
Continuous Verifiable Delay Functions

Naomi Ephraim1, Cody Freitag1, Ilan Komargodski2, and Rafael Pass1

1 Cornell Tech, New York, NY 10044, USA
{nephraim,cfreitag,rafael}@cs.cornell.edu
2 NTT Research, Palo Alto, CA 94303, USA
ilan.komargodski@ntt-research.ac.il

Abstract. We introduce the notion of a continuous verifiable delay func-
tion (cVDF): a function g which is (a) iteratively sequential—meaning
that evaluating the iteration g(t) of g (on a random input) takes time
roughly t times the time to evaluate g, even with many parallel proces-
sors, and (b) (iteratively) verifiable—the output of g(t) can be efficiently
verified (in time that is essentially independent of t). In other words, the
iterated function g(t) is a verifiable delay function (VDF) (Boneh et al.,
CRYPTO ’18), having the property that intermediate steps of the com-

putation (i.e., g(t
′) for t′ < t) are publicly and continuously verifiable.

We demonstrate that cVDFs have intriguing applications: (a) they can
be used to construct public randomness beacons that only require an ini-
tial random seed (and no further unpredictable sources of randomness),
(b) enable outsourceable VDFs where any part of the VDF computation
can be verifiably outsourced, and (c) have deep complexity-theoretic
consequences: in particular, they imply the existence of depth-robust
moderately-hard Nash equilibrium problem instances, i.e. instances that
can be solved in polynomial time yet require a high sequential running
time.

Our main result is the construction of a cVDF based on the repeated
squaring assumption and the soundness of the Fiat-Shamir (FS) heuris-
tic for constant-round proofs. We highlight that when viewed as a (plain)
VDF, our construction requires a weaker FS assumption than previ-
ous ones (earlier constructions require the FS heuristic for either super-
logarithmic round proofs, or for arguments).

1 Introduction

A fundamental computational task is to simulate “real time” via computa-
tion. This was first suggested by Rabin [42] in 1983, who introduced a notion
called randomness beacon to describe an ideal functionality that publishes un-
predictable and independent random values at fixed intervals. This concept has
received a substantial amount of attention since its introduction, and even more
so in recent years due to its many applications to more efficient and reliable
consensus protocols in the context of blockchain technologies.

One natural approach, which is the focus of this work, is to implement a
randomness beacon by using an iteratively sequential function.3 An iteratively
sequential function g inherently takes some time ` to compute and has the prop-
erty that there are no shortcuts to compute sequential iterations of it. That is,
computing the t-wise composition of g for any t should take roughly time t · `,
even with parallelism. Using an iteratively sequential function g with an initial
seed x, we can construct a randomness beacon where the output at interval t is
computed as the hash of

g(t)(x) = g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
t times

(x).

After t · ` time has elapsed (at which point we know the first t values), the bea-
con’s output should be unpredictable sufficiently far in the future.4 The original
candidate iteratively sequential function is based on (repeated) squaring in a
finite group of unknown order [13, 43]. It is also conjectured that any secure
hash function (such as SHA-256) gives an iteratively sequential function; this
was suggested in [30] and indeed, as shown in [36], a random oracle is iteratively
sequential.

Continuous VDFs. The downside of using an iteratively sequential function
as a randomness beacon is that to verify the current value of the beacon, one
needs to recompute its entire history which is time consuming by definition. In
particular, a party that joins late will never be able to catch up. Rather, we
would like the output at each step to be both publicly and efficiently verifiable.
It is also desirable for the randomness beacon to be generated without any
private state so that anyone can compute it, meaning that each step can be
computed based solely on the output of the preceding step. Indeed, if we have
an iteratively sequential function that is also (iteratively) verifiable—in the sense
that one can efficiently verify the output of g(t)(x) in time polylog(t)—then such
a function could be used to obtain a public randomness beacon. In this paper, we
introduce and construct such a function and refer to it as a continuous verifiable
delay function (cVDF). As the name suggests, it can be viewed as enabling
continuous evaluation and verification of a verifiable delay function (VDF) [10]
as we describe shortly.5

Continuous VDFs are related to many previously studied time-based primi-
tives. One classical construction is the time-lock puzzle of Rivest, Shamir, and

3 We use the terminology from [10]; these have also been referred to as sequential
functions [36].

4 If g is perfectly iteratively sequential, meaning that t iterations cannot be computed
in time faster than exactly t · `, then after t steps of g the next value would be
unpredictable. However, if t iterations cannot be computed in time faster than (1−
ε) ·t ·`, we can only guarantee that the (ε ·t)-th value into the future is unpredictable.

5 Our notion of a cVDF (just like the earlier notion of a “plain” VDF) also allows for
the existence of some trusted public parameters.

2

Wagner [43]. Their construction can be viewed as an iteratively sequential func-
tion that is privately verifiable with a trapdoor—unfortunately, this trapdoor
not only enables quickly verifying the output of iterations of the function, but
in fact also enables quickly computing the iterations. New publicly verifiable
time-based primitives have since emerged, including proofs of sequential work
(PoSW) [36, 18, 21] and verifiable delay functions (VDF) [10, 40, 45, 11, 23].
While these primitives are enough for many applications, they fall short of im-
plementing a public randomness beacon (on their own). In more detail, a PoSW
enables generating a publicly verifiable proof of some computation (rather than
a specific function with a unique output) that is guaranteed to have taken a long
time. This issue was overcome through the introduction of VDFs [10], which are
functions that require some “long” time T to compute (where T is a parame-
ter given to the function), yet the answer to the computation can be efficiently
verified given a proof that can be jointly generated with the output (with only
small overhead).

In fact, one of the motivating applications for constructing VDFs was to
obtain a public randomness beacon. A natural approach toward this goal is
to simply iterate the VDF at fixed intervals. However, this construction does
not satisfy our desired efficiency for verifiability. In particular, even though the
VDF enables fast verification of each invocation, we still need to store all proofs
for the intermediate values to verify the final output of the iterated function,
and thus the proof size and verification time grow linearly with the number of
invocations t. While a recent construction of Wesolowski [45] enables aggregating
these intermediate proofs to obtain a single short proof, the verification time
still grows linearly with t (in contrast, a cVDF enables continuously iterating a
function such that the output of t iterations can be efficiently verified in time
essentially independent of t, for any t). While a VDF does not directly give
a public randomness beacon, it does, however, enable turning a “high-entropy
beacon” (e.g., continuous monitoring of stock market prices) into an unbiased
and unpredictable beacon as described in [10]. In contrast, using a cVDF enables
dispensing altogether with the high-entropy beacon—we simply need a single
initial seed x.

Continuous VDFs are useful not only for randomness beacons, but also for
standard applications of VDFs. Consider a scenario where some entity is offering
a $5M reward for evaluating a single VDF with time parameter 5 years (i.e., it is
supposed to take five years to evaluate it). Alice starts evaluating the VDF, but
after two years runs out of money and can no longer continue the computation.
Ideally, she would like to sell the work she has completed for $2M. Bob is willing
to buy the intermediate state, verify it, and continue the computation. The
problem, however, is that there is no way for Bob to verify Alice’s internal
state. In contrast, had Alice used a cVDF, she would simply be iterating an
iteratively sequential function, and we would directly have the guarantee that
at any intermediate state of the computation can be verified and Alice can be
compensated for her effort. In other words, cVDF enable verifiably outsourcing
VDF computation.

3

Finally, as we show, cVDFs are intriguing also from a complexity-theoretic
point of view. The existence of cVDFs imply that PPAD [39] (the class for which
the task of finding a Nash equilibrium in a two-party game is complete) is hard—
in fact, the existence of cVDFs imply the existence of a relaxed-SVL [15, 5]
instance with tight hardness (which yields improved hardness results also for
PPAD). Additionally, the existence of cVDFs imply that there is a constant
d such that for large enough c, there is a distribution over Nash equilibrium
problem instances of size n that can be solved in time nc but cannot be solved
in depth nc/d (and arbitrary polynomial size)—that is, the existence of “easy”
Nash equilibrium problem instances that requires high sequential running time.
In other words, cVDFs imply that it is possible to sample “moderately-hard”
Nash equilibrium problem instances that require a large time to solve, even with
many parallel processors.

1.1 Our Results

Our main result is the construction of a cVDF based on the repeated squaring
assumption in a finite group of unknown order and a variant of the Fiat-Shamir
(FS) heuristic for constant-round proof systems. Informally, the iteratively se-
quential property of our construction comes from the repeated squaring assump-
tion which says that squaring in this setting is an iteratively sequential function.
We use the Fiat-Shamir assumption to obtain the continuous verifiability prop-
erty of our construction. More precisely, we apply the Fiat-Shamir heuristic on a
constant-round proof system where the verifier may be inefficient. We note that
by the classic results of [26] this holds in the random oracle model.

Theorem 1.1 (Informal, see Corollary 6.3). Under the repeated squaring
assumption and the Fiat-Shamir assumption for constant-round proof systems
with inefficient verifiers, there exists a cVDF.

We remark that to obtain a plain VDF we only need the “standard” Fiat-
Shamir assumption for constant-round proof systems (with efficient verifiers).

A cVDF readily gives a public randomness beacon. As discussed above, the
notions of cVDFs and public randomness beacons are closely related. The main
difference between the two is that the output of a randomness beacon should not
only be unpredictable before a certain time, but should also be indistinguish-
able from random. Thus, we obtain our public randomness beacon by simply
“hashing” the output of the cVDF. We show that this indeed gives a public ran-
domness beacon by performing the hashing using a pseudo-random generators
(PRGs) for unpredictable sources (which exist either in the random oracle model
or from extremely lossy functions [46]).

Theorem 1.2 (Informal). Assuming the existence of cVDFs and PRGs for
unpredictable sources, there exists a public randomness beacon.

Comparison with (plain) VDFs. The two most related VDF constructions
are that of Pietrzak [40] and that of Wesolowski [45], as these are based on re-
peated squaring. In terms of assumptions, Pietrzak’s protocol [40] assumes the

4

Fiat-Shamir heuristic for a proof system with a super-constant number of rounds
and Wesolowski’s [45] assumes the Fiat-Shamir heuristic for a constant-round
argument system. It is known that, in general, the Fiat-Shamir heuristic is not
true for super-constant round protocols (even in the random oracle model6), and
not true for constant-round arguments [6, 27]. As such, both of these construc-
tions rely on somewhat non-standard assumptions. In contrast, our VDF relies
only on the Fiat-Shamir heuristic for a constant-round proof system—no counter
examples are currently known for such proof systems.

We additionally note that before applying the Fiat-Shamir heuristic (i.e.,
a VDF in the random oracle model), our VDF satisfies computational unique-
ness while Pietrzak’s satisfies statistical uniqueness. He achieves this by working
over the group of signed quadratic residues. We note that we can get statistical
uniqueness in this setting using the same idea. Lastly, we emphasize that the
concrete proof length and verification time are polynomially higher in our case
than that of both Pietrzak and Wesolowski. For a detailed comparison of the
parameters, see Section 2.3.

PPAD hardness. PPAD [39] is an important subclass in TFNP [38] (the class
of total search problems), most notably known for its complete problem of finding
a Nash equilibrium in bimatrix games [19, 14]. Understanding whether PPAD
contains hard problems is a central open problem and the most common ap-
proach for proving hardness was pioneered by Abbot, Kane, and Valiant [5]. They
introduced a problem, which [9] termed Sink-of-Verifiable-Line (SVL), and
showed that it reduces to End-Of-Line (EOL), a complete problem for PPAD.
In SVL, one has to present a function f that can be iterated and each interme-
diate value can be efficiently verified, but the output of T iterations (where T is
some super-polynomial value, referred to as the length of the “line”) is hard to
compute in polynomial time.

In a beautiful recent work, Choudhuri et al. [15] defined the relaxed-Sink-
of-Verifiable-Line (rSVL) problem, and showed that it reduces to EOL, as
well. rSVL is a generalization of SVL where one is required to find either the
output after many iterations (as in SVL) or an off-chain value that verifies.
Choudhuri et al. [15] gave a hard rSVL instance assuming the security of the
Fiat-Shamir transformation applied to the sum-check protocol [35] (which is a
polynomial-round protocol).

The notion of an (r)SVL instance is very related to our notion of a cVDF.
The main differences are that a cVDF requires that the gap between the honest
computation and the malicious one is tight and that security holds for adversaries
that have access to multiple processors running in parallel. As such, the existence
of a cVDF (which handles super-polynomially many iterations) directly implies
an rSVL instances with “optimal” hardness—namely, one where the number of
computational steps required to solve an instance of the problem with a “line”
of length T is (1− ε) · T .

6 Although, [40] shows that it does hold in the random oracle model for his particular
protocol.

5

Theorem 1.3 (Informal). The existence of a cVDF supporting superpolyno-
mially many iterations implies an optimally-hard rSVL instance (which in turn
implies that PPAD is hard (on average)).

Theorem 1.1 readily extends to give a cVDF supporting super-polynomially
many iterations by making a Fiat-Shamir assumption for ω(1)-round proof sys-
tems. As a consequence, we get an optimally-hard instance of rSVL based on
this Fiat-Shamir assumption for ω(1)-round proofs7 and the repeated squar-
ing assumption. By following the reductions from rSVL to EOL and to finding a
Nash equilibrium, we get (based on the same assumptions) hard PPAD and Nash
equilibrium instances. We remark that in comparison to the results of Choud-
huri et al., we only rely on the Fiat-Shamir assumption for ω(1)-round protocols,
whereas they rely on it for a polynomial-round, or at the very least an ω(log n)-
round proof systems (if additionally assuming that #SAT is sub-exponentially
hard). On the other hand, we additionally require a computational assumption–
namely, the repeated squaring assumption, whereas they do not.8

Our method yields PPAD instances satisfying another interesting property:
we can generate PPAD (and thus Nash equilibrium problem) instances that can
be solved in polynomial time, yet they also require a high sequential running
time—that is, they are “depth-robust” moderately-hard instances. As far as we
know, this gives the first evidence that PPAD (and thus Nash equilibrium prob-
lems) requires high sequential running time to solve (even for easy instances!).

Theorem 1.4 (Informal). The existence of a cVDF implies a distribution of
depth-robust moderately-hard PPAD instances. In particular, there exists a con-
stant d such that for all sufficiently large constants c, there is a distribution over
Nash equilibrium problem instances of size n that can be solved in time nc but
cannot be solved in depth nc/d and arbitrary polynomial time.9

Combining Theorems 1.1 and 1.4, we get a depth-robust moderately-hard
PPAD instance based on the Fiat-Shamir assumption for constant-round proof
systems with inefficient verifiers and the repeated squaring assumption.

7 As mentioned above, in general, the Fiat-Shamir assumption is false for super-
constant-round proofs. But we state a restricted form of a Fiat-Shamir assump-
tion for super-constant-round proofs with exponentially small soundness error which
holds in the random oracle model, due to the classic reduction from [26].

8 We also note that Choudhuri et al. show how to instantiate the hash function in
their Fiat-Shamir transformation assuming a class of fully homomorphic encryption
schemes has almost-optimal security against quasi-polynomial time adversaries. We
leave such instantiations in our context for future work.

9 If we additionally assume that the repeated squaring assumption is sub-exponentially
hard, then the resulting instance cannot be solved in depth nc/d and sub-exponential
time.

6

1.2 Related Work

In addition to the time lock puzzle of [43] mentioned above, an alternative con-
struction is by Bitansky et al. [8] assuming a strong form of randomized encod-
ings and the existence of inherently sequential functions. While the time-lock
puzzle of [43] is only privately verifiable, Boneh and Naor [12] showed a method
to prove that the time-lock puzzle has a solution. Jerschow and Mauve [29] and
Lenstra and Wesolowski [33] constructed iteratively sequential functions based
on Dwork and Naor’s slow function [22] (which is based on hardness of modular
exponentiations).

PPAD hardness. The complexity class PPAD (standing for Polynomial Par-
ity Arguments on Directed graphs), introduced by Papadimitriou [39], is one of
the central classes in TFNP. It contains the problems that can be shown to be
total by a parity argument. This class is famous most notably since the problem
of finding a Nash equilibrium in bimatrix games is complete for it [19, 14]. The
class is formally defined by one of its complete problems End-Of-Line (EOL).

Bitansky, Paneth, and Rosen [9] introduced the Sink-of-Verifiable-Line
(SVL) problem and showed that it reduces to the EOL problem (based on Abbot
et al. [5] who adapted the reversible computation idea of Bennet [7]). They
additionally gave an SVL instance which is hard assuming sub-exponentially
secure indistinguishability obfuscation and one-way functions. These underlying
assumptions were somewhat relaxed over the years yet remain in the class of
obfuscation-type assumptions which are still considered very strong [25, 32, 31].

Hubáček and Yogev [28] observed that the Sink-of-Verifiable-Line ac-
tually reduces to a more structured problem, which they termed End-Of-
Metered-Line (EOML), which in turn resides in CLS (standing for Contin-
uous Local Search), a subclass of PPAD. As a corollary, all of the above hardness
results for PPAD actually hold for CLS.

In an exciting recent work, Choudhuri et al. [15] introduced a relaxation of
SVL, termed relaxed-SVL (rSVL) which still reduces to EOML and therefore
can be used to prove hardness of PPAD and CLS. They were able to give a hard
rSVL instance based on the sum-check protocol of [35] assuming soundness of
the Fiat-Shamir transformation and that #SAT is hard.

Verifiable delay functions. VDFs were recently introduced and constructed
by Boneh, Bonneau, Bünz, and Fisch [10]. Following that work, additional con-
structions were given in [40, 45, 23]. The constructions of Pietrzak [40] and
Wesolowski [45] are based on the repeated squaring assumption plus the Fiat-
Shamir heuristic, while the construction of De Feo et al. [23] relies on elliptic
curves and bilinear pairings. We refer to Boneh et al. [11] for a survey.

VDFs have numerous applications to the design of reliable distributed sys-
tems; see [10, Section 2]. Indeed, they are nowadays widely used in the design of
reliable and resource efficient blockchains (e.g., in the consensus mechanism of
the Chia blockchain [1]) and there is a collaboration [4] between the Ethereum

7

Foundation [2], Protocol Labs [3], and various academic institutions to design
better and more efficient VDFs.

Proofs of sequential work. Proofs of sequential work, suggested by Mah-
moody, Moran, and Vadhan [36], are proof systems where on input a random
challenge and time parameter t one can generate a publicly verifiable proof mak-
ing t sequential computations, yet it is computationally infeasible to find a valid
proof in significantly less than t sequential steps. Mahmoody et al. [36] gave
the first construction and Cohen and Pietrzak [18] gave a simple and practical
construction (both in the random oracle model). A recent work of Döttling et
al. [21] constructs an incremental PoSW based on [18]. The techniques underly-
ing Döttling et al’s construction are related in spirit to ours though the details
are very different. See Section 2 for a comparison. All of the above constructions
of PoSWs do not satisfy uniqueness, which is a major downside for many appli-
cations (see [10] for several examples). Indeed, VDFs were introduced exactly to
mitigate this issue. Since our construction satisfies (computational) uniqueness,
we actually get the first unique incremental PoSW.

Concurrent works. In a concurrent and independent work, Choudhuri et al.
[16] show PPAD-hardness based on the Fiat-Shamir heuristic and the repeated
squaring assumption. Their underlying techniques are related to ours since they
use a similar tree-based proof merging technique on top of Pietrzak’s proto-
col [40]. However, since they use a ternary tree (while we use a high arity tree)
their construction cannot be used to get a continuous VDF (and its applications).
Also, for PPAD-hardness, their construction requires Fiat-Shamir for protocols
with ω(log λ) rounds (where λ is the security parameter) while we need Fiat-
Shamir for ω(1)-round protocols.

VDFs were also studied in two recent independent works by Döttling et
al. [20] and Mahmoody et al. [37]. Both works show negative results for black-
box constructions of VDFs in certain regimes of parameters in the random oracle
model. The work of Döttling et al. [20] additionally shows that certain VDFs
with a somewhat inefficient evaluator can be generically transformed into VDFs
where the evaluator has optimal sequential running time. Whether such a trans-
formation exists for cVDFs is left for future work.

2 Technical Overview

We start by informally defining a cVDF. At a high level, a cVDF specifies an
iteratively sequential function Eval where each iteration of the function gives a
step of computation. Let x0 be any starting point and xt = Eval(t)(x0) be the
tth step or state given by the cVDF. We let B be an upper bound on the total
number of steps in the computation, and assume that honest parties have some
bounded parallelism polylog(B) while adversarial parties may have parallelism
poly(B). For each step t ≤ B, we require the following properties to hold:

8

• Completeness: xt can be verified as the tth state in time polylog(t).
• Adaptive Soundness: Any value x′t 6= xt computed by an adversarial

party will not verify as the tth state (even when the starting point x0 is
chosen adaptively). That is, each state is (computationally) unique.

• Iteratively Sequential: Given an honestly sampled x0, adversarial parties
cannot compute xt in time (1 − ε) · t · `, where ` is the time for an honest
party to compute a step of the computation.

We require adaptive soundness due to the distributed nature of a cVDF. In
particular, suppose a new party starts computing the cVDF after t steps have
elapsed. Then, xt is the effective starting point for that party, and they may
compute for t′ more steps to obtain a state xt+t′ . We want to ensure that sound-
ness holds for the computation from xt to xt+t′ , so that the next party that
starts at xt+t′ can trust the validity of xt+t′ . Note that the above definition does
not contain any proofs, but instead the states are verifiable by themselves. In
terms of plain VDFs, this verifiability condition is equivalent to the case where
the VDF is unique, meaning that the proofs are empty or included implicitly in
the output.

To construct a cVDF, we start with a plain VDF. For simplicity in this
overview, we assume that this underlying VDF is unique.

A first attempt. The näıve approach for using a VDF to construct a cVDF
is to iterate the VDF as a chain of computations. For any “base difficulty” T ,
which will be the time to compute a single step, we can use a VDF to do the
computation from x0 to xT with an associated proof of correctness π0→T . Then,
we can start a new VDF instance starting at xT and compute until x2T with a
proof of correctness πT→2T . At this point, anyone can verify that x2T is correct
by verifying both π0→T and πT→2T . We can continue this process indefinitely.

This solution has the property that after t steps, another party can pick
up the current value xt·T , verify it by checking each of the proofs computed so
far, and then continue the VDF chain. In other words, there is no unverified
internal state after t steps of the computation. Still, this näıve solution has the
following major drawback (violating completeness). The final proof π(t−1)·T→t·T
only certifies that computing a step from x(t−1)·T results in xt·T and does not
guarantee anything about the computation from x0 to x(t−1)·T . As such, we need
to retain and check all proofs π0→T , . . . , π(t−1)·T→t·T computed so far to be able
to verify xt·T . Therefore, both the proof size and verification time scale linearly
with t. We note that this idea is not new (e.g., see [10]), but nevertheless it does
not solve our problem. Wesolowski [45] partially addresses this issue by showing
how to aggregate proofs so the proof size does not grow, but the verification
time in his protocol still grows.

One possible idea to overcome the blowup mentioned above is to use generic
proof merging techniques. These can combine two different proofs into one that
certifies both but whose size and verification time are proportional to that of
a single one. Such techniques were given by Valiant [44] and Chung et al. [17].
However, being generic, they rely on strong assumptions and do not give the

9

properties that we need (for example, efficiency and uniqueness). We next look
at a promising—yet failed—attempt to overcome this.

A logarithmic approach. Since we can implement the above iterated strat-
egy for any fixed interval T , we can simply run logB many independent iterated
VDF chains in parallel at the intervals T = 1, 2, 4, . . . , 2logB . Now say that we
want to prove that x11 is the correct value eleven steps from the starting point
x0. We just need to verify the proofs π0→8, π8→10, and π10→11. For any number
of steps t, we can now verify xt by verifying only log(t) many proofs, so we have
resolved the major drawbacks! Furthermore, the prover can maintain a small
state at each step of the computation by “forgetting” the smaller proofs. For
example, after completing a proof π0→2T of size 2T , the prover no longer needs
to store the proofs π0→T and πT→2T .

Unfortunately, we have given up the distributed nature of a continuous VDF.
Specifically, completeness fails to hold. Each “step” of the computation that the
prover does to compute xt with its associated proofs is no longer an independent
instance of a single VDF computation. Rather, upon computing xt, the current
prover has some internal state for all of the computations which have not yet
completed at step t. Since a VDF only provides a way to prove that the output
of each VDF instance is correct, then a new party who wants to pick up the
computation has no way to verify the internal states of the unfinished VDF
computations. As a result, this solution only works in the case where there is
one trusted party maintaining the state of all the current VDF chains over a
long period of time. In contrast, a cVDF ensures that there is no internal state
at each step of the computation (or equivalently that the internal state is unique
and can be verified as part of the output).

At an extremely high level, our continuous VDF builds off of this failed
attempt when applied to the protocol of Pietrzak [40]. We make use of the alge-
braic structure of the underlying repeated squaring computation to ensure that
the internal state of the prover is verifiable at every step and can be efficiently
continued.

2.1 Adapting Pietrzak’s VDF

We next give a brief overview of Pietrzak’s sumcheck-style interactive protocol
for repeated squaring and the resulting VDF. Let N = p · q where p and q are
safe primes and consider the language

LN,B = {(x, y, t) | x, y ∈ Z?N and y = x2
t

mod N and t ≤ B}

that corresponds to valid repeated squaring instances with at most B exponen-
tiations (where we think of B as smaller than the time to factor N). In order
for the prover to prove that (x, y, t) ∈ LN,B (corresponding to t steps of the

computation), it first computes u = x2
t/2

. It is clearly enough to then prove that

u = x2
t/2

and that u2
t/2

= y. However, recursively proving both statements sepa-
rately is too expensive. The main observation of Pietrzak is that using a random

10

challenge r from the verifier, one can merge both statements into a single one

ury = (xru)2
t/2

which is true if and only if the original two statements are true

(with high probability over r). We emphasize that proving that ury = (xru)2
t/2

has the same form as our original statement, but with difficulty t/2. This proto-
col readily gives a VDF by applying the Fiat-Shamir heuristic [24] on the log2B
round interactive proof.

From the above, it is clear that the only internal state that the prover needs

to maintain in Pietrzak’s VDF consists of the midpoint u = x2
t/2

and the output
y = x2

t

. Thus, if we want another party to be able to pick up the computation
at any time, we need to simultaneously prove the correctness of u in addition
to y. Note that proving the correctness of u just requires another independent
VDF instance of difficulty t/2. This results in a natural recursive tree-based
structure where each computation of t steps consists of proving three instances

of size t/2: u = x2
t/2

, y = u2
t/2

, and ury = (xru)2
t/2

. Consequently, once these
three instances are proven, it directly gives a proof for the “parent” instance
x2

t

= y. Note that this parent proof only need to consist of u, y, and a proof

that ury = (xru)2
t/2

(in particular, it does not require proofs of the first two
sub-computations, since they are certified by the proof of the third).

This suggests a high-level framework for making the construction continuous:
starting at the root where we want to compute x2

t

, recursively compute and
prove each of the three sub-instances. Specifically, each step of the cVDF will be
a step in the traversal of this tree. At any point when all three sub-instances of
a node have been proven, merge the proofs into a proof of the parent node and
“forget” the proofs of the sub-instances. This has the two desirable properties
we want for a cVDF—first, at any point a new party can verify the state before
continuing the computation, since the state only contains the nodes that have
been completed; second, due to the structure of the proofs, the proof size at any
node is bounded roughly by the height of the tree and hence avoids a blowup in
verification time.

Proof merging. The above approach heavily relies on the proof merging tech-
nique discussed above, namely that proofs of sub-instances of a parent node can
be efficiently merged into a proof at that parent node. We obtain this due to the
structure of the proofs in Pietrzak’s protocol. We note that similar proof merg-
ing techniques for specific settings were recently given by Döttling et al. [21] (in
the context of incremental PoSW) and Choudhuri et al. [15] (in the context of
constructing a hard rSVL instance). While their constructions are conceptually
similar to ours, our construction for a cVDF introduces many challenges in order
to achieve both uniquely verifiable states and a tight gap between honest and
malicious evaluation. Döttling et al. [21] build on the Cohen and Pietrzak [18]
PoSW and use a tree-based construction to make it incremental. At a high level,
[18] is a PoSW based on a variant of Merkle trees, where the public verification
procedure consists of a challenge for opening a random path in the tree and
checking consistency. The main idea of Döttling et al. is to traverse the tree in
a certain way and remember a small intermediate state which enables them to

11

continue the computation incrementally. Moreover, they provide a proof at each
step by creating a random challenge which “merges” previously computed chal-
lenges. The resulting construction is only a PoSW (where neither the output nor
the proof are unique) and therefore does not suffice for our purpose. Choudhuri
et al. [15] show how to merge proofs in the context of the #SAT sum-check proto-
col. There, they modify the #SAT proof system to be incremental by performing
many additional recursive sub-computations, which is sufficient for their setting
but in ours would cause a large gap between honest and malicious evaluation.
We note that our method of combining proofs by proving a related statement is
reminiscent of the approach of [15].

Before discussing the technical details of our tree-based construction, we first
go over modifications we make to Pietrzak’s interactive protocol. Specifically,
we discuss adaptive soundness, and we show how to achieve tight sequentiality
(meaning that for any T , computing the VDF with difficulty T cannot be done
significantly faster than T) in order to use it for our cVDF.

Achieving adaptive soundness. In order to show soundness, we requires
the verifier to be able to efficiently check that the starting point of any compu-
tation is a valid generator of QRN . To achieve this, we use the fact that there
is an efficient way to test if x generates QRN given the square root of x (see
Fact 3.6). As a result, we work with the square roots of elements in our proto-
col, which slightly changes the language. Namely, x, y are now square roots and
(x, y, t) ∈ LN,B if (x2)2

t

= y2 mod N .10 We note that, following [40], working
in QR+

N , the group of signed quadratic residues, would also give adaptive sound-
ness (without including the square roots). This holds as soundness of Pietrzak’s
protocol can be based on the low order assumption, and QR+

N has no low order
elements [11].11

Bounding the fraction of intermediate proofs. Recall that to compute
y = x2

t

using the VDF of Pietrzak for our proposed cVDF, the honest party
recursively proves three different computations of t/2 squarings, so that each
step will be verifiable. This results in computing for at least time tlog2 3, since it
corresponds to computing the leaves of a ternary tree of depth log2(t), and each
leaf requires a squaring. Note that this does not even consider the overhead of
computing each proof, only the squarings. However, an adversary (even without
parallelism) can shortcut this method and compute the underlying VDF to prove

that y = x2
t

by computing roughly t squarings (and then computing the proof,
which has relatively low overhead).

We deal with this issue by reducing the fraction of generating the interme-
diate proofs in Pietrzak’s protocol. Our solution is to (somewhat paradoxically)

10 Giving the square root x is the cause of our computational uniqueness guarantee,
since a different square root for x2 would verify. As mentioned, working over QR+

N

would prevent this attack and give information theoretic uniqueness, as in [40].
11 We thank the anonymous EUROCRYPT reviewers for pointing out that Pietrzak’s

protocol satisfies adaptive soundness using QR+
N .

12

modify Pietrzak’s protocol to keep additional state, which we will need to verify.
Specifically, we observe that t squarings can be split into k different segments.
To prove that y = x2

t

, the prover splits the computation into k segments each
with difficulty t/k:

x1 = x2
t/k

, x2 = x2
2t/k

, . . . , xk−1 = x2
(k−1)t/k

, xk = x2
t

= y.

Using a random challenge (r1, . . . , rk) from the verifier, we are able to combine

these k segments into a single statement (
∏k
i=1(xi−1)ri)t/k =

∏k
i=1(xi)

ri (where
x0 = x) which is true if and only if all of the segments are true (with high prob-
ability over the challenge). We call the combined statement the sketch.12 Now
in the recursive tree-based structure outlined above, a computation of t steps
consists of proving k+ 1 instances of size t/k. By choosing k to be proportional
to the security parameter λ, the total fraction of extra proofs in the honest com-
putation of t steps is now sublinear in t. As an additional benefit when k = λ,
we note that the interactive protocol has logλB ∈ O(1) rounds if B is a fixed
polynomial in λ (as opposed to O(log λ) rounds when k = 2 corresponding to
Pietrzak’s protocol). Applying the Fiat-Shamir heuristic to a constant-round
protocol is a more standard assumption.13

Bounding the overhead of each step. Even though we have bounded the
total fraction of extra nodes that the honest party has to compute, this does
not suffice to achieve the tight gap between honest and adversarial computation
for our proposed cVDF. Specifically, the honest computation has an additive
(fixed) polynomial overhead λd—for example, to check validity of the inputs
and sometimes compute the sketch node—an adversary does not have to do so
at each step. To compensate for this, we make each base step of the cVDF larger:
namely, we truncate the tree. The effect of this is that a single step now takes
time λd

′
for d′ > d.

2.2 Constructing a Continuous VDF

As outlined above, our main insight is designing a cVDF based on a tree structure
where each intermediate state of the computation can be verified and proofs of
the computation can be efficiently merged. More concretely, the steps of compu-
tation correspond to a specific traversal of a (k+1)-ary tree of height h = logk B.
Each node in the tree is associated to a statement (x, y, t, π) for the underlying

VDF, where y = x2
t

and π is the corresponding proof of correctness. We call x
the node’s input, y its output, π the proof, and t the difficulty. The difficulty is
determined by its height in the tree, namely, a node at distance l from the root
has difficulty t = kh−l (so nodes closer to the leaves take less time to compute).

12 The name sketch is inspired by the notion of a sketch in algorithms, which refers to
a random linear projection.

13 We are talking about an instantiation of the VDF in the plain model using a concrete
hash function. The resulting VDF is provably secure in the random oracle model for
any k.

13

In more detail, the tree is defined as follows. Starting at the root with input
x0 and difficulty t = kh, we divide it into k segments x1, . . . , xk, analogous to our
VDF construction. These form the inputs and outputs of its first k children: its
ith child will have input xi−1 and output xi, and requires a proof that (xi−1)t/k =
xi. Its (k + 1)-st child corresponds to the sketch, namely a node where the
k statements of the siblings are merged into a single statement. Recursively
splitting statements this way gives the statement at each node in the tree, until
reaching the leaves where squaring can be done directly. Note that with this
structure, only the leaves require computation—the statement of nodes at greater
heights can be deduced from the statements of their children (which gives us a
way to efficiently merge proofs “up” the tree as we described above).

As a result, we would like each step of computation in the cVDF to correspond
to computing the statement of a single leaf. Accomplishing this requires being
able to compute the input x of the leaf from the previous state (from which y
can be computed via squaring). By the structure of our tree, we observe that
this only requires knowing a (small) subset of nodes that were already computed,
which we call the frontier. The frontier of a leaf s, denoted frontier(s), contains all
the left siblings of its ancestors, including the left siblings of s itself.14 Therefore,
a state in the computation contains a leaf label s and the statements associated
with the nodes in frontier(s), which contains at most k · logk(B) nodes. A single
step of our continuous VDF, given a state v = (s, frontier(s)), first verifies v and
then computes the next state v′ = (s′, frontier(s′)) where s′ is the next leaf after
s. See Figure 1 for an illustration of computing the next state.

This is the basic template for our continuous VDF. Next, we discuss some of
the challenges that come up related to efficiency and security.

Ensuring the iteratively sequential property. Recall that we want to ob-
tain a tight gap between honest and malicious evaluation of the continuous VDF
for any number of steps. A priori, it seems that computing a sketch for each node
in the tree adds a significant amount of complexity to the honest evaluation. To
illustrate this, suppose a malicious evaluator wants to compute the statement
(x, y, t, π) at the root. This can be done by skipping the sketch nodes for inter-

mediate states and only computing a proof for the final output y = x2
t

, which
in total involves t squarings (corresponding to computing the leaves of a k-ary
tree of height logk t) along with the sketch node for the root. However, for an
honest evaluator, this requires computing (k + 1)logk t leaf nodes (correspond-
ing to every leaf in a (k + 1)-ary tree of height logk t). Therefore, the ratio is
α = ((k+1)/k)logk t. In order to get the tight gap, we choose k to be proportional
to the security parameter so that α = (1 + o(1)) · t. This change is crucial (as
we eluded towards above), as otherwise if k is a constant, the relative overhead
would be significant. Indeed, in Pietrzak’s protocol, k = 2 and computing the
sketch node constitutes a constant fraction of the computation.

14 The term frontier is standard in the algorithms literature. Many other names have
been used to describe this notion, such as dangling nodes in [17] and unfinished
nodes in [21].

14

2.3 The Efficiency of our Construction

In this section, we briefly compare the efficiency of our constructions to previous
ones which are based on repeated squaring. Specifically, we discuss Wesolowki’s
VDF [45] (denoted WVDF), Pietrzak’s VDF [40] (denoted PVDF), in com-
parison to our cVDF using a tree of arity k (denoted k-cVDF) and the VDF
underlying it (denoted k-VDF), which is simply Pietrzak’s VDF with arity k.

For proof length corresponding to t squares, the WVDF proof is just a single
group element, and the PVDF proof consists of log2(t) group elements. For the
k-VDF, generalizing Pietrzak’s VDF to use a tree with arity k results in a proof
with (k − 1) · logk(t) group elements. Finally, the k-cVDF output consists of a
frontier with at most (k − 1) proofs for a k-VDF in each of logk(t) levels of the
tree, resulting in (k−1)2(logk(t))2 group elements. In all cases, verifying a proof
with n group elements requires doing O(n · λ) squares. For prover efficiency, the
honest prover can compute the proof in the time to do t(1 + o(t)) squares (when
t ∈ poly(λ) and k ∈ Ω(log λ) for the k-cVDF).

In the full cVDF construction, we set k to be equal to λ for simplicity, but as
the above shows, different values of k give rise to different efficiency trade-offs.

3 Preliminaries

In this section, we give relevant definitions and notation. Additional preliminar-
ies, including definitions of interactive protocols and the Fiat-Shamir heuristic,
are deferred to the full version.

3.1 Verifiable, Sequential, and Iteratively Sequential Func-
tions

In this section, we define different properties of functions which will be useful in
subsequent sections when we define unique VDFs (Definition 5.1) and continuous
VDFs (Definition 6.1). All of our definitions will be in the public parameter
model. We start by defining a verifiable function.

Definition 3.1 (Verifiable Functions). Let B : N→ N. A B-sound verifiable
function is a tuple of algorithms (Gen,Eval,Verify) where Gen is PPT, Eval is de-
terministic, and Verify is deterministic polynomial-time, satisfying the following
property:

• Perfect Completeness. For every λ ∈ N, pp ∈ Supp
(
Gen(1λ)

)
, and x ∈

{0, 1}∗, it holds that

Verify(1λ, pp, x,Eval(1λ, pp, x)) = 1.

• B-Soundness. For every non-uniform algorithm A = {Aλ}λ∈N such that
size(Aλ) ∈ poly(B(λ)) for all λ ∈ N, there exists a negligible function negl
such that for every λ ∈ N it holds that

Pr

[
pp← Gen(1λ)
(x, y)← Aλ(pp)

: Verify(1λ, pp, x, y) = 1 ∧ Eval(1λ, pp, x) 6= y

]
≤ negl(λ).

15

(0) (1) (2)

(3) (4) (5)

x, x2
D
, π

x2
D
, x2

2D
, π

x, x2
D
, π

x2
2D
, x2

3D
, π

x2
D
, x2

2D
, π

x, x2
D
, π

x, x2
3D
, π x, x2

3D
, π

x2
3D
, x2

4D
, π

Fig. 1. The first six states of our continuous VDF with k = 3 and base dif-
ficulty D = kd

′
for a constant d′. In each tree, the segment nodes are given

by solid lines and the sketch nodes by dashed lines. The yellow node is the
current leaf, and the pink nodes are its frontier. The values in blue are contain
(x, y, π) for the corresponding node. The proofs π at leaf nodes with input x

and output y correspond to the underlying VDF proof that x2
D

= y, and the
proofs at each higher node consist of its segments (outputs of k first children)
and of the proof of the sketch node (the (k + 1)st child).

Next, we define a sequential function. At a high level, this is a function f
implemented by an algorithm Eval that takes input (x, t), such that comput-
ing f(x, t) requires time roughly t, even with parallelism. Our formal definition
is inspired by [10]. Intuitively, it requires that any algorithm A0,λ which first
pre-processes the public parameters cannot output a circuit A1 satisfying the
following. Upon receipt of a freshly sampled input x, A1 outputs a value y and
a difficulty t, where y is the output of Eval on x for difficulty t, where t is suf-
ficiently larger than its depth. This captures the notion that A1 manages to
compute y in less than t time, even with large width.

Definition 3.2. Let D,B, ` : N→ N and let ε ∈ (0, 1). A (D,B, `, ε)-sequential
function is a tuple (Gen,Sample,Eval) where Gen and Sample are PPT, Eval is
deterministic, and the following properties hold:

• Honest Evaluation. There exists a uniform circuit family {Cλ,t}λ,t∈N such

that Cλ,t computes Eval(1λ, ·, (·, t)), and for all sufficiently large λ ∈ N and
D(λ) ≤ t ≤ B(λ), it holds that depth(Cλ,t) = t · `(λ) and width(Cλ,t) ∈
poly(λ).

• Sequentiality. For all non-uniform algorithms A0 = {A0,λ}λ∈N such that
size(A0,λ) ∈ poly(B(λ)) for all λ ∈ N, there exists a negligible function negl

16

such that for every λ ∈ N,

Pr

pp← Gen(1λ)
A1 ← A0,λ(pp)
x← Sample(1λ, pp)
(t, y)← A1(x)

:
Eval(1λ, pp, (x, t)) = y
∧ depth(A1) ≤ (1− ε) · t · `(λ)
∧ t ≥ D(λ)

 ≤ negl(λ).

Next, we define an iteratively sequential function. This is a function f imple-
mented by an algorithm Eval, such that the t-wise composition of f cannot be
computed faster than computing f sequentially t times, even using parallelism.
We also require that the length of the output of f is bounded, so that it does
not grow with the number of compositions.

Definition 3.3 (Iteratively Sequential Function). Let D,B, ` : N → N be
functions and let ε ∈ (0, 1). A tuple of algorithms (Gen,Sample,Eval) is a (D,B,
`, ε)-iteratively sequential function if Gen and Sample are PPT, Eval is deter-
ministic, and the following properties hold.

• Length Bounded. There exists a polynomial m such that for every λ ∈ N
and x ∈ {0, 1}∗, it holds that

∣∣Eval(1λ, pp, x)
∣∣ ≤ m(λ). We define Eval(·) to be

the function that takes as input 1λ, pp, and (x, T) and represents the T -wise
composition given by

Eval(T)(1λ, pp, x)
def
= Eval(1λ, pp, ·) ◦ . . . ◦ Eval(1λ, pp, ·)︸ ︷︷ ︸

T times

(x)

and note that this function is also length bounded.
• Iteratively sequential. The tuple (Gen,Sample,Eval(·)) is a (D,B, `, ε)-

sequential function.

Remark 3.4 (Decoupling size and depth). We note that one can also consider a
generalization of a (D,B, `, ε)-sequential function to a (D,U,B, `, ε)-sequential
function (and thus iteratively sequential functions), where the size of A0,λ re-
mains bounded by poly(B(λ)), but the parameter t output by A1 must be at
most U(λ).

3.2 Repeated Squaring Assumption

The repeated squaring assumption (henceforth, the RSW assumption15) roughly
says that there is no parallel algorithm that can perform t squarings modulo an
RSA integer N significantly faster than just performing t squarings sequentially.
This implicitly assumes that N cannot be factored efficiently. This assumption
has been very useful for various applications (e.g., time-lock puzzles [43], reliable
benchmarking [13], and timed commitments [12, 34] and to date there is no
known strategy that beats the naive sequential one.

Define RSW = (RSW.Gen,RSW.Sample,RSW.Eval) as follows.

15 The assumption is usually called the RSW assumption after Rivest, Shamir, and
Wagner who used it to construct time-lock puzzles [43].

17

• N ← RSW.Gen(1λ):
Sample random primes p′, q′ from [2λ, 2λ+1) such that p = 2p′ + 1 and
q = 2q′ + 1 are prime, and output N = p · q.

• x← RSW.Sample(1λ, N):
Sample and output a random element g ← Z?N .

• y ← RSW.Eval(1λ, N, g):
Output y = g2 mod N .

Assumption 3.5 (RSW Assumption). Let D,B : N → N. The (D,B)-RSW
assumption is that there exists a polynomial ` ∈ N → N and constant ε ∈ (0, 1)
such that RSW is a (D,B, `, ε)-iteratively sequential function.

Note that the RSW assumption implies that factoring is hard. Namely, no
adversary can factor an integer N = p · q where p and q are large “safe” primes
(a prime p is safe if p − 1 has two factors, 2 and p′, for some prime number
p′ ∈ [2λ, 2λ+1)).

3.3 Number Theory Facts

For N ∈ N and any x ∈ ZN , we use the notation |x|N to denote min{x,N − x}.
Next, we state three standard useful facts. The proofs are deferred to the full
version.

Fact 3.6. Let N ∈ Supp
(
RSW.Gen(1λ)

)
. Then, for µ ∈ Z?N , it holds that 〈µ〉 =

QRN if and only if there exists an x ∈ Z?N such that µ = x2 and gcd(x±1, N) = 1.

Fact 3.7 ([41]). There exists a polynomial time algorithm A such that for any

λ ∈ N, N in the support of RSW.Gen(1λ), and µ, x, x′ ∈ ZN , if µ = x2 = x′
2

and x′ 6∈ {x,−x}, then A(1λ, N, (µ, x, x′)) outputs (p, q) such that N = p · q.
Fact 3.8. Let N ∈ Supp

(
RSW.Gen(1λ)

)
and let 〈x〉 = QRN . Then, for any

i ∈ N, it holds that 〈x2i〉 = QRN .

4 Interactive Proof for Repeated Squaring

In this section, we give an interactive proof for a language representing t repeated
squarings. As discussed in Section 2, this protocol is based on that of [40]. We
start with an overview. The common input includes an integer t and two values
x̂0, ŷ ∈ Z?N , where, for the purpose of this overview, the goal is for the prover to

convince the verifier that ŷ = (x̂0)2
t

mod N . The protocol is defined recursively.
Starting with a statement (x̂0, ŷ, t), where we assume for simplicity that t

is a power of k, the prover splits x0 into k “segments”, where each segment
is t/k “steps” of the computation of (x̂0)2

t

mod N . The ith segment is recur-

sively defined as the value (x̂i−1)2
t/k

. In other words, x̂i = (x̂0)2
i·t/k

for all
i ∈ {0, 1, . . . , k}. If one can verify the values of x̂1, . . . , x̂k, then one can also

readily verify that ŷ = (x̂0)2
t

mod N . To verify the values of x̂1, . . . , x̂k effi-
ciently we rely on interaction and require the prover to convince the verifier that

18

the values x̂1, . . . , x̂k are consistent (in some sense) under a random linear rela-
tion. To this end, the prover and verifier engage in a second protocol to prove a
modified statement (x̂′0, ŷ

′, t/k) which combines all the segments and should only
be true if all segments are true (with high probability). The modified statement
is proved in the same way, where the exponent t/k is divided by k with each new
statement. This process is continued logk t times until the statement to verify
can be done by direct computation.

For soundness of our protocol, we need to bound the probability of a cheating
prover jumping from a false statement in the beginning of the protocol to a true
statement in one of the subsequent protocols. One technical point is that to
accomplish this, we work in the subgroup QRN of Z?N and thus we want the
starting point x̂0 to generate QRN . To accommodate this, we let the prover
provide a square root of every group element as a witness to the fact that it is
in QRN (actually, by Fact 3.8, this will imply that all group elements generate
QRN). Therefore, rather than working with x̂0 and ŷ directly, we work with
their square roots x0 and y, respectively. Hence, the common input consists of
an integer t and (x0, y), where the goal is actually to prove that y2 = (x20)2

t

=

x2
t+1

0 mod N .
Note that, in general, the square root x0 is not unique in Z?N for a given

square x20. Indeed, there are 4 square roots ±x0,±x′0. In our protocol, the com-
putationally bounded prover can compute only two of them, either ±x0 or ±x′0,
as otherwise, by Fact 3.7 we could use the prover to factor N . Among the two
square roots that the prover can compute, we canonically decide that the prover
must use the smaller one. This gives rise to our definition of a valid element x:
x2 mod N generates QRN and x = |x|N , formally defined in Definition 4.1.

4.1 Protocol

Before presenting the protocol, we first define the language. Toward that goal,
we start with the formal definition of a valid element.

Definition 4.1 (Valid element). For any N ∈ N and x ∈ {0, 1}∗, we say
that x is a valid element if x ∈ Z?N , 〈x2〉 = QRN , and x = |x|N . We say that
a sequence of elements (x1, . . . , x`) is a valid sequence if each element xi is a
valid element.

By Fact 3.6, whenever N is in the support of RSW.Gen(1λ), validity can be
tested in polynomial time by verifying that x = |x|N , and that gcd(x±1, N) = 1
(and outputting 1 if and only if all checks pass). This algorithm naturally extends
to one that receives as input a sequence of pairs and verifies each separately.

The language for our interactive proof, LN,B , is parametrized by integers
N ∈ Supp

(
RSW.Gen(1λ)

)
and B = B(λ), and it is defined as:

LN,B =

{
(x0, y, t) :

y2 = (x0)2
t+1

mod N if x0 is valid and t ≤ B,
y = ⊥ otherwise

}
.

Intuitively, LN,B should be thought of as the language of elements x0, y where

x0 is valid and x2
t+1

0 = y2 mod N . To be well-defined on any possible statement

19

Interactive Proof Πλ,k,d = (P, V) on Common Input (x0, y, t)

Prover P → Verifier V :
1. If x0 is an invalid element (Definition 4.1), t ≤ kd, or t > B, send

msgP = ⊥ to V .

2. Otherwise, for i ∈ [k − 1], compute xi = |x2i·t/k0 |N .
3. Send msgP = (x1, . . . , xk−1) to V .

Verifier V → Prover P :
1. If x0 is an invalid element or t > B, output 1 if msgP = y = ⊥ and 0

otherwise.
2. If |y|N is invalid, output 0.

3. If t ≤ kd, output 1 if both y2 = (x0)2
t+1

mod N and msgP = ⊥ and
output 0 otherwise.

4. Output 0 if msgP is an invalid sequence.
5. Send msgV = (r1, . . . , rk)← [2λ]k to P .

Prover P ↔ Verifier V :
1. Let x′0 = |∏k

i=1 x
ri
i−1|N and y′ = |∏k

i=1 x
ri
i |N , where xk = y. Note

that both P and V can efficiently compute x′0, y
′ given msgP , msgV ,

and the common inputs. If x′0 is invalid, let y′ = ⊥.
2. Output the result of Πλ,k,d on common input (x′0, y

′, t/k).

Fig. 2. Interactive Proof Πλ,k,d for LN,B

with x0, y ∈ Z?N and t ∈ N, we include statements with invalid elements x0 in
the language. Since the verifier can test validity efficiently, this language still
enforces that valid elements represent repeated squaring.

Our protocol Πλ,k,d, given in Figure 2, is parametrized by the security pa-
rameter λ, as well as integers k = k(λ) and d = d(λ), where k is the number of
segments into which we split each statement and d is a “cut-off” parameter that
defines the base of the recursive protocol.

We show the following theorem, stating that Πλ,k,d is an interactive proof
for the language LN,B , by showing completeness and soundness. Furthermore,
we prove an additional property which roughly shows that any cheating prover
cannot deviate in a specific way from the honest prover strategy even for state-
ments in the language. Due to lack of space, the proof is deferred to the full
version.

Theorem 4.2. For any λ ∈ N, k = k(λ), d = d(λ), B = B(λ), and N ∈
Supp

(
RSW.Gen(1λ)

)
, the protocol Πλ,k,d (given in Figure 2) is a (logk(B)−d) ·

3/2λ-sound interactive proof for LN,B.

5 Unique Verifiable Delay Function

In this section, we use the Fiat-Shamir heuristic to transform the interactive
proof for the language LN,B corresponding to repeated squaring (given in Sec-
tion 4) into a unique VDF.

20

Definition 5.1 (Unique Verifiable Delay Function). A (D,B, `, ε)-unique
verifiable delay function (uVDF) is a tuple (Gen,Sample,Eval,Verify) where Eval
outputs a value y and a proof π, such that (Gen,Sample,Eval) is a (D,B, `, ε)-
sequential function and (Gen,Eval,Verify) is a B-sound verifiable function.

5.1 Construction

For parameters k, d we define (PFS, VFS) to be the result of applying the Fiat-
Shamir transformation to the protocol Πλ,k,d for LN,B relative to some hash
family H. At a high level, this construction computes repeated squares and then
uses PFS and VFS to prove and verify that this is done correctly.

We start by defining helper algorithms in Figure 3 based on the interactive
protocol of Section 4. For notational convenience, we explicitly write algorithms
FS-Prove and FS-Verify, which take pp = (N,B, k, d, hash) as input, as well as
((x0, t), y), where (N,B, k, d) correspond to the parameters of the non-interactive
protocol and language, hash is the hash function sampled from the hash family
H when applying the FS transform to Πλ,k,d, and ((x0, t), y) correspond to the
statements of the language. We additionally define an efficient algorithm Sketch
that outputs the statement for the recursive step in the interactive proof Πλ,k,d.

We emphasize that the algorithms in Figure 3 are a restatement of the inter-
active protocol from Section 4 after applying the FS transform, given here only
for ease of reading.

Sketch(pp, (x0, t), y,msg):
1. Parse msg = (x1, . . . , xk−1) and let xk = y.
2. Let (r1, . . . , rk) = hash(pp, (x0, t), y,msg).
3. Let x′0 = |∏k

i=1 x
ri
i−1|N and y′ = |∏k

i=1 x
ri
i |N .

4. If x′0 is invalid, let y′ = ⊥.
5. Output (x′0, y

′).
FS-Prove(pp, (x0, t), y):

1. If x0 is an invalid element (Definition 4.1), t ≤ kd, or t > B, output
⊥.

2. Let msg = (x1, . . . , xk−1) where xi = |(x0)2
i·t/k |N .

3. Compute (x′0, y
′) = Sketch(pp, (x0, t), y,msg).

4. Output π = (msg, π′) where π′ = FS-Prove(pp, (x′0, t/k), y′).
FS-Verify(pp, (x0, t), y, π):

1. If x0 is an invalid element or t > B, output 1 if y = π = ⊥ and 0
otherwise.

2. If |y|N is an invalid element, output 0.

3. If t ≤ kd, output 1 if both y2 = (x0)2
t+1

mod N and π = ⊥ and
output 0 otherwise.

4. Parse π as (msg, π′), and output 0 if msg is an invalid sequence.
5. Compute (x′0, y

′) = Sketch(pp, (x0, t), y,msg).
6. Output FS-Verify(pp, (x′0, t/k), y′, π′).

Fig. 3. Helper Algorithms for VDF for pp = (N,B, k, d, hash).

21

Next, we give a construction uVDF of a unique VDF consisting of algo-
rithms (uVDF.Gen, uVDF.Sample, uVDF.Eval, uVDF.Verify) relative to a function
B : N→ N.

• pp← uVDF.Gen(1λ):

Sample N ← RSW.Gen(1λ), hash ← H, let k = λ, B = B(λ), and let d be
a constant which will be specified in the proof of sequentiality (in the full
version), and output pp = (N,B, k, d, hash).

• x0 ← uVDF.Sample(1λ, pp):

Sample and output a random element x0 ← Z?N such that gcd(x0±1, N) = 1
and x0 = |x0|N .16

• (y, π)← uVDF.Eval(1λ, pp, (x0, t)):

If x0 is an invalid element, output (⊥,⊥). If t ≤ kd, compute y = |x2t0 |N and
output (y,⊥).
Otherwise, compute xi = |(x0)i·t/k|N for i ∈ [k] and let msg = (x1, . . . , xk−1)
and y = xk. Let (x′0, y

′) = Sketch(pp, (x0, t), y,msg). Finally, output (y, π)
where π = (msg, π′) and π′ = FS-Prove(pp, (x′0, t/k), y′).

• b← uVDF.Verify(1λ, pp, (x0, t), (y, π)):

If x0 is an invalid element or t > B, output 1 if y = π = ⊥ and 0
if this is not the case. If y is invalid, then output 0. Otherwise, output
FS-Verify(pp, (x0, t), y, π).

We prove the following theorem. Due to lack of space, the proof is deferred
to the full version.

Theorem 5.2. Let D,B, α : N → N be functions satisfying D(λ) ∈ ω(λ2),
B(λ) ∈ 2O(λ), and α(λ) ≤ dlogλ(B(λ))e. Suppose that the α-round strong FS as-
sumption holds and the (D,B)-RSW assumption holds for polynomial ` : N→ N
and constant ε ∈ (0, 1). Then, for any constants δ > 0 and ε′ > ε+δ

1+δ it holds that
uVDF is a (D,B, (1 + δ) · `, ε′)-unique verifiable delay function.

6 Continuous Verifiable Delay Function

In this section, we construct a cVDF. Intuitively, this is an iteratively sequential
function where every intermediate state is verifiable. Throughout this section,
we denote by Eval(·) the composed function which takes as input 1λ, pp, and
(x, T), and runs the T -wise composition of Eval(1λ, pp, ·) on input x.

We first give the formal definition of a cVDF. In the following definition,
the completeness requirement says that if v0 is an honestly generated starting
state, then the Verify will accept the state given by Eval(T)(1λ, pp, v0) for any T .
Note that when coupled with soundness, this implies that completeness holds

16 We note that x0 uniformly from Z?N is sufficient due to the following. By Fact 3.6,
it holds that uVDF.Sample will succeed whenever 〈x20〉 = QRN . Furthermore, x20 is a
random element of QRN , and therefore is a generator with probability 1−(p′+q′)/(p′·
q′) ≥ 1− 4/2λ. Also note that x0 is distributed according to RSW.Sample(1λ, N).

22

with high probability for any intermediate state generated by a computationally
bounded adversary.

Definition 6.1 (Continuous Verifiable Delay Function). Let B, ` : N→ N
and ε ∈ (0, 1). A (B, `, ε)-continuous verifiable delay function (cVDF) is a tuple
(Gen,Sample,Eval,Verify) such that (Gen,Sample,Eval) is a (1, B, `, ε)-iteratively

sequential function, (Gen,Eval(·),Verify) is a B-sound function, and it satisfies
the following completeness property:

• Completeness from Honest Start. For every λ ∈ N, pp in the support
of Gen(1λ), v0 in the support of Sample(1λ, pp), and T ∈ N, it holds that

Verify(1λ, pp, (v0, T),Eval(T)(1λ, pp, v0)) = 1.

The main result of this section is stated next.

Theorem 6.2 (Continuous VDF). Let D,B, α : N → N be functions satis-

fying B(λ) ≤ 2λ
1/3

, α(λ) = dlogλ(B(λ))e, and D(λ) ≥ λd
′

for all λ ∈ N and
for a specific constant d′. Suppose that the α-round strong FS assumption holds
and the (D,B)-RSW assumption holds for a polynomial ` : N→ N and constant
ε ∈ (0, 1). Then, for any constant δ > 0 and ε′ > ε+δ

1+δ , it holds that cVDF is a
(B, (1 + δ) ·D(λ) · `, ε′)-cVDF.

In the case where we want to have a fixed polynomial bound on the number
of iterations, we obtain the following corollary.

Corollary 6.3 (Restatement of Theorem 1.1). For any polynomials B,D
where D(λ) ≥ λd

′
for a specific constant d′, suppose the O(1)-round strong

FS assumption holds and the (D,B)-RSW assumption holds for a polynomial
` : N→ N and constant ε ∈ (0, 1). Then, for any constant δ > 0 and ε′ > ε+δ

1+δ , it
holds that cVDF is a (B, (1 + δ) ·D(λ) · `, ε′)-cVDF.

Remark 6.4 (Decoupling size and depth). The definition of a (B, `, ε)-cVDF nat-
urally extends to a (U,B, `, ε)-cVDF, where we require (Gen,Sample,Eval) to be
a (1, U,B, `, ε)-iteratively sequential function; see Remark 3.4. Our construction
will satisfy this for all functions U such that U(λ) ≤ B(λ) for all λ ∈ N. More-
over, in this case, the above corollary can be based on the strong Fiat-Shamir
assumption for dlogλ(U(λ))e rounds (rather than for dlogλ(B(λ))e rounds).

We prove Theorem 6.2 by using the unique VDF uVDF from Section 5 as
a building block. We start with some definitions which will be helpful in the
construction.

Definition 6.5 (Puzzle tree). A (ppuVDF, d
′, g)-puzzle tree for ppuVDF = (N,

B, k, d, hash) is a (k + 1)-ary tree that has the following syntax.

– Each node is labeled by a string s ∈ {0, 1, . . . , k}∗, where the root is labeled
with the empty string null, and for a node labeled s, its ith child is labeled
s||i for i ∈ {0, 1, . . . , k}. We let [s]i denote the ith character of s for i ∈ N.17

17 For ease of notation, we store s as a (k + 1)-ary string and when doing integer
operations, they are implicitly done in base (k + 1).

23

– We define the height of the tree as h = dlogk(B)e− d′ which determines dif-
ficulty at each node. Specifically, each node s is associated with the difficulty
t = kh+d

′−|s|.18

– Each node s has a value val(s) = (x, y, π), where we call x the input, y the
output, and π the proof.

The inputs, outputs, and proofs of each node are defined as follows:

– The root has input g. In general, for a node s with input x and difficulty t, its
first k children are called segment nodes and its last child is called a sketch

node. Each segment node s||i has input xi = |x2i·t/k |N and the sketch node
s||k has input x′ where (x′, ∗) = Sketch(ppuVDF, (x, t), xk, (x1, . . . , xk−1))
(given in Figure 3).

– For a node s with input x and difficulty t, its output and proof are given by
(y, π) = uVDF.Eval(ppuVDF, (x, t)).

We note that whenever we refer to a node s, we mean the node labeled by s,
and when we refer to a pair (s′, value), this corresponds to a node and associated
value (where value may not necessarily be equal to the true value val(s)).

Definition 6.6 (Left/Middle/Right Nodes). For a node with label s in a
(ppuVDF, d

′, g)-puzzle tree with s = s′||i for i ∈ {0, 1, . . . , k}, we call s a leftmost
child if i = 0, a rightmost child if i = k, and a middle child otherwise. Addi-
tionally, we define the left (resp. right) siblings of s to be the set of nodes s′||j
for 0 ≤ j < i (resp. i < j ≤ k).

Next, we define a frontier. At a high level, for a leaf s, the frontier of s will
correspond to the state of the continuous VDF upon reaching s. Specifically, it
will contain all nodes whose values have been computed at that point, but whose
parents’ values have not yet been computed.

Definition 6.7 (Frontier). For a node s in a (ppuVDF, d
′, g)-puzzle tree, the

frontier of s, denoted frontier(s), is the set of pairs (s′, val(s′)) for nodes s′ that
are left siblings of any of the ancestors of s. We note that s is included as one
of its ancestors.19

Next, we define what it means for a set to be consistent. At a high level, for a
set of nodes and values, consistency ensures that the relationship of their given
inputs and outputs across different nodes is in accordance with the definition of
a puzzle tree. If a set is consistent, it does not imply that the input-output pairs
are correct, but it implies that they “fit” together logically. Note that consistency
does not check proofs.

Definition 6.8 (Consistency). Let S be a set of pairs (s, value) for nodes s
and values value in a ((N,B, k, d, hash), d′, g)-puzzle tree. We say that (s′, (x, y))
is consistent with S if the following hold:

18 Note that since the tree has height h, this implies that each leaf has difficulty t = kd
′
.

19 It may be helpful to observe that for a leaf node s = [s]1||[s]2|| · · · ||[s]h, the frontier
contains [s]i nodes at level i for i ∈ [h].

24

1. The input x of s′ is (a) the output given for its left sibling if its left sibling
is in S and s′ is a middle child, (b) given by the sketch of its left siblings’
values if all of its left siblings are in S and s′ is a rightmost child, or (c)
defined recursively as its parent’s input if s′ is a leftmost child (where the
base of the recursion is the root with input g).

2. The output y of s′ is (a) given by the sketch of its left siblings’ values if all of
its left siblings are in S and s′ is a rightmost child, or (b) given recursively
by its parent’s output if s′ is a kth child (where, upon reaching the root
recursively, we then accept any output for s′).

We say that S is a consistent set if every node in S is consistent with S.

6.1 Construction

Before giving the cVDF construction, we give a detailed overview. At a high level,
the cVDF will iteratively compute each leaf node in a (ppuVDF, d

′, g)-puzzle tree,
where ppuVDF = (N,B, k, d, hash) are the public parameters of the underlying
uVDF and g is the starting point of the tree given by uVDF.Sample.

The heart of our construction is the cVDF.Eval functionality which takes a
state v corresponding to a leaf s in the tree and computes the next state v′ corre-
sponding to the next leaf. Each state v will be of the form (g, s, F), where s is the
current leaf in the tree and F is the frontier of s. Then, cVDF.Eval(1λ, pp, (g, s,
frontier(s)) will output (g, s+1, frontier(s+1)). There are three phases of the algo-
rithm cVDF.Eval. First, it checks that its input is well-formed. It then computes
val(s) using frontier(s), and then computes frontier(s+ 1) using both frontier(s)
and val(s). These are discussed next.

Checking that v is well-formed. Recall that v = (g, s, F) corresponds to
the node s in the tree. This state v is correct if running cVDF.Eval for s steps
(where s is interpreted as an integer in base (k+1)) starting at the leaf 0h results
in (g, s, frontier(s)). Therefore, before computing the next state, cVDF.Eval needs
to verify that the state it was given is correct. To do this, we run cVDF.Verify
with input state (g, 0h,⊥) and output state (g, s, F), and check that this is s
steps of computation.

Computing the value of s. To compute val(s), we have the following obser-
vation: for every node, its input is a function of the input of its parent and the
outputs of its left siblings. Indeed, if s is a middle child, its input is the output of
the sibling to its left (given in F). If s is a rightmost child, its input is the sketch
of the values of its left siblings (also given in F). If s is a leftmost child, its input
is input of its parent, defined recursively. Therefore, we compute its input based
on F in this manner. Then, we compute its output by running uVDF.Eval on its
input.

Computing the frontier of s + 1. The final phase of cVDF.Eval is to com-
pute the next frontier using val(s) and frontier(s). To do this, we consider the
closest common ancestor a of s and s+1 and note that by definition, frontier(a) ⊂
frontier(s+1). Moreover, its straightforward to see that frontier(s+1)\frontier(a)
only contains a node a? and its left siblings, where a? is the child of a along the

25

a

s s+1

a?

· · ·

a

s s+1

a?

· · ·

a?

Fig. 4. An example of computing frontier(s+ 1) from frontier(s) for k = 2 with nodes
s, s + 1, a?, and a given. In both graphs, the yellow node is the current node at that
point in the computation, and the nodes in gray are those whose proofs have already
been merged to proofs at their parents. In the left graph, the frontier of s is shown in
pink. The right graph is the result of merging values to obtain the frontier of s′, which
is shown in blue.

path to s. Note that when s and (s+ 1) are siblings, then a? = s, and otherwise,
it can be shown that a? is the closest ancestor of s that is not a rightmost child.

Therefore, to compute frontier(s + 1), we start by computing the value of
node a?. If a? = s, then we have already computed it, and otherwise it’s input
and output are known from its children’s values in F . Specifically, its input is
the input of its first child, and its output is the output of its kth child. These are
in F because of the definition of a?, which implies that each of its descendants
along the path to s must be rightmost children. To compute its proof, observe
that the values of s and its siblings are all known, so they can be efficiently
merged into a proof of its parent. If the parent is a?, then we are done. If not, we
can similarly merge values into a proof of the grandparent of s. We can continue
this process until we reach a?. We show how to do this by traversing the path
from s up to a? and by iteratively ”merging” values up the tree. An example
depicting s, s+ 1, a, a? is given in Section 6.1.

Formal construction. Next, we give the formal details of our construction
cVDF = (cVDF.Gen, cVDF.Sample, cVDF.Eval, cVDF.Verify).

• pp← cVDF.Gen(1λ):

Sample ppuVDF ← uVDF.Gen(1λ) where ppuVDF = (N,B, k, d, hash). Let d′

be a constant, which will be specified in the proof of iterative sequentiality
(in the full version), and set tree height h = dlogk(B)e − d′. Output pp =
(ppuVDF, d

′, h).
• v ← cVDF.Sample(1λ, pp):

Sample g ← uVDF.Sample(1λ, ppuVDF) and output v = (g, 0h, ∅).

26

• v′ ← cVDF.Eval(1λ, pp, v):

Check that v is well-formed:
1. Parse v as (g, s, F), where s is a leaf label in a (ppuVDF, g)-puzzle tree

and F is a frontier. Output ⊥ if v cannot be parsed this way.
2. Run cVDF.Verify(1λ, pp, ((g, 0h, ∅), s), (g, s, F)) to verify v. Output ⊥ if

it rejects.
Compute the value of s:

1. Compute the input x of node s as the output of the sibling to its left
(given in F) if s is a middle child, a sketch of its left siblings’ values
(given in F) if s is a rightmost child, or recursively as its parent’s input
if s is a leftmost child.

2. Compute its output and proof as (y, π) = uVDF.Eval(1λ, ppuVDF, (x, k
d′)).

Compute the frontier of s + 1:

1. Let a be the closest common ancestor of s and s + 1, and let a? be the
ancestor of s that is a child a.

2. If a? = s, compute its value as (x?, y?, π?) = (x, y, π).
3. If a? is a strict ancestor of s, let x? be the input of its leftmost child in
F , let y? be the output of its kth child in F , and let π? be ⊥ if x? is
invalid and otherwise the outputs of its first k − 1 children in F along
with the proof, computed recursively, of its child along the path to s.

4. Form the next frontier F ′ by removing all descendants of a? from F , and
adding (a?, (x?, y?, π?)).

Finally, output (g, s+ 1, F ′).
• b← cVDF.Verify(1λ, pp, (v, T), v′):

Check that v is well-formed:

Parse v as (g, s, F) where g ∈ Z?N , s is a leaf node, and F is a frontier. If v
cannot be parsed this way, then output 1 if v′ = ⊥ and 0 otherwise.
If (g, s, F) 6= (g, 0h, ∅), then verify the state v by recursively running this
verification algorithm, i.e., cVDF.Verify(1λ, pp, ((g, 0h, ∅), s), (g, s, F)). If this
rejects, then output 1 if v′ = ⊥ and 0 otherwise.
Check that v′ is correct:

Output 1 if the following checks succeed, and 0 otherwise:
1. Parse v′ as (g, s+ T, F ′) where F ′ is a frontier.
2. Check that the set of nodes in F ′ is the set of nodes in frontier(s′) (con-

sidering only node labels and not values).
3. Check that F ′ is a consistent set.20

4. For each element (s′, (x, y, π)) ∈ F ′, check that uVDF.Verify(1λ, ppuVDF,

(x, t), (y, π)) accepts, where t = kh+d
′−|s′|.

Theorem 6.9. Let D,B : N→ N where B(λ) ≤ 2λ
1/3

, D(λ) = λd
′

for all λ ∈ N
and specific constant d′. Assume that (1) the (D,B)-RSW assumption holds for

20 This can be done efficiently, since consistency of every element in F ′ can be checked
by looking at k nodes in each of the h levels of the tree and performing at most one
sketch.

27

an ε ∈ (0, 1) and a polynomial `, and (2) for any constants ε′, δ ∈ (0, 1), uVDF
(given in Section 5) is a (D,B, (1 + δ) · `, ε′)-unique VDF. Then cVDF is a

(B, (1 + δ′) ·D · `, ε′′)-cVDF for any ε′′ > ε+δ′

1+δ′ and δ′ > δ.

The proof is deferred to the full version. As a corollary, by combining Theorem 5.2
with Theorem 6.9, we obtain Theorem 6.2: a continuous VDF under the Fiat-
Shamir and the repeated squaring assumptions.

Acknowledgments. We thank Ian Miers for suggesting the name continuous
VDFs and Eylon Yogev for discussions regarding our PPAD hardness results.

This work was supported in part by NSF Award SATC-1704788, NSF Award
RI-1703846, AFOSR Award FA9550-18-1-0267, and by NSF Award DGE-1650441.
This research is based upon work supported in part by the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Research Projects Activ-
ity (IARPA), via 2019-19-020700006. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of ODNI, IARPA, or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation
therein.

References

1. Chia network. https://chia.net/, accessed: 2019-05-17
2. Ethereum foundation. https://www.ethereum.org/, accessed: 2019-05-17
3. Protocol labs. https://protocol.ai/, accessed: 2019-05-17
4. VDF research effort. https://vdfresearch.org/, accessed: 2019-05-17
5. Abbot, T., Kane, D., Valiant, P.: On algorithms for Nash equilibria (2004), http:

//web.mit.edu/tabbott/Public/final.pdf, accessed: 2019-09-18
6. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd IEEE

Symposium on Foundations of Computer Science, FOCS. pp. 106–115 (2001)
7. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.

18(4), 766–776 (1989)
8. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,

B.: Time-lock puzzles from randomized encodings. In: Innovations in Theoretical
Computer Science, ITCS. pp. 345–356 (2016)

9. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a
Nash equilibrium. In: Guruswami, V. (ed.) IEEE 56th Symposium on Foundations
of Computer Science, FOCS. pp. 1480–1498 (2015)

10. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Ad-
vances in Cryptology - CRYPTO. pp. 757–788 (2018)

11. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. IACR
Cryptology ePrint Archive 2018, 712 (2018)

12. Boneh, D., Naor, M.: Timed commitments. In: Advances in Cryptology - CRYPTO.
pp. 236–254 (2000)

13. Cai, J., Lipton, R.J., Sedgewick, R., Yao, A.C.: Towards uncheatable benchmarks.
In: 8th Structure in Complexity Theory Conference. pp. 2–11. IEEE Computer
Society (1993)

28

https://chia.net/
https://www.ethereum.org/
https://protocol.ai/
https://vdfresearch.org/
http://web.mit.edu/tabbott/Public/final.pdf
http://web.mit.edu/tabbott/Public/final.pdf

14. Chen, X., Deng, X., Teng, S.: Settling the complexity of computing two-player
Nash equilibria. J. ACM 56(3), 14:1–14:57 (2009)

15. Choudhuri, A.R., Hubáček, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: Finding a Nash equilibrium is no easier than breaking Fiat-Shamir. In: 51st
ACM SIGACT Symposium on Theory of Computing, STOC. pp. 1103–1114 (2019)

16. Choudhuri, A.R., Hubáček, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: PPAD-hardness via iterated squaring modulo a composite. IACR Cryptology
ePrint Archive 2019, 667 (2019)

17. Chung, K., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from
P-certificates. In: 54th IEEE Symposium on Foundations of Computer Science,
FOCS. pp. 50–59 (2013)

18. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Advances in Cryp-
tology - EUROCRYPT. pp. 451–467 (2018)

19. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. Commun. ACM 52(2), 89–97 (2009)

20. Döttling, N., Garg, S., Malavolta, G., Vasudevan, P.N.: Tight verifiable delay func-
tions. IACR Cryptology ePrint Archive 2019, 659 (2019)

21. Döttling, N., Lai, R.W.F., Malavolta, G.: Incremental proofs of sequential work.
In: Advances in Cryptology - EUROCRYPT. pp. 292–323 (2019)

22. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Advances
in Cryptology - CRYPTO. pp. 139–147 (1992)

23. Feo, L.D., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. IACR Cryptology ePrint Archive 2019, 166 (2019)

24. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Advances in Cryptology - CRYPTO. pp. 186–194 (1986)

25. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a Nash equilibrium. In: Advances in Cryptology - CRYPTO. pp. 579–604
(2016)

26. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
In: International Colloquium on Automata, Languages, and Programming, ICALP.
pp. 268–282 (1990)

27. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th IEEE Symposium on Foundations of Computer Science, FOCS. pp. 102–113
(2003)

28. Hubáček, P., Yogev, E.: Hardness of continuous local search: Query complexity
and cryptographic lower bounds. In: 28th ACM-SIAM Symposium on Discrete
Algorithms, SODA. pp. 1352–1371 (2017)

29. Jerschow, Y.I., Mauve, M.: Non-parallelizable and non-interactive client puzzles
from modular square roots. In: 6th International Conference on Availability, Reli-
ability and Security, ARES1. pp. 135–142. IEEE Computer Society (2011)

30. Kaliski, B.: Pkcs #5: Password-based cryptography specification version 2.0 (2000)
31. Kitagawa, F., Nishimaki, R., Tanaka, K.: Obfustopia built on secret-key functional

encryption. In: Advances in Cryptology - EUROCRYPT. pp. 603–648 (2018)
32. Komargodski, I., Segev, G.: From Minicrypt to Obfustopia via private-key func-

tional encryption. In: Advances in Cryptology - EUROCRYPT. pp. 122–151 (2017)
33. Lenstra, A.K., Wesolowski, B.: Trustworthy public randomness with sloth, unicorn,

and trx. IJACT 3(4), 330–343 (2017)
34. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-

malleable commitments from time-lock puzzles. In: 58th IEEE Symposium on
Foundations of Computer Science (FOCS). pp. 576–587 (2017)

29

35. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

36. Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of sequential
work. In: Innovations in Theoretical Computer Science, ITCS. pp. 373–388 (2013)

37. Mahmoody, M., Smith, C., Wu, D.J.: A note on the (im)possibility of verifiable
delay functions in the random oracle model. ePrint p. 663 (2019)

38. Megiddo, N., Papadimitriou, C.H.: On total functions, existence theorems and
computational complexity. Theor. Comput. Sci. 81(2), 317–324 (1991)

39. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-
cient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)

40. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical
Computer Science Conference, ITCS. pp. 60:1–60:15 (2019)

41. Rabin, M.O.: Digitalized signatures and public key functions as intractable as
factoring. Tech. rep., TR-212, LCS, MIT, Cambridge, MA (1979)

42. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2), 256–
267 (1983)

43. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996), manuscript

44. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Theory of Cryptography, TCC. pp. 1–18 (2008)

45. Wesolowski, B.: Efficient verifiable delay functions. In: Advances in Cryptology -
EUROCRYPT. pp. 379–407 (2019)

46. Zhandry, M.: The magic of ELFs. In: Advances in Cryptology - CRYPTO. pp.
479–508 (2016)

30

	Continuous Verifiable Delay Functions

