
Transparent SNARKs from DARK Compilers

Benedikt Bünz1, Ben Fisch1, and Alan Szepieniec2

1 Stanford
2 Nervos Foundation

Abstract. We construct a new polynomial commitment scheme for uni-
variate and multivariate polynomials over finite fields, with logarithmic
size evaluation proofs and verification time, measured in the number of
coefficients of the polynomial. The underlying technique is a Diophantine
Argument of Knowledge (DARK), leveraging integer representations of
polynomials and groups of unknown order. Security is shown from the
strong RSA and the adaptive root assumptions. Moreover, the scheme
does not require a trusted setup if instantiated with class groups. We
apply this new cryptographic compiler to a restricted class of algebraic
linear IOPs, which we call Polynomial IOPs, to obtain doubly-efficient
public-coin interactive arguments of knowledge for any NP relation with
succinct communication. With linear preprocessing, the online verifier’s
work is logarithmic in the circuit complexity of the relation.
There are many existing examples of Polynomial IOPs (PIOPs) dating
back to the first PCP (BFLS, STOC’91). We present a generic compila-
tion of any PIOP using our DARK polynomial commitment scheme. In
particular, compiling the PIOP from PLONK (GWC, ePrint’19), an im-
provement on Sonic (MBKM, CCS’19), yields a public-coin interactive
argument with quasi-linear preprocessing, quasi-linear (online) prover
time, logarithmic communication, and logarithmic (online) verification
time in the circuit size. Applying Fiat-Shamir results in a SNARK, which
we call Supersonic.
Supersonic is also concretely efficient with 10KB proofs and under 100ms
verification time for circuits with 1 million gates (estimated for 120-bit se-
curity). Most importantly, this SNARK is transparent : it does not require
a trusted setup. We obtain zk-SNARKs by applying a hiding variant of
our polynomial commitment scheme with zero-knowledge evaluations.
Supersonic is the first complete zk-SNARK system that has both a prac-
tical prover time as well as asymptotically logarithmic proof size and
verification time. The full version of the paper is available online [19].

1 Introduction

In recent years, there has been a surge of industry interest in verifiable out-
sourced computation [52] (such as trustless cloud computing) as well as zero-
knowledge proofs. In particular, blockchains use efficient zero-knowledge proofs
as a solution for balancing privacy and publicly-verifiable integrity: examples
include anonymous transactions in ZCash [5,37] and verifying Ethereum smart
contracts over private inputs [27]. In these applications, zero-knowledge proofs

are posted to the blockchain ledger as a part of transactions and nodes must
verify many proofs in the span of a short period of time. Therefore, succinctness
and fast verification are necessary properties for the deployment of such proof
systems. Verifiable computation is also being explored as a scaling solution for
blockhain transactions [20], and even as a way to entirely eliminate the need for
maintaining historical blockchain data [40].

Following this pragmatic interest, there has also been a surge of research fo-
cused on obtaining proof systems with better concrete efficiency characteristics:
succinctness (the proof size is sublinear in the original computation length T),
non-interactivity (the proof is a single message), prover-scalability (proof gener-
ation time scales linearly or quasi-linearly in T), and verifier-scalability (verifi-
cation time is sublinear in T). Proof systems that achieve all of these properties
for general NP statements are called SNARGs (“succinct non-interactive argu-
ments”). The proof is called an argument when it is only sound assuming the
prover is computationally bounded, i.e., computationally sound as opposed to
statistically sound. Succinct statistically sound proofs are unlikely to exist [32].

Currently, there are numerous constructions that achieve different trade-
offs between proof size, proof time, and verification time, but also under dif-
ferent trust models as well as cryptographic assumptions. Some constructions
also achieve better efficiency by relying on a preprocessing model in which a
one-time expensive setup procedure is performed in order to generate a com-
pact verification key VK, which is later used to verify proof instances efficiently.
Somewhat unfortunately, the best performing proof systems to date (considering
proof size and verification time) require a trusted preprocessing. These are the
pairing-based SNARKs extending from GGPR [31,47,9,6,35], which have been
implemented in numerous libraries [6,16], and even deployed in live systems such
as the ZCash [1] cryptocurrency. The trusted setup can be performed via multi-
party computation (MPC) by a committee of parties, such that trust in only
one of the parties is sufficient. This has been done on two occasions for the
ZCash blockchain, involving elaborate “ceremonies” to engender public trust in
the process [54].

A proof system is called transparent if it does not involve any trusted setup.
Recent progress has yielded transparent proof systems for special types of com-
putations: zk-STARKs [4] generate zero-knowledge proofs of size O(log2 T) for a
uniform computation 3, and the GKR protocol produces interactive proofs with
communication O(d log T) for computations expressed as low-depth circuits of
total size T and depth d [33]. In both cases, non-interactivity can be achieved in
the random oracle model with the Fiat-Shamir heuristic [28,21]. These transpar-
ent proof systems perform significantly worse than SNARKs based on prepro-
cessing. For computations expressed as an arithmetic circuit of 1-million gates,
STARKs [4] report a proof size of 600KB, whereas preprocessing SNARKs achieve
200 bytes [35]. Bulletproofs [18,13] is a transparent zero-knowledge proof system

3 A uniform computation is expressed as a RAM program P and a time bound T on
the running time of the program. A uniform computation depends on the size of P ’s
description but not on the time bound T .

2

whose proofs are much smaller than those of STARK, but these proofs have a
verification time that scales linearly in the size of the circuit; for an arithmetic
circuit of one million gates the verification time is close to 1 minute, more than
1,000 times more expensive than verifying a STARK proof for the same compu-
tation.

Another thread of research has produced proof systems that remove trust
from the circuit preprocessing step, and instead have a universal (trusted) setup:
a one-time trusted setup that can be reused for any computation [43,55,30]. All
of these systems build SNARKs by combining an underlying reduction of circuit
satisfiability to probabilistic testing of polynomials (with degree at most linear in
the circuit size) together with polynomial commitment schemes. In a polynomial
commitment scheme, a prover commits to a µ-variate polynomial f over F of
total degree at most d with a message that is much smaller than sending all
the coefficients of f . The prover can later produce a non-interactive argument
that f(z) = y for arbitrary z ∈ Fµ and y ∈ F. The trusted portion of the
universal SNARK is entirely confined to the polynomial commitment scheme’s
setup. These constructions use variants of the Kate et al. commitment scheme
for univariate polynomials [39], which requires a trusted setup.

1.1 Summary of contributions

Following the observations of the recent universal SNARK constructions [30,43,55],
SNARKs can be built from polynomial commitment schemes where all the trust
is confined to the setup of the commitment scheme. The main technical contribu-
tion of our work is thus a new polynomial commitment scheme without trusted
setup (i.e., a transparent polynomial commitment scheme), which we can use to
construct transparent SNARKs. The observation that transparent polynomial
commitments imply transparent SNARKs was also implicit in the recent works
that build transparent SNARKs from multi-round classical PCPs, and specifi-
cally interactive oracle proofs of proximity (IOPPs) [3]. As a secondary contribu-
tion, we present a framework that unifies all existing approaches to constructing
SNARKs from polynomial commitments using the language of interactive oracle
proofs (IOPs) [45,7]. We view polynomial commitment schemes as a compiler
for Polynomial IOPs, and re-characterize the results of prior works as providing
a variety of Polynomial IOPs for NP.

New polynomial commitment scheme We construct a new polynomial
commitment scheme for µ-multivariate polynomials of total degree d with op-
tional zero-knowledge arguments of knowledge for correct evaluation that have
O(µ log d) size proofs and are verifiable in O(µ log d) time. The commitment
scheme requires a group of unknown order: two candidate instantiations are RSA
groups and class groups of an imaginary quadratic order. Using RSA groups, we
can apply the scheme to obtain universal preprocessing SNARKs with constant-
size setup parameters, as opposed to the linear-size parameters from previous
attempts. Using class groups, we can remove the trusted setup from trusted-
setup SNARKs altogether, thereby making them transparent. Our polynomial

3

commitment scheme leverages the power of integer commitments and Diophan-
tine Arguments of Knowledge [42]; accordingly, we classify this tool (and others
of its kind) as a DARK proof system.

Polynomial IOP formalism All SNARK constructions can be viewed as com-
bining an underlying information-theoretic statistically-sound protocol with a
“cryptographic compiler” that transforms the underlying protocol into a suc-
cinct argument at the cost of computational soundness. We define a Polynomial
IOP as a refinement of algebraic linear IOPs [38,9,11], where in each round of
interaction the prover provides the verifier with oracle access to a multivariate
polynomial function of bounded degree. The verifier may then query this oracle
to evaluate the polynomial on arbitrary points of its choice. The existing uni-
versal and transparent SNARK constructions provide a variety of statistically-
sound Polynomial IOPs for circuit satisfiability (or RAM programs, in the case
of STARKs); these are then cryptographically compiled using some form of a
polynomial commitment, typically using Merkle trees or pairing groups.

The precise definition of Polynomial IOPs as a central and standalone notion
raises the question about its exact relation to other IOP notions. We present a
univariate Polynomial IOP for extracting an indicated coefficient of a polyno-
mial. Furthermore, we present a univariate Polynomial IOP for proving that the
inner product between the coefficient vectors of two polynomials equals a given
value. This proof system is of independent interest. Together with an offline pre-
processing phase during which the correctness of a multivariate polynomial is
ascertained, these two tools enable us to show that any algebraic linear IOP can
be realized with a multivariate Polynomial IOP.

Polynomial IOP compiler We present a generic compilation of any public-
coin Polynomial IOP into a doubly-efficient public-coin interactive argument of
knowledge using an abstract polynomial commitment scheme. We prove that if
the commitment scheme’s evaluation protocol has witness-extended emulation,
then the compiled interactive argument has this knowledge property as well.
If the commitment scheme is hiding and the evaluation is honest-verifier zero
knowledge (HVZK), then the compiled interactive argument is HVZK as well.
Finally, public-coin interactive arguments may be cryptographically compiled
into SNARKs using the Fiat-Shamir heuristic.

New SNARK without Trusted Setup The main practical outcome of this
work is a new transparent proof system (Supersonic) for computations repre-
sented as arbitrary arithmetic circuits, obtained by cryptographically compiling
the Polynomial IOPs underlying Sonic [43], PLONK [30], and Marlin [22] using
the DARK polynomial commitment scheme. Supersonic improves the proof size
by an order of magnitude over STARKs without compromising on verification
time. For one million gates, Supersonic’s proofs are just 7.8KB and take around
75ms to verify. Using the notation Oλ(·) to hide multiplicative factors depen-
dent on the security parameter λ, STARKs have size and verification complexity
Oλ(log2 T) whereas Supersonic has size and verification complexity Oλ(log T).

4

(The additional multiplicative factors dependent on λ are actually better for
Supersonic as well.) As a caveat, while the prover time in Supersonic is asymp-
totically on par with STARKs (i.e., quasilinear in T), the concrete efficiency is
much worse due to the use of heavy-weight “crypto operations” over 1200 bit
class group elements in contrast to the light-weight FFTs and hash functions
in STARKs. Furthermore, Supersonic is not quantum-secure due to its reliance
on groups of unknown order, whereas STARKs are a candidate quantum-secure
SNARK.

1.2 Related Work

Arguments based on hidden order groups Fujisaki and Okamoto [29] pro-
posed homomorphic integer commitment schemes based on the RSA group. They
also provide protocols to prove that a list of committed integers satisfy modu-
lar polynomial equations as opening a commitment bit by bit. Damg̊ard and
Fujisaki [25] patched the soundness proof of that protocol and were the first
to suggest using class groups of an imaginary quadratic order as a candidate
group of unknown order. Lipmaa drew the link between zero-knowledge proofs
constructed from integer commitment schemes and Diophantine complexity [42],
coining the term Diophantine Arguments of Knowledge. Recently, Couteau et al.
study protocols derived from integer commitments specifically in the RSA group
to reduce the security assumptions needed; in the process they develop proofs
for polynomial evaluation modulo a prime π that is not initially known to the
verifier, in addition to a proof showing that an integer X lies in the range [a, b]
by showing that 1 + 4(X − a)(b−X) decomposes as the sum of 3 squares [24].

Pietrzak [44] developed an efficient proof of repeated squaring, i.e., proving

that x2
T

= y with O(log T) proof size and verification time in order to build a
conceptually simple verifiable delay function [10] based on the RSW time-lock
puzzle [46]. Wesolowski [53] improves on this result by proposing a single-round
protocol to prove correct repeated squaring in groups of unknown order with
a constant size proof. Boneh et al. [12] observe that this protocol generalizes
to arbitrary exponents (PoE) and develop a proof of knowledge of an integer
exponent (PoKE), as well as a zero-knowledge variant. They use both PoE and
PoKE to construct efficient accumulators and vector commitment schemes.

Transparent polynomial commitments Whaby et al. constructed a trans-
parent polynomial commitment scheme [51] for multilinear polynomials by com-
bining a matrix commitment of Bootle et al. [14] with the inner-product argu-
ment of Bünz et al. [18]. For polynomials of degree d it has commitments of
size O(

√
d) and evaluation arguments with O(

√
d) communication. Recently,

Vlasov and Panarin [50], concurrently with Zhang et al. [56], show how to
build a transparent polynomial commitment based on FRI (Fast Reed Solomon
IOPP) [3]. The scheme has O(λ) size commitments and evaluation arguments
with O(k · log2 d) communication for repetition parameter k.

5

Polynomial IOP formalism In concurrent work Chiesa et al. [22] introduce an
information theoretic framework called algebraic holographic proofs (AHP). They
also show that with a polynomial commitment scheme an AHP can be compiled
to a preprocessing SNARK. The AHP framework is essentially equivalent to
our Polynomial IOP framework. In other concurrent work, Chiesa, Ojha, and
Spooner show interesting connections between algebraic holographic proofs and
recursive proof composition. In the same work, the authors develop an AHP-
based transparent SNARK called Fractal [23].

2 Technical Overview

This technical overview provides an informal description of our key technical con-
tribution: a polynomial commitment scheme with logarithmic evaluation proofs
and verification time. The commitment scheme relies on four separate tools.

1. Integer encoding of polynomials Given a univariate polynomial f(X) ∈
Zp[X] the prover first encodes the polynomial as an integer. Interpreting the

coefficients of f(X) as integers in4 [0, p), define f̂(X) to be the integer polynomial

with these coefficients. The prover computes f̂(q) ∈ Z for some large integer
q ≥ p. This is an injective map from polynomials with bounded coefficients to
integers and is also decodable: the coefficients of f(q) can be recovered from the

base-q expansion of f̂(q). For example, suppose that f(X) = 2X3 + 3X2 + 4X+

1 ∈ Z5[X] and q = 10. Then the integer f̂(10) = 2341 encodes the polynomial

f(X) because its coefficients appear in the decimal expansion of f̂(10).
Note that this encoding is also additively homomorphic, assuming that q is

sufficiently large. For example, let g(X) = 4X3+1X2+3 such that ĝ(10) = 4103.

Then f̂(10) + ĝ(10) = 6444 = (ĝ + f̂)(10). The more homomorphic operations
we want to permit, the larger q needs to be. The encoding additionally permits
multiplication by polynomials (f̂(q) · qk is equal to the encoding of f(X) ·Xk).

2. Succint integer commitments The integer x← f̂(q) encoding a degree d
polynomial f(X) lies between qd and qd+1; in other words, its size is (d+1) log2 q
bits. The prover commits to x using a succinct integer commitment scheme that
is additively homomorphic. Specifically, we use exponentiation in a group G of
unknown order: the commitment is the single group element gx for a base element
g ∈ G specified in the setup. (Note that if the order n of G is known then this is
not an integer commitment; gx could be opened to any integer x′ ≡ x mod n.)

3. Evaluation protocol The evaluation protocol is an interactive argument to
convince a verifier that C is an integer commitment to f̂(q) such that f(z) = y
at a provided point z ∈ Zp. The protocol must be evaluation binding : it should
be infeasible for the prover to succeed in arguing that f(z) = y and f(z) = y′ for

4 The choice to represent the coefficients by integers in [0, p) optimizes for clarity, but
later on we will in fact choose a balanced set of representatives, i.e., [− p−1

2
; p−1

2
].

6

y 6= y′. The protocol should also be an argument of knowledge, which informally
means that any prover who succeeds at any point x must “know” the coefficients
of the committed f .

As a warmup, we first describe how a prover can efficiently convince a verifier
that C is a commitment to an integer polynomial of degree at most d with
bounded coefficients. Assume for now that d = 2k − 1. The protocol uses a
recursive divide-and-combine strategy. In each step we split f(X) into two degree
d′ = bd2c polynomials fL(X) and fR(X). The left half fL(X) contains the first
d′+1 coefficients of f(X) and the right half fR(X) the second, such that f(X) =
fL(X) + Xd′+1fR(X). The prover now commits to fL and fR by computing

CL ← gf̂L(q) and CR ← gf̂R(q). The verifier checks the consistency of these

commitments by testing CLC
qd
′+1

R = C. The verifier then samples random α ∈ Zp
and computes C′ ← CαLCR, which is an integer commitment to αf̂L(q) + f̂R(q).
The prover and verifier recurse on the statement that C′ is a commitment to a
polynomial of degree at most d′, thus halving the “size” of the statement. After
log2(d + 1) rounds, the commitment C′ exchanged between prover and verifier
is a commitment to a polynomial of degree 0, i.e., to a scalar c ∈ Zp. So C′ is of
the form gĉ where ĉ is some integer congruent to c modulo p. The prover sends
ĉ to the verifier directly. The verifier checks that gĉ = C′ and also that ĉ < q.5

To also show that f(z) = y at a provided point z, the prover additionally
sends yL = fL(z) mod p and yR = fR(z) mod p in each round. The verifier
checks consistency with the claim, i.e., that yL+zd

′+1yR = y, and also computes
y′ ← αyL + yR mod p to proceed to the next round. (The recursive claim is that
C′ commits to f ′ such that f ′(z) = y′ mod p.) In the final round of recursion,
the value of the constant polynomial in z is the constant itself. So in addition to
testing C = gĉ and ĉ < q, the verifier also checks that ĉ ≡ y mod p.

4. Outsourcing exponentiation for efficiency The evaluation protocol re-
quires communicating only 2 group elements and 2 field elements per round.

However, the verifier needs to check that CLC
(qd
′+1)

R = C, and näıvely performing
the exponentiation requires Ω(d·log q) work. To reduce this workload, we employ
a recent technique for proofs of exponentiation (PoE) in groups of unknown order
due to Wesolowski [53] in which the prover computes this exponentiation and
the verifier verifies it in essentially constant time. This outsourcing reduces the
total verifier time (i.e., of the entire protocol) to a quantity that is logarithmic
in d.

3 Preliminaries

3.1 Assumptions

The cryptographic compilers make extensive use of groups of unknown order,
i.e., groups for which the order cannot be computed efficiently. Concretely, we

5 In the full scheme, the verifier actually checks that ĉ < B for a bound B < q that
depends on the field size p and the polynomial’s maximum degree d

7

require groups for which two specific hardness assumptions hold. First the Strong
RSA Assumption [2] which roughly states that it is hard to take arbitrary roots
of random elements. Secondly, the much newer Adaptive Root Assumption [53]
which is the dual of the Strong RSA Assumption and states that it is hard to
take random roots of arbitrary group elements. Both of these assumptions hold
in generic groups of unknown order [26,12].

The r-strong RSA assumption as presented below is a parameterization on
the Strong RSA assumption. For r = 1, our definition is identical to the standard
Strong RSA Assumption. Higher values of r allows the adversary to take certain
roots efficiently. For r = 2, the adversary is efficiently able to take square roots.
In class groups of imaginary quadratic order taking square roots is easy. In rth
order class groups taking rth roots is easy.

Assumption 1 (r-Strong RSA Assumption) The r-Strong RSA Assump-
tion states that an efficient adversary cannot compute `th roots for a given ran-
dom group element, if ` not a power of r. Specifically, it holds for GGen if for
any probabilistic polynomial time adversary A:

Pr

u` = g ∧ ` 6= rk, k ∈ N :

G← GGen(λ)

g
$← G

(u, `) ∈ G× N← A(G, g)

 ≤ negl(λ) .

Assumption 2 (Adaptive Root Assumption) The Adaptive Root Assump-
tion holds for GGen if there is no efficient adversary (A0,A1) that succeeds in
the following task. First, A0 outputs an element w ∈ G and some st. Then, a
random prime ` in Primes(λ) is chosen and A1(`, st) outputs w1/` ∈ G. For all
efficient (A0,A1):

Pr

u` = w 6= 1 :

G $← GGen(λ)

(w, st)
$← A0(G)

`
$← Primes(λ)

u← A1(`, st)

 ≤ negl(λ) .

Groups of unknown order. We consider two candidate groups of unknown
order. Both have their own upsides and downsides.

RSA Group. In the multiplicative group Z∗n of integers modulo a product
n = p · q of large primes p and q, computing the order of the group is as hard
as factoring n. The Adaptive Root Assumption does not hold for Z∗n because
−1 ∈ Z∗n can be easily computed and has order two. This can be resolved though
by working instead in the quotient group Z∗n/〈−1〉 ∼= QRn. The downside of using
an RSA group, or more precisely, the group of quadratic residues modulo an RSA
modulus, is that this modulus cannot be generated in a publicly verifiable way
without exposing the order, and thus requires a trusted setup.

Class Group. The class group of an imaginary quadratic order is defined
as the quotient group of fractional ideals by principal ideals of an order of a
number field Q(

√
∆), with ideal multiplication. A class group C`(∆) is fully

defined by its discriminant ∆, which needs to satisfy only public constraints

8

such as ∆ ≡ 1 mod 4 and −∆ must be prime. As a result, ∆ can be generated
from public coins, thus obviating the need for a trusted setup. A group element
can be represented by two integers strictly smaller (in absolute value) than −∆,
which in turn is on the same order of magnitude as RSA group elements for a
similar security level. We refer the reader to Buchmann and Hamdy’s survey [17]
and Straka’s accessible blog post [49] for more details.

Working in C`(∆) does present an important difficulty: there is an efficient
algorithm due to Gauss to compute square roots of arbitrary elements [15], and
by repetition, arbitrary power of two roots. As a result, such class groups cannot
be used to commit to integers but rather to dyadic rationals, which are rational
numbers whose denominator is a power of two. Additionally, the standard Strong
RSA Assumption is broken if computing square roots is easy. We therefore give
a weakening of the Strong RSA assumption, called 2-Strong-RSA assumption,
which is believed to still hold even if computing square roots is easy. The 2-
Strong-RSA assumption assumes that computing non square roots is hard.

3.2 Interactive Arguments of Knowledge

Interactive arguments are interactive proofs [34] in which security holds only
against a computationally bounded prover. In an interactive argument of knowl-
edge for a relation R, the prover convinces the verifier that it “knows” a witness
w for a statement x such that (x,w) ∈ R. In this paper, knowledge means that
the argument has witness-extended emulation.

Definition 1 (Interactive Argument). Let (P,V) denote a pair of PPT in-
teractive algorithms and Setup denote a non-interactive setup algorithm that
outputs public parameters pp given a security parameter. Both P and V have
access to pp. Let 〈P(pp, x, w),V(pp, x)〉 denote the output of V on input x after
its interaction with P , who has witness w. The triple (Setup,P,V) is called an
argument for relation R if for all non-uniform PPT adversaries A the following
properties hold:

– Perfect Completeness.

Pr

[
(x,w) 6∈ R or

〈P(pp, x, w),V(pp, x)〉 = 1
:
pp← Setup(1λ)
(x,w)← A(pp)

]
= 1

– Computational soundness.

Pr

[
∀w (x,w) 6∈ R and

〈A(pp, x, st),V(pp, x)〉 = 1
:
pp← Setup(1λ)
(x, st)← A(pp)

]
≤ negl(λ)

Definition 2 (Witness-extended emulation [36,41]). Given a public-coin
interactive argument tuple (Setup,P,V) and arbitrary prover algorithm P∗, let
Record(P∗, pp, x, st) denote the message transcript between P∗ and V on shared
input x, initial prover state st, and pp generated by Setup. Furthermore, let
ERecord(P∗,pp,x,st) denote an machine E with a transcript oracle for this interaction

9

that can be rewound to any round and run again on fresh verifier randomness.
The tuple (Setup,P,V) has witness-extended emulation if for every deterministic
polynomial time P∗ there exists an expected polynomial time emulator E such
that for all non-uniform polynomial time adversaries A the following condition
holds:

Pr

A(tr) = 1 :
pp← Setup(1λ)
(x, st)← A(pp)

tr← Record(P∗, pp, x, st)

 ≈
Pr

 A(tr) = 1 and
tr accepting⇒ (x,w) ∈ R :

pp← Setup(1λ)
(x, st)← A(pp)

(tr, w)← ERecord(P
∗,pp,x,st)(pp, x)

3.3 Commitment Schemes

In defining the syntax of the various protocols, we use the following convention
with respect to public values (known to both the prover and the verifier) and
secret ones (known only to the prover). In any list of arguments or returned
tuple (a, b, c; d, e) those variables listed before the semicolon are public, and
those variables listed after it are secret. When there is no secret information, the
semicolon is omitted.

Definition 3 (Commitment scheme). A commitment scheme Γ is a tuple
Γ = (Setup,Commit, Open) of PPT algorithms where:

– Setup(1λ)→ pp generates public parameters pp;
– Commit(pp;x) → (c; r) takes a secret message x and outputs a public com-

mitment c and (optionally) a secret opening hint r (which might or might
not be the randomness used in the computation).

– Open(pp, c, x, r) → b ∈ {0, 1} verifies the opening of commitment c to the
message x provided with the opening hint r.

A commitment scheme Γ is binding if for all PPT adversaries A:

Pr

b0 = b1 6= 0 ∧ x0 6= x1 :

pp← Setup(1λ)
(c, x0, x1, r0, r1)← A(pp)
b0 ← Open(pp, c, x0, r0)
b1 ← Open(pp, c, x1, r1)

 ≤ negl(λ)

We now extend the syntax to polynomial commitment schemes. The following
definition generalizes that of Kate et. al. [39] to allow interactive evaluation
proofs. It also stipulates that the polynomial’s degree be an argument to the
protocol, contrary to Kate et al. where the degree is known and fixed.

Definition 4. (Polynomial commitment) A polynomial commitment scheme is
a tuple of protocols Γ = (Setup,Commit,Open,Eval) where (Setup, Commit,Open)
is a binding commitment scheme for a message space R[X] of polynomials over
some ring R, and

10

– Eval(pp, c, z, y, d, µ; f(X))→ b ∈ {0, 1} is an interactive public-coin protocol
between a PPT prover P and verifier V. Both P and V have as input a com-
mitment c, points z, y ∈ R, and a degree d. The prover additionally knows
the opening of c to a secret polynomial f(X) ∈ R[X] with deg(f(X)) ≤ d.
The protocol convinces the verifier that f(z) = y. In a multivariate exten-
sion of polynomial commitments, the input µ > 1 indicates the number of
variables in the committed polynomial and z ∈ Rµ.

A polynomial commitment scheme is correct if an honest committer can
successfully convince the verifier of any evaluation. Specifically, if the prover is
honest then for all polynomials f(X) ∈ R[X] and all points z ∈ R,

Pr

b = 1 :

pp← Setup(1λ)
(c; r)← Commit(pp, f(X))
y ← f(z)
d← deg(f(X))
b← Eval(pp, c, z, y, d; f(X), r)

 = 1 .

Knowledge soundness Any successful prover in the Eval protocol must know
a polynomial f(X) such that f(z) = y and c is a commitment to f(X). More
formally, since Eval is a public-coin interactive argument we define this knowledge
property as a special case of witness-extended emulation (Definition 2).

Define the following NP relation given pp← Setup(1λ):

REval(pp) =

{
〈(c, z, y, d), (f(X), r)〉 :

f ∈ R[X] and deg(f(X)) ≤ d and f(z) = y
and Open(pp, c, f(X), r) = 1

}
The correctness definition above implies that if Γ = (Setup,Commit,Open,Eval)
is correct then Eval is a correct interactive argument for REval(pp), with over-
whelming probability over the randomness of Setup. We say that Γ has witness-
extended emulation if Eval has witness-extended emulation as an interactive
argument for REval(pp).

3.4 Proofs of Exponentiation

Wesolowski [53] introduced a simple yet powerful proof of correct exponentia-
tion (“PoE”) in groups of unknown order. A prover can efficiently convince a
verifier that a large exponentiation in such a group was done correctly. For in-
stance, the prover wishes to convince the verifier that w = ux for known group
elements u,w ∈ G and exponent x ∈ Z, and the verifier wants to verify this
with much less work than performing the exponentiation. To do this, the verifier
samples a large enough prime ` at random and the prover provides him with
Q← uq where q = bx` c. The verifier then simply computes the remainder r ← (x
mod `) and checks that Q`ur = w. The protocol is an argument for the relation
RPoE = {〈(u,w, x),∅〉 : ux = w}. The proof verification uses just O(λ) group
operations. When x is x = qd the verifier can compute r ← x mod ` using just
log(d) `-bit multiplications.

11

PoE(u,w, x) :

1. V samples `
$← Primes(λ) and sends ` to P

2. P computes quotient q and remainder r such that x = q`+ r and
r ∈ {0, . . . , `− 1}

3. P computes Q← uq and sends it to V
4. V computes r ← (x mod `) and checks that Q`ur = w
5. if check passes then return 1 else return 0

Lemma 1 (PoE soundness [53]). PoE is an argument system for Relation
RPoE with negligible soundness error, assuming the Adaptive Root Assumption
(Assumption 2) holds for GGen.

4 Polynomial Commitments from Groups of Unknown
Order

4.1 Information-Theoretic Abstraction

Before we present our concrete polynomial commitment scheme based on groups
of unknown order, we present the underlying information theoretic protocol that
abstracts the concrete cryptographic instantiations. The purpose of this abstrac-
tion is two-fold: first, it provides an intuitive stepping stone from which present-
ing and studying the concrete cryptographic protocol is easier; and second, it
opens the door to alternative cryptographic instantiations that provide the same
interface but based on alternative hardness assumptions.

Let [[∗]] : Zp[X] → S be a homomorphic commitment function that sends
polynomials over a prime field to elements of some set S. Moreover, let S be
equipped with operations ∗ + ∗ : S × S → S and ∗ · ∗ : Zp[X] × S → S that
accommodate two homomorphisms for [[∗]]:
– a linear homomorphism: a · [[f(X)]] + b · [[g(X)]] = [[af(X) + bg(X)]]
– a monomial homomorphism: Xd · [[f(X)]] = [[Xdf(X)]].

For now, assume both prover and verifier have oracle access to the function [[∗]]
and to the operations ∗ · ∗ and ∗+ ∗. (Later on, we will instantiate this commit-
ment function using groups of unknown order and an encoding of polynomials
as integers.)

The core idea of the evaluation protocol is to reduce the statement that is
being proved from one about a polynomial f(X) of degree d and its evaluation
y = f(z), to one about a polynomial f ′(X) of degree d′ = bd2c and its evaluation
y′ = f ′(z). For simplicity, assume that d + 1 is a power of 2. The prover splits
f(X) into fL(X) and fR(X) such that f(X) = fL(X) +Xd′+1fR(X) and such
that both halves have degree at most d′. The prover obtains a random challenge
α ∈ Zp from the verifier and proceeds to prove that f ′(X) = α · fL(X) + fR(X)
has degree d′ and that f ′(z) = y′ = αyL + yR with yL = fL(z) and yR = fR(z).

The proof repeats this reduction by using f ′(X), z, y′ and d′ as the input to
the next recursion step. In the final step, f(X) = f is a constant and the verifier
checks that f = y.

12

The commitment function binds the prover to one particular polynomial
for every commitment held by the verifier. In particular, at the start of every
recursion step, the verifier is in possession of a commitment [[f(X)]] to f(X). The
prover provides commitments [[fL(X)]] and [[fR(X)]], and the verifier checks their
soundness homomorphically by testing [[f(X)]] = [[fL(X)]]+Xd′+1·[[fR(X)]]. From
these commitments, the verifier can also compute the commitment to f ′(X)
homomorphically, via [[f ′(X)]] = α·[[fL(X)]]+[[fR(X)]]. In the last step, the verifier
checks that the constant polynomial f matches the commitment by computing
[[f]] outright.

4.2 Integer Polynomial Encoding

We propose using integer commitments in a group of unknown order as a concrete
instantiation of the homomorphic commitment scheme required for the abstract
protocol presented in Section 4.1. At the heart of our protocol is thus an encod-
ing of integer polynomials with bounded coefficients as integers, which also has
homomorphic properties. Any commitment scheme which is homomorphic over
integer polynomials is automatically homomorphic over Zp[X] polynomials as
well (by reducing integer polynomials modulo p). Polynomials over Zp[X] can
be lifted to integer polynomials in a canonical way by choosing representatives in
[0, p). Therefore, from here on we will focus on building a homomorphic integer
encoding of integer polynomials, and how to combine this with a homomorphic
integer commitment scheme.

Strawman encoding In order to encode integer polynomials over an odd prime
field Fp, we first lift them to the ring of polynomials over the integers by choosing
representatives in [0, p). In the technical overview (Section 2) we noted that a
polynomial f ∈ Z[X] with positive coefficients bounded by q can be encoded as
the integer f(q). The coefficients of f can be recovered via the base q decompo-
sition of f(q). This encoding is an injective mapping from polynomials in Z[X]
of degree at most d with positive coefficients less than q to the set [0, qd+1).
The encoding is also partially homomorphic. If f is encoded as f(q) and g is
encoded as g(q) where coefficients of both g, f are less than q/2, then the base-q
decomposition of f(q) + g(q) gives back the polynomial f + g. By choosing a
sufficiently large q � p it is possible to perform several levels of homomorphic
operations on encodings.

What goes wrong? Unfortunately, this simple encoding scheme does not quite
work yet for the protocol outlined in Section 2. The homomorphic consistency
checks ensure that if [[fL(X)]] is a homomorphic integer commitment to the
encoding of fL ∈ Z[X], [[fR(X)]] is a homomorphic integer commitment to the
encoding of fR ∈ Z[X], and both fL, fR are polynomials with q/2-bounded
coefficients, then [[f(X)]] is an integer commitment to the encoding of fL +
Xd′fR. (Moreover, if fL(z) = yL mod p and fR(z) = yR mod p then f(z) =
yL + zd

′
yR mod p).

13

However, the validity of [[fL(X)]] and [[fR(X)]] are never checked directly.
The verifier only sees the opening of the commitment at the bottom level of
recursion. If the intermediate encodings use integer polynomials with coefficients
larger than q/2 the homomorphism is not preserved. Furthermore, even if [[f(X)]]
is a commitment to f∗(q) with positive q-bounded coefficients, an adversarial
prover could find an integer polynomial g∗ that does not have positive q-bounded
coefficients such that g∗(q) = f∗(q) and g∗ 6≡ f∗ mod p (i.e, g∗ with coefficients
greater than q or negative coefficients). The prover could then commit to g∗L(q)
and g∗R(q), and recurse on αg∗L(q) + g∗R(q) instead of αf∗L(q) + f∗R(q). This would
be non-binding. (For example f∗(X) = q−1 and g∗(X) = X−1, or f∗(X) = q+1
and g∗(X) = X + 1).

Inferring coefficient bounds So what can the verifier infer from the opened
commitment [[f ′]] at the bottom level of recursion? The opened commitment
is an integer f ′ = αfL + fR. From f ′, the verifier can infer a bound on the
absolute value of the coefficients of the integer polynomial f(X) = fL + XfR,
given that fL and fR were already committed in the second to last round. The
bound holds with overwhelming probability over the randomness of α ∈ [0, p).
This is reasoned as follows: if f ′0 ← α0fL + fR and f ′1 ← α1fL + fR such that
max(|f ′0|, |f ′1|) < q/(2p) for some distinct α0 6= α1, then |fL| ≤ |f ′1 − f ′0| < q/p
and |fR| ≤ |α0f

′
1 −α1f

′
0| < q/2. If no such pair exists, i.e. the bound only holds

for a unique α, then there is a negligibly small probability 1/p that f ′ would
have passed the bound check.

What about negative coefficients? As shown above, the verifier can infer
a bound on the absolute values of fL and fR, but still cannot infer that fL
and fR are both positive integers. Moreover, if fR > 0 and fL < 0, then it is
still possible that fL + qfR > 0, and thus that there is a distinct g 6= f with
q-bounded positive coefficients such that g(q) = f(q). For example, say fR = q/2
and fL = −1 then fL + qfR = q2/2− 1, and αfL + fR = q/2− α > 0 for every
α ∈ [0, p). Yet, also q2/2− 1 = g(q) for g(X) = (q/2− 1)X + q − 1.

Ensuring injectivity How can we ensure the encoding scheme is injective
over polynomials with either positive/negative coefficients bounded in absolute
value? Fortunately, it is a fact that if |fL| < q/2 and |fR| < q/2 then at least
one coefficient of g must be larger than q/2. In other words, if the prover had
committed instead to f∗L and f∗R such that g(X) = f∗L + Xf∗R then the verifier

could reject the opening of αf̂∗L + f̂∗R with overwhelming probability based on
its size.

More generally, for every integer z in the range B = (− q
d+1

2 , q
d+1

2) there
is a unique degree (at most) d integer polynomial h(X) with coefficients whose
absolute values are bounded by q/2 such that h(q) = z. We prove this elementary
fact below and show how the coefficients of h can be recovered efficiently from z
(Fact 1). If the prover is committed to h(q) at level i of the protocol, there is a
unique pair of integers polynomial hL and hR with coefficients of absolute value

bounded by q/2 such that hL(q) + q
d+1
2 hR(q) = h(q), and if the prover recurses

14

on any other h∗L and h∗R with larger coefficients then the verifier’s bound check
at the bottom level of recursion will fail with overwhelming probability.

Final Encoding scheme Let Z(b) := {x ∈ Z : |x| ≤ b} denote the set of
integers with absolute value less than or equal to b. Define Z(b)[X] := {f ∈
Z[X] : ||f ||∞ ≤ b}, the set of integer polynomials with coefficients from Z(b).
(For a polynomial g ∈ Z[X] the norm ||g||∞ is the maximum over the absolute
values of all individual coefficients of g.)

– Encoding. For any integer q, the function Enc : Z(b)[X]→ Z maps h(X) 7→
h(q). A polynomial f(X) ∈ Zp[X] is first mapped to Z(p/2)[X] by replacing
each coefficient of f with its unique integer representative from (−p/2, p/2)
of the same equivalence class modulo p.

– Decoding. Decoding works as follows. Define the partial sum Sk :=
∑k
i=0 fiq

i

with S−1 := 0. Assuming |fi| < q/2 for all i, observe that for any partial sum

Sk we have |Sk| < qk+1

2 . Therefore, when Sk < 0 then Sk mod qk+1 > qk+1/2
and when Sk ≥ 0 then Sk mod qk+1 < qk+1/2. This leads to a decoding
strategy for recovering Sk from y ∈ Z. The decode algorithm sets Sk to
y mod qk+1 if this value is less than qk+1/2 and to qk+1 − (y mod qk+1)
otherwise. Two consecutive partial sums yield a coefficient of f(X): fk =
Sk−Sk−1

qk
∈ Z(b). These operations give rise to the following algorithm.

Dec(y ∈ Z) :
1. for each k in [0, blogq(|y|)c] do:

2. Sk−1 ← (y mod qk)
3. if Sk−1 > qk/2 then Sk−1 ← qk − Sk−1 end if
4. Sk ← (y mod qk+1)
5. if Sk > qk+1/2 then Sk ← qk+1 − Sk end if
6. fk ← (Sk − Sk−1)/qk

7. return f(X) =
∑blogq(|y|)c
k=0 fkX

k

Fact 1 Let q be an odd integer. For any z in the range B = (− q
d+1

2 , q
d+1

2) there

is a unique degree (at most) d integer polynomial h(X) in Z(q−12)[X] such that
h(q) = z.

4.3 Concrete Polynomial Commitment Scheme

We now instantiate the abstract homomorphic commitment function [[∗]]. To this
end we sample a group of unknown order G, and sample a random element g from
this group. Lift the field polynomial f(X) ∈ Zp[X] to an integer polynomial with

bounded coefficients, i.e., f̂(X) ∈ Z(p−12)[X] such that f̂(X) mod p = f(x). We

encode f̂(X) as an integer by evaluating it at a “large enough” integer q. Finally
we use exponentiation in G to commit to the integer. Therefore, [[f(X)]], corre-

sponds to gf̂(q). This commitment function inherits the homomorphic properties

15

of the integer encoding for a limited number of additions and multiplications-by-
constant. The monomial homomorphism for Xd is achieved by raising the group
element to the power qd. To maintain consistency between the prover’s witness
polynomials and the verifier’s commitments, the prover operates on polynomials
with integer coefficients f̂(X), ĝ(X), etc., without ever reducing them modulo p.

The Setup,Commit and Open functionalities are presented formally below.
Note that the scheme is parameterized by p and q.

– Setup(1λ) : Sample G $← GGen(λ) and g
$← G. Return pp = (λ,G, g, q).

– Commit(pp; f(X) ∈ Zp[X]) : Compute C← gf̂(q) and return (C; f̂(X)).

– Open(pp,C, f(X), f̂(X)) : Check that f̂(X) ∈ Z(q/2)[X] and gf̂(q) = C and

f(X) = f̂(X) mod p.

Evaluation protocol Using the cryptographic compilation of the informa-
tion theoretic protocol we get an Eval protocol with logarithmic communica-
tion. In every round, however, the verifier needs to check consistency between

[[fL(X)]], [[fR(X)]] and [[f(X)]]. This is done by checking that CL ·Cq
d′+1

R = C. This

naive check is highly inefficient as the exponent qd
′+1 has O(d) bits. To resolve

this inefficiency, we utilize a proof of exponentiation (PoE) [44,53] to outsource
the computation to the prover. The PoE protocol is an argument that a large ex-
ponentiation in a group of unknown order was performed correctly. Wesolowski’s
PoE [53] is public coin, has constant communication and verification time, and
is thus particularly well-suited here.

We now specify subtleties that were previously glossed over. First, we handle
the case where d+ 1 is not a power of 2. Whenever d+ 1 is odd in the recursion,
the polynomial is shifted by one degree — specifically, f ′(X) = Xf(X) and
the protocol proceeds to prove that f ′(X) has degree bounded by d′ = d + 1
and evaluates to y′ = zy at z. The verifier obtains the matching commitment
C′ ← Cq.

Second, the coefficients of f(X) grow by a factor of p+1
2 in every recursion

step, but eventually the transmitted constant f has to be tested against some
bound because if it is too large it should be rejected. However, the function inter-
face provides no option to specify the allowable size of coefficients. We therefore
define and use a subroutine EvalBounded, which takes an additional argument
b and which proves, in addition to what Eval proves, that all coefficients fi of
f(X) satisfy |fi| ≤ b. Importantly, b grows by a factor for p+1

2 in every recur-
sion step. This subroutine is also useful if commitments were homomorphically
combined prior to the execution of EvalBounded. The growth of these coeffi-
cients determines a lower bound on q: q should be significantly larger than b.
Exactly which factor constitutes “significantly” is determined by the knowledge-
soundness proof.

In the final round we check that the constant f satisfies |f | ≤ b and the
protocol’s correctness is guaranteed if b = p−1

2 (p+1
2)dlog2(d+1)e. However, q needs

to be even larger than this value in order for extraction to work (and hence, for
the proof of witness-extended emulation to go through). In RSA groups, where

16

computing square roots is hard, we need q > p2 log(d+1)+1; whereas in class groups
where computing square roots is easy, we need p3 log(d+1)+1. When this condition
is satisfied, we can prove that the original committed polynomial has coefficients
smaller than q

2 . To avoid presenting two algorithms whose only difference is the
one constant, we capture this constant explicitly in the variable ςp,d and set its

value depending on the context: ςp,d =

{
p log2(d+1) (in RSA groups)
p 2 log2(d+1) (in class groups)

.

We now present the full, formal Eval protocol below.

Eval(pp,C ∈ G, z ∈ Zp, y ∈ Zp, d ∈ N; f̃(X) ∈ Zp[X]) : // f̃(X) =
∑d

i=0 f̃iX
i

1. P computes fi ∈ [− p−1
2
, p−1

2
] such that fi ≡ f̃i mod p for all i ∈ [0, d].

2. P computes f(X)←
∑d
i=0 fi ·X

i ∈ Z(p−1
2

)[X] ⊂ Z[X]
3. P and V run EvalBounded(pp,C, z, y, d, p−1

2
; f(X))

EvalBounded(pp,C ∈ G, z ∈ Zp, y ∈ Zp, d ∈ N, b ∈ Z; f(X) ∈ Z(b)[X])
1. if d = 0:
2. P sends f(X) ∈ Z to the verifier. // f = f(X) is a constant

3. V checks that b · ςp,d < q// ςp,d = O(p2 log(d)) (see Theorem 1 and 2)

4. V checks that |f | ≤ b
5. V checks that f ≡ y mod p
6. V checks that gf = C
7. V outputs 1 if all checks pass, 0 otherwise.
8. if d+ 1 is odd
9. d′ ← d+ 1,C′ ← Cq, y′ ← y · z mod p and f ′(X)← X · f(X).

10. P and V run EvalBounded(pp,C′, z, y′, d′, b; f ′(X))
11. else : // d ≥ 1 and d+ 1 is even

12. P and V compute d′ ← d+1
2
− 1

13. P computes fL(X)←
d′∑
i=0

fi ·Xi and fR(X)←
d′∑
i=0

fd′+1+i ·Xi

14. P computes yL ← fL(z) mod p and yR ← fR(z) mod p
15. P computes CL ← gfL(q) and CR ← gfR(q)

16. P sends yL, yR,CL,CR to V. // See full version for an optimization

17. V checks that y = yL + zd
′+1 · yR mod p, outputs 0 if check fails.

18. P and V run PoE(CR,C/CL, q
d′+1)// Showing that CLC

(qd
′+1)

R = C

19. V samples α
$← [− p−1

2
, p−1

2
] and sends it to P

20. P and V compute y′ ← αyL + yR mod p, C′ ← CαLCR, b′ ← b p+1
2

.
21. P computes f ′(X)← α · fL(X) + fR(X) ∈ Z[X] // deg(f ′(X)) = d′

22. P and V run EvalBounded(pp,C′, z, y′, d′, b′; f ′(X))

4.4 Security Analysis

Lemma 2. The polynomial commitment scheme is binding for polynomials in
Z(b)[X] for b < q/2 if either the Adaptive Root Assumption or the Strong RSA
Assumption hold.

17

Lemma 3. The polynomial commitment scheme is correct for polynomials in
Zp[X] of degree at most d if q > pdlog2(d+1)e+1.

All security proofs are in the full version of this paper [19, §A.1 – §A.2].
Next is the main security theorem, which states that the evaluation protocol has
witness-extended emulation. We start with a high-level intuitive overview where
we also identify potential obstacles.

Proof idea. The goal is to construct an extractor by recursively computing
f(X) from f ′(X). In the final round the verifier receives f such that |f | ≤ b,
and therefore the extractor possesses this constant polynomial as well. Working
backwards from here, the extractor uses rewinding in every step to find fL(X)
and fR(X) and thereby finds f(X) = fL(X) + Xd′+1fR(X). Specifically, in
each round the extractor has f ′(X) = αfL(X) + fR(X). Suppose the extractor
also possesses f ′′(X) = α′fL(X) + fR(X). From f ′(X), f ′′(X), α and α′ it
is easy to compute fL(X) and fR(X). The extractor then computes f(X) =
fL(X) +Xd′+1fR(X). A careful analysis shows that if the coefficients of f ′(X)
are bounded by b then fL(X) and fR(X) must have coefficients bounded by b ·p
in absolute value. Using a similar analysis we can show that f(z) mod p = y for
the extracted polynomial f(X).

This argument shows that there is an extractor algorithm X capable of ex-
tracting the witness f(X) from a binary tree of accepting transcripts. Moreover,
a tree-finding algorithm T can output such a tree by repeatedly rewinding the
prover, running it with fresh verifier randomness each time, and recording the
resulting transcripts. As a result, the Generalized Forking Lemma [14] applies
and establishes that the protocol has witness-extended emulation.

The full proof takes into account the cryptographic compilation of the proto-
col using the integer encoding and the commitment scheme based on groups of
unknown order. Additionally the full proof will need to support dyadic rationals
because taking square roots is easy in class groups.

Theorem 1. The polynomial commitment scheme for polynomials in Zp[X] of
degree at most d = poly(λ), instantiated using q > p2dlog2(d+1)e+1 and GGen,
has witness extended emulation (Definition 2) if the Adaptive Root Assumption
and the Strong RSA Assumption hold for GGen.

Theorem 2. Let GGen generate groups G of unknown order such that the order
of G is odd, and such there exists a PPT algorithm for taking square roots in
G. The polynomial commitment scheme for polynomials in Zp[X] of degree at
most d = poly(λ), instantiated using q > p3dlog2(d+1)e+1 and GGen, has witness
extended emulation (Definition 2) if the Adaptive Root Assumption and the 2-
Strong RSA Assumption hold for GGen.

The proof of Theorem 2 is nearly identical to the proof of Theorem 1 but the
extracted polynomials are polynomials over the dyadic rationals and not over
the integers. This requires the bound on q to be larger by a factor of plog(d+1).
Both proofs are presented in the full version of this paper [19, §A.3 – §A.4].

18

4.5 Optimizations and Extensions

Out of space constraints, a number of interesting but non-essential sections are
omitted. The full version of this paper [19] presents a range of optimizations for
greater prover and verifier efficiency and smaller proof size. It also shows how to
achieve extend the commitment to multivariate polynomials and shows how to
make the commitment hiding with a ZK evaluation protocol.

4.6 Comparison

In Table 1 we give a comparison between different polynomial commitment
schemes in the literature. In particular, we evaluate the size of the reference
string (|pp|), the prover and verifier time, as well as the size of the evaluation
proof (|π|). Column 2 indicates whether the setup is transparent, i.e., whether
the reference string is structured. The symbol GU denotes a group of unknown
order, GB a group with a bilinear map (pairing), and GP a group with prime
(and known) order. Furthermore, EXP refers to exponentiation of a λ bit number
in these groups, and H is either the size of a hash output, or the time it takes to
compute a hash, depending on context.

Note that even when precise factors are given, the numbers should be inter-
preted as estimates. For example we chose to not display smaller order terms.
Note also that the prover time for the group based schemes could be brought
down by a log factor when using multi-exponentiation techniques.

Scheme Transp. |pp| Prover Verifier |π|
DARK (this work) yes O(1) O(dµµ log(d)) EXP 3µ log(d) EXP 2µ log(d) GU
Based on Pairings no dµ GB O(dµ) EXP µ Pairing µ GB
[14,
√
·] yes

√
dµGP O(dµ) EXP O(

√
dµ)EXP O(

√
dµ) GP

Bulletproofs yes 2dµGP O(dµ) EXP O(dµ)EXP 2µ log(d) GP
FRI (µ = 1)[56] yes O(1) O(λd) H O(λ log2(d)) H O(λ log2(d)) H
Table 1. Comparison table between different polynomial commitment schemes for an
µ-variate polynomial of degree d.

5 Transparent SNARKs via Polynomial IOPs

5.1 Algebraic Linear IOPs

An interactive oracle proof (IOP) [7,45] is a multi-round interactive PCP: in
each round of an IOP the verifier sends a message to the prover and the prover
responds with a polynomial length proof, which the verifier can query via random
access. A t-round `-query IOP has t rounds of interaction in which the verifier
makes exactly ` queries in each round. Linear IOPs [11] are defined analogously
except that in each round the prover sends a linear PCP [38], in which the prover

19

sends a single proof vector π ∈ Fm and the verifier makes linear queries to π.
Specifically, the PCP gives the verifier access to an oracle that receives queries
of the form q ∈ Fm and returns the inner product 〈π,q〉.

Bitansky et al. [9] defined a linear PCP to be of degree (dQ, dV) if there
is an explicit circuit of degree dQ that derives the query vector from the ver-
ifier’s random coins, and an explicit circuit of degree dV that computes the
verifier’s decision from the query responses. In a multi-query PCP, dQ refers to
the maximum degree over all the independent circuits computing each query.
Bitansky et al. called the linear PCP algebraic for a security parameter λ if
it has degree (poly(λ) , poly(λ)). The popular linear PCP based on Quadratic
Arithmetic Programs (QAPs) implicit in the GGPR protocol [31] and follow-up
works is an algebraic linear PCP with dQ ∈ O(m) and dV = 2, where m is the
size of the witness.

For the purposes of the present work, we are only interested in the algebraic
nature of the query circuit and not the verifier’s decision circuit. Of particular
interest are linear PCPs where each query-and-response interaction corresponds
to the evaluation of a fixed µ-variate degree d polynomial at a query point in
Fµ. This description is equivalent to saying that the PCP is a vector of length
m =

(
d+µ
µ

)
and the query circuit is the vector of all µ-variate monomials of

degree at most d (in some canonical order) evaluated at a point in Fµ. We call
this a (µ, d) Polynomial PCP and define Polynomial IOPs analogously. As we
will explain, we are interested in Polynomial PCPs where µ � m because we
can cryptographically compile them into succinct arguments using polynomial
commitments, in the same way that Merkle trees are used to compile classical
(point) IOPs.

In general, evaluating the query circuit for a linear PCP requires Ω(m) work.
However, a general “bootstrapping” technique can reduce the work for the veri-
fier: the prover expands the verifier’s random coins into a full query vector, and
then provides the verifier with a second PCP demonstrating that this expansion
was computed correctly. It may also help to allow the verifier to perform O(m)
work in a one-time preprocessing stage (for instance, to check the correctness of
a PCP oracle), enabling it to perform sublinear “online” work when verifying
arbitrary PCPs later. We call this a preprocessing IOP. In fact, we will see that
any t-round (µ, d) algebraic linear IOP can be transformed into a (t+ 1)-round
Polynomial IOP in which the verifier preprocesses (µ, d) Polynomial PCPs, at
most one for each distinct query.

We recall the formal definition of public-coin linear IOPs as well an algebraic
linear IOPs. Since we are not interested in the algebraic nature of the decision
algorithm, we omit specifying the decision polynomial. From here onwards we
use algebraic linear IOP as shorthand for algebraic query linear IOP.

Definition 5 (Public-coin linear IOP). Let R be a binary relation and F a
finite field. A t-round `-query public-coin linear IOP for R over F with sound-
ness error ε and knowledge error δ and query length m = (m1, ...,mt) consists of
two stateful PPT algorithms, the prover P, and the verifier V = (Q,D), where
the verifier consists in turn of a public deterministic query generator Q and a

20

decision algorithm D, that satisfy the following requirements:

Protocol syntax. For each ith round there is a prover state stPi and a verifier

state stVi . For any common input x and R witness w, at round 0 the states are
stP0 = (x,w) and stV0 = x. In the ith round (starting at i = 1) the prover outputs
a single6 proof oracle P(stPi−1)→ πi ∈ Fmi . The verifier samples public random

coins coinsi
$← {0, 1}∗ and the query generator computes a query matrix from

the verifier state and these coins: Q(stVi−1, coinsi) → Qi ∈ Fmi×`. The verifier
obtains the linear oracle response vector π>i Qi = ai ∈ F1×`. The updated prover
state is stPi ← (stPi−1,Qi) and verifier state is stVi ← (stVi−1, coinsi,ai) Finally,
D(stVt) returns 1 or 0.

(Querying prior round oracles: The syntax can be naturally extended so that
in the ith round the verifier may query any oracle, whether sent in the ith round
or earlier.)

Argument of Knowledge. As a proof system, (P,V) satisfies perfect complete-
ness, soundness with respect to the relation R and with soundness error ε, and
witness-extended emulation with respect R with knowledge error δ.

Furthermore, a linear IOP is stateless if for each i ∈ [t], Q(stVi−1, coinsi) =
Q(i, coinsi). It has algebraic queries if, additionally, for each i ∈ [t], the map

coinsi
Q(i,·)7−−−−→ Qi ∈ Fmi×` decomposes into two maps, coinsi

Q0(i,·)7−−−−→ Σi
Q1(i,·)7−−−−→

Qi, where Σi ∈ Fµi×` is a matrix of µi < mi rows and ` and Q1(i, ·) is described
by ` µi-variate polynomial functions of degree at most d = poly(λ): p1, . . . ,p` :
Fµi → Fmi such that for all k ∈ [`], pk(σi,k) = qi,k, where σi,k and qi,k denote
the kth column of Σi and Qi, respectively.

We note that the separation into two maps coinsi
Q0(i,·)7−−−−→ Σi

Q1(i,·)7−−−−→ Qi subtly
relaxes the definition of Bitansky et al. [9], which instead requires that Qi be

determined via p1, . . . ,p` evaluated at a random r
$← Fµi . The [9] definition

corresponds to the special case that Q0(i, ·) samples a random element of Fµi

based on coinsi. The point is that Q0 can also do other computations that do not
necessarily sample r uniformly, or even output a matrix rather than a vector.
The separation into two steps is only meaningful when µi is smaller than mi.
The significance to SNARK constructions is that the query can be represented
compactly asΣi, and the prover will take advantage of the algebraic mapQ1(i, ·)
to demonstrate that Σi was expanded correctly into Qi and applied to the proof
oracle πi. We first present a standalone definition of Polynomial IOPs, and then
explain how it is a special case of Algebraic Linear IOPs.

Definition 6 (Public coin Polynomial IOP). Let R be a binary relation
and F a finite field. Let X = (X1, . . . , Xµ) be a vector of µ indeterminates. A

6 The prover may also output more than one proof oracle per round, however this
doesn’t add any power since two proof oracles of the same size may be viewed as a
single (concatenated) oracle of twice the length.

21

(µ, d) Polynomial IOP for R over F with soundness error ε and knowledge error
δ consists of two stateful PPT algorithms, the prover P, and the verifier V, that
satisfy the following requirements:
Protocol syntax. For each ith round there is a prover state stPi and a veri-

fier state stVi . For any common input x and R witness w, at round 0 the
states are stP0 = (x,w) and stV0 = x. In the ith round (starting at i = 1)
the prover outputs a single proof oracle P(stPi−1) → πi, which is a polyno-
mial πi(X) ∈ F[X]. The verifier deterministically computes the query matrix

Σi ∈ Fµ×` from its state and a string of public random bits coinsi
$← {0, 1}∗,

i.e, V(stVi−1, coinsi) → Σi. This query matrix is interpreted as a list of ` points
in Fµ denoted (σi,1, . . . ,σi,`). The oracle πi is queried on all points in this list,
producing the response vector (πi(σi,1), . . . , π`(σi,`)) = ai ∈ F1×`. The updated
prover state is stPi ← (stPi−1,Σi) and verifier state is stVi ← (stVi−1,Σi,ai). Fi-
nally, V(stVt) returns 1 or 0.

(Extensions: multiple and prior round oracles; various arity. The syntax can
be naturally extended such that multiple oracles are sent in the ith round; that
the verifier may query oracles sent in the ith round or earlier; or that some of
the oracles are polynomials in fewer variables than µ.)
Argument of Knowledge. As a proof system, (P,V) satisfies perfect completeness,
soundness with respect to the relation R and with soundness error ε, and witness-
extended emulation with respect R with knowledge error δ.

Furthermore, a Polynomial IOP is stateless if for each i ∈ [t], V(stVi−1, coinsi) =
V(i, coinsi).

Polynomial IOPs as a subclass of Algebraic Linear IOPs In a Polyno-

mial IOP, the two-step map coinsi
V(i,·)7−−−→ (σi,1, . . . ,σi,`)

M7−→ (qi,1, . . . ,qi,`) is a

special case of the two-step map coinsi
Q0(i,·)7−−−−→ Σi

Q1(i,·)7−−−−→ Qi in an algebraic
linear IOP. Here M : Fµ → Fm represents the vector of monomials of degree at
most d (in some canonical order) and the map associated with M is evaluation.
Note that there are m =

(
µ+d
d

)
such monomials. Furthermore, for any qi,k, the

inner product πT
i qi,k corresponds to the evaluation at σi,k of the polynomial

πi(X) ∈ F[X], whose coefficient vector (in the same canonical monomial order)
is equal to πi.

5.2 Polynomial IOP reductions

In this section we show that one can construct any algebraic linear IOP from a
(multivariate) Polynomial IOP. This construction rests on two tools for univari-
ate Polynomial IOPs. These tools are treated explicitly in the full version of this
paper [19]. They can be realized with a small constant number of evaluations.

– Coefficient queries. The verifier verifies that an indicated coefficient of a
polynomial oracle has a given value.

– Inner products. The verifier verifies that the inner product of the coefficient
vectors of two polynomial oracles equals a given value.

22

Reducing algebraic linear IOPs to Polynomial IOPs

Theorem 3. Any public-coin t-round stateless algebraic linear IOP can be im-
plemented with a t + 1-round Polynomial IOP with preprocessing. Suppose the
original `-query IOP is (µ, d) algebraic with query length (m1, ...,mt) then the
resulting Polynomial IOP has for each i ∈ [t]: 2` degree mi univariate polynomial
oracles, ` pre-processed multivariate oracles of degree d and µ + 1 variables, `
degree 2mi univariate polynomial oracles and 2` degree 2mi univariate polyno-
mial oracles. There is exactly one query to each oracle on a random point in F.
The soundness loss of the transformation is negl(λ) for a sufficiently large field
(i.e., whose cardinality is exponential in λ).

We formally prove Theorem 3 in the full version of this paper [19]. Here we
present the transformation without proof.

By definition of a (µ, d) algebraic linear IOP, in each ith round of the IOP
there are ` query generation functions pi,1, . . . ,pi,` : Fµ → Fmi , where each
pi,k is a vector whose jth component is a µ-variate degree-d polynomial pi,k,j .
These polynomials are applied to a seed matrix σi,k ∈ Fµ (which is identifiable
with or derived from the verifier’s ith round public-coin randomness coinsi); this
evaluation produces pi,k(σi,k) = qi,k ∈ Fmi for all k ∈ [`]. The vectors qi,k are
the columns of the query matrix Qi ∈ Fmi×`.

Preprocessed oracles For each round i of the original algebraic linear IOP,
the prover and verifier preprocess (µ + 1)-variate degree-d polynomial oracles.
For each k ∈ [`], the vector of polynomials pi,k = (pi,k,1, . . . , pi,k,mi

) ∈ (F[X])mi

with X = (X1, . . . , Xµ) is encoded as a single polynomial in µ + 1 variables

as follows. Introduce a new indeterminate Z, and then define P̃i,k(X, Z) :=∑mi

j=1 pi,k,j(X)Zj ∈ F[X, Z]. The prover and verifier establish the oracle P̃i,k,
meaning that the verifier queries this oracle on enough points to be reassured
that it is correct everywhere.

The transformed IOP The original algebraic linear IOP is modified as follows.

– Wherever the original IOP prover sends an oracle πi of length mi, the new
prover sends a degree mi − 1 univariate polynomial oracle fπi

whose coeffi-
cient vector is the reverse of πi.

– Wherever the original IOP verifier makes ` queries within a round to a
particular proof oracle πi, where queries are defined by query matrix Qi ∈
Fmi×`, consisting of column query vectors (qi,1, ...,qi,`), the new prover and
verifier engage in the following interactive subprotocol for each k ∈ [`] in
order to replace the kth linear query 〈πi,qi,k〉:
• Verifier: Run the original IOP verifier to get the public coin seed matrix
Σi and send it to the prover.

• Prover: Derive the query matrix Qi from Σi using the polynomials
pi,1, . . . ,pi,`. Send an oracle for the polynomial Fi,k whose coefficient
vector is qi,k.

23

• Verifier: Sample uniform random β
$← F and query both Fi,k and P̃i,k

(the kth preprocessed oracle for round i) at β in order to check that
Fi,k(β) = P̃i,k(σi,k, β). If the check fails, abort and output 0.

• Prover: Compute ai,k = 〈π,qi,k〉 and send ai,k to the verifier.
• The prover and verifier run the inner product Polynomial IOP on the

oracles Fi,k and fπi to convince the verifier that ai,k = 〈qi,k,πi〉. If the
inner product subprotocol fails the verifier aborts and outputs 0.

If all substeps succeed, then the verifier obtains correct output of each or-
acle query; in other words, the responses are identical in the new and original
IOP. These outputs are passed to the original verifier decision algorithm, which
outputs 0 or 1.

5.3 Compiling Polynomial IOPs

Let Γ = (Setup,Commit,Open,Eval) be a multivariate polynomial commitment
scheme. Given any t-round Polynomial IOP for R over F, we construct an in-
teractive protocol Π = (Setup,P,V) as follows. For clarity in our explanation,
Π consists of t outer rounds corresponding to the original IOP rounds and sub-
rounds where subprotocols may add additional rounds of interaction between
outer rounds.

– Setup: Run pp← Setup(1λ)
– In any round where the IOP prover sends a (µ, d) polynomial proof oracle
π : Fµ → F, in the corresponding outer round of Π, P sends the commitment
cπ ← Commit(pp;π)

– In any round where the IOP verifier makes an evaluation query z to a (µ, d)
polynomial proof oracle π, in the corresponding outer round of Π, insert
an interactive execution of Eval(pp, cπ, z, y, µ, d;π) between P and V, where
π(z) = y.

If V does not abort in any of these subprotocols, then it receives a simulated
IOP transcript of oracle queries and responses. It runs the IOP verifier decision
algorithm on this transcript and outputs the result.

Theorem 4. If the polynomial commitment scheme Γ has witness-extended em-
ulation, and if the t-round Polynomial IOP for R has negligible knowledge error,
then Π is a public-coin interactive argument for R that has witness-extended em-
ulation.

5.4 Concrete Instantiations

Several proof systems use Polynomial IOPs and our compiler can be applied
to them. We present PLONK [30] here and discuss several other proof systems
[43,22,4,48,31] in the full version [19]

Theorem 6 provides the main theoretical result of this work, tying together
the new DARK polynomial commitment scheme (Theorem 1), the compilation

24

of Polynomial IOPs into SNARKs with preprocessing using polynomial commit-
ments (Theorem 4), and a concrete univariate Polynomial IOPs. To enable this
tie-up, we re-characterize the result of PLONK in terms of Polynomial IOPs,
making use of the coefficient query technique (Section 5.2) as necessary.

Theorem 5 (PLONK, [30]). There is a 3-round HVZK Polynomial IOP with
preprocessing for any NP relation R (with arithmetic complexity n) that makes
12 queries overall to 12 univariate degree n polynomial oracles. The total number
of distinct query points is 2. The preprocessing verifier does O(n) work to check
7 of the univariate degree n polynomials.

Combining the PLONK Polynomial IOP with the new transparent polynomial
compiler of Section 4 gives the following result. Analogous results are obtained
by using Sonic [43] or Marlin [22] instead.

Theorem 6 (New Transparent zk-SNARK). There exists an O(log n)-round
public-coin interactive argument of knowledge for any NP relation with arith-
metic complexity n that has O(log n) communication, O(log n) “online” ver-
ification, quasilinear prover time, and a preprocessing step that is verifiable in
quasilinear time. The argument of knowledge has witness-extended emulation as-
suming it is instantiated with a group G for which the Strong RSA Assumption,
and the Adaptive Root Assumption hold.

6 Evaluation

We now evaluate Supersonic, the trustless-setup SNARK built on the Polynomial
IOPs underlying Sonic [43], PLONK [30], and Marlin [22] and compiled using our
DARK polynomial commitment scheme. The commitment scheme has several
useful batching properties. It is possible to evaluate k polynomials of degree at
most d using only 2 group elements and (k+1) field elements. To take advantage
of this we delay the evaluation until the last step of the protocol. We present
the proof size for both the compilation of Sonic, PLONK and Marlin in Table 6.
We use 1600 bits as the size of class group elements and λ = 120. The security
of 1600 bit class groups is believed to be equivalent to 3048bit RSA groups and
have 120 bits of security [17,8]. This leads to proof sizes of 16.5KB for Sonic,
10.1KB using PLONK and 12.3KB using Marlin for circuits with n = 220 (one
million) gates. Using 3048-bit RSA groups the proof sizes becomes 18.4KB for
the compilation of PLONK. If 100 bits of security suffice then a 1200 bit class
group can be used and the compiled PLONK proofs are 7.8KB for the same
setting. In a 2048-bit RSA group this becomes 12.7KB.

The comparison between the Polynomial IOPs is slightly misleading be-
cause n represents different indicators of complexity. Nevertheless this calcu-
lation shows that there are Polynomial IOPs that can be compiled using the
DARK polynomial commitment scheme to SNARKs of roughly 10 kilobytes in
size. These numbers stand in contrast to STARKs which achieve proofs of 600KB
for computation of similar complexity [4]. We compare Supersonic to different

25

other proof systems in Table 6. Supersonic is the only proof system with efficient
verifier time, small proof sizes that does not require a trusted setup. Using 10µs
per group operation7, this gives a verification time of around 72ms.

Polynomial IOP Polynomials Eval points |SNARK| concrete size

Sonic [43] 12 in pp + 15 12
(15 + 2 log2(n))G

15.3 KB
+(12 + 13 log2(n))Zp

PLONK [30] 7 in pp + 7 2
(7 + 2 log2(n))G

10.1 KB
+ (2 + 3 log2(n))Zp

Marlin [22] 9 in pp + 10 3
(10 + 2 log2(6n))G

12.3 KB
+ (3 + 4 log2(6n))Zp

Table 2. Proof size for Supersonic. Column 2 says how many polynomials are commit-
ted to in the SRS (offline oracles) and how many are sent by the prover (online oracles).
Column 3 states the number of distinct evaluation points. The proof size calculation
uses |Zp| = 120 and |G| = 1600 for n = 220 gates.

Scheme Transp. |pp| Prover Verifier |π| n = 220

Supersonic yes O(1) O(n log(n)) EXP 3 log(n) EXP 2 log(n) GU 10.1KB
PLONK [30] no 2n GB O(n) EXP 1 Pairing O(1) GB 720b
Groth16 [35] no 2n GB O(n) EXP 1 Pairing O(1) GB 192b
BP [18] yes 2n GP O(n) EXP O(n) EXP 2 log(n) GP 1.7KB
STARK yes O(1) O(λT) H O(λ log2(T)) H O(λ log2(T)) H 600 KB
Table 3. Comparison table between different succinct arguments. In column order we
compare on transparent setup, CRS size, prover and verifier time, asymptotic proof
size and concrete proof for an NP relation with arithmetic complexity 220. Even when
precise factors are given the numbers should be seen as estimates. For example, we
chose to not display smaller order terms. The symbol GU denotes an element in group
of unknown order, GB one in a group with a bilinear map (pairing), GP one in a prime
order group with known order. Furthermore, EXP refers to exponentiation of λ-bit
numbers in these groups, and H is either the size of a hash output or the time it takes
to compute a hash. The prover time for the group based schemes can be brought down
by a log factor when using multi-exponentiation techniques.

7 Conclusion

In this work we presented the DARK compiler: a polynomial commitment scheme
from falsifiable assumptions in groups of unknown order with evaluation proofs

7 The estimate comes from the recent Chia Inc. class group implementation com-
petition. The competition used a larger 2048bit discriminant but only performed
repeated squaring. https://github.com/Chia-Network/vdfcontest2results

26

https://github.com/Chia-Network/vdfcontest2results

that can be verified in logarithmic time. We also presented Polynomial IOPs, a
unifying information-theoretical framework underlying the information theoretic
foundation of several recent SNARK constructions. Polynomial IOPs can be com-
piled into a concrete SNARK using a polynomial commitment scheme and the
Fiat-Shamir transform. We showed that applying the DARK compiler to recent
Polynomial IOPs yields the first trustless SNARKs (i.e., with a transpar-
ent untrusted setup) that have practical proof sizes and verification
times. In particular, this is the first trustless/transparent SNARK construction
that has asymptotically logarithmic verification time (ignoring the λ-dependent
factors, which are comparable to λ-dependent factors in prior works). Finally,
unlike all known SNARKs in bilinear groups, the construction does not require
knowledge of exponent assumptions. Several important open questions remain:

– Our polynomial commitment scheme has prover time linear in the total num-
ber of coefficients, even for zero coefficients. Consequently for a sparse bivari-
ate polynomial of degree d in each variable the prover time is quadratic in d.
A sparse polynomial commitment scheme would directly enable an efficient
compilation of simple information theoretic protocols such as QAPs.

– Assymptotically, Supersonic’s prover time is on par with pairing-based SNARK
constructions, however, a concrete implementation and performance compar-
ison remains open.

– This work further motivates the study of class groups and groups of un-
known order. In particular we rely on a recently introduced Adaptive Root
Assumption.

– Our polynomial commitment scheme uses a simple underlying information
theoretic protocol that could be compiled using a (partially) homomorphic
commitment scheme over polynomials, or even another type of integer homo-
morphic commitment scheme. This leaves open whether there are different
ways of instantiating our DARK compiler under different cryptographic as-
sumptions.

Acknowledgements We thank Dan Boneh for helpful discussions and com-
ments. This work was partially supported by NSF, SGF, ONR, the Simons
Foundation, the Nervos Foundation and the Findora Foundation.

References

1. Zcash, https://z.cash

2. Bari, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes
without trees. In: Fumy, W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 480–494.
Springer, Heidelberg (May 1997)

3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interac-
tive oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D.,
Sannella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 14:1–14:17. Schloss Dagstuhl
(Jul 2018)

27

https://z.cash

4. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701–732. Springer, Heidelberg (Aug 2019)

5. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press
(May 2014)

6. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (Aug 2013)

7. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (Oct / Nov 2016)

8. Biasse, J., Jr., M.J.J., Silvester, A.K.: Security estimates for quadratic field based
cryptosystems. CoRR abs/1004.5512 (2010), http://arxiv.org/abs/1004.5512

9. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (Mar 2013)

10. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
757–788. Springer, Heidelberg (Aug 2018)

11. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 67–97. Springer, Heidelberg
(Aug 2019)

12. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Heidelberg (Aug
2019)

13. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. Cryptology ePrint
Archive, Report 2016/263 (2016), http://eprint.iacr.org/2016/263

14. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (May 2016)

15. Bosma, W., Stevenhagen, P.: On the computation of quadratic 2-class groups. In:
Journal de Theorie des Nombres (1996)

16. Bowe, S.: Bellman zk-snarks library (2016), https://github.com/zkcrypto/

bellman

17. Buchmann, J., Hamdy, S.: A survey on iq cryptography. In: Public-Key Cryptog-
raphy and Computational Number Theory. pp. 1–15 (2001)

18. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315–334. IEEE Computer Society Press (May 2018)

19. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
Cryptology ePrint Archive, Report 2019/1229 (2019), https://eprint.iacr.org/
2019/1229

28

http://arxiv.org/abs/1004.5512
http://eprint.iacr.org/2016/263
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://eprint.iacr.org/2019/1229
https://eprint.iacr.org/2019/1229

20. Buterin, V.: Zk rollup (2016), https://ethresear.ch/t/

on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/

3477

21. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D., Wichs, D.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) 51st ACM STOC. pp. 1082–1090. ACM Press (Jun 2019)

22. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Pre-
processing zksnarks with universal and updatable srs. Cryptology ePrint Archive,
Report 2019/1047 (2019), https://eprint.iacr.org/2019/1047

23. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive
proofs from holography (2019), https://eprint.iacr.org/2019/1076

24. Couteau, G., Peters, T., Pointcheval, D.: Removing the strong RSA assump-
tion from arguments over the integers. In: Coron, J., Nielsen, J.B. (eds.) EU-
ROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 321–350. Springer, Heidelberg
(Apr / May 2017)

25. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (Dec 2002)

26. Damg̊ard, I., Koprowski, M.: Generic lower bounds for root extraction and sig-
nature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (Apr / May 2002)

27. Eberhardt, J.: Zokrates, https://zokrates.github.io/
28. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification

and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (Aug 1987)

29. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (Aug 1997)

30. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953

31. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (May 2013)

32. Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a laconic
prover. vol. 11(1/2), pp. 1–53 (2002)

33. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp. 113–
122. ACM Press (May 2008)

34. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC. pp. 291–304. ACM Press
(May 1985)

35. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (May 2016)

36. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,
Heidelberg (Apr 2008)

37. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash Protocol Specification
(2019), https://zips.z.cash/protocol/protocol.pdf

29

https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1076
https://zokrates.github.io/
https://eprint.iacr.org/2019/953
https://zips.z.cash/protocol/protocol.pdf

38. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficeint arguments without short pcps.
(2007)

39. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (Dec 2010)

40. Labs, O.: Coda protocol (2018), https://codaprotocol.com/
41. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computa-

tion. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer,
Heidelberg (Aug 2001)

42. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (Nov / Dec 2003)

43. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks
from linear-size universal and updatable structured reference strings. Cryptology
ePrint Archive, Report 2019/099 (2019), https://eprint.iacr.org/2019/099

44. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoret-
ical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego,
California, USA. pp. 60:1–60:15 (2019)

45. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC.
pp. 49–62. ACM Press (Jun 2016)

46. Rivest, R., Shamir, A., Wagner, D.: Time-lock puzzles and timed-release crypto.
In: MIT Technical report (1996)

47. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the
conflict between generality and plausibility in verified computation. (2013)

48. Setty, S.: Spartan: Efficient and general-purpose zksnarks without trusted setup.
Cryptology ePrint Archive, Report 2019/550 (2019), https://eprint.iacr.org/
2019/550

49. Straka, M.: Class groups for cryptographic accumulators (2019), https://www.

michaelstraka.com/posts/classgroups/
50. Vlasov, A., Panarin, K.: Transparent polynomial commitment scheme with polylog-

arithmic communication complexity. Cryptology ePrint Archive, Report 2019/1020
(2019), https://eprint.iacr.org/2019/1020

51. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zk-
SNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Pri-
vacy. pp. 926–943. IEEE Computer Society Press (May 2018)

52. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them:
From theoretical possibility to near practicality. Communications of the ACM 58(2)
(2015)

53. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 379–407. Springer, Heidelberg
(May 2019)

54. Wilcox, Z.: The design of the ceremony (2016), https://z.cash/blog/

the-design-of-the-ceremony.html
55. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-

knowledge proofs with optimal prover computation. Cryptology ePrint Archive,
Report 2019/317 (2019), https://eprint.iacr.org/2019/317

56. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation
and its applications to zero knowledge proof. Cryptology ePrint Archive, Report
2019/1482 (2019), https://eprint.iacr.org/2019/1482

30

https://codaprotocol.com/
https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550
https://www.michaelstraka.com/posts/classgroups/
https://www.michaelstraka.com/posts/classgroups/
https://eprint.iacr.org/2019/1020
https://z.cash/blog/the-design-of-the-ceremony.html
https://z.cash/blog/the-design-of-the-ceremony.html
https://eprint.iacr.org/2019/317
https://eprint.iacr.org/2019/1482

	Transparent SNARKs from DARK Compilers

