
The Price of Active Security in Cryptographic Protocols

Carmit Hazay1, Muthuramakrishnan Venkitasubramaniam2, and Mor Weiss3

1 Bar-Ilan University
2 University of Rochester

3 IDC Herzliya

Abstract. We construct the first actively-secure Multi-Party Computation (MPC)
protocols with an arbitrary number of parties in the dishonest majority setting,
for an arbitrary field F with constant communication overhead over the “passive-
GMW” protocol (Goldreich, Micali and Wigderson, STOC ‘87). Our protocols
rely on passive implementations of Oblivious Transfer (OT) in the boolean set-
ting and Oblivious Linear function Evaluation (OLE) in the arithmetic setting.
Previously, such protocols were only known over sufficiently large fields (Genkin
et al. STOC ‘14) or a constant number of parties (Ishai et al. CRYPTO ‘08).
Conceptually, our protocols are obtained via a new compiler from a passively-
secure protocol for a distributed multiplication functionalityFMULT, to an actively-
secure protocol for general functionalities. Roughly, FMULT is parameterized by
a linear-secret sharing scheme S, where it takes S-shares of two secrets and re-
turns S-shares of their product.
We show that our compilation is concretely efficient for sufficiently large fields,
resulting in an overhead of 2 when securely computing natural circuits. Our com-
piler has two additional benefits: (1) it can rely on any passive implementation of
FMULT, which, besides the standard implementation based on OT (for boolean)
and OLE (for arithmetic) allows us to rely on implementations based on threshold
cryptosystems (Cramer et al. Eurocrypt ‘01); and (2) it can rely on weaker-than-
passive (i.e., imperfect/leaky) implementations, which in some parameter regimes
yield actively-secure protocols with overhead less than 2.
Instantiating this compiler with an “honest-majority” implementations ofFMULT,
we obtain the first honest-majority protocol with optimal corruption threshold
for boolean circuits with constant communication overhead over the best passive
protocol (Damgård and Nielsen, CRYPTO ‘07).

1 Introduction

The problem of Secure Multi-party Computation (MPC) considers a set of parties with
private inputs that wish to jointly compute a function of their inputs while simultane-
ously preserving correctness of the outputs, and guaranteeing privacy of the inputs, i.e.,
nothing but the output is revealed. These properties are required to hold in the pres-
ence of an adversary that controls a subset of the parties, and attacks the protocol in an
attempt to breach its security, e.g., learn more than it should about the honest parties’
inputs.

Secure computation was first defined and explored in the mid 80s [Yao86, CCD87,
GMW87, BGW88], and has been the focus of intensive study ever since. In the first two

decades, research focused mainly on theoretical foundations, establishing the bound-
aries of feasibility and complexity. More recently, the focus has shifted to making
MPC efficient and reducing its overhead over insecure implementations, both in terms
of asymptotic and concrete efficiency (See [LP07, IPS08, IPS09, DPSZ12, WRK17a,
WRK17b, HSS17, GLS19], and references therein.)

A basic classification in MPC considers protocols in which security is guaranteed
with: (1) an honest majority, namely when the adversary corrupts a minority of the par-
ticipants; or (2) a dishonest majority, where the adversary can corrupt arbitrarily many
parties. The second category, which captures two-party protocols as a special case, has
the advantage that any single party need not trust anyone but itself. Designing protocols
from the second category is significantly more challenging, and they can only guarantee
computational security, i.e., against computationally-bounded adversaries. On the other
hand, the first category admits conceptually simpler solutions with statistical (or even
perfect) security, namely against computationally-unbounded adversaries.

An orthogonal classification of MPC protocols is based on the adversarial behavior:
(1) passive adversaries that follow the protocol’s instructions but try to learn more than
the prescribed information; and (2) active adversaries that may arbitrarily deviate from
the protocol. A common paradigm in MPC is to design first a passively-secure protocol,
and then compile it into an actively-secure one.

Hence, an important efficiency metric for MPC protocols is the overhead of actively-
secure protocols over (the best) passively-secure ones. A primary goal in MPC today
is to reduce this overhead, and specifically to design actively-secure protocols with
constant overhead over state-of-the-art passively-secure protocols. That is, to design
protocols whose communication and computation overheads grow only by a constant
factor compared to the underlying passive protocols.

This work focuses on one of the most challenging MPC settings: active security
with an arbitrary number of parties. Ideally, we would like the price of achieving active
security to be minimal compared to the passively-secure counterparts.

The past decade has seen tremendous progress in the design of concretely-efficient
actively-secure protocols for arbitrary functions, specified as boolean or arithmetic cir-
cuits, in either the two-party [ST04, LP07, KS08, NO09, LP12, NNOB12, SS13, HKK+14,
ZRE15, RR16, LR15, GLNP15, WMK17, WRK17a, HIV17], or the multi-party setting
with an arbitrary number of parties [IPS08, DPSZ12, DKL+13, LPSY15, WRK17b,
HSS17, KPR18]. See Section 1.2 below for more details.

Despite this impressive progress there still remains important gaps between what is
achievable with passive and active security. Indeed, no protocols for boolean computa-
tions with an arbitrary number of parties and constant communication overhead (even
asymptotically) are known, both in the honest and the dishonest majority settings. For
arithmetic computations with an arbitrary number of parties and over sufficiently large
fields, the best concrete overhead (of 12x [GIP+14]) still seems large. In the honest
majority setting an overhead of 2 has been achieved only for large fields [CGH+18].

Given this state of affairs, in this work we set out to answer the following funda-
mental open problem:

2

Can actively-secure protocols over an arbitrary field match the complexity of passively-
secure protocols, in the dishonest and honest majority settings, with an arbitrary num-
ber of parties?

We resolve this open problem in terms of communication complexity in the affirma-
tive, designing an asymptotically-efficient actively-secure protocol for boolean circuits
(as well as arithmetic circuits over any field) in both the honest majority and dishon-
est majority settings, with constant communication overhead over the (best known)
passively-secure counterparts.

We note that constant-overhead protocols are known based on general zero-knowledge
proofs [GMW87], but these solutions rely on “heavy” tools and are practically ineffi-
cient. Instead, we focus on designing protocols that make black-box use of simpler (and
lightweight) primitives such as One-Way Functions (OWFs), and parallel Oblivious-
Transfer (OT) or parallel Oblivious Linear function Evaluation (OLE) in the boolean
and arithmetic settings (resp.). Relying on OTs/OLEs is, in a sense, necessary since
these are special cases of secure computation in their respective settings. Moreover,
since our protocols make black-box use of these primitives, they will benefit from fu-
ture improvements in the costs of OT/OLE implementations, which have been steadily
decreasing.

Moreover, to frame a clean theoretical question, we focus on designing modular
protocols in which the (relatively) computationally-expensive “cryptographic” compo-
nent is separated from the rest of the protocol, and abstracted as an ideal functionality.
Specifically, the “cryptographic” abstraction we consider in this work is a (constant-
round) parallel protocol for computing distributed multiplication. Relying on a gen-
eral multiplication functionality instead of OT/OLE allows us to simultaneously cap-
ture many settings of interest (boolean/arithmetic computations, two/multi-party, hon-
est/dishonest majority) in a unified way. More specifically, we abstract distributed mul-
tiplication as an FMULT functionality that is parameterized by a secret sharing scheme S
over some field F, takes S-shares of two secrets, and produces S-shares of their prod-
uct. It is easy to see that one can use a general reduction from OT (resp. OLE) to a
random instance FRMULT of FMULT (which generates additive shares of random multi-
plication triples in the sense of Beaver’s triples [Bea91]) for boolean (resp. arithmetic)
computations. In the multi-party setting, one can also realize FMULT using more general
protocols based on threshold additively-homomorphic encryption schemes [CDN01].

Given the previous discussion, we can rephrase our motivating question:

Can actively-secure protocols over an arbitrary field match the complexity of passively-
secure implementations of FMULT, in the dishonest and honest majority settings, with
an arbitrary number of parties?

1.1 Our Results – A New Framework

In this work we answer the open problem stated above with respect to communica-
tion complexity on the affirmative, introducing the first actively-secure protocol with
constant communication overhead over passive GMW [GMW87], for any number of
parties and over any field, in the FMULT-hybrid model.

3

We obtain our result via a new compiler which transforms a passively-secure pro-
tocol for FMULT into an actively-secure protocol for arbitrary functionalities, while in-
heriting the setting of the FMULT protocol (i.e., boolean/arithmetic, two/multi-party, and
honest/dishonest majority). Specifically, the compiler is described in the FMULT-hybrid
model, and using different instantiations of FMULT we obtain actively-secure protocols
with constant communication overhead in the boolean and arithmetic, two-party and
multi-party, and honest and dishonest majority settings. Moreover, the overhead of our
protocols is 2 for large fields and “typical” circuits (i.e., that have sufficiently many
parallel multiplication gates; for our asymptotic result, it suffices for this width to be
Ω(s), where s is a statistical security parameter).

Working in the FMULT-hybrid model allows us to preserve a clear separation be-
tween the “passive” (alternatively, cryptographic) components of our protocol, namely
the implementation of FMULT, which relies on cryptographic assumptions; and the
“correctness-enforcing” (alternatively, non-cryptographic) components which involve
tools from the literature of honest-majority protocols, employing consistency tests to
enforce honest behavior. Besides scalability (and reduced communication complexity),
we believe our approach is simple and modular.

Our compiler improves over the state-of-the-art in several settings; see Table 1 for
a summary, and Section 6 for a detailed discussion.

Corruption Number of Field Hybrid Asymptotic Best Theorem
Threshold Parties Size Model Overhead Passive Number

t < n Arbitrary O(1) OT Constant [GMW87] Theorem 3

t < n Arbitrary Arbitrary OLE Constant∗ [GMW87] Theorem 5

t < n/2 ∗∗ Arbitrary Arbitrary — Constant [BGW88] Theorem 6

Table 1: Asymptotic communication overheads of our results in both the dishonest and honest
majority settings for boolean and arithmetic computations. The “best passive” column refers to
the passively-secure protocol over which the overhead is computed. The “theorem number” col-
umn specifies the theorem which implies the corresponding result.
∗ Concretely, this constant is 2 for moderately wide circuits.
∗∗ We note that though in the honest majority setting guaranteed output delivery is achievable,
our protocol only guarantees security with abort.

New protocols in the dishonest majority setting. Our complier exhibits the most
substantial improvements in the dishonest majority setting, yielding the first constant-
overhead actively-secure protocol with a dishonest majority over an arbitrary number
of parties for boolean circuits. The concrete constants of our compiler are yet unknown
since they depend on the concrete efficiency of Algebraic Geometric (AG) secret shar-
ing schemes over constant-size fields [CC06]. The result is summarized in the following
informal theorem; see Theorem 3 for the formal statement.

4

Theorem 1 (Informal) Any m-party function f over a constant-size field (resp., arbi-
trary size field) can be securely realized by an O(d)-round protocol in the OT-hybrid
(resp., OLE-hybrid) model against an active adversary corrupting an arbitrary number
of parties with total communication O(m2 |C|)+poly(κ, d,m) field elements, where C
is a depth-d circuit for f , and κ is a computational security parameter.

For arithmetic computations, we can concretely analyze the constants introduced
by our compiler, and show that they can be as small as 2 for moderately wide circuits
and sufficiently large fields. This improves over [GIP+14] in two aspects. First, their
work requires at least 12 invocations of an active implementation of FMULT, while ours
requires only two invocation of a passive implementation. This allows us to instantiate
our compiler with passive implementations of FMULT based on threshold additively ho-
momorphic encryption schemes [CDN01, BDOZ11]. Second, their result is only useful
for computations over sufficiently large fields (where the statistical error O (|C| / |F|)
is small), whereas our result applies to fields of arbitrary size.

Building on the recent result of Hazay et al. [HIMV19], we can extend our compiler
to rely on a weaker-than-passive (e.g., imperfect or leaky) implementation of FMULT.
Consequently FMULT can be instantiated with lattice-based protocols with “aggressive”
(weaker) parameters, yielding actively-secure compiled protocols whose communica-
tion cost almost matches that of the best passive protocols, namely, essentially achieving
active security at the cost of passive!

Additionally, we achieve an interesting corollary in the constant-round regime for
boolean computations. By viewing distributed garbling [BMR90] as an arithmetic func-
tionality over GF(2κ), we can instantiate our compiler for arithmetic circuits to achieve
constant-overhead over that passive variant of [BMR90] instantiated with FMULT over
GF(2κ). See the full version [HVW19] for details.

We believe our protocols can also be made to tolerate adaptive corruptions by in-
stantiating the underlying cryptographic primitives (namely, FMULT and FCOM) with
their adaptively-secure counterparts, and leave this to future work.

New protocols in the honest majority setting. In the honest majority regime for
t < n/2, our compiler gives an actively-secure protocol for boolean circuits with
constant overhead over a variant of passive-BGW [BGW88] that is instantiated using
AG secret sharing schemes. This result improves over the recent protocol by Chida et
al. [CGH+18], which only achieves constant overhead for large fields (introducing an
extra statistical security parameter s for small fields with an overhead of s/ log2(|F|)),
and over Ishai et al. [IKP+16] who achieve constant-overhead for arbitrary fields, but
only for few parties. We note that [DI06] achieves constant-rate secure protocols, but
only for suboptimal corruption thresholds. For boolean computation with an arbitrary
number of parties and optimal threshold, the best protocols are due to Genkin et al. [GIW16]
and achieve a poly log(|C| , s) overhead, where |C| is the circuit size.

1.2 Related Work

We give a brief overview of recent efficient protocols, summarized in Table 2.

5

The state-of-the-art: boolean multi-party setting. For boolean circuits, secure proto-
col against a dishonest majority with an (asymptotic) constant overhead over passively-
secure protocols, was achieved for constant number of parties by Ishai, Prabhakaran and
Sahai [IPS08] (referred to as the “IPS-compiler”). Their protocol operates in the OT-
hybrid model, achieving constant overhead over passive-GMW. It also achieves con-
stant rate, namely the communication complexity of evaluating a circuit C is O (|C|) +
poly (log |C| , d,m, κ), where d,m, κ are the depth of C, the number of parties, and a se-
curity parameter, respectively. For an arbitrary number of parties, the protocol of Genkin
et al. [GIW16] obtains poly log (|C| , s) overhead over passive-GMW, where s is a sta-
tistical security parameter. This result is obtained by converting a boolean circuit C into
a functionally-equivalent randomized circuit C′ that is immune against so called “ad-
ditive attacks”, and evaluating C′ using the semi-honest protocol of [GMW87]. (This
technique was originally introduced by [GIP+14], but was essentially only useful over
large fields, see discussion below.)

The state-of-the-art: arithmetic multi-party setting. In the arithmetic setting in which
the computation is performed over an arbitrary field F, Genkin et al. [GIP+14] de-
signed MPC protocols in the OLE-hybrid model, with a statistical error of O(|C|/F),
and constant communication overhead compared to an algebraic variant of passive-
GMW [GMW87], for sufficiently large fields F. As described above, their result is
obtained by converting a circuit C over some field F into its additively-secure variant
C′, and evaluating C′ using passive-GMW and actively secure implementation of OLE.
In practice, the constant in the communication overhead of their protocol is 12, and
moreover their protocol is only useful for circuits over large fields (for which O(|C|/F)
is sufficiently small). For arbitrary fields, the work of Döttling et al. [DGN+17] give
an actively secure protocol where the overhead is 22 invocations of an actively secure
implementation of FMULT per multiplication gate of the circuit. A practical implemen-
tation for arbitrary number of parties was given in [KPR18] based on “tailor-made”
zero-knowledge proofs to achieve active security.

We note that in the honest majority setting, the recent work by Chida et al. [CGH+18]
presents a new actively-secure protocol for arithmetic circuits that obtains overhead 2
over passive protocols for sufficiently large fields. Similar to our protocol, their proto-
col is in the FMULT-hybrid model, where FMULT can be instantiated with any passively-
secure protocol that further guarantees a notion of “security up to additive attacks”
in the presence of active adversaries. It is unclear whether their paradigm extends to
the dishonest majority setting, since their model of additive attacks is weaker than the
standard one formulated in [GIP+14], where in all natural candidates an active attack
translates into an additive attack in the latter (stronger) attack model, and is therefore
not protected against by the framework of [CGH+18].

In an orthogonal vein, we note that Applebaum et al. [ADI+17] designed the first
(variant of) passively-secure OLE based on LPN-style assumptions, implying secure
arithmetic computation with asymptotic constant computational overhead over an inse-
cure evaluation of the circuit.

The state-of-the-art: two-party setting. In the boolean setting, the protocols of [IPS08]
and [HIV17] achieve (asymptotic) constant communication overhead over the passive
protocols of [GMW87] and [Yao86], respectively. The latter has the added benefit of

6

matching the number of OT calls in [Yao86], which (unlike [GMW87]) is sublinear in
the circuit size. Practical implementations of [IPS08] have been studied in [LPO11],
who identified bottlenecks in obtaining concretely-efficient protocols based on the IPS
protocol due to the implementation of the so-called “watchlist channels”. In the arith-
metic setting, a recent work by Hazay et al. [HIMV19] instantiated the framework
of [IPS08] with a concretely-efficient honest majority protocol, obtaining small mul-
tiplicative overheads (between 2-8) compared to the passive protocol of [GMW87].

Number of Hybrid Asymptotic Concrete
Construction Parties Model Overhead Overhead

[IPS08] Constant OT (passive) Constant∗ Unexplored
[NNOB12] Two OT∗∗ (active) O (s/ log s) —
[GIP+14] Arbitrary OLE (active) Constant 12∗∗∗

[DGN+17] Two OLE (active) Constant 22†

[WRK17b] Arbitrary OT∗∗ (active) O (s/ log |C|) —
This work Arbitrary FMULT (passive) Constant 2

Table 2: Asymptotic and concrete communication overheads of state-of-the-art 2PC and MPC
protocols in the dishonest majority setting. The overhead is measured as the number of calls to
the underlying (passively or actively seucre) OT or OLE functionality, compared to the number
of calls made by the passive-GMW to the corresponding (passively secure) functionality (OT or
OLE). The concrete overhead column is specified only when the overhead is constant, and holds
over sufficiently large fields. s denotes a statistical security parameter, and C is the circuit being
evaluated.
∗ In terms of asymptotic complexity, we note that [IPS08] also achieves constant rate.
∗∗ Security is proven in the random oracle model.
∗∗∗ Based on personal communication with the authors.
† This constant holds for a particular instantiation of OLE based on noisy encoding.

2 Our Techniques

We first recall the so-called “IPS framework” of Ishai, Prabhakaran and Sahai [IPS08],
that constructs actively-secure m-party protocols for a function f using the following
two weaker ingredients as a black-box: (1) an actively-secure honest-majority protocol
(the “outer protocol”) for f with m clients and n servers, tolerating active corruption of
a minority t < n/2 of the servers and an arbitrary number of clients; and (2) a passively
secure m-party protocol (the “inner protocol”) for a “simpler” functionality, tolerating
an arbitrary number of corruptions.

Using appropriate instantiations of the outer and inner protocols, this framework
yields a constant-overhead (in fact, constant-rate) actively-secure protocol for boolean
functionalities in the dishonest majority setting with a constant number of parties m.
However, it does not obtain constant overhead for a super-constant m, as we now ex-
plain.

7

To watch or not to watch? The high-level idea of the IPS compiler it to have the m
parties “virtually” execute the outer protocol by emulating its n servers. Specifically, the
parties first obtain (through some joint computation) secret shares of the initial server
states, then use the inner protocol on the shared states to generate (secret shares) of
the outputs of the “next message” functions of each server. Since the outer protocol is
only secure when a majority of the servers are honest, the parties must insure that most
servers were correctly emulated, for which it suffices to verify that the parties behave
honestly in sufficiently many of the inner protocol executions. The IPS compiler in-
troduces a novel “watchlist” mechanism in which parties “watch” each other to enforce
such honest behaviour. More precisely, every party Pi picks a random subset of t servers
for which it learns the entire internal state throughout the computation. Consequently,
Pi can check that all parties honest emulated the t servers, and abort if some party
misbehaves. The identity of servers watched by honest parties remains hidden from
the adversary, thus even a single honest party forces the adversary to honestly emulate
most (specifically, a majority) of the servers. In terms of parameters, obtaining a 2−Ω(s)

soundness error for a statistical security parameter s requires t, n = Ω(s). Since each
corrupted party can choose an arbitrary subset of t watched servers, and there could
be m − 1 corrupted parties, privacy is only preserved when (m − 1)t < n/2. Since
achieving constant-overhead requires n = O(s), this is only possible for m = O(1).

Compute first, check later. To solve this problem, our first idea is to have a single
random subset of t servers which are simultaneously watched by all parties. Of course,
now that the identity of the watched servers is known to all parties, it cannot be re-
vealed before the computation has been completed. Instead, the subset is chosen using
joint coin-tossing after the circuit has been evaluated, but before the output is recon-
structed from the output shares. Correctness is preserved similarly to the original IPS
compiler, but checking honest behavior after-the-fact might violate privacy. Indeed, un-
like the IPS compiler we can no longer “catch” the adversary as soon as it deviates
from the protocol, which raises two privacy concerns. First, by actively deviating from
the protocol, the adversary can potentially violate the inner protocol privacy, and learn
intermediate values during the circuit evaluation. Second, the adversary can potentially
violate the privacy of the outer protocol, by “corrupting” a majority of the servers in
the outer protocol (i.e., by not emulating them correctly). We note that even if the inner
protocol has the stronger guarantee of remaining private even against active adver-
saries, this does not resolve the second issue because as long as the inner protocol is not
actively-secure, active corruptions in it might violate correctness, which corresponds
to corrupting servers in the outer protocol. Thus, an active adversary might still vio-
late privacy in the outer protocol by violating correctness in the inner protocol (thus, in
effect, corrupting possibly a majority of the servers).

Our approach. Due to these issues, we take a step back, and (instead of extending
the IPS framework) focus on designing a new compiler that amplifies the security of a
passively-secure inner protocol via a tailor-made outer protocol. Since we use different
instantiates of the inner protocol, we model it more generally, assuming the parties
have oracle access to an ideal multiplication functionality FMULT that works over some
agreed-upon secret sharing scheme S. We note that in our compiler, we will not refer to
“servers” (or an “outer” protocol), but rather think of these as “copies” of the circuit.

8

The combined protocol. To highlight the main components of our framework, we de-
scribe a basic MPC variant that will loosely rely on the passive BGW [BGW88] proto-
col. Though this does not yield our asymptotic results, it will serve as a good starting
point, which we build on to obtain our final framework (as described towards the end
of the section).

At the onset of the computation each party Pi secret shares its input xi using
Shamir’s secret sharing scheme with privacy parameter t, to obtain the shares

(
X1, . . . , Xn

)
(as in the passive-BGW protocol). Then, Pi generates additive shares

(
xlj
)

of each
Shamir share X l, and sends

(
xlj
)
l∈[n] to Pj . The protocol will evaluates the circuit

gate-by-gate as in passive-BGW, where addition gates are locally computed. We will
preserve the invariant that when parties evaluate a gate G, they collectively hold ad-
ditive shares of Shamir shares of the values of its input wires. That is, if G’s inputs
are values a, b which in the passive-BGW protocol have Shamir shares

(
A1, . . . , An

)
,(

B1, . . . , Bn
)

(respectively), then for every l ∈ [n], party Pi holds values ali, b
l
i such

that
∑
i a
l
i = Al and

∑
i b
l
i = Bl.

In passive-BGW, multiplications are performed by having each party locally multi-
ply its Shamir shares Al, Bl, followed by all parties jointly running a degree-reduction
sub-protocol on these products. However, in our modified protocol parties can no longer
locally compute the products Al · Bl, because no party knows Al, Bl (parties only
know additive shares of these values). To solve this issue, we use an ideal distributed-
multiplication functionality FMULT which takes as input additive shares of two values
x, y, and outputs a (fresh) additive sharing of their product x · y. (We discuss FMULT

instantiations below.) This allows parties to learn additive shares of each productAl ·Bl.
Once (additive shares of) the productsAl ·Bl have been computed, degree reduction

should be performed. In the classical passive-BGW protocol, degree reduction requires
expensive communication, which is improved by protocols such as [DN07]. We use a
new approach that significantly reduces the communication complexity, leveraging the
fact that degree-reduction is a linear operation over the Shamir shares.

Local degree-reduction. Each party locally performs degree reduction over its additive
shares of the Shamir shares. Across all parties, the additive shares obtained as a result of
this procedure constitute a valid Shamir sharing of the “right” value, due to the linear-
ity properties of Shamir’s secret sharing scheme. Intuitively, the second secret-sharing
layer allows parties to locally perform degree reduction, because it gives each party a
global “view” of the protocol execution, as an additive share of the global view of the
protocol execution.

Enforcing correctness. Once the computation is completed in all copies, we ensure
it was performed correctly by incorporating a “correctness-enforcing” mechanism into
the protocol. Specifically, before opening the output shares obtained at the outputs of all
copies, we first run some correctness tests which will check that (with high probability)
all parties honestly executed the computation. The output shares are revealed (and the
output is reconstructed from these shares) only if all correctness tests pass.

To explain our correctness tests, we first analyze possible malicious strategies of
corrupted parties. Roughly, a corrupted party can deviate from the protocol in one of
four ways. First, it can incorrectly share its input (i.e., the “sharing” isn’t of the right

9

degree t). Second, it can incorrectly perform the degree-reduction procedure, by gen-
erating a fresh sharing that either isn’t of the right degree (i.e., t), or doesn’t share the
right value (i.e., the value shared before degree reduction). Third, when evaluating a
multiplication gate (i.e., computing the product of Shamir shares as described above),
it can use different values than the ones provided by FMULT. Fourth, it can incorrectly
perform the local linear computations.

To handle such deviations from the protocol, we introduce three tests. The first is
a degree test, which checks that the secrets sharings used by all parties, either to share
their inputs or as input to multiplication gates, have the right degree. The second is an
equality test, which checks that the secret sharings before and after degree reduction
share the same value. The degree and equality tests jointly guarantee that with over-
whelming probability, the input sharings are valid, and the degree reduction procedure
was executed correctly (in most copies). Similar degree and equality tests were used
in [AHIV17, HIMV19] to check similar conditions. The last test is a consistency test,
which verifies that (with high probability) parties correctly performed the local compu-
tations in (most) copies of the circuit. This checks that the values used by the parties
when evaluating a multiplication gate are consistent with the values they obtained from
FMULT, that the local linear operations were performed correctly, and will also guar-
antee the soundness of the degree and equality tests. For this test, a random subset of
copies is chosen, each party reveals its local view of the computation in those copies,
and all parties check that the views are consistent with each other. Similar tests were
used in the context of MPC-in-the-head [IKOS07, IPS08].

We note that this high-level overview omits important details (see Section 4). For
example, the order in which parties commit and reveal the correctness tests’ values is
crucial to preserving privacy even when the computations in most copies are incorrect.
Using this combination of correctness tests, and proving the security of this approach is
novel to our work, and requires subtle analysis.

Achieving constant communication overhead. Our basic MPC protocol does not
achieve constant communication overhead since it increases the communication com-
plexity of the underlying BGW protocol [BGW88] by O(s), where s is a security pa-
rameter. We reduce this overhead to constant by replacing [BGW88] with the protocol
of Franklin and Yung [FY92] that uses packed secret sharing.

Loosely speaking, packed secret sharing extends Shamir’s secret sharing, allowing a
block of B secrets to be shared within a single set of shares. To exploit the advantages of
packed secret sharing, we will assume the circuit is arranged in layers that contain only
one type (addition/multiplication) of gates, where each phase of the protocol evaluates
the gates in one layer.

Using packed secret sharing introduces two main differences from the basic proto-
col. First, before evaluating a specific layer the parties need to rearrange (repack) the
shared secrets corresponding to the input wire values of that layer, to align the packing
in blocks with the order of gates within the layer. Then, the layer can be evaluated sim-
ilarly to the basic protocol (where additions are computed locally, and multiplications
involve a call to FMULT, followed by a local degree-reduction step). The second differ-
ence from the basic protocol is that to insure correctness we must now check that the

10

parties correctly rearranged the shared secrets between layers. This is checked through
an additional “permutation test” [DI06, AHIV17]. See Section 5 for further details.

This protocol reduces the amortized per-gate communication overhead to constant,
because in effect the packed secret sharing allows us to evaluate many gates in one
“shot”. In particular, the wider the circuit to be evaluated, the larger the gains from
employing packed secret sharing.

Instantiating the multiplication functionality FMULT. We instantiate FMULT through
a reduction to a simpler functionality FRMULT which generates (unauthenticated) ran-
dom triples. All prior protocols that relied on this abstraction (apart from [IPS08]),
used actively-secure multiplication protocols to instantiateFMULT. Interestingly, we can
greatly weaken the security of the multiplication protocol, requiring only a passively-
secure instantiation, together with a coin tossing protocol to ensure correctly-sampled
randomness. Moreover, our protocol can benefit from a preprocessing stage in an of-
fline/online setting, where the triples are generated in the offline phase, and used in the
online phase. The consistency test (described for our basic MPC protocol) will ensure,
at the cost of a small overhead, that the triples were correctly generated with respect to
the tossed coins. We note that unlike prior works, our security analysis can tolerate a
small number of ill-formed triples without violating secrecy.

Related techniques. Conceptually, our consistency test can be viewed as a combina-
tion of the cut-and-choose approach [LP07] and the watchlist mechanism of [IPS08].
Indeed, on the one hand we maintain multiple copies of the computed circuit, yet unlike
the cut-and-choose technique the checked copies are not discarded, but rather used in
the remainder of the computation to reconstruct the outputs. On the other hand, the pur-
pose of our consistency test is similar to the watchlist channels, which add privacy and
correctness to passively-secure protocols. The main difference between our tests and the
watchlists of [IPS08] is that in IPS these channels are used to constantly enforce correct
behaviour throughout the protocol execution (and consequently also cause a high over-
head), whereas we perform a single consistency test after the protocol execution has
(essentially) ended, right before the output is reconstructed. These correctness enforce-
ment mechanisms are known to have limitations to achieving scalable MPC. Specifi-
cally, the asymptotic limit of cut-and-choose is O(s/ log |C|) [WRK17b], whereas the
watchlists mechanism requires O(s · n) virtual servers for the outer protocol [LOP11].
In both cases, the communication grows with some statistical parameter, and is hence
neither constant-overhead nor scalable.

3 Preliminaries

In this section we provide necessary preliminaries. Further preliminaries are deferred
to the full version [HVW19].

Basic notations. We denote a security parameter by κ. We say that a function µ : N→
N is negligible if for every positive polynomial p(·) and all sufficiently large κ’s it holds
that µ(κ) < 1

p(κ) . We use the abbreviation PPT to denote probabilistic polynomial-time
and denote by [n] the set of elements {1, . . . , n} for some n ∈ N. We assume functions

11

to be represented by an arithmetic circuit C (with addition and multiplication gates of
fan-in 2), and denote the size of C by |C|. By default we define the size of the circuit
to include the total number of gates including input gates. For a random variable X , we
use Supp(X) to denote the set of values which X takes with positive probability.

3.1 Layered Arithmetic Circuits

An arithmetic circuit defined over a finite field F is a directed acyclic graph, where
nodes (or gates) are labelled either as input gates, output gates or computation gates.
Input gates have no incoming edges (or wires), while output gates have a single incom-
ing wire and no outgoing wires. Computation gates are labelled with a field operations
(either addition or multiplication),4 and have exactly two incoming wires, which we
denote as the left and right wire. A circuit with i input gates and o output gates over a
field F represents a function f : Fi → Fo whose value on input x = (x1, . . . , xi) can
be computed by assigning a value to each wire of the circuit. Note that this abstraction
captures boolean circuits as well, by setting F = GF(2). In this work, we will exploit
an additional structure of the circuit. Specifically, the gates of an arithmetic circuit can
be partitioned into ordered layers L1, . . . ,Ld, such that i) a layer only consists of gates
of the same type (i.e., addition, multiplication, input or output gates belonging to the
same party), and ii) the incoming wires of all gates of layer i originate from gates in
layers 0 to i− 1.

3.2 Multiplication Functionalities

A core building block in our protocols is a multiplication functionality FMULT shown in
Figure 1, that takes additive shares of two secrets over some field F and produces addi-
tive shares of their product. In fact, we will reduceFMULT to a random instanceFRMULT,
shown in Figure 2, where all shares are chosen uniformly at random from F. The reduc-
tion, due to Beaver [Bea91], is as follows. Denote by [a] the additive sharing of some
value a ∈ F, namely, the tuple (a1, . . . , am). Then, given a random triple [a], [b], [c]
obtained as the output of FRMULT, and inputs [x], [y] for FMULT, we can compute [xy]
by first reconstructing e = [x+ a] and d = [y+ b]. Next, the parties compute a (trivial)
secret sharing [ed] of ed by having P1 set its share to ed, and the rest of the parties set
their shares to 0. Finally, the parties compute the following equation (each party locally
computes the equation on its own shares)

[xy] = [c] + e[y] + d[x]− [ed] = [ab] + (x+ a)[y] + (y + b)[x]− (x+ a)(y + b).

3.3 Secret-Sharing

A secret-sharing scheme allows a dealer to distribute a secret among n parties, where
each party receives a share (or piece) of the secret during a sharing phase. In its simplest

4 Subtraction gates can be handled analogously to addition gates, and we ignore them here for
simplicity.

12

Functionality FMULT

Functionality FMULT communicates with parties P1, . . . , Pm and adversary S cor-
rupting a subset I ⊂ [m] of parties. It is parameterized by a secret sharing scheme
S = (Share,Recon) (see Section 3.3 below).

1. Upon receiving the input (sid, aj , bj) from Pj record (sid, (aj , bj)).
2. If a tuple is recorded from all parties continue as follows:

(a) Compute c = Recon(a1, . . . , am) · Recon(b1, . . . , bm).
(b) Receive corrupted parties’ shares {cj}j∈I .
(c) Sample a secret sharing (c′1, . . . , c

′
m) uniformly at random from

Supp(Share(c)) subject to the constraint that c′j = cj for every j ∈ I . For
every j /∈ I , set cj = c′j .

(d) Forward cj to party Pj .

Fig. 1: The multiplication functionality.

Functionality FRMULT

Functionality FRMULT communicates with parties P1, . . . , Pm and adversary S cor-
rupting the subset of parties in I ⊂ [m]. It is parameterized by a secret sharing scheme
S = (Share,Recon) (see Section 3.3 below).

1. Receive corrupted parties’ shares {aj , bj , cj}j∈I .
2. Sample secret shares (a′1, . . . , a

′
m) and (b′1, . . . , b

′
m) uniformly at random from

Supp(Share(·)) subject to the constraint that a′j = aj and b′j = bj for every
j ∈ I . For every j /∈ I , set aj = a′j and bj = b′j .

3. Compute c = Recon(a1, . . . , am) · Recon(b1, . . . , bm).
4. Sample a secret sharing (c′1, . . . , c

′
m) uniformly at random from Supp(Share(c))

subject to the constraint that c′j = cj for every j ∈ I . For every j /∈ I , set cj = c′j .
5. Forward aj , bj , cj to party Pj .

Fig. 2: The random multiplication functionality.

form, the goal of (threshold) secret-sharing is to allow only subsets of players of size at
least t+1 to reconstruct the secret. More formally a t+1-out-of-n secret sharing scheme
comes with a sharing algorithm that on input a secret s outputs n shares s1, . . . , sn and
a reconstruction algorithm that takes as input ((si)i∈S , S) where |S| > t and outputs
either a secret s′ or⊥. In this work, we will use Shamir’s secret sharing scheme [Sha79]
with secrets in F = GF(2κ). We present the sharing and reconstruction algorithms
below:

Sharing algorithm: For any input s ∈ F, pick a random polynomial p(·) of degree t in
the polynomial-field F[x] with the condition that p(0) = s and output p(1), . . . , p(n).

13

Reconstruction algorithm: For any input (s′i)i∈S where none of the s′i are ⊥ and
|S| > t, compute a polynomial g(x) such that g(i) = s′i for every i ∈ S. This is
possible using Lagrange interpolation where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j
i− j

.

Finally the reconstruction algorithm outputs g(0).

Packed secret-sharing. The concept of packed secret-sharing was introduced by Frank-
ing and Yung in [FY92] in order to reduce the communication complexity of secure
multi-party protocols, and is an extension of standard secret-sharing. In particular, the
authors considered Shamir’s secret sharing with the difference that the number of se-
crets s1, . . . , s` is now ` instead of a single secret, where the secrets are represented as
the evaluations of a polynomial p(·) at ` distinct points. To ensure privacy in case of t
colluding corrupted parties, p(·) must have degree at least t + `. Packed secret sharing
inherits the linearity property of Shamir’s secret sharing, with the added benefit that
it supports batch (block-wise) multiplications. This was used to design secure compu-
tation protocols with an honest majority and constant amortized overhead [DI06]. For
this reason, we use this tool in our honest majority MPC protocol embedded within our
dishonest majority protocol from Section 4, leveraging its advantages to improve the
overhead of the former protocol.

3.4 Error Correcting Codes

A crucial ingredient in our construction is the use of Reed-Solomon codes as a packed
secret sharing scheme [FY92] (as defined in Section 3.3). In what follows, we provide
our coding notations and related definitions.

Coding notation. For a code C ⊆ Σn and vector v ∈ Σn, we denote by d(v, C)
the minimal distance of v from C, namely the number of positions in which v differs
from the closest codeword in C, and by ∆(v, C) the set of positions in which v differs
from such a closest codeword (in case of a tie, take the lexicographically first closest
codeword). For any k ≤ d(v, C), we say that v is k-close to C, and for every k >
d(v, C), we say that v is k-far from C. We further denote by d(V,C) the minimal
distance between a vector set V and a code C, namely d(V,C) = minv∈V {d(v, C)}.

Definition 1 (Reed-Solomon code) For positive integers n, k, finite field F, and a vec-
tor η = (η1, . . . , ηn) ∈ Fn of distinct field elements, the code RSF,n,k,η is the [n, k, n−
k + 1]-linear code5 over F that consists of all n-tuples (p(η1), . . . , p(ηn)) where p is a
polynomial of degree < k over F.

Definition 2 (Encoded message) LetL = RSF,n,k,η be an RS code and ζ = (ζ1, . . . , ζw)
be a sequence of distinct elements of F for w ≤ k. For u ∈ L we define the message

5 We denote by [n, k, d]-linear code a linear code of length n, rank k and minimum distance d,
where the minimum distance of the code is the minimal weight of a codeword in the code.

14

Decodeζ(u) to be (pu(ζ1), . . . , pu(ζw)), where pu is the polynomial (of degree < k)
corresponding to u. For U ∈ Lm with rows u1, . . . , um ∈ L, we let Decodeζ(U) be the
length mw vector x = (x11, . . . , x1w, . . . , xm1, . . . , xmw) such that (xi1, . . . , xiw) =
Decodeζ(u

i) for i ∈ [m]. We say that u L-encodes x (or simply encodes x) if x =
Decodeζ(u).

Moreover, we recall that Decodeζ(·) is a linear operation, i.e. for any a, b ∈ Fn (even if
a, b are not in L), Decodeζ(a+ b) = Decodeζ(a) + Decodeζ(b).

It will be convenient to view m-tuples of codewords in L as codewords in an inter-
leaved code Lm. We formally define this notion below.

Definition 3 (Interleaved code) Let L ⊂ Fn be an [n, k, d] linear code over F. We let
Lm denote the [n,mk, d] (interleaved) code over Fm whose codewords are all m × n
matrices U such that every row Ui of U satisfies Ui ∈ L. For U ∈ Lm and j ∈ [n], we
denote by U [j] the j’th symbol (column) of U .

4 Basic MPC Protocol

In this section we describe a simple variant of our MPC protocol, which we build on in
Section 5 to achieve constant overhead.

Our starting point is a passively-secure variant of the BGW protocol [BGW88],
which we amplify to the actively-secure dishonest-majority setting. Amplifying the se-
curity of this protocol requires facing three challenges: (1) high overhead due to the
degree-reduction sub-protocol; (2) security holds only with a dishonest minority; and
(3) security holds only against passive corruptions.

Our strategy towards addressing the first issue is to have parties locally perform the
degree-reduction procedure which the degree-reduction sub-protocol implements, thus
(almost) eliminating the interaction it requires. This is achieved by using a second layer
of secret-sharing.

Concretely, our MPC protocol with m parties relies on two layers of secret shar-
ing schemes: (1) first layer sharing: Reed-Solomon codes (which can be thought of
as Shamir’s secret sharing), denoted by L-encoding, where L = RSF,n,k,η (cf. Sec-
tion 3.4); and (2) second layer sharing: additive secret sharing.6 Throughout the execu-
tion, the parties hold additive shares of the L-encodings of the wires of the evaluated
circuit C. We note that using this two-layer secret sharing decouples the number of
parties m from the length of the encoding n, since (unlike passive-BGW) parties no
longer hold the symbols of the L-encodings. In fact, it will be useful to have m 6= n.
Intuitively, this can be though of as having the parties emulate n copies of C, where the
wires of the l’th copy carry the l’th symbol in the L-encodings of the wire values of
C, and these symbols are additively shared among the parties. The execution maintains
the invariant that when evaluating the gates in layer L, the parties hold for each copy l
additive shares of the l’th symbols in the L-encodings of the outputs of previous layers.

6 We note that the second layer sharing is added “on top” of the secret sharing used in BGW,
and differs from the resharing performed in BGW (in which Shamir shares are reshared using
Shamir’s scheme). This additional layer of additive sharing allows us to exploit the linearity
of BGW’s degree reduction procedure to perform degree reduction locally.

15

Our protocol is described in the FRMULT-hybrid model (cf. Section 3.2) which gen-
erates m additive shares of random triples, and is used to execute multiplications. In
more detail, the parties evaluate the n copies of C layer by layer, locally performing
additions, substractions and multiplications by a constant (this is possible due to the
linear nature of our secret sharing schemes), whereas multiplication gates require com-
munication.

Roughly, a multiplication gate G in the l’th copy of C is evaluated as follows.
The parties hold additive shares of the l’th symbols Al, Bl at the inputs of G, and use
FRMULT (and a reduction fromFMULT toFRMULT, described in Section 3.2) to obtain ad-
ditive shares of the productAlBl. Across all copies, these products form an L̃-encoding
of the output wire ofG, where L̃ = RSF,n,2k,η . To obtain a fresh L-encoding of the out-
put wire, each party interprets its additive shares of the L̃-encoding (across all copies)
as an encoding in RSF,n,n,η , decodes it, and then generates a fresh L-encoding of this
decoded value. The additive shares obtained through this procedure reconstruct to the
correct value because degree reduction is a linear operation.

Employing a second secret-sharing layer solves the second challenge (that passive-
BGW is only private in the honest majority setting) since a subset of parties learn only a
strict subset of additive shares. The third challenge (passive-BGW is only secure against
passive corruptions) is handled by incorporating correctness-enforcing tests into the
protocol, as described in Section 2.

Our detailed protocol is given in Figures 3-5. We next state the following theorem;
its proof appears in the full version [HVW19].

Theorem 1 ProtocolΦ described in Figures 3-5 securely realizesF in the (FCOM,FRMULT,
FCOIN)-hybrid model, tolerating m − 1 active (static) corruptions, with statistical se-
curity error

(1− e/n)δ + n− k + 2

|F|
+ 2−Ω(e)

where k > δ + 4e,n > 2k + 4e and e ≤ (n− k + 1)/3.

Proof sketch. The simulation follows by having the simulator Sim execute the protocol
with the adversary, emulating the ideal functionalities for it, and emulating the honest
parties on dummy 0-inputs. Before executing the output decommitment step, Sim per-
forms several checks regarding the actions of the corrupted parties. Specifically, the
simulator determines the set E of copies for which, if they were chosen during the
consistency test, the test would fail. It also identifies the set E′ of copies in which
the FRMULT values the corrupted parties committed to are inconsistent with the ones
Sim provided to them. Then, it verifies that |E| ≤ e, |E|′ ≤ 3e, and that there exist
Û , X̂i, i ∈ [m], and ẑ which are valid encodings in the appropriate (interleaved) codes
that agree with

∑
i∈[m] Ui,Xi, i ∈ [m], and

∑
i∈[m] zi (respectively) except for the

copies in E. It also verifies that there exists a V̂ in the interleaved code over L̃ that
agrees with

∑
i∈[m] Vi except for the copies in E ∪ E′. We note that Sim can perform

these checks because it emulated the internal ideal functionalities for the adversary,
whereas the honest parties in the protocol cannot perform these checks. If all checks
pass then Sim can extract effective inputs for the corrupted parties, and use them to

16

Protocol Φ.

– Inputs. Pi’s input is xi for all i ∈ [m]. The parties share a description of an arithmetic
circuit C with fan-in 2 which contains h multiplication gates and implements
functionality F .

– Initialization.
The parties invoke the FRMULT functionality hn times. Each invocation yields additive
shares

(
r11, . . . , r

1
m

)
,
(
r21, . . . , r

2
m

)
and

(
r31, . . . , r

3
m

)
, with party Pi holding

(r1i , r
2
i , r

3
i), such that rj =

∑m
i=1 r

j
i for j ∈ {1, 2, 3}, and r3 = r1 · r2. Each party Pi

generates a random L-encoding γi = (γ1
i , . . . , γ

n
i) of a random value, a random L

encoding νi = (ν1i , . . . , ν
n
i) of 0, and a random L̃ encoding γ̃i = (γ̃1

i , . . . , γ̃
n
i) of 0. Pi

samples a tuple (ψ1
i , . . . ,ψ

m
i) such that ψji ∈ Fn and

∑m
j=1ψ

j
i is the all-0 vector. Pi

sends ψji to party Pj . These “blinding” encodings are used in the degree and equality
tests of Figure 4.
Then, for every copy l ∈ [n], Pi commits using FCOM to:
• The triples obtained from the (l − 1) · h+ 1, . . . , hl’th invocations of the FRMULT

oracle.

• γli, νli , γ̃li and ψj,li (i.e., the l’th element of ψji) for every j.

– Input sharing. Each party Pi generates a random L-encodingXi =
(
X1
i , . . . , X

n
i

)
of

its input xi (where Xl
i will be used in the evaluation of the l’th copy of C), and commits

to X1
i , . . . , X

n
i using FCOM. For every 1 ≤ l ≤ n, Pi generates an additive sharing(

xli,1, . . . , x
l
i,m

)
of Xl

i , and sends
(
xli,j
)
l∈[n] to Pj . Each party Pi uses the shares xlj,i

(j ∈ [n]) as its inputs to the l’th copy.

– Emulating the computation. For every copy l ∈ [n] of C, every layer L ∈ [d] in C, and
every gate G ∈ [w] in layer L (where w is the width of C), do:

1. Additions/subtractions. If G is an addition or subtraction gate, each Pi performs
the gate operation by applying it locally on the additive shares maintained as the
inputs of that gate in the l’th copy.

2. Multiplications. To compute a multiplication gate, the parties invoke the following
multiplication protocol, where each party uses as inputs its l’th-copy shares of the
inputs of G.
• For every i, let ali, b

l
i denote the shares of the inputs of G which Pi holds in the

l’th copy of C. Then the parties compute additive shares
(
c̃l1, . . . , c̃

l
m

)
of

(
∑m
i=1 a

l
i)(
∑m
i=1 b

l
i), where Pi receives c̃li, via the reduction from FMULT to

FRMULT (described in Section 3.2), using the first unused triple obtained from
FRMULT in the (next unused portion of the) randomness generation phase
above.

• Then, Pi locally performs degree reduction on its shares c̃1i , . . . , c̃
n
i as follows:

it interprets
(
c̃1i , . . . , c̃

n
i

)
as an encoding in RSF,n,n,η , and applies the

decoding procedure to obtain a value oi. It then generates a fresh L-encoding(
c1i , . . . , c

n
i

)
of oi, which it uses as the additive shares of the output of G

across the n copies. (We note that c̃1i , . . . , c̃
n
i are additive shares of a purported

L̃-encoding where L̃ = RSF,n,2·k,η , but as a length-n encoding it is always
consistent with some valid encoding in RSF,n,n,η .)

– Output commitments. For the output wire z, letwi be the additive shares held by party
Pi for the output. Then, Pi computes zi = wi + νi where νi is the L-encoding of 0
committed to during the initialization step. Then, Pi commits using FCOM to its shares
zi =

(
z1i , . . . , z

n
i

)
.

Fig. 3: Actively Secure MPC Φ – Part 1 (Circuit Emulation).

17

Correctness tests. The following tests are performed to verify that the parties correctly
evaluated the n copies of C (including the degree reduction step executed after each
multiplication gate).

– Commit to degree test. This test checks that the input encodings and the shares
produced by all parties at the end of every degree reduction step are valid
L-encodings. This is done by checking that a random linear combination of the sum of
all these shares is a valid encoding in L = RSF,n,k,η .
More precisely, the parties first obtain from FCOIN random vectors r ∈ Fh, r′ ∈ Fm,
and r′′ ∈ F (recall that h is the number of multiplication gates in C, and m is the
number of inputs — one from each party). Next, each party Pi constructs the matrix
Ui ∈ Fh×n that contains the L-encodings obtained after the degree reduction step of
all multiplication gates (arranged in some arbitrary order, agreed upon by all parties).
Then, Pi locally computes

qi = r
TUi + r′iXi + r′′νi + γi,

whereXi is the L-encoding of Pi’s input xi committed at the input sharing step, νi is
the L-encoding of 0 committed to by Pi at the initialization step and γi is the blinding
L-encoding committed to at the initialization step. Pi then commits to each element of
qi, and each column of Ui, using FCOM.

– Commit to equality test. This test checks that the degree reduction step was
performed correctly. This is done by checking that a random linear combination of the
sum of differences of shares before and after the degree reduction step (performed as
part of evaluating a multiplication gate) is a valid encoding of 0 in L̃ = RSF,n,2k,η .
Specifically, the parties obtain from FCOIN a random vector α = (α1, . . . , αh) ∈ Fh
and random element β ∈ F. Pi sets Vi to contain the additive shares which Pi obtains
from the FMULT to FRMULT reduction computed during the evaluation of
multiplication gates. Next, Pi locally computes:

q̃i = α
T (Vi − Ui) + βνi + γ̃i + bi

where bli =
∑m
j=1 ψ

i,l
j , γ̃i is the L̃-encoding of 0 from the initialization step. Finally,

Pi commits to each element of q̃i using FCOM.

Fig. 4: Actively Secure MPC Φ – Part 2 (Correctness Tests Commitments).

obtain the output from the trusted party. Finally, Sim “corrects” the output shares of the
honest parties to share the correct outputs.

Next, we highlight some of the challenges we face when proving indistinguishabil-
ity of the simulated and real views. Recall that unlike [IPS08] we run a single consis-
tency test, right before output reconstruction. Thus, we essentially have one “shot” to
catch the adversary, causing the test to be more involved. Another challenge is that par-
ties are only committed to small portions of the execution, whereas in [IPS08] parties
commit to all their messages via the watchlists channels. Consequently, Sim cannot
verify correct behavior directly by checking the messages, and instead we need to show

18

– Consistency test. This test checks that the parties correctly executed the local
computations in each copy.
P1, . . . , Pm obtain from FCOIN a random subset Γ ⊂ [n] of size δ. For every l ∈ Γ ,
each Pi opens its entire view of the execution of the l’th copy of C. Specifically, Pi
decommits Xl

i , and the randomness (including all components of the commitments
generated in the initialization step) it used in the execution of the l’th copy. It also
opens the commitments to the degree and equality tests, and the additive shares of the
final outputs of the l’th copy. Then, Pi checks (as described next) that all local
computations in the copies in Γ were performed correctly, aborting if an inconsistency
is detected.
To check the l’th copy, Pi first checks that for every j ∈ [m],

∑
j′∈[m] ψ

j′,l
j = 0.

Then, it obtains the l’th column of Uj and zj from the decommitments of Pj , and uses
the decommitments to FRMULT values to determine the multiplication triples used by
all parties for the l’th copy. Using these triples, Pi determines the inputs and outputs
each party used in each multiplication gate of the l’th copy. Having determined the
outputs of multiplication gates, Pj can reconstruct the l’th column of Vj . Moreover,
since the final output is a linear combination of outputs of multiplication gates and
parties’ inputs,

∑
j w

l
j can be obtained by computing this linear combination over the

corresponding rows in
∑
j Uj’s and theXj’s.

Since addition gates are evaluated locally, correct execution of addition gates can be
verified by checking that the inputs to all multiplication gates were computed
correctly. Recall that an input to a multiplication gate is a linear combination of
outputs of previous multiplication gates and parties’ inputs. Thus, correctness can be
checked by verifying that the sum of additive shares used as inputs to multiplication
gates by all parties (as inferred from the FRMULT triples, and the transcript), and the
linear combination of the corresponding rows in

∑
j Uj and theXj’s, are equal.

Parties also verify that the reduction from FMULT to FRMULT was computed correctly
in the l’th copy, and that zli = wli + νli for every i.

– Degree test check. The parties decommit the degree test commitments for all
remaining copies l /∈ Γ , namely each Pi opens the commitment to the value qi
computed in Figure 4. (Note that the parties do not decommit the remaining columns
of Ui.) Each party computes the vector q = (q1 + . . .+ qm) and aborts if q is not a
valid L-encoding.

– Equality test check. The parties decommit their equality test commitments for all
copies l /∈ Γ , namely each Pi opens the commitment to the value q̃i computed in
Figure 4. Each party computes q̃ = (q̃1 + . . .+ q̃m), and aborts if either q̃ 6∈ L̃ or q̃
does not decode to the value 0.

– Output decommitments. If the consistency, degree and equality tests pass correctly,
then every party Pi decommits its output commitments for all copies l /∈ Γ . The
parties then locally reconstruct z =

∑
i zi, and if it is an L-encoding, decode the

output of C from the encoding.

Fig. 5: Actively Secure MPC Φ – Part 3 (Correctness Tests).

that the messages can be extracted from the partial information which parties commit
to. Fortunately, we show that correctness can be defined based on the FRMULT inputs,

19

and the transcript of the reduction from FMULT to FRMULT. Finally, correctness is guar-
anteed by the combination of local and global checks in our protocol. Specifically, the
consistency test verifies local correctness of the computation within each copy, by in-
specting a subset of copies; and the degree and equality tests verify that some global
relation holds over all copies (i.e., all additive shares).

In the proof, we show that if all the protocol tests pass then except with negligible
probability, all the conditions checked by the simulator before the output reconstruction
phase hold, and moreover the output is consistent with the outputs of the honest parties,
and the effective outputs that Sim extracts for the corrupted parties. Thus, it suffices to
prove indistinguishability of the simulated distribution and a hybrid distribution which
is obtained from the real execution by performing Sim’s checks, and aborting if they
are violated. The difference between the hybrid and simulated distributions is that the
honest parties use their real inputs in the former, and 0-inputs in the latter. We prove
indistinguishability by a case analysis based on which tests pass. Intuitively, the views
revealed during the consistency tests are identically distributed due to the secrecy of
Shamir’s secret sharing scheme (alternatively, Reed-Solomon codes). The degree test
values are indistinguishable because the honest parties’ values are valid L-encodings,
which are uniformly random due to the masking by the γi’s. The equality test values are
indistinguishable because the sum of honest parties’ values are valid L̃-encodings of 0,
which are uniformly random subject to this constraint due to the masking by the γ̃i’s.
Since the equality test values are masked by additive shares of 0, the values themselves
are identically distributed. Finally, conditioned on all tests passing, the output shares
are uniformly random L-encodings whose sum encodes the correct output, due to the
masking by the νi’s.

Communication complexity of protocol Φ. Assuming the existence of a PRG, parties
can commit to their FRMULT triples by committing (during the initialization step) to a
PRG seed for each copy (the other initialization-phase commitments are generated as
in Figure 3). Consequently, the total communication, assuming rate-1 commitments, is:

n ·m · (κ+ (3 +m) · log2 |F|)︸ ︷︷ ︸
rnd/blind com.

+ m · n · log2 |F|︸ ︷︷ ︸
input commitments

+m2 · n · log2 |F|︸ ︷︷ ︸
input sharing

+ n · h · CCMULT︸ ︷︷ ︸
multiplication

+ |Γ | ·m · (κ+ (4 +m) · log2 |F|)︸ ︷︷ ︸
consistency test

+ 2 ·m · n · log2 |F|︸ ︷︷ ︸
degree test com. and dec.

+ 2 ·m · n · log2 |F|︸ ︷︷ ︸
equality test com. and dec.

+ 2 · n ·m · log2 |F|︸ ︷︷ ︸
output com. and dec.

where CCMULT is the communication complexity of the m-party multiplication proto-
col (implementing FRMULT and the FMULT to FRMULT reduction), and h is the num-
ber of multiplication gates in the circuit. (We note that the degree and equality test
commitments revealed during the consistency test are counted as part of the degree
and equality test terms, resp.) In order to get 2−Ω(s) soundness, we need to set n =
O(s). Assuming s ≤ κ, the overall communication complexity can be bounded by
O(s · h · CCMULT) + poly(m,κ, log2 |F|). Since h represents the size of the circuit
(i.e. number of multiplication gates), the best passive protocol in the FMULT-hybrid can

20

be bounded by O(h) · CCMULT. Therefore, the communication overhead of our basic
variant is O(s).

4.1 Instantiating FRMULT

Recall from Section 4.1 that FRMULT is the multiplication functionality that outputs
three tuples of additive shares a, b, c such that the “inputs” a, b share random values
a, b, and the “output” c shares the product a · b. In this section we discuss how to realize
this functionality, while identifying the minimal security properties required from it.

Our first observation is that we do not need an actively-secure implementation of
the FRMULT functionality. In fact, it suffices to consider a protocol that is only “pri-
vate” against active adversaries, in the sense that throughout the protocol execution, an
actively corrupted party cannot violate the privacy of the honest parties’ inputs. In par-
ticular, the underlying implementation does not have to retain correctness in this case,
or provide a mechanism for extracting the adversary’s inputs. Extraction in our proto-
col is achieved by requiring the adversary to commit to its input and randomness used
for the FRMULT-functionality. Correctness, on the other hand, is enforced through our
consistency test that ensures correctness of the computations in most of the copies, by
checking a random subset of δ copies.

When computing a boolean circuit, the pairwise products of the shares can be com-
puted using Oblivious Transfer (OT) [Bea91, NNOB12]. Based on the discussion above,
it suffices to use a private OT protocol [HK12]. Indeed, consistency between the differ-
ent OT executions will be verified during the consistency test of our protocol, as dis-
cussed above.7 Intuitively, privacy is guaranteed because an OT sender has no output in
the execution, and the security/privacy of OT ensures that even if the sender cheats it
learns nothing about the receiver’s input. Moreover, though an OT receiver can use in-
consistent inputs in the OT executions with different honest parties, this can only violate
correctness, and not privacy, since the output of each OT execution is an additive share
of the cross product (e.g., ai · bj), which reveals nothing about the other party’s share.
Similarly, when working over large fields, FRMULT can be realized using private OLE,
where private OLE can be defined analogously to private OT, requiring that parties do
not infer any additional information (except what can be inferred from their inputs and
outputs).

Relaxing to passive implementation of the FRMULT-functionality. We can further
weaken the security requirement on the FRMULT implementation, by incorporating the
reduction from defensible privacy to passive security. We first informally review the
notion of defensible privacy which was introduced by Haitner in [Hai08, HIK+11];
see [HIK+11] for the formal definitions. Let π be a two-party protocol between P1 and
P2, and let trans = (q1, a1, . . . , q`, a`) be a transcript of an execution of π when P1 is
controlled by an adversary A, where qi denotes the i’th message from P1, and ai de-
notes the i’th message from P2 (that is, ai is the response to qi). Informally, a defence of
A relative to trans, which is provided after the protocol execution ends, is a pair (x, r)

7 More specifically, we use OT between pairs of parties to compute a 2-out-of-2 additive secret
sharing of the product they should compute. Then. we perform the consistency check, and
reconstruct the outputs of OTs only if this test passes.

21

of input and random tape for P1. We say that a defence (x, r) of A relative to trans is
good if the transcript generated by running the honest P1 with input x and random tape
r against P2’s messages a1, . . . , a` results exactly in trans. Intuitively, a defense (x, r)
is good relative to trans if, whenever Pi uses (x, r) in an honest execution of π, the
messages sent by Pi are identical to the messages sent by the adversary in trans. Thus,
in essence, a defense serves as a “proof” of honest behavior. Defensible privacy guar-
antees that when the adversary provides a good defence, then it learns nothing beyond
what can be inferred from its input and prescribed output.8

The security of a passive protocol can be amplified to defensible privacy by adding
a coin tossing phase (which, in our case, samples the inputs to FRMULT), and ensuring
that these coins were indeed used in the passive execution. The latter can be checked
as part of our consistency test, however to guarantee privacy we cannot postpone this
check until the consistency test is performed at the end of the circuit emulation, since
by that time the adversary could have already violated privacy by using badly-sampled
randomness. Thus, we include in our protocol two consistency tests: the first is the
consistency test described in Figure 4, and the second checks consistency of FRMULT

inputs and the tossed coins, and is executed during the initialization phase. This second
consistency test ensures that with overwhelming probability, all but (possibly) a small
subset of random triples are correct (namely, the aggregated parties’ shares correspond
to c = a · b), and consistent with the random coins. This will suffice for our security
analysis, because the number of copies will be sufficiently large such that by cheating
in a small number (< k) of copies, the adversary learns nothing.
Relaxing further to weaker than passive. Following ideas from [HIMV19], our proto-
col can, in fact, tolerate an imperfect passive OLE, namely one that has a non-negligible
statistical privacy or correctness error. This security feature can be turned into an effi-
ciency advantage. For example, imperfect FRMULT can be implemented more efficiently
by aggressively setting the parameters in existing LWE-based OLE constructions, see
the full version [HVW19] for details.

5 Actively Secure MPC with Constant Communication Overhead

In this section we present our main result, namely, an MPC protocol for an arbitrary
number of parties that achieves constant communication overhead over the passive
GMW protocol.

On a high-level, we will incorporate a variant of the protocol of Frankling and Yung
[FY92] instead of [BGW88] in our basic MPC protocol. Recall that the main over-
head in the basic MPC protocol is caused by the n = O(s) copies of the circuit used
to perform the computation, where s is a statistical security parameter. Then, similar
to [FY92] we improve the communication overhead, achieving constant overhead, by

8 For instance, an OT protocol is defensibly private with respect to a corrupted sender if any
adversary interacting with an honest receiver with input u, and providing a good defence at
the end of the execution, does not learn u. Similarly, an OT protocol is defensibly private with
respect to a corrupted receiver if for any input u, and any inputs (v0, v1) for the sender, any
adversary interacting with the honest sender with input (v0, v1), that is able to provide a good
defense for input u, does not learn v1−u.

22

having all copies evaluate multiple gates in parallel using packed secret sharing. Our
protocol will achieve constant-overhead for moderately wide circuits (See Section 6 for
a more detailed discussion.)

In more detail, given a circuit C, and block-width parameter B, the parties agree on
a divisions of the circuit evaluation into layers, where at most B multiplication gates
are evaluated in parallel in each layer, and arbitrary linear operations are performed
between layers. During the evaluation of the protocol on a specific input, we can asso-
ciate with each layer of gates G a vector (block) BGO of B values whose i’th position
contains the output value assigned to the i’th gate in the layer (or 0 if the block has
less than B gates). For each layer (except blocks of input gates), we will associate two
additional blocks: a “left” block BGL and “right” block BGR whose i’th position contains
the value of the left input wire and right input wire of the i’th gate, respectively. In
other words, the value of the i’th gate of a multiplication block can be expressed as
(BGO)i = (BGL)i(B

G
R)i. In the protocol, the parties will collectively operate on an ef-

ficient (constant-rate) Reed-Solomon encoding (equivalently, packed secret shares) of
each block. The protocol parameters include a description of the Reed-Solomon code
L = RSF,n,k,η , and a vector of elements ζ = (ζ1, . . . , ζB) ∈ FB which is used for
decoding.

Next, we describe our protocol, simulation and proof by specifying the main differ-
ences from the description of the basic protocol from Section 4.

– INITIALIZATION. Recall that each party generates γi,νi, γ̃i and (ψ1
i , . . . ,ψ

m
i).

The parties generate the same vectors except that γi is a random L-encoding of a
random block of values, and νi and γ̃i are random L and L̃ encodings of the all 0’s
block. In addition, the parties generate a random L′-encoding γ′i = (γ′

i
1, . . . , γ

′i
n)

of a block of values that are random subject to the condition that they add up to 0,
where L′ = RSF,n,k+B,η .

– INPUT SHARING. The parties share a block rather than a single element. Namely,
the parties embed their input value(s) into a block of length B, and generates a
packed secret sharing L-encoding for this block, distributing the outcome as in the
basic protocol.

– EMULATING THE COMPUTATION. The computation proceed in layers of multipli-
cation gates, where for each layer, we maintain the invariant that the parties hold
additive shares of the inputs to the (at most) B multiplication gates in the layer. The
difference from the basic protocol is that before evaluating a layer, the parties need
to repack the inputs to the layer. (See discussion below on why repacking might be
needed.)
Concretely, to evaluate a layer, each party first rearranges the left wire values and
right wire values of the multiplication gates in the layer into blocks BL and BR,
and generates an L-encoding of each block. For every i, let ali, b

l
i denote Pi’s shares

of BL, BR (respectively) corresponding to the l’th copy. Then the parties com-
pute (via the reduction from FMULT to FRMULT) additive shares

(
c̃l1, . . . , c̃

l
m

)
of

(
∑m
i=1 a

l
i)(
∑m
i=1 b

l
i), where Pi receives c̃li, just as in the basic MPC protocol. Then,

each Pi locally performs the degree reduction procedure as in the basic MPC pro-
tocol, with the difference that Pi decodes (c̃1i , . . . , c̃

n
i) to obtain a block of values

23

which it uses as the additive shares of the outputs of the multiplication gates in the
layer.
Why repacking is needed. To see why rearranging the values within and between
blocks might be necessary, consider a circuit that has a wire connecting the 3’rd
value in the 2’nd block in layer 1 with the 5’th value in the 3’rd block in layer 2; or
a wire connecting the 4’th value in the 1’st block in layer 1 with the 2’nd value in
the 1’st block in layer 2.9

– CORRECTNESS TESTS. We will employ the equality test as before, modify the
degree test to also check the repacked encodings, and add an additional permutation
test, as described next.
THE MODIFIED DEGREE TEST. As in the basic protocol, the degree test will com-
pute a random linear combination of the tested encodings. These encodings include
the blocks Xi encoding the parties’ inputs (which were committed in the input
sharing step), the block of 0s encoded in νi (which was committed in the initializa-
tion step), and the matrix Ui which contains L-encodings of the blocks of additive
shares that were obtained from the degree reduction step following a multiplica-
tion step (Ui was committed to during the commit to degree test step). The differ-
ence from the degree test of the basic MPC protocol is that the linear combination
will now also include an additional matrix U ′′i which contains the L-encodings of
the repacked blocks of additive shares that were used as inputs to multiplication
gates. (We note that these values are never committed to, but as explained in the
proof of Corollary 2 below, can be extracted by the simulator from the transcript of
the execution.) More formally, the parties will obtain from FCOIN random vectors
r, r′, r′′′, and a random value r′′, and party Pi will compute

qi = r
TUi + r

′′′TU ′′i + r′iXi + r′′νi + γi.

Permutation test: this test verifies that the parties correctly permute (i.e., rear-
range) the additive shares of wire values between layers. In particular, the test ver-
ifies that the encodings of the left and right input blocks of each computation layer
correctly encode the values from the previous layers (and similarly for the output
blocks). Note that the set of constraints that the blocks of values have to satisfy can
be expressed as a set of linear equations in at mostmB equations andmB variables
(where w is the width, d is the depth of the computed circuit, and m = dw/B),
where variable xi,j represents the j’th value in the i’th block. (For example, if the
circuit has a wire between the 3’rd value of the 2’nd block and the 5’th value in the
3’rd block, the corresponding constraint would be x2,3 − x3,5 = 0.) These linear
equations can be represented in matrix form as Ax = 0mB, where A ∈ FmB×mB
is a public matrix which only depends on the circuit being computed. The permu-
tation test simply picks a random vector r ∈ FmB and checks that (rTA)x = 0. To
check these constraints, the parties obtain from FCOIN a random vector r ∈ FmB
and compute

rTA = (r′11, . . . , r
′
1B, . . . , r

′
m1, . . . , r

′
mB).

9 Addition gates do not require repacking: they can be computed locally (because parties hold
additive shares of the wire values), then repacked for the next multiplication layer.

24

Now, let rj(·) be the unique polynomial of degree < B such that rj(ζQ) =
r′jQ for every Q ∈ [B] and j ∈ [m]. Then party Pi locally computes q′i =

(r1(ζi), . . . , rm(ζi))
TU ′i + γ′i, where γ′i is the blinding encoding from the initial-

ization step (that encode in RSF,n,k+B,η random blocks of values that sum to 0),
and U ′i is the matrix obtained by concatenating the rows of Ui and U ′′i from the de-
gree test. Notice that the rows of U ′i consist of the L-encodings which Pi obtained
at the output of multiplication layers (after degree reduction), and the L-encodings
it used as inputs to multiplication layers (after repacking). Finally, Pi commits to
each element of q′iusing FCOM.

– CONSISTENCY TEST CHECK. In the consistency test, we also check for all l ∈ Γ
that the permutation test values of copy l were computed correctly. Specifically,
each party checks that for every i ∈ [m], the l’th element of q′i is consistent with
the l’th element of γ′i, the l’th column of U ′i , and r (the coins obtained from FCOIN

for the permutation test).
– PERMUTATION TEST CHECK. The parties decommit their permutation test com-

mitments for all copies l /∈ Γ , namely each Pi opens the commitment to the value
q′i computed above. Each party computes q′i = (q′1 + . . . + q′m), and aborts if
q′ = (q′1, . . . , q

′
n) 6∈ RSF,n,k+B,η or x1 + · · ·+xw 6= 0 where x = (x1, . . . , xw) =

Decodeζ(q
′).

The following Theorem follows from Theorem 1 and the discussion above; its proof
appears in the full version [HVW19].

Theorem 2 The packed variant of protocol Φ of Figures 3-5 securely realizes F in the
(FCOM,FRMULT,FCOIN)-hybrid model, toleratingm−1 active (static) corruptions, with
statistical security error

(1− e/n)δ + ((e+ k + B)/n)δ + (n− k + 3)/ |F|+ 2−Ω(e)

where k > δ + 4e+ B, n > 2k + 4e, and e < (n− k + 1)/3.

Assuming that each layer of the circuit has at least B parallel multiplications, the
communication complexity of this variant is given byO(n· hB ·CCMULT)+poly(m,κ, log2 |F|)
since we amortize over B multiplications. By setting n = O(s), the amortized com-
munication overhead of this protocol becomes O(1) per copy. Circuits of an arbitrary
structure can be easily handled at a worst-case additional cost of poly(s, d). The statisti-
cal error can be improved by repeating the tests. The analysis presented above works for
fields of size larger than n, for smaller fields, we can rely on the analysis from [DI06].

6 Corollaries and Applications

In this section we consider several different instantiations of the FRMULT functional-
ity, thus obtaining our main results in the different settings as instances of the generic
protocol of Section 5.

25

6.1 Constant Overhead MPC for Constant-Size Fields

Dishonest majority. Our main result is obtained by replacing the Reed-Solomon codes
in our protocol with Algebraic Geometric (AG) secret sharing over fields of constant
size [CC06], instantiating the FRMULT functionality with pairwise calls to a passively-
secure implementation of the FOT functionality, and instantiating commitments using a
pseudorandom generator. Formally:

Theorem 3 (Theorem 1, restated) Let κ, s denote computational and statistical secu-
rity parameters (resp.), m denote the number of parties, and F be a constant-size field.
Then there exists a protocol compiler that, given a pseudorandom generatorGwith seed
length κ, s, a constant-round implementation of the FOT functionality with total com-
munication complexity CCOT, and a description of an m-party functionality expressed
as a depth-d circuit C with constant fan-in, outputs a UC-secure O(d)-round m-party
protocol realizing f with communication complexity O(m2 |C|CCOT)+poly(m,κ, d),
where security holds against an active adversary corrupting an arbitrary number of
parties.

We note that the exact constants in the overhead of Theorem 3 depend on the concrete
constants of the underlying AG code, which have not been studied before. The com-
munication complexity of our protocol using a bit-OT protocol for the boolean setting
asymptotically matches the communication complexity of the best known passively-
secure protocol, namely [GMW87] using a passively-secure OT protocol. The best
known previous result for active security is due to Genkin et al. [GIW16] who achieve
O(m2 |C| poly log(s)) communication complexity, i.e., a multiplicative factor of poly log(s)
over GMW.

Honest majority. To obtain our main result for the honest majority setting, we need to
slightly modify our protocol in two ways. First, we will rely on the passive variant of
a protocol of Damgård and Nielsen [DN07], instantiated with secret-sharing based on
AG codes over constant-size finite fields, to instantiate the parallelFRMULT functionality
(i.e., to generate the triples in the initialization phase). To achieve this, we replace the
additive secret sharing used in our protocol with secret sharing based on AG codes for
constant-size fields. We note that the passively-secure honest-majority m-party proto-
col of [DN07] can generate T = Ω(m) random triples with total communication com-
plexity O(mT). Second, we will consider FRMULT and FMULT whose underlying secret
sharing scheme is based on the same AG secret sharing scheme. Specifically, parallel
FRMULT distributes secret-shares of many triples a, b and c such that a · b = c. Then the
FMULT to FRMULT reduction works essentially as in the basic protocol, where the only
difference is that the values e, d are reconstructed using the reconstruction procedure of
the AG secret sharing scheme. Consequently, we obtain the following theorem.

Theorem 4 Let κ, s denote computational and statistical security parameters (resp.),
m denote the number of parties, and F be a constant-size field. Then there exists a
protocol compiler that, given a pseudorandom generator G with seed length κ, s,
and a description of an m-party functionality expressed as a depth-d circuit C with
constant fan-in, outputs a UC-secure O(d)-round m-party protocol realizing f with

26

O(m|C|) + poly(m,κ, d) bits total communication complexity, and security against a
static adversary corrupting a minority of parties.

We remark that this improves over the result of Chida et al. [CGH+18] that achieves
O(s) overhead for binary fields, and generalizes the result of Ishai et al. [IKP+16] that
achieves the same result, but only for a constant number of parties. We remark that
the latter protocol additionally achieve constant-rate, while our protocol only achieves
constant-overhead.

6.2 Constant Overhead MPC over Fields of Arbitrary Size

Dishonest majority. To obtain our result for fields of arbitrary size, we realize the
FRMULT functionality using a passively-secure OLE protocol. For fields of size ≤ s we
rely on AG sharing, whereas for fields of size Ω(s) we use Reed-Solomon codes. Thus,
we can re-derive a result of Genkin et al. [GIP+14] (Theorem 5.7 in the full version),
who construct an actively-secure m-party protocol for arbitrary functionalities (repre-
sented by an arithmetic circuit C), in the dishonest majority setting, using O(m2 |C|)
calls to an OLE oracle. More precisely, we have the following theorem:

Theorem 5 Let κ, s denote computational and statistical security parameters (resp.),
m denote the number of parties, and F be a field. Then there exists a protocol com-
piler that, given a pseudorandom generator G with seed length κ, s, a constant-round
implementation of the FOLE functionality over F with total communication complexity
CCOLE, and a description of anm-party functionality expressed as a depth-d arithmetic
circuit C over F with constant fan-in, outputs a UC-secure O(d)-round m-party proto-
col realizing f with communication complexity O(m2 |C|CCOLE)+poly(m,κ, d) field
elements, with security against an active adversary corrupting an arbitrary number of
parties.

This result asymptotically matches the communication complexity of the best known
passively-secure protocol [GMW87] using a passively-secure OLE protocol. Further-
more, for sufficiently wide circuits, we can show that the overhead of our protocols is
2. We present the concrete parameters in the full version [HVW19].

Honest majority. Just as in Section 6.1, we can obtain constant overhead over the best
passively-secure protocol in the honest majority setting:

Theorem 6 Let κ, s denote computational and statistical security parameters (resp.),
m denote the number of parties, and F be a field. Then there exists a protocol compiler
that, given a pseudorandom generator G with seed length κ, s, and a description of an
m-party functionality expressed as a depth-d arithmetic circuit C over F with constant
fan-in, outputs a UC-secure O(d)-round m-party protocol realizing f with total com-
munication complexity O(m|C|) + poly(m,κ, d) bits, where security holds against a
static adversary corrupting a minority of parties.

Applying the analysis of concrete parameters (see above and the full version [HVW19])
we re-derive the result of Chida et al. [CGH+18] who show an overhead-2 actively-
secure honest-majority protocol. Their result applies to arbitrary circuits over suffi-
ciently large fields, whereas ours achieves overhead of 2 for sufficiently wide circuits.

27

Acknowledgments

The first author is supported by the BIU Center for Research in Applied Cryptogra-
phy and Cyber Security in conjunction with the Israel National Cyber Bureau in the
Prime Minister’s Office, and by ISF grant 1316/18. The second author is supported by
Google Faculty Research Grant, NSF Award CNS-1618884 and Intelligence Advanced
Research Projects Activity (IARPA) via 2019-19-020700009. The views expressed are
those of the author and do not reflect the official policy or position of Google, the
Department of Defense, the National Science Foundation, or the U.S. Government.
The third author is supported by ISF grants 1861/16 and 1399/17, and AFOSR Award
FA9550-17-1-0069.

References

ADI+17. Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron.
Secure arithmetic computation with constant computational overhead. In CRYPTO,
pages 223–254, 2017.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without a trusted setup. In CCS,
pages 2087–2104, 2017.

BDOZ11. Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In EUROCRYPT, pages 169–
188, 2011.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization. In
CRYPTO, pages 420–432, 1991.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513, 1990.

CC06. Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and se-
cure multi-party computations over small fields. In CRYPTO, pages 521–536, 2006.

CCD87. David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally se-
cure protocols (abstract). In CRYPTO, page 462, 1987.

CDN01. Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computation
from threshold homomorphic encryption. In EUROCRYPT, pages 280–299, 2001.

CGH+18. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lin-
dell, and Ariel Nof. Fast large-scale honest-majority MPC for malicious adversaries.
In CRYPTO, pages 34–64, 2018.

DGN+17. Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto Tri-
filetti. TinyOLE: Efficient actively secure two-party computation from oblivious lin-
ear function evaluation. In CCS, pages 2263–2276, 2017.

DI06. Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In CRYPTO,
pages 501–520, 2006.

DKL+13. Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. Practical covertly secure MPC for dishonest majority - or: Break-
ing the SPDZ limits. In ESORICS, pages 1–18, 2013.

DN07. Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multi-
party computation. In CRYPTO, pages 572–590, 2007.

28

DPSZ12. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In CRYPTO, pages 643–662, 2012.

FY92. Matthew K. Franklin and Moti Yung. Communication complexity of secure compu-
tation (extended abstract). In STOC, pages 699–710, 1992.

GIP+14. Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Cir-
cuits resilient to additive attacks with applications to secure computation. In STOC,
pages 495–504, 2014.

GIW16. Daniel Genkin, Yuval Ishai, and Mor Weiss. Binary amd circuits from secure multi-
party computation. In TCC-B, 2016.

GLNP15. Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits
under standard assumptions. In CCS, pages 567–578, 2015.

GLS19. Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional
MPC with guaranteed output delivery. In CRYPTO, pages 85–114, 2019.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

Hai08. Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In
TCC, pages 412–426, 2008.

HIK+11. Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank.
Black-box constructions of protocols for secure computation. SIAM J. Comput.,
40(2):225–266, 2011.

HIMV19. Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakrishnan Venkita-
subramaniam. LevioSA: Lightweight secure arithmetic computation. In To appear
CCS, 2019.

HIV17. Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Actively
secure garbled circuits with constant communication overhead in the plain model. In
TCC, pages 3–39, 2017.

HK12. Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message
oblivious transfer. J. Cryptology, 25(1):158–193, 2012.

HKK+14. Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J. Mal-
ozemoff. Amortizing garbled circuits. In CRYPTO, pages 458–475, 2014.

HSS17. Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round
MPC combining BMR and oblivious transfer. In ASIACRYPT, pages 598–628, 2017.

HVW19. Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. The price
of active security in cryptographic protocols. IACR Cryptology ePrint Archive,
2019:1250, 2019.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In STOC, pages 21–30, 2007.

IKP+16. Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-Hua Yu.
Secure protocol transformations. In CRYPTO, pages 430–458, 2016.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivi-
ous transfer - efficiently. In CRYPTO, pages 572–591, 2008.

IPS09. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with
no honest majority. In TCC, pages 294–314, 2009.

KPR18. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great
again. In EUROCRYPT, pages 158–189, 2018.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In ICALP, pages 486–498, 2008.

LOP11. Yehuda Lindell, Eli Oxman, and Benny Pinkas. The IPS compiler: Optimizations,
variants and concrete efficiency. In CRYPTO, pages 259–276, 2011.

29

LP07. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In EUROCRYPT, pages 52–78,
2007.

LP12. Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose
oblivious transfer. J. Cryptology, 25(4):680–722, 2012.

LPO11. Yehuda Lindell, Benny Pinkas, and Eli Oxman. The IPS compiler: Optimizations,
variants and concrete efficiency. IACR Cryptology ePrint Archive, 2011:435, 2011.

LPSY15. Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant
round multi-party computation combining BMR and SPDZ. In CRYPTO, pages 319–
338, 2015.

LR15. Yehuda Lindell and Ben Riva. Blazing fast 2pc in the offline/online setting with
security for malicious adversaries. In CCS, pages 579–590, 2015.

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In CRYPTO,
pages 681–700, 2012.

NO09. Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.
In TCC, pages 368–386, 2009.

RR16. Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with
online/offline dual execution. In 25th USENIX Security Symposium, USENIX Security
16, Austin, TX, USA, August 10-12, 2016., pages 297–314, 2016.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
SS13. Abhi Shelat and Chih-Hao Shen. Fast two-party secure computation with minimal

assumptions. In CCS, pages 523–534, 2013.
ST04. Berry Schoenmakers and Pim Tuyls. Practical two-party computation based on the

conditional gate. In ASIACRYPT, pages 119–136, 2004.
WMK17. Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. Faster secure two-party compu-

tation in the single-execution setting. In EUROCRYPT, pages 399–424, 2017.
WRK17a. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and effi-

cient maliciously secure two-party computation. In CCS, pages 21–37, 2017.
WRK17b. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty

computation. In CCS, pages 39–56, 2017.
Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In

FOCS, pages 162–167, 1986.
ZRE15. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing

data transfer in garbled circuits using half gates. In EUROCRYPT, pages 220–250,
2015.

30

	The Price of Active Security in Cryptographic Protocols

