,O

[
v ← ViewV∗(⟨PO,V∗O(r1, . . . , rs, h)⟩(x) : v is accepting ∧ E(v)

]
= Pr

i,O

[
v ← ViewV(⟨PO,VO(ri)⟩(x)) : v is accepting ∧ E(v)

]
where i← [s], h← H and O ← Õ.
Using the zero-knowledge property again, but, with V∗ this time we have
that

Pr
r,h,O

[
v ← S̃O,V∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)

]
≥ c− 9ε

where r ← {0, 1}T , h ← H and O ← Õ. This means that the probability
with which Arthur accepts in Step 1d is at most ε.

18

Overall, the probability with which Arthur accepts is at most ε + max{c −
7ε, ε} = c− 6ε and this concludes the proof of the lemma. �

Lemma 3.2 For any x ∈ L ∩{0, 1}n and sufficiently large n, there is a strategy
for Merlin that makes Arthur accept with probability is at least c− 5ε.

Proof: We first define Merlin’s strategy. Merlin will internally maintain the
state of an oracle O that is sampled according to RO. It chooses r̃ ← {0, 1}ℓ
uniformly at random and emulates VO(x; r̃) and computes the verifier’s first
message α. Next, it runs the simulator with the honest verifier and tries to learn
all the heavy queries made by the algorithm S̃•,V•(x;r′)(x; r) subject to the veri-
fier’s first message being α and the oracle beingO where the learning parameter
is set to ε

(2s2·ℓ) . LetQ be the set of the queries that Merlin learns. Let Rα be the

set that contains all the pairs (r′,Q′) such that VQ∪Q′
(x; r′) outputs α as its first

message. Then Merlin samples s elements {(ri,Qi)}i∈[s] from Rα uniformly at
random and sends r1, . . . , rs,Q,Q1, . . . ,Qs to the Arthur.

We now proceed to analyze the probability Arthur accepts. Recall that in
Step 1a, Arthur accepts if the estimate p1 < c− 2ε. Let

p̂ = Pr
r,r′,O

[
S̃O,VO(x;r′)(x; r) outputs an accepting transcript

]
where r ← {0, 1}T , r′ ← {0, 1}ℓ, O ← RO. We consider two cases:

Case p̂ < c− 3ε: In this case, by our estimation algorithm, we have that except
with probability ε, Arthur will accept at the end of Step 1a.

Case p̂ ≥ c− 3ε: In this case, we consider Step 1b, where Arthur checks if
there are no conflicting queries. Since Merlin honestly samples from the
right distribution, we have that for each i ∈ [s], the Verifier V outputs α
with random tape ri while making queries only in Q ∪Qi where Q and Qi

dont have any conflicting queries. Second, it follows from the properties of
the learning algorithm as stated in Lemma 2.1 and the parameters that was
set, that the probability that any query from Qi occurs in Qj for j ̸= i with
probability at most ε

(2s2·ℓ) . Using a union bound we have that the probability
that some two sets in Q1, . . . ,Qs have conflicting queries can be bounded
by s× (|Qi| × s× ε

2s2·ℓ) <
ϵ
2 . Therefore, the probability that Arthur rejects

in Step 1b is at most ε
2 .

In Step 1c, Arthur emulates S̃O,VO(x;ri) for a randomly chosen i and aborts
if it either does not output a transcript or the E(v) holds for the view output
by the simulator.
First, we observe that, from Merlin’s algorithm, the following two distribu-
tions are identical:

19

– {S̃O,VO(x;ri)(x; r)} where r1, . . . , rs,Q,Q1, . . . ,Qs are sampled ac-
cording to Merlin’s algorithm, i← [s], O ← Õ, r ← {0, 1}T

– {S̃O,VO(x;r′)(x; r)} where r ← {0, 1}T , r′ ← {0, 1}ℓ, and O ← RO
This implies that

Pr
i,r,O

[v ← S̃O,VO(x;ri)(x; r) : v is accepting] = p̂

where r1, . . . , rs,Q,Q1, . . . ,Qs are sampled according to Merlin’s algo-
rithm, i← [s], O ← Õ, r ← {0, 1}T .
Next, we compute the probability E(v) holds, namely, the probability S̃O,VO(x;ri)

makes no query inQj for j ̸= i. From Lemma 2.1, we have that each query
in Qj could occur in an emulation of S̃O,VO(x;ri)(x; r) with probability at
most ε

(2s2·ℓ) . Therefore, applying a union bound, we have that the probability
E(v) does not hold is at most ε

(2s2·ℓ) · | ∪j∈[s]/i Qj | < ϵ
2 .

This means that the probability with which Arthur rejects in Steps 1b or 1c
is at most 1− p̂+ ϵ

2 + ϵ
2 ≤ 1− c+ 3ε+ ϵ = 1− c+ 4ϵ.

Next, we compute the probability with which it rejects in Step 1d. Recall
that, this happens if the final estimate exceeds c − 10ε. We will show that
the real probability is at most c − 11ε, which means the estimate fails with
probability at most ε and Arthur therefore rejects with probability at most
ϵ. This means the overall probability Arthur rejects in this case is at most
1− c+ 4ε+ ε = 1− c+ 5ε. Therefore, Arthur accepts with probability at
least c− 5ε and concludes the proof of the Lemma.
It only remains to show that

Pr
[
v ← S̃O,V∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)

]
< c− 11ε

(1)

where r1, . . . , rs,Q,Q1, . . . ,Qs is sampled according to Merlin’s algorithm,
r ← {0, 1}T , h ← H and O ← Õ. In fact, we will show this is at most ε
which is less than c− 11ε as ε was chosen to be less than c/20.
First, we consider the event coll if in the simulation by S̃ for two different
rewindings (α, βi) and (α, βj) it holds that h(βi) = h(βj). Since S̃ makes at
most s queries and H is a family of 2T/ε-wise independent hash functions,
we have

Pr[coll] <

(
2T/ε

2

)
· 1
s
< (2T/ε)2/(2s) = ε/2.

where the last equality follows from the fact that s = 4T 2/ε3. We can now
upper bound the probability in Equation 1 by

Pr
[
v ← S̃O,V∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)|coll

]
+ Pr[coll]

20

Next, we will show that the probability of the first term in the above expres-
sion is at most ε/2. Then we can conclude the proof of completeness as it
implies Equation 1. More formally we prove the following claim.

Claim 3.3

Pr
[
v ← S̃O,V∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)|coll

]
<

ε

2

Proof: We begin by defining,

Pr
[
v ← S̃O,V∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)|coll

]
= µ

where the probability is over r1, . . . , rs,Q,Q1, . . . ,Qs are sampled accord-
ing to Merlin’s algorithm, r ← {0, 1}T , h← H and O ← Õ.
On a high-level, we will construct a cheating unbounded prover P∗ that
makes at most polynomially many queries to the oracle and convinces an
honest verifier with probability at least µ

T when the oracle is sampled accord-
ing to RO. Since we have a black-box reduction from a cheating prover to
inverting the oracle, we have from Lemma 2.2 and Lemma 2.3 that µ

T must
be negligible. This means that for sufficiently large n, it will be at most ε

2
and concludes the proof of the Claim.
We now proceed to describe our malicious prover P∗. On input x, P∗ pro-
ceeds as follows:
1. P∗ will internally begin an emulation of S̃ with V∗. Externally P∗ in-

teracts with the honest verifier. Both P∗ and the external verifier are
equipped with an oracle O.

2. Upon receiving the first message α from the external verifier, P∗ uses a
PSPACE algorithm to learn all the heavy queries made by the algorithm
S̃•,V•(x;r′)(x; r) conditioned on the verifier’s first message in the tran-
script output being α where P∗ uses its oracle O to learn the responses
of the heavy queries. Let Q be the set of queries P∗ learns.

3. Next, using a PSPACE algorithm it samples ri,Qi for i ∈ [s] from Rα

similar to Merlin’s algorithm. Namely, it samples t views for V from
the distribution where it outputs α as its first message and oracle queries
are consistent with Q. Let ri be the verifier’s random tape and Qi be
the query-answer pairs made in this view. By construction, we have that
Q is consistent with the oracle O, however, Qi might not be consistent
with O.

4. Next, P∗ continues the emulation of S̃ where it feeds α as V∗’s first
message and internally emulates a random oracle O′ which answers ac-
cording to Q1 ∪ · · · ∪ Qs for the queries in this set of query-answer

21

pairs and according to O otherwise. P∗ picks a random index j from
[s] to forward the external execution internally in the jth rewinding ses-
sion. More precisely, in the internal emulation, P∗ follows V∗ strategy
of selecting i = h(β) and using ri to generate the third message in
all rewindings except the jth rewinding. In the jth rewinding, it sends
β externally to V and the forwards γ received from V internally in that
rewinding. If S̃ concludes its simulation outputting a transcript that does
not corresponds to the jth rewinding, thenP∗ halts. Otherwise,P∗ takes
the fourth message δ generated in that rewinding session and forwards
externally to V .

We will now argue that the probability with which P∗ succeeds is at least
µ/T .

1. Recall that, each of (ri,Qi) were uniformly sampled from Rα. Let r′

be the external verifier’s random tape andQ′ be the set of query-answer
pairs made to generate α. By construction, we have that (r′,Q′/Q) is
an element of Rα. This means that, unless the event coll occurs (i.e. for
some two rewinding sessions i and i′, we have h(βi) = h(βi′)), the
distribution of V∗’s messages emulated internally by P ∗ is identically
distributed to

{S̃O′,V∗O′
(x,r1,...,rs,h)}

where r1, . . . , rs,Q,Q1, . . . ,Qs sampled according to Merlin’s algo-
rithm and oracle O′ is according to the partially-fixed random oracle
fixed on Q ∪ Q1 ∪ · · · ∪ Qs. This means that the probability that the
simulator outputs the jth rewinding session as the accepting transcript
is 1

T .
2. Whenever E(v) occurs, it means that on the accepting transcript the

honest verifier will not query anyQi for i ̸= j. This means that the only
queries made by the verifier will be consistent with O.

Therefore, we have that,P∗ succeeds in convincing the external verifier with
the probability at least µ as long as its guess for the accepting session j is
correct. Therefore, the overall probability P∗ succeeds is at least µ

T . �

�

Acknowledgements. The first author is supported by the BIU Center for Re-
search in Applied Cryptography and Cyber Security in conjunction with the
Israel National Cyber Bureau in the Prime Minister’s Office, and by ISF grant
1316/18. The second author is supported in part by NSF Award SATC-1704788,
NSF Award RI-1703846, and AFOSR Award FA9550-18-1-0267, and in part

22

by the Office of the Director of National Intelligence (ODNI), Intelligence Ad-
vanced Research Projects Activity (IARPA), via 2019-19-020700006. The views
and conclusions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies, either expressed or
implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein. The third author is supported
by Google Faculty Research Grant and NSF Award CNS-1618884. The views
expressed are those of the authors and do not reflect the official policy or po-
sition of Google, the Department of Defense, the National Science Foundation,
or the U.S. Government.

References

BJY97. Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge
arguments based on any one-way function. In EUROCRYPT, pages 280–305, 1997.

BKP18. Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: A
paradigm for keyless hash functions. In STOC, 2018.

BM88. László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system,
and a hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

BM07. Boaz Barak and Mohammad Mahmoody-Ghidary. Lower bounds on signatures from
symmetric primitives. In FOCS, pages 680–688, 2007.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In CCS, pages 62–73, 1993.

FGJ18. Nils Fleischhacker, Vipul Goyal, and Abhishek Jain. On the existence of three round
zero-knowledge proofs. In EUROCRYPT, pages 3–33, 2018.

FS89. Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two rounds. In
CRYPTO, pages 526–544, 1989.

GK96. Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM J. Comput., 25(1):169–192, 1996.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

GMW91. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity for all languages in NP have zero-knowledge proof systems. J. ACM,
38(3):691–729, 1991.

GO94. Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1–32, 1994.

HILL99. Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

HV18. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Round-optimal fully
black-box zero-knowledge arguments from one-way permutations. In TCC, pages
263–285, 2018.

IMS12. Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-knowledge
pcps. In Theory of Cryptography - 9th Theory of Cryptography Conference, TCC
2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 151–168, 2012.

23

IR89. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In STOC, pages 44–61, 1989.

Kat12. Jonathan Katz. Which languages have 4-round zero-knowledge proofs? J. Cryptology,
25(1):41–56, 2012.

KOS18. Dakshita Khurana, Rafail Ostrovsky, and Akshayaram Srinivasan. Round optimal
black-box ”commit-and-prove”. In TCC, pages 286–313, 2018.

MP12. Mohammad Mahmoody and Rafael Pass. The curious case of non-interactive commit-
ments - on the power of black-box vs. non-black-box use of primitives. In CRYPTO,
pages 701–718, 2012.

Nao91. Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158,
1991.

ORS15. Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal black-box
two-party computation. In CRYPTO, pages 339–358, 2015.

PW09. Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from
one-way functions. In TCC, pages 403–418, 2009.

RTV04. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In TCC, pages 1–20, 2004.

24

