
Generic-Group Delay Functions
Require Hidden-Order Groups

Lior Rotem?,??, Gil Segev?, and Ido Shahaf?,? ? ?

School of Computer Science and Engineering,
Hebrew University of Jerusalem, Jerusalem 91904, Israel.
{lior.rotem,segev,ido.shahaf}@cs.huji.ac.il

Abstract. Despite the fundamental importance of delay functions, un-
derlying both the classic notion of a time-lock puzzle and the more recent
notion of a verifiable delay function, the only known delay function that
offers both sufficient structure for realizing these two notions and a real-
istic level of practicality is the “iterated squaring” construction of Rivest,
Shamir and Wagner. This construction, however, is based on rather strong
assumptions in groups of hidden orders, such as the RSA group (which
requires a trusted setup) or the class group of an imaginary quadratic
number field (which is still somewhat insufficiently explored from the
cryptographic perspective). For more than two decades, the challenge
of constructing delay functions in groups of known orders, admitting
a variety of well-studied instantiations, has eluded the cryptography
community.
In this work we prove that there are no constructions of generic-group
delay functions in cyclic groups of known orders: We show that for
any delay function that does not exploit any particular property of the
representation of the underlying group, there exists an attacker that
completely breaks the function’s sequentiality when given the group’s
order. As any time-lock puzzle and verifiable delay function give rise
to a delay function, our result holds for these two notions we well, and
explains the lack of success in resolving the above-mentioned long-standing
challenge. Moreover, our result holds even if the underlying group is
equipped with a d-linear map, for any constant d ≥ 2 (and even for
super-constant values of d under certain conditions).

1 Introduction

The classic notion of a time-lock puzzle, introduced by Rivest, Shamir and Wagner
[RSW96], and the recent notion of a verifiable delay function, introduced by
Boneh et al. [BBB+18], are instrumental to a wide variety of exciting applications,

? Supported by the European Union’s Horizon 2020 Framework Program (H2020) via
an ERC Grant (Grant No. 714253).

?? Supported by the Adams Fellowship Program of the Israel Academy of Sciences and
Humanities.

? ? ? Supported by the Clore Israel Foundation via the Clore Scholars Programme.

2 L. Rotem, G. Segev and I. Shahaf

such as randomness beacons, resource-efficient blockchains, proofs of replication
and computational timestamping. Underlying both notions is the basic notion
of a cryptographic delay function: For a delay parameter T , evaluating a delay
function on a randomly-chosen input should require at least T sequential steps
(even with a polynomial number of parallel processors and with a preprocessing
stage), yet the function can be evaluated on any input in time polynomial in T
(e.g., 2T or T 4).1

A delay function can be easily constructed by iterating a cryptographic
hash function, when modeled as a random oracle for proving its sequentiality.
However, the complete lack of structure that is offered by this construction renders
its suitability for realizing time-lock puzzles or verifiable delay functions rather
unclear. Specifically, for time-lock puzzles, iterating a cryptographic hash function
in general does not enable sufficiently fast generation of input-output pairs.
Similarly, for verifiable delay functions, iterating a cryptographic hash function in
general does not able sufficiently fast verification (although, asymptotically, such
verification can be based on succinct non-interactive arguments for NP languages
[Kil92, Mic94, GW11], as suggested by Döttling et al. [DGM+19] and Boneh et
al. [BBB+18]).

The only known construction of a delay function that offers both a useful
structure for realizing time-lock puzzles or verifiable delay functions and a realistic
level of practicality is the “iterated squaring” construction underlying the time-
lock puzzle of Rivest et al. [RSW96], which was recently elegantly extended
by Pietrzak [Pie19] and Wesolowski [Wes19] to additionally yield a verifiable
delay function. The iterated squaring construction, however, is based on rather
strong assumptions in groups of hidden orders such as the RSA group or the
class group of an imaginary quadratic number field. Unfortunately, RSA groups
require a trusted setup stage as the factorization of the RSA modulus serves as
a trapdoor enabling fast sequential evaluation [RSW96, Pie19, Wes19], and the
class group of an imaginary quadratic number field is not as well-studied from
the cryptographic perspective as other, more standard, cryptographic groups
[BBF18, Sec. 6].

Thus, a fundamental goal is to construct delay functions in groups of known
orders, giving rise to a variety of well-studied instantiations. In such groups,
the security of delay functions can potentially be proved either based on long-
standing cryptographic assumptions or within the generic-group model as a
practical heuristic.

1.1 Our Contributions

In this work we prove that there are no constructions of generic-group delay
functions in cyclic groups of known orders: Roughly speaking, we show that
for any delay function that does not exploit any particular property of the
representation of the underlying group, there exists an attacker that breaks the

1 We refer the reader to Section 2 for a formal definition of a delay function, obtained
as a natural relaxation of both a time-lock puzzle and a verifiable delay function.

Generic-Group Delay Functions Require Hidden-Order Groups 3

function’s sequentiality when given the group’s order. As any time-lock puzzle
and verifiable delay function give rise to a delay function, our result holds for
these two notions as well. Moreover, our impossibility result holds even if the
underlying group is equipped with a d-linear map, for any constant d ≥ 2 and
even for super-constant values of d under certain conditions as discussed below.

Our result: Attacking delay functions in known-order groups. Generic-
group algorithms have access to an oracle for performing the group operation
and for testing whether two group elements are equal, and the efficiency of such
algorithms is measured mainly by the number of oracle queries that they issue
[Nec94, Sho97, BL96, MW98, Mau05]. In the context of generic-group delay
functions, we view generic-group algorithms as consisting of parallel processors,
and we measure the number of such processors together with the number of
sequential queries that are issued by each such processor. In addition, we measure
the amount of any internal computation that is performed by our attacker, and
this enables us to prove an impossibility result that is not only of theoretical
significance in the generic-group model, but is also of practical significance.

The following theorem presents our main result in an informal and simplified
manner that focuses on prime-order groups without d-linear maps, and on delay
functions whose public parameters, inputs and outputs consist only of group
elements2:

Theorem (informal & simplified). Let DF be a generic-group delay function
whose public parameters, inputs and outputs consist of kpp(λ, T), kin(λ, T) and
kout(λ, T) group elements, respectively, where λ ∈ N is the security parameter
and T ∈ N is the delay parameter. Let QeqEval(λ, T) denote the number of equality
queries issued by the function’s honest evaluation algorithm. Then, there exists a
generic-group attacker A that takes as input the λ-bit order p of the group such
that:

– A correctly computes the function on any input.

– A consists of (kpp + kin) ·max{kout, QeqEval} parallel processors, each of which
issues at most O((kpp + kin) · log p) sequential oracle queries.

For interpreting our theorem, first note that our attacker does not require a
preprocessing stage, and is able to correctly compute the function on any input
(these rule out even an extremely weak notion of sequentiality).

Second, note that the number (kpp +kin) ·max{kout, QeqEval} of parallel proces-
sors used by our attacker is at most polynomial in the security parameter λ and
in the delay parameter T , and that the number O((kpp + kin) · log p) of sequential
queries issued by each processor is polynomial in λ and essentially independent
of the delay parameter T . Specifically, for delay functions underlying time-lock
puzzles and verifiable delay functions, the parameters kpp, kin and kout are all
polynomials in λ and log T (for the iterated squaring delay function, for example,

2 As discussed in Section 1.3, we prove our result also to groups of composite order, to
groups equipped with a d-linear map, and to delay functions whose public parameters,
inputs and outputs consist of both group elements and arbitrary additional values.

4 L. Rotem, G. Segev and I. Shahaf

it holds that kpp = QeqEval = 0 and kin = kout = 1).3 Therefore, in these cases the
number of sequential queries issued by each processor is at most polynomial in λ
and log T .

An additional interpretation of our result is as follows. The term max{kout,
QeqEval} lower bounds the time to compute Eval without parallelism (even though
it could be much smaller – as for the iterated squaring function). Optimally, an α
speedup, that is, computing the function α times faster than without parallelism,
is obtained by using α parallel processors. We show that an (at least) α speedup
can be obtained by using O(α · (kpp + kin)

2 · log p) parallel processors.

1.2 Related Work

Various cryptographic notions that share a somewhat similar motivation with
delay functions have been proposed over the years, such as the above-discussed
notions of time-lock puzzles and verifiable delay functions (e.g., [RSW96, BGJ+16,
BBB+18, BBF18, Pie19, Wes19, EFK+19, DMP+19]), as well as other notions
such as sequential functions and proofs of sequential work (e.g., [MMV11, MMV13,
CP18]). It is far beyond the scope of this work to provide an overview of these
notions, and we refer the reader to the work of Boneh et al. [BBB+18] for an
in-depth discussion of these notions and of the relations among them.

A generic-group candidate for a function that requires more time to evaluate
than to verify was proposed by Dwork and Naor [DN92] based on extracting square
roots modulo a prime number p (see also the work of Lenstra and Wesolowski
[LW15] on composing several such functions). However, the time required to
sequentially evaluate this function, as well as the gap between the function’s
sequential evaluation time and its verification time, both seem limited to O(log p),
and thus cannot be flexibly adjusted via a significantly larger delay parameter T .
As noted by Boneh et al. [BBB+18], this does not meet the notion of a verifiable
delay function (or our less-strict notion of a delay function).

In the random-oracle model, Döttling, Garg, Malavolta and Vasudevan
[DGM+19], and Mahmoody, Smith and Wu [MSW19] proved impossibility results
for certain classes of verifiable delay functions (and, thus, in particular, for certain
classes of delay functions). Before describing their results, we note that whereas
Döttling et al. and Mahmoody et al. captured restricted classes of verifiable delay
functions within the random-oracle model, our work captures all constructions of
delay functions (a more relaxed notion) within the incomparable generic-group
model. Most importantly, in the random-oracle model a delay function can be
easily constructed by iterating the random oracle (however, as discussed above,
this does not seem practically useful for realizing time-lock puzzles or verifiable
delay functions).

The work of Döttling et al. rules out constructions of verifiable delay functions
with a tight gap between the assumed lower bound on their sequential evaluation

3 For time-lock puzzles this follows from the requirement that an input-output pair can
be generated in time polynomial in λ and log T , and for verifiable delay functions this
follows from the requirement that the verification algorithm runs in time polynomial
in λ and log T .

Generic-Group Delay Functions Require Hidden-Order Groups 5

time and their actual sequential evaluation time. Specifically, they proved that
there is no construction that cannot be evaluated using less than T sequential
oracle queries (even with parallel processors), but can be evaluated using T+O(T δ)
sequential oracle queries (for any constant δ > 0 where T is the delay parameter).
Note, however, that this does not rule out constructions that cannot be evaluated
using less than T sequential oracle queries but can be evaluated, say, using 4T or
T log T sequential oracle queries. In addition to their impossibility result, Döttling
et al. showed that any verifiable delay function with a prover that runs in time
O(T) and has a natural self-composability property can be generically transformed
into a verifiable delay function with a prover that runs in time T +O(1) based
on succinct non-interactive arguments for NP languages [Kil92, Mic94, GW11].

The work of Mahmoody et al. rules out constructions of verifiable delay
functions that are statistically sound with respect to any oracle4. That is, they
consider verifiable delay functions whose soundness property holds for unbounded
adversaries and holds completely independently of the oracle. As noted by
Mahmoody et al. this suffices, for example, for ruling out verifiable delay functions
that are permutations. However, for such functions that are not permutations,
this strong soundness property does not necessarily hold – as the security of
constructions in the random-oracle model is based based on the randomness of
the oracle (and does not hold with respect to any oracle).

1.3 Overview of Our Approach

In this section we give an informal technical overview of our approach. We start
by reviewing the generic-group model in which our lower bound is proven, and
then move on to describe our attack, first in simplified settings and then gradually
building towards our full-fledged attack. Finally, we illustrate how this attack
can be extended to rule out generic-group delay functions in groups equipped
with multilinear maps.

The framework. We prove our impossibility result within the generic-group
model introduced by Maurer [Mau05], which together with the incomparable
model introduced by Shoup [Sho97], seem to be the most commonly-used ap-
proaches for capturing generic group computations. At a high level, in both
models algorithms have access to an oracle for performing the group operation
and for testing whether two group elements are equal. The difference between
the two models is in the way that algorithms specify their queries to the oracle.
In Maurer’s model algorithms specify their queries by pointing to two group
elements that have appeared in the computation so far (e.g., the 4th and the
7th group elements), whereas in Shoup’s model group elements have an explicit
representation (sampled uniformly at random from the set of all injective map-
pings from the group to sufficiently long strings) and algorithms specify their
queries by providing two strings that have appeared in the computation so far as
encoding of group elements.

4 In fact, as pointed out by Mahmoody et al. their impossibility result holds also for
proofs of sequential work.

6 L. Rotem, G. Segev and I. Shahaf

Jager and Schwenk [JS08] proved that the complexity of any computational
problem that is defined in a manner that is independent of the representation
of the underlying group (e.g., computing discrete logarithms) in one model is
essentially equivalent to its complexity in the other model. However, not all generic
cryptographic constructions are independent of the underlying representation.

More generally, these two generic-group models are rather incomparable. On
one hand, the class of cryptographic schemes that are captured by Maurer’s
model is a subclass of that of Shoup’s model – although as demonstrated by
Maurer his model still captures all schemes that only use the abstract group
operation and test whether two group elements are equal. On the other hand,
the same holds also for the class of adversaries, and thus in Maurer’s model we
have to break the security of a given scheme using an adversary that is more
restricted when compared to adversaries in Shoup’s model. In fact, Shoup’s
model is “sufficiently non-generic” to accommodate delay functions such as the
iterated-hashing construction. Delay functions of such flavor, however, rely on
the randomness of the representation of group elements, which may or may not
be sufficient in specific implementations of concrete groups, and are not based
solely on the underlying algebraic hardness as in Maurer’s model. Furthermore,
as discussed earlier, delay functions that exploit such randomness are somewhat
unstructured, and thus seem limited in their applicability to the design of time-
lock puzzles and VDFs (for time-lock puzzles insufficient structure may not
enable sufficiently fast generation of input-output pairs, and for VDFs insufficient
structure may not enable sufficiently fast verification). We refer the reader to
Section 2.1 for a formal description of Maurer’s generic-group model.

Generic-group delay functions. A generic-group delay function in a cyclic
group of order N is defined by an evaluation algorithm Eval, which receives the
public parameters pp and an input x, and returns an output y. For the sake
of this overview, we assume that pp, x and y consist of kpp, kin and kout group
elements, respectively (we refer the reader to Section 5 for a detailed account of
how we handle additional explicit bit-strings as part of the public parameters,
input and output). As a generic algorithm, Eval’s access to these group elements
is implicit and is provided via oracle access as follows. At the beginning of its
execution, a table B is initialized with ZN elements which correspond to the
elements in pp and in x. Eval can then access the table via two types of queries:
(1) group operation queries, which place the sum of the two ZN elements in the
entries pointed to by Eval in the next vacant entry of the table; and (2) equality
queries, which return 1 if and only if the two ZN elements in the entries pointed
to by Eval are equal. At the end of its execution, in order to implicitly output
group elements, Eval outputs the indices of entries in the table in which the
output group elements are positioned. We refer the reader to Section 2.2 for a
more formal presentation of generic-group delay functions.

A simplified warm-up. Our goal is to construct an attacker, which (implicitly)
receives the public parameters pp and an input x, and computes the correspond-
ing output y in a sequentially-fast manner. As a starting point, consider an
oversimplified and hypothetical scenario in which the attacker is provided not

Generic-Group Delay Functions Require Hidden-Order Groups 7

only with oracle access to the table B, but also with the explicit ZN elements
which are in the table and that correspond to pp and to x. In this case, an
attacker can simply emulate the execution of Eval locally without any queries to
the oracle, where instead of the oracle table B, the attacker keeps a local table
of ZN elements: Group oracle queries are emulated via integer addition modulo
N , and equality queries are answered in accordance with integer equality. At the
end of this emulation, the attacker holds the ZN elements that correspond to the
output elements of Eval. A key observation is that translating each of these ZN
elements into the appropriate group element – i.e., placing this ZN element in the
table B – requires only O(logN) = O(λ) oracle queries (e.g., via the standard
square-then-multiply method).5 Moreover, for any number kout of group elements
in the function’s output, the number of sequential oracle queries remains only
O(λ) when using kout parallel processors – one per each output element.

As an intermediate step towards our full-fledged attack, consider a somewhat
less hypothetical scenario, in which the attacker only gets implicit access to
the group elements in pp and in x, but Eval does not issue any equality queries.
Observe that this setting already captures the widely-used iterated squaring delay
function discussed above. The main idea behind our attack in this setting is to
replace each of the input group elements to Eval with a formal variable, and then
to symbolically compute each output element as a polynomial in these variables.
Note that in general, these are not fixed polynomials, but rather depend on
the equality pattern resulting from Eval’s equality queries. Here, however, we
are assuming that Eval does not issue any such queries. Concretely, when there
are no equality queries, computing the output polynomials does not require any
oracle queries by a similar emulation to the one described above, where values in
the local table are stored as polynomials, and the group operation is replaced
with polynomial addition. Once we have each of the output elements expressed
as a polynomial, we can implicitly evaluate it at (pp,x), starting with implicit
access to the elements in (pp,x), using kpp + kin parallel processors each of which
performing O(logN + log(kpp + kin)) = O(λ) sequential group operations.6

Handling equality queries. On the face of it, the attack described in the
previous paragraph is not applicable when Eval does issue equality queries, since
it is unclear how to answer such queries in the polynomial-based emulation of
Eval. One possibility is to answer each equality query in the affirmative if and
only if the two elements pointed to by Eval are identical as polynomials in the
formal variables replacing the input elements. Indeed, if the two polynomials are
identical, it is necessarily the case that the two elements are equal. Unfortunately,
the opposite is incorrect, and it is possible (and indeed to be expected) that the

5 We assume that the first entry of the table B is always occupied with the number 1,
which is always a generator for ZN .

6 Note that implicitly evaluating each monomial using roughly logN sequential group
operations requires knowing the precise order N of the group. Without knowing
N , this polynomial may have coefficients which are exponentially large in the delay
parameter T , and evaluating each monomial can take up to poly(T) sequential group
operations.

8 L. Rotem, G. Segev and I. Shahaf

two elements will be equal even though their corresponding polynomials are not
identical, resulting in a false negative answer and thus the emulation will deviate
from the true execution of Eval.

The main observation underlying our attack is that even though the number
QeqEval of equality queries that Eval issues might be quite large (potentially as
large as the delay parameter T), at most |factors(N)| · (kpp +kin) of the non-trivial
queries can be affirmatively answered, where factors(N) denotes the multi-set of
prime factors of N (where the number of appearances of each primes factor is
its multiplicity – e.g., factors(100) = {2, 2, 5, 5}), and by trivial queries we mean
queries for which equality or inequality follows from the previous query/answer
pattern. This is the case because at each point during the execution of Eval, the
set of possible values for (pp,x), given the equality pattern so far, is a coset of

some subgroup H ≤ Zkpp+kinN relative to (pp,x): The possible values for (pp,x) are

a set of the form {(pp,x) + (pp′,x′)|(pp′,x′) ∈ H}, where initially H = Zkpp+kinN .
Moreover, if q is a non-trivial equality query answered affirmatively, H is the
said subgroup before q is issued and H ′ is the subgroup after q is answered, then
due to the non-triviality of q, it is necessarily the case that H ′ < H (i.e., H ′ is a
proper subgroup of H). In particular, the order of H ′ is smaller than the order

of H and divides it. Hence, since |factors(|Zkpp+kinN |)| = (kpp + kin) · |factors(N)|,
the observation follows by induction.

Utilizing the power of parallelism. We translate this observation into an
attack on the sequentiality of any generic-group delay function by carefully
utilizing the power of parallelism in the following manner. Our attacker keeps
track of an initially empty set L of linear equations in the formal variables that
replace pp and x, and runs for (kpp + kin) · |factors(N)|+ 1 iterations.7 In each
iteration, the attacker runs the polynomial-based emulation described above, with
the exception that now equality queries are answered affirmatively if and only if
equality follows from the equations in L. The attacker then checks, by querying
the oracle, if any of the negatively-answered queries in the emulation should
have been answered affirmatively, and if so, the equality that follows from this
query is added to L – this step can be executed using QeqEval · (kpp + kin) parallel
processors, each of which issuing O(logN + log(kpp + kin)) = O(λ) sequential
queries.

Since we make sure that the true (pp,x) is always in the solution set of L,
there will be no false positive answers, and in each iteration there are only two
possibilities: Either there exists a false negative answer (which we will then add
to L as an equality) or all queries are answered correctly. On the one hand, if all
queries are answered correctly, then the emulation in this iteration is accurate
and we are done – all that is left is to translate the output polynomials of this
emulation into implicit group elements, which we already discussed how to do.
On the other hand, if there exists a false negative answer, then we learn a new

7 We emphasize that our attack does not require knowing the factorization of N . Since
|factors(N)| ≤ logN , one can replace |factors(N)| with logN when determining the
number of iterations.

Generic-Group Delay Functions Require Hidden-Order Groups 9

equation that does not follow from the equations already in L. By our observation,
we can learn at most |factors(N)| ·(kpp +kin) new such equations, so there must be
an iteration in which we successfully emulate the execution of Eval and compute
the correct output of the function.

Attacking generic delay functions in multilinear groups. We extend our
attack so that it computes the output of any generic delay function in groups
that are equipped with a d-linear map and on any input, while issuing at most
O((kpp + kin + 1)d · |factors(N)| ·λ) sequential queries. In such groups, in addition
to the group operation and equality queries, generic algorithms can also issue
d-linear map queries, supplying (implicitly) d elements in the source group and
receiving as a reply implicit access to the resulting element of the target group. In
our polynomial-based emulation of Eval described above, we replace such queries
with polynomial multiplication, resulting in polynomials of degree at most d.
Since these polynomials may be non-linear, and the analysis of our attack heavily
relied on the fact that the learned equations are linear, this analysis no longer
applies.

We address this situation by carefully employing a linearization procedure.
Roughly speaking, in our polynomial-based emulation of Eval, the attacker now
replaces each possible product of at most d formal variables (out of the formal
variables that replace the group elements in pp and in x) with a single new
formal variable. After applying this linearization procedure, the learned equations
are once again linear (in the new formal variables), but by applying it, we lose
information about the possible set of assignments to the elements in (pp,x), given
the learned equations in L. As a result, it might be that a certain equality which
follows from the equations in L, no longer follows from them after applying the
linearization procedure (to both the equality and the equations in L). The main
observation that makes our attack successful nevertheless is that if a certain
equality follows from L after applying the linearization procedure, it necessarily
followed from L before applying the procedure as well. Hence, it is still the
case that there are no false positive answers in the emulation, and that in each
iteration we either add a new equation to L or compute the correct output.

This linearization procedure comes at a cost. After applying it, we have
(kpp + kin + 1)d different formal variables instead of just kpp + kin as before.
Thus, in order for our analysis from the linear setting to apply, our attacker
needs to run for roughly (kpp + kin + 1)d · |factors(N)| iterations, explaining the
exponential dependency on d in its sequential query complexity. Note however
that the attack still computes the output with less than T sequential queries
as long as d ≤ O(log T/(log λ · log(kpp + kin))), and in particular whenever d is
constant.

Our attacker’s internal computation. In order to rule out constructions of
delay functions whose sequentiality is proven within the generic-group model, it
suffices to present an attacker which is efficient relative to the security parameter
and the delay parameter in terms of its number of parallel processors and generic-
group operations, regardless of the amount of additional internal computation
required by the attacker. Nevertheless, we show that our attacker requires an

10 L. Rotem, G. Segev and I. Shahaf

overhead which is only polynomial in terms of its internal computation. Conse-
quently, when our attack is applied to any “heuristically secure” construction
in any cyclic group of known order, the number of sequential group operations
it performs is essentially independent of T , and the additional computation –
which is independent of the specific group in use – is at most poly(λ, T). Put
differently, either this additional computation can be sped-up using parallelism
and then the construction is insecure; or it cannot be sped-up and thus yields an
inherently-sequential computation that does not rely on the underlying group.

Specifically, the most significant operation that is performed by our attacker
which is non-trivial in terms of its computational cost is checking in each iteration
whether or not a given linear equation over ZN follows from the linear equations
already in the set L. When considering groups of prime order, this can be
done simply by testing for linear independence among the vectors of coefficients
corresponding to these equations. When considering groups of composite order this
is a bit more subtle, and can be done for example by relying on fast algorithms for
computing the Smith normal form of integer matrices (e.g., [Sto96]) and without
knowing the factorization of the order of the group – see Appendix A for more
details.

1.4 Paper Organization

The remainder of this paper is organized as follows. First, in Section 2 we
present the basic notation used throughout the paper, and formally describe the
framework we consider for generic-group delay functions. In Section 3 we prove
our main impossibility result for generic delay functions, and in Section 4 we
extend it to generic multilinear groups. Finally, in Section 5 we discuss several
additional extensions, and in Appendix A we show that our attacker is efficient
not only with respect to its number of parallel processors and generic group
operations, but also in its additional internal computation.

2 Preliminaries

In this section we present the basic notions and standard cryptographic tools
that are used in this work. For a distribution X we denote by x← X the process
of sampling a value x from the distribution X. Similarly, for a set X we denote by
x← X the process of sampling a value x from the uniform distribution over X .
For an integer n ∈ N we denote by [n] the set {1, . . . , n}. A function ν : N→ R+

is negligible if for any polynomial p(·) there exists an integer N such that for all
n > N it holds that ν(n) ≤ 1/p(n).

2.1 Generic Groups and Algorithms

As discussed in Section 1.1, we prove our results within the generic-group model
introduced by Maurer [Mau05]. We consider computations in cyclic groups of
order N (all of which are isomorphic to ZN with respect to addition modulo

Generic-Group Delay Functions Require Hidden-Order Groups 11

N), for a λ-bit integer N that is generated by a order generation algorithm
OrderGen(1λ), where λ ∈ N is the security parameter (and N may or may not be
prime).

When considering such groups, each computation Maurer’s model is associated
with a table B. Each entry of this table stores an element of ZN , and we denote
by Vi the group element that is stored in the ith entry. Generic algorithms
access this table via an oracle O, providing black-box access to B as follows.
A generic algorithm A that takes d group elements as input (along with an
optional bit-string) does not receive an explicit representation of these group
elements, but instead, has oracle access to the table B, whose first d entries store
the ZN elements corresponding to the d group element in A’s input. That is, if
the input of an algorithm A is a tuple (g1, . . . , gd, x), where g1, . . . , gd are group
elements and x is an arbitrary string, then from A’s point of view the input is the
tuple (ĝ1, . . . , ĝd, x), where ĝ1, . . . , ĝd are pointers to the group elements g1, . . . , gd
(these group elements are stored in the table B), and x is given explicitly. All
generic algorithms in this paper will receive as their first input a generator of
the group; we capture this fact by always assuming that the first entry of B is
occupied by 1 ∈ ZN , and we will sometimes forgo noting this explicitly. The
oracle O allows for two types of queries:

– Group operation queries: On input (i, j,+) for i, j ∈ N, the oracle checks
that the ith and jth entries of the table B are not empty, computes Vi +
Vj mod N and stores the result in the next available entry. If either the ith
or the jth entries are empty, the oracle ignores the query.

– Equality queries: On input (i, j,=) for i, j ∈ N, the oracle checks that the
ith and jth entries in B are not empty, and then returns 1 if Vi = Vj and 0
otherwise. If either the ith or the jth entries are empty, the oracle ignores
the query.

In this paper we consider interactive computations in which multiple algorithms
pass group elements (as well as non-group elements) as inputs to one another.
This is naturally supported by the model as follows: When a generic algorithm
A outputs k group elements (along with a potential bit-string σ), it outputs the
indices of k (non-empty) entries in the table B (together with σ). When these
outputs (or some of them) are passed on as inputs to a generic algorithm C, the
table B is re-initialized, and these values (and possibly additional group elements
that C receives as input) are placed in the first entries of the table. Additionally,
we rely on the following conventions:

1. Throughout the paper we refer to values as either “explicit” ones or “inex-
plicit” ones. Explicit values are all values whose representation (e.g., binary
strings of a certain length) is explicitly provided to the generic algorithms
under consideration. Inexplicit values are all values that correspond to group
elements and that are stored in the table B – thus generic algorithms can
access them only via oracle queries. We will sometimes interchange between
providing group elements as input to generic algorithms inexplicitly, and
providing them explicitly. Note that moving from the former to the latter

12 L. Rotem, G. Segev and I. Shahaf

is well defined, since a generic algorithm A that receives some of its input
group elements explicitly can always simulate the computation as if they
were received as part of the table B.

2. For a group element g, we will differentiate between the case where g is
provided explicitly and the case where it is provided implicitly via the table
B, using the notation g in the former case, and the notation ĝ in the latter.

3. As is common in the generic group model, we identify group elements that
are given as input to a generic algorithm with formal variables, the results of
addition queries (i.e., the content of the entries in the table B) with linear
polynomials in these variables, and positively-answered equality queries
between distinct polynomials with linear equations.

2.2 Generic-Group Delay Functions

A generic-group delay function is a triplet DF = (Setup,Sample,Eval) of oracle-
aided algorithms satisfying the following properties:

– Setup is a randomized algorithm that has oracle access to the group oracle O,
receives as input the group order N ∈ N and a sequentiality parameter T ∈ N,
and outputs public parameters pp = (ppG, pps) where ppG is an ordered list
of group elements and pps ∈ {0, 1}∗ is an explicit string.

– Sample is a randomized algorithm that has oracle access to the group oracle
O, receives as input N and T as above, as well as the public parameters pp,
and outputs x = (xG, xs) ∈ Xpp (the domain Xpp may be a function of the
public parameters pp), where xG is an ordered list of group elements and
xs ∈ {0, 1}∗ is an explicit string.

– Eval is a deterministic algorithm that has oracle access to the group oracle
O, receives as input N ,T and pp as above, as well as an input x ∈ Xpp, and
outputs y = (yG, ys), where yG is an ordered list of group elements and
ys ∈ {0, 1}∗ in an explicit string.

Motivated by notions of time-lock puzzles and verifiable delay functions, we
consider delay functions where the lengths of the public parameters, inputs, and
outputs are polynomial in λ and log T . For time-lock puzzles this follows from the
requirement that an input-output pair can be generated in time polynomial in λ
and log T , and for verifiable delay functions this follows from the requirement
that the verification algorithm runs in time polynomial in λ and log T .

In terms of security, we require that for a delay parameter T , no algorithm
should be successful with a non-negligible probability in evaluating a delay
function on a randomly-chosen input – even with any polynomial number of
parallel processors and with a preprocessing stage.

Definition 2.1 (Sequentiality). Let T = T (λ) and p = p(λ) be functions of
the security parameter λ ∈ N. A delay function DF = (Setup,Sample,Eval) is
(T, p)-sequential if for every polynomial q = q(·, ·) and for every pair of oracle-
aided algorithms (A0,A1), where A0 issues at most q(λ, T) oracle queries, and

Generic-Group Delay Functions Require Hidden-Order Groups 13

A1 consists of at most p(λ) parallel processors, each of which issues at most T
oracle queries, there exists a negligible function ν(·) such that

Pr

y′ = y

∣∣∣∣∣∣∣∣
N ← OrderGen(1λ), pp← SetupO(N,T)

st← AO0 (N,T, pp), x← SampleO(N,T, pp)

y ← EvalO(N,T, pp, x)
y′ ← AO1 (st, N, T, pp, x)

 ≤ ν(λ)

for all sufficiently large λ ∈ N.

3 Our Impossibility Result

In this section we prove our impossibility result for generic-group delay functions
in cyclic groups of known orders. For ease of presentation, here we consider
functions whose public parameters, inputs and outputs consist of group elements
and do not additionally contain any explicit bit-strings (see Section 5 for extending
our approach to this case).

In what follows we denote by factors(N) the multi-set of prime factors of the
λ-bit group order N (where the number of appearances of each prime factor is its
multiplicity – e.g., factors(100) = {2, 2, 5, 5}). We prove the following theorem:

Theorem 3.1. Let DF = (Setup,Sample,Eval) be a generic-group delay function
whose public parameters, inputs and outputs consist of kpp(λ, T), kin(λ, T) and
kout(λ, T) group elements, respectively, where λ ∈ N is the security parameter
and T ∈ N is the delay parameter. Let QeqEval(λ, T) denote the number of equality
queries issued by the algorithm Eval. Then, there exists a generic-group algorithm
A that consists of (kpp +kin) ·max{kout, QeqEval} parallel processors, each of which
issues at most O((kpp + kin) · |factors(N)| · λ) sequential oracle queries, such that

Pr

y′ = y

∣∣∣∣∣∣∣∣
N ← OrderGen(1λ), p̂p← SetupO(N,T)

x̂← SampleO(N,T, p̂p)

ŷ← EvalO(N,T, p̂p, x̂)

ŷ′ ← AO(N,T, p̂p, x̂)

 = 1

for all λ ∈ N and T ∈ N, where the probability is taken over the internal
randomness of OrderGen, Setup and Sample.

The proof of Theorem 3.1 relies on the following notation. We will at times
substitute the group elements p̂p = (p̂p1, . . . , p̂pkpp) and x̂ = (x̂1, . . . , x̂k) that
are given as input to Eval, with formal variables PP = (PP1, . . . ,PPkpp) and

X = (X1, . . . , Xkin). When this is the case, instead of writing EvalO(N,T, p̂p, x̂)

we will write EvalZN [PP,X]|L(N,T,PP,X), where L is a set of linear equations in
PP and in X. This latter computation is obtained from the original one by the
following emulation:

14 L. Rotem, G. Segev and I. Shahaf

– Group elements are represented via polynomials in the formal variables
PP and X. The computation keeps track of the elements via a local table,
which replaces the table B of the oracle O (recall Section 2). This table
is initialized so that its first 1 + kpp + kin entries are inhabited with the
monomials 1,PP1, . . . ,PPkpp , X1, . . . , Xkin .

– Group operations are simulated via polynomial addition; i.e., when Eval
issues a group operation query with two elements that are represented in the
local table by two polynomials p1(PP,X) and p2(PP,X), the result is the
polynomial p1(PP,X) + p2(PP,X), which is then placed in the next vacant
entry of the table.

– Each equality query is answered affirmatively if and only if equality fol-
lows from the equations in L (in particular, when L = ∅, equality queries
are answered affirmatively if and only if the two polynomials at hand are
identical).

– The output y(PP,X) = (y1(PP,X), . . . , ykout(PP,X)) of this computation
is a vector of polynomials in PP and in X. We denote by y(pp,x) =
(y1(pp,x), . . . , ykout(pp,x)) the vector obtained by evaluating each entry of

y(PP,X) at the point (pp,x) ∈ Zkpp+kinN .

We now turn to present the proof of Theorem 3.1.

Proof. Let DF = (Setup,Sample,Eval) be a generic-group delay function, and
consider the following adversary A:

The adversary A
The adversary A on input (N,T, p̂p, x̂) and oracle access to O is defined as follows:

1. Initialize a set L = ∅ of linear equations in the formal variables PP =
(PP1, . . . ,PPkpp) and X = (X1, . . . , Xkin).

2. Repeat the following steps for t = (kpp + kin) · |factors(N)|+ 1 iterations:
(a) Compute y′(PP,X) = EvalZN [PP,X]|L(N,T,PP,X). Let m denote the num-

ber of equality queries that are negatively answered in the computation,
and let `1(PP,X), . . . , `m(PP,X) be the linear equations that would have
followed from each of these queries had it been affirmatively answered.

(b) For each i ∈ [m], if `i(pp,x) holds then add `i(PP,X) to L. If at least one
linear equation was added to L then skip step 2(c) and continue to the
next iteration.

(c) Compute and output ̂y′(pp,x), then terminate.
3. Output ⊥.

Query complexity. Steps 1 and 2(a) require no oracle queries. Step 2(b) requires
m · (kpp + kin) parallel processors, each issuing O(logN) sequential queries for
checking whether `i(pp,x) hold for any i ∈ [m] (and it holds that m ≤ QeqEval).
Step 2(c) is executed at most once and requires kout · (kpp + kin) parallel processors,
each issuing O(logN) queries.

Finally, note that for a composite order N , the attacker A is not required to
compute the factorization of N in order to determine the number of iterations.
Specifically, for a λ-bit modulos N it always holds that |factors(N)| < λ, and

Generic-Group Delay Functions Require Hidden-Order Groups 15

A can use this upper bound for determining an upper bound on the number of
iterations.

Fix an iteration j ∈ [t] where t = (kpp + kin) · |factors(N)|+ 1, let Lj denote
the state of the set L of linear equations at the beginning of the jth iteration,
and consider the two computations y = EvalO(N,T, p̂p, x̂) and y′j(PP,X) =

EvalZN [PP,X]|Lj (N,T,PP,X). By the condition specified in step 2(b) for adding
a linear equation ` to L, any ` ∈ Lj is satisfied by (pp,x) (i.e., `(pp,x) holds).
Therefore, every equality query that is negatively answered in the computation
of y is also negatively answered in the computation of y′j(PP,X). Hence, one of
the following two cases must happen:

– Case I: All equality queries in both computations are answered the same
way. In this case, the output of both computations is the same vector of
linear polynomials in terms of the inputs, and it holds that y = y′j(pp,x).
Furthermore, since all negatively answered queries in the computation of
y′j(PP,X) are also negatively answered in the computation of y, then for all
i ∈ [m] the linear equation `i(pp,x) is not satisfied. Therefore, step 2(c) is
reached in this case and A succeeds in outputting y.

– Case II: There exists an equality query that is positively answered in the
computation of y but is negatively answered in the computation of y′j(PP,X).
This means that there exists an i ∈ [m] for which `i(pp,x) holds, but `i(PP,X)
is not implied by the linear equations in Lj . Thus, `i is added to L and the
algorithm skips to the next iteration.

So far we have shown that A outputs y (i.e., the correct output) whenever step
2(c) is reached. We now complete the proof by showing that step 3 is never
reached (i.e., that step 2(c) is always reached). Suppose towards contradiction
that t = (kpp + kin) · |factors(N)|+ 1 iterations are performed, but none of them
reaches step 2(c). For every j ∈ [t] recall that Lj denotes the state of the set L
at the beginning of the jth iteration, and denote by Lt+1 the state of L when
reaching step 3. Then, it holds that L1 (L2 (· · · (Lt+1, since for every j ∈ [t]
the set Lj+1 contains at least one linear equation that is not implied by Lj . Also,
as already mentioned, for every j ∈ [t+ 1] and ` ∈ Lj the linear equation `(pp,x)
is satisfied. For a system of linear equationsM with k variables over ZN , if there
exists a solution z ∈ ZkN to the system M then the set of solutions forms a coset
of a subgroup of ZkN . That is, there exists a subgroup H of ZkN such the the set
of solutions to M is z + H. Therefore, there exist subgroups H1, . . . ,Ht+1 of

Zkpp+kinN such that for every j ∈ [t+ 1] it holds that{
(pp′,x′) ∈ Zkpp+kinN

∣∣∣∀`(PP,X) ∈ Lj : `(pp′,x′) is satisfied
}

= (pp,x) +Hj .

Then, it holds that H1 > H2 > · · · > Ht+1 (i.e., Hj+1 is a proper subgroup of
Hj for every j ∈ [t]). Therefore, the order of every Hj+1 divides that of Hj , and
it holds that

factors(|Ht+1|) (factors(|Ht|) (· · · (factors(|H1|) ⊆ factors(|Zkpp+kinN |) .

16 L. Rotem, G. Segev and I. Shahaf

Since

|factors(|Zkpp+kinN |)| = |factors(Nkpp+kin)| = t− 1 ,

it is impossible to have t proper containments in the above chain and we reach a
contradiction.

4 Extending Our Impossibility Result to the Multilinear
Setting

In this section we extend our impossibility result to groups that are equipped
with a d-linear map. Similarly to our proof in Section 3, once again we begin
by considering functions whose public parameters, inputs and outputs consist
of group elements and do not additionally contain any explicit bit-strings (see
Section 5 for extending our proof to this case).

Recall that we denote by factors(N) the multi-set of prime factors of the λ-bit
group order N (where the number of appearances of each prime factor is its
multiplicity – e.g., factors(100) = {2, 2, 5, 5}). We prove the following theorem
(from which Theorem 3.1 follows by setting d = 1):

Theorem 4.1. Let d = d(λ) be a function of the security parameter λ ∈ N, and
let DF = (Setup,Sample,Eval) be a generic d-linear-group delay function whose
public parameters, inputs and outputs consist of kpp(λ, T), kin(λ, T) and kout(λ, T)
group elements, respectively, where T ∈ N is the delay parameter. Let QeqEval(λ, T)
denote the number of equality queries issued by the algorithm Eval. Then, there
exists a generic-group algorithm A that consists of

(
kpp+kin+d

d

)
·max{kout, QeqEval}

parallel processors, each of which issues at most O(
(
kpp+kin+d

d

)
· |factors(N)| · λ)

sequential oracle queries, such that

Pr

y′ = y

∣∣∣∣∣∣∣∣
N ← OrderGen(1λ), p̂p← SetupO(N,T)

x̂← SampleO(N,T, p̂p)

ŷ← EvalO(N,T, p̂p, x̂)

ŷ′ ← AO(N,T, p̂p, x̂)

 = 1

for all λ ∈ N and T ∈ N, where the probability is taken over the internal random-

ness of OrderGen, Setup and Sample. Moreover, A issues at most O
((
kpp+kin+d

d

))
multilinear map queries, which may all be issued in parallel.

Theorem 4.1 is in fact identical to Theorem 3.1 expect for replacing the term
kpp + kin with the term

(
kpp+kin+d

d

)
, where d is the level of linearity, and note

that
(
kpp+kin+d

d

)
≤ (kpp + kin + 1)d (i.e., the efficiency of our attacker degrades

exponentially with the level of linearity). This shows that there are no construc-
tions of generic-group delay functions in cyclic groups of known orders that are
equipped with a d-linear map, for any d such that

(
kpp+kin+d

d

)
is polynomial in

the security parameter λ ∈ N. For example, this holds for any constant d, and

Generic-Group Delay Functions Require Hidden-Order Groups 17

for functions whose public parameters and inputs consist of a constant number
of group elements this holds for any d = O(log λ).

In what follows we first naturally extend the framework of generic groups and
algorithms, described in Section 2.1, to the multilinear setting (see Section 4.1),
and then prove theorem 4.1 (see Section 4.2).

4.1 Generic Multilinear Groups

In order to generalize our impossibility result to rule out generic constructions in
groups that are equipped with a multilinear map, we first extend the model of
Maurer [Mau05] (recall Section 2.1) to support such groups. For simplicity of
presentation, we start by defining the model and proving our impossibility result
assuming that the multilinear map is symmetric. Then, in Section 5 we discuss
how to naturally extend the model and the proof to accommodate asymmetric
maps as well.

Let d = d(λ) be a function of the security parameter λ ∈ N. In what follows,
we consider computations in a source group of order N with a d-linear map
into a target group of the same order, for a λ-bit integer N generated by the
order generation algorithm OrderGen(1λ). For the purpose of capturing generic
computations in such groups, we consider a model which is obtained from Maurer’s
model by the following modifications:

1. Each element in the table B is now a pair in {source, target} × ZN ; meaning,
it consists of a label which specifies whether this element is from the source
group or from the target group, together with a ZN element as before. All
generic algorithms we consider now receive as input a generator for the
source group; we capture this fact by always initializing B with the element
(source, 1) in its first entry (we will forgo noting this explicitly).8

2. When the oracle receives a group operation query of the form (i, j,+), it
first verifies that the label of the element in the ith entry of the table B is
the same as the label of the element in the jth entry (and that both entries
are non-empty). If that is the case, then the oracle places (label, Vi + Vj) in
the next vacant entry of the table, where label is the label of the elements
at hand, and Vi and Vj are the ZN elements in the ith entry and in the jth
entry of B, respectively.

3. When the oracle receives an equality query of the form (i, j,=), it first verifies
that the label of the element in the ith entry of the table B is the same as the
label of the element in the jth entry (and that both entries are non-empty).
If that is the case, then the oracle returns 1 if Vi = Vj and 0 otherwise.

4. We add a third type of queries, which we refer to as multilinear map queries:
On input (i1, . . . , id,×), the oracle first verifies that for each j ∈ [d] the
ijth entry contains the label source. If so, it places (target,

∏
j∈[d] Vij), where

for every j ∈ [d], Vij is the ZN element in the ijth entry of B and the
multiplication is with respect to addition modulo N .

8 The generator (target, 1) for the target group can be obtained using a single multilinear
map query, as described below.

18 L. Rotem, G. Segev and I. Shahaf

The definition of generic-group delay functions remains the same as in Section
2.2, other than the fact that all algorithms (i.e., Setup, Sample and Eval, as well
as the adversarial algorithms A0 and A1 from Definition 2.1) get oracle access to
the extended oracle described in this section, and two additional inputs: (1) The
arity d of the map; and (2) the labels of the group elements that are placed in
the table B when the algorithm starts its execution.

4.2 Proof of Theorem 4.1

We define the computation EvalZN [Lind(PP,X)]|L(N,T,PP,X) to be obtained from
the original computation EvalO(N,T, p̂p, x̂) by a similar emulation to that from
Section 3, with the following differences:

– The tuples PP and X consist of pairs of a label and a variable PP =
((grppp1 ,PP1), . . . , (grpppkpp ,PPkpp)) and X = ((grpx1 , X1), . . . , (grpxkin , Xkin)),
where each label is either source or target, and is determined according
to the corresponding label of the original input (pp,x).9 We assume without
loss of generality that the source variables in both PP and X appear before
the target variables, denote the number of source variables in these tuples by
ksrcpp and ksrcin , respectively, and denote their total number by ksrc = ksrcpp + ksrcin .

– We define new variables

Z = Lind(PP,X) = {Zα1,...,αksrc |α1 + · · ·+ αksrc ≤ d}
∪
{
PP1, . . . ,PPkpp , X1, . . . , Xkin

}
,

where each variable of the form Zα1,...,αksrc is associated with the prod-

uct PPα1
1 · · ·PP

αksrc
pp

ksrcpp
· X

αksrc
pp +1

1 · · ·Xαksrc

ksrcin
. Additionally, for the standard ba-

sis e1, . . . , eksrc we identify the variables Ze1 , . . . , Zeksrc with the source vari-
ables PP1, . . . ,PPksrcpp

, X1, . . . , Xksrcin
, respectively (thus, the union in the above

definition of Z is not disjoint). The number of variables in Z is at most
gd(kpp + kin) where gd(k) =

(
k+d
d

)
(the number of non-negative integer solu-

tions to α1 + · · ·+ αk ≤ d).
– Each entry in the local table maintained by the computation (recall Sec-

tion 3) includes a label – either source or target – in addition to a for-
mal polynomial as before. The table is initialized so that its first 1 +
kpp + kin entries are inhabited with the pairs (source, 1), (grppp1 ,PP1), . . . ,
(grpppkpp ,PPkpp), (grp

x
1 , X1), . . . , (grpxkin , Xkin). These labels are used in accor-

dance with the oracle definition from Section 4.1: When group operation or
equality queries are issued, the computation first makes the necessary label
consistency checks; and when a group operation query is executed, the result
polynomial is stored in the local table with the appropriate label.

– Multilinear map queries are simulated as follows. First, we check that all
d polynomials that are the input to the query are stored in the local ta-
ble with the label source (otherwise, the query is ignored). If so, then let

9 Typically, the labels are predetermined by the scheme, but if this is not the case then
the labels can be recovered from the input.

Generic-Group Delay Functions Require Hidden-Order Groups 19

p1(Z), . . . , pd(Z) be the polynomials given as input to the query. By the
queries allowed, it is guaranteed that p1, . . . , pd are linear polynomials which
only involve the variables PPsrc = (PP1, . . . ,PPksrcpp

) and Xsrc = (X1, . . . , Xksrcin
).

We compute the polynomial p(PPsrc,Xsrc) =
∏
i∈[d] pi(PP

src,Xsrc), and then

we replace each product of variables PPα1
1 · · ·PP

αksrc
pp

ksrcpp
·X

αksrc
pp +1

1 · · ·Xαksrc

ksrcin
with

the single variable Zα1,...,αksrc to receive a linear polynomial p′(Z). Finally,
we store (target, p′(Z)) in the next vacant entry of the local table.

– Valid equality queries (i.e., when the entries to be compared have the same
label) are answered as in Theorem 4.1. If p1(Z) and p2(Z) are to be compared,
then the query is answered affirmatively if and only if the equality p1(Z) =
p2(Z) follows from the equations in L (which are linear in Z).

– For pp ∈ ZkppN and x ∈ ZkinN we define

Products≤d(pp,x) =
{
ppα1

1 · · · pp
αksrc

pp

ksrcpp
· x

αksrc
pp +1

1 · · ·xαksrc

ksrcin

∣∣∣α1 + · · ·+ αksrc ≤ d
}

∪
{
pp1, . . . , ppkpp , x1, . . . , xkin

}
.

That is, Products≤d(pp,x) contains all elements of (pp,x) and all products
of at most d elements from the source variables of (pp,x). Given point-

ers (p̂p, x̂), we can compute ŵ = {(target, z)
∧

|z ∈ Products≤d(pp,x)} by
using multilinear map queries. Then, given a linear polynomial p(Z), we

can compute (target, p(Products≤d(pp,x)))
∧

using w, and if p(Z) involves
only the source variables PP1, . . . ,PPksrcpp

, X1, . . . , Xksrcin
then we can compute

(source, p(Products≤d(pp,x)))
∧

.
– The output of the computation is of the form y′(Z) = ((grp1, y

′
1(Z)), . . . ,

(grpkout , y
′
kout

(Z))) where grpi ∈ {source, target} and y′i(Z) is a linear polyno-
mial for every i ∈ [kout]. Moreover, if grpi = source then y′i(Z) is guaranteed
to involve only the source variables PP1, . . . ,PPksrcpp

, X1, . . . , Xksrcin
. Therefore,

given pointers (p̂p, x̂), for every i ∈ [kout] we can compute (grpi, y
′
i(z))
∧

where
z = Products≤d(pp,x), and we denote

ŷ′(z) = ((grp1, y
′
1(z))
∧

, . . . , (grpkout , y
′
kout

(z))
∧

) .

We now turn to present the proof of Theorem 4.1.

Proof. Let DF = (Setup,Sample,Eval) be a generic d-linear-group delay function,
and consider the following adversary A:

The adversary A
The adversary A on input (N,T, p̂p, x̂) and oracle access to O is defined as follows:

1. Initialize a set L = ∅ of linear equations in the formal variables Lind(PP,X) =
Z, where PP = (PP1, . . . ,PPkpp) and X = (X1, . . . , Xkin).

2. Compute ŵ = {(target, z)
∧

|z ∈ Products≤d(pp,x)}.
3. Repeat the following steps for t = gd(kpp + kin) · |factors(N)|+ 1 iterations:

20 L. Rotem, G. Segev and I. Shahaf

(a) Compute y′(Z) = EvalZN [Lind(PP,X)]|L(N,T,PP,X). Let m denote the num-
ber of equality queries that are negatively answered in the computation,
and let `1(Z), . . . , `m(Z) be the linear equations that would have followed
from each of these queries had it been affirmatively answered.

(b) For each i ∈ [m], if `i(Products≤d(pp,x)) holds then add `i(Z) to L. If at
least one linear equation was added to L then skip step 3(c) and continue
to the next iteration.

(c) Compute and output y′(Products≤d(pp,x))
∧

, then terminate.
4. Output ⊥.

Query complexity. Steps 1 and 3(a) require no oracle queries. Step 2 requires
at most gd(kpp + kin) parallel processors, each issuing a single multilinear map
query. Step 3(b) requires m · gd(kpp +kin) parallel processors, each issuing O(logN)
sequential queries for checking whether `i(Products≤d(pp,x)) hold (using the
precomputed ŵ) for any i ∈ [m] (and it holds that m ≤ QeqEval). Step 3(c) is
executed at most once and requires kout · gd(kpp + kin) parallel processors, each
issuing O(logN) queries (using the precomputed ŵ).

Finally, note that for a composite order N , the attacker A is not required to
compute the factorization of N in order to determine the number of iterations.
Specifically, for a λ-bit modulos N it always holds that |factors(N)| < λ, and
A can use this upper bound for determining an upper bound on the number of
iterations.

Fix an iteration j ∈ [t] where t = gd(kpp + kin) · |factors(N)| + 1, let Lj
denote the state of the set L of linear equations at the beginning of the jth
iteration, and consider the two computations y = EvalO(N,T, p̂p, x̂) and y′j(Z) =

EvalZN [Lind(PP,X)]|Lj (N,T,PP,X). By the condition specified in step 3(b) for
adding a linear equation ` to L, any ` ∈ Lj is satisfied by z = Products≤d(pp,x)
(i.e., `(z) holds). Therefore, every equality query that is negatively answered in
the computation of y is also negatively answered in the computation of y′j(Z).
Hence, one of the following two cases must happen:

– Case I: All equality queries in both computations are answered the same way.
In this case, the output of both computations is the same vector of linear poly-
nomials in terms of z = Products≤d(pp,x) and Z = Lind(PP,X), respectively,
and also each coordinate in the output has the same {source, target} label, so
it holds that y = y′j(z). Furthermore, since all negatively answered queries
in the computation of y′j(Z) are also negatively answered in the computation
of y, then for all i ∈ [m] the linear equation `i(z) is not satisfied. Therefore,
step 3(c) is reached in this case and A succeeds in outputting y.

– Case II: There exists an equality query that is positively answered in the
computation of y but is negatively answered in the computation of y′j(Z).
This means that there exists an i ∈ [m] for which `i(z) holds, but `i(Z) is
not implied by the linear equations in Lj . Thus, `i is added to L and the
algorithm skips to the next iteration.

So far we have shown that A outputs y (i.e., the correct output) whenever step
3(c) is reached. We now complete the proof by showing that step 4 is never

Generic-Group Delay Functions Require Hidden-Order Groups 21

reached (i.e., that step 3(c) is always reached). Suppose towards contradiction
that t = gd(kpp +kin) · |factors(N)|+ 1 iterations are performed, but none of them
reaches step 3(c). For every j ∈ [t] recall that Lj denotes the state of the set L
at the beginning of the jth iteration, and denote by Lt+1 the state of L when
reaching step 4. Then, it holds that L1 (L2 (· · · (Lt+1, since for every j ∈ [t]
the set Lj+1 contains at least one linear equation that is not implied by Lj . Also,
as already mentioned, for every j ∈ [t+ 1] and ` ∈ Lj the linear equation `(z) is
satisfied. For a system of linear equations M with k variables over ZN , if there
exists a solution z ∈ ZkN to the system M then the set of solutions forms a coset
of a subgroup of ZkN . That is, there exists a subgroup H of ZkN such the the set
of solutions to M is z + H. Therefore, there exist subgroups H1, . . . ,Ht+1 of

Zgd(kpp+kin)N such that for every j ∈ [t+ 1] it holds that{
z′ ∈ Zgd(kpp+kin)N

∣∣∣∀`(Z) ∈ Lj : `(z′) is satisfied
}

= z +Hj .

Then, it holds that H1 > H2 > · · · > Ht+1 (i.e., Hj+1 is a proper subgroup of
Hj for every j ∈ [t]). Therefore, the order of every Hj+1 divides that of Hj , and
it holds that

factors(|Ht+1|) (factors(|Ht|) (· · · (factors(|H1|) ⊆ factors(|Zgd(kpp+kinN)|) .

Since
|factors(|Zgd(kpp+kin)N |)| = |factors(Ngd(kpp+kin))| = t− 1 ,

it is impossible to have t proper containments in the above chain and we reach a
contradiction.

5 Additional Extensions

In this section we first discuss two extensions of our results, showing that our
proofs extend to delay functions whose public parameters, inputs and outputs
may include arbitrary bit-strings (in addition to group elements), and to asym-
metric multilinear maps. Then, we pose an open problem regarding incremental
computation of Smith normal forms.

Allowing explicit bit-strings as part of pp, x and y. Our proofs from
Sections 3 and 4 readily extend to the case where the public parameters pp, the
input x and the output y may include arbitrary bit-strings, in addition to group
elements. We review the necessary adjustments for our proof from Section 3, and
note that essentially identical adjustments can be applied to our proof in the
multilinear setting as well. Concretely:

– In addition to N , T , p̂p and x̂, the evaluation algorithm Eval now receives
as input two bit-strings, pps and xs, denoting the bit-string parts of pp and
of the input x, respectively, and outputs a bit-string ys in addition to ŷ.
The computation EvalZN [PP,X]|L (N,T, (PP, pps) , (X, xs)) is then defined via

22 L. Rotem, G. Segev and I. Shahaf

an emulation of the computation EvalO (N,T, (p̂p, pps) , (x̂, xs)) similarly to
Section 3: The local table maintained by the emulation and the way queries
are emulated are defined as in Section 3, and the output of this emulation
is now a pair (y(PP,X), ys), where y(PP,X) is a vector of kout polynomials
y1(PP,X), . . . , ykout(PP,X) in PP and in X, and ys is an explicit bit-string.

– The adversary A now receives the bit-strings pps and xs, in addition to its in-

puts from Section 3. In Step 2(a) it now runs the emulation EvalZN [PP,X]|L(N,
T, (PP, pps) , (X, xs)) to obtain its output (y′(PP,X), y′s). In Step 2(c) it

computes ̂y′(pp,x) and outputs
(

̂y′(pp,x), y′s

)
. The main additional ob-

servation is that for each iteration j ∈ [(kpp + kin) · |factors(N)|+ 1], if

all equality queries in the emulation EvalZN [PP,X]|L (N,T, (PP, pps) , (X, xs))
in that iteration are answered consistently with the equality pattern in
EvalO (N,T, (p̂p, pps) , (x̂, xs)), then the bit-string component y′s outputted
by the emulation in this iteration is the same as the bit-string component ys
outputted by the original computation EvalO (N,T, (p̂p, pps) , (x̂, xs)). Hence,
when Case I from our analysis is reached, it is still the case that the adversary
is successful in outputting the correct output.

Asymmetric multilinear maps. Our impossibility result from Section 4 can
be adjusted in order to rule out the existence of generic-group delay functions in
groups with asymmetric multilinear maps; i.e., collections of d + 1 groups – d
source groups and a single target group, each of which is of order N – which are
equipped with a d-linear operation mapping d elements, an element from each
source group, into an element in the target group.

First, the model has to be extended to support such groups. This is done in a
natural manner, by considering d+ 1 labels (instead of 2): source1, . . . , sourced
and target. Now, each entry in the table B is pair of the form (label, a), where
label is one of the aforementioned labels, and a ∈ ZN ; and we assume that the
table B is always initialized with the pairs (source1, 1), . . . , (sourced, 1) in its first
d entries, respectively. Upon receiving a multilinear operation query, the oracle
now verifies that the labels in the entries (implicitly) given as input to the oracle
are indeed source1, . . . , sourced.

The proof is then obtained from the proof of Theorem 4.1 by adjusting it to
this generalized generic model. Roughly speaking, the main adjustment is that
now the linearization procedure needs to take into consideration the particular
group of each input element. More concretely, the new formal variables introduced
by this linearization (denoted by Z in the proof of Theorem 4.1) do not include
all products of degree at most d of the formal variables replacing the source group
elements in the public parameters and in the input. Instead, they include all
products of at most d elements, with distinct labels from {source1, . . . , sourced}.
Hence, the number of new formal variables introduced by the linearization phase
is now at most ((kpp + kin) /d+ 1)

d
, rather than

(
kpp+kin+d

d

)
.

Incremental computation of Smith normal forms. As discussed in Section
1.3 and described in detail in Appendix A, our attacker is efficient not only
in its number of parallel processors and generic group operations but also in

Generic-Group Delay Functions Require Hidden-Order Groups 23

its additional internal computation. Specifically, in each iteration our attacker
performs a single invocation of any algorithm for computing Smith normal form.
However, throughout the attack the matrices to which we apply such an algorithm
are not independent of each other, but rather each matrix is obtained from the
previous one by adding one more row and column. Thus, any algorithm that can
compute Smith normal forms in an incremental manner may lead to substantial
improvements in the practical running time of our attacker. Finally, we note
that efficiently realizing our attacker’s internal computation is not essential for
our result in the generic-group model, and that basing our approach on fast
algorithms for Smith normal forms is just one concrete possibility.

References

[BBB+18] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions.
In Advances in Cryptology – CRYPTO ’18, pages 757–788, 2018.

[BBF18] D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712, 2018.

[BGJ+16] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and
B. Waters. Time-lock puzzles from randomized encodings. In Proceedings of
the 7th Conference on Innovations in Theoretical Computer Science, pages
345–356, 2016.

[BL96] D. Boneh and R. J. Lipton. Algorithms for black-box fields and their
application to cryptography. In Advances in Cryptology – CRYPTO ’96,
pages 283–297, 1996.

[CP18] B. Cohen and K. Pietrzak. Simple proofs of sequential work. In Advances
in Cryptology – EUROCRYPT ’18, pages 451–467, 2018.

[DGM+19] N. Döttling, S. Garg, G. Malavolta, and P. N. Vasudevan. Tight verifiable
delay functions. Cryptology ePrint Archive, Report 2019/659, 2019.

[DMP+19] L. De Feo, S. Masson, C. Petit, and A. Sanso. Verifiable delay functions from
supersingular isogenies and pairings. Cryptology ePrint Archive, Report
2019/166, 2019.

[DN92] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In
Advances in Cryptology – CRYPTO ’92, pages 139–147, 1992.

[EFK+19] N. Ephraim, C. Freitag, I. Komargodski, and R. Pass. Continuous verifiable
delay functions. Cryptology ePrint Archive, Report 2019/619, 2019.

[GW11] C. Gentry and D. Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing, pages 99–108, 2011.

[JS08] T. Jager and J. Schwenk. On the equivalence of generic group models. In
Proceedings of the 2nd International Conference on Provable Security, pages
200–209, 2008.

[Kil92] J. Kilian. A note on efficient zero-knowledge proofs and arguments. In
Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
pages 723–732, 1992.

[LW15] A. K. Lenstra and B. Wesolowski. A random zoo: sloth, unicorn, and trx.
Cryptology ePrint Archive, Report 2015/366, 2015.

[Mau05] U. Maurer. Abstract models of computation in cryptography. In Proceedings
of the 10th IMA International Conference on Cryptography and Coding,
pages 1–12, 2005.

24 L. Rotem, G. Segev and I. Shahaf

[Mic94] S. Micali. CS proofs. In Proceedings of the 35th Annual IEEE Symposium
on the Foundations of Computer Science, pages 436–453, 1994.

[MMV11] M. Mahmoody, T. Moran, and S. P. Vadhan. Time-lock puzzles in the
random oracle model. In Advances in Cryptology – CRYPTO ’11, pages
39–50, 2011.

[MMV13] M. Mahmoody, T. Moran, and S. P. Vadhan. Publicly verifiable proofs of
sequential work. In Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science, pages 373–388, 2013.

[MSW19] M. Mahmoody, C. Smith, and D. J. Wu. A note on the (im)possibility of
verifiable delay functions in the random oracle model. Cryptology ePrint
Archive, Report 2019/663, 2019.

[MW98] U. M. Maurer and S. Wolf. Lower bounds on generic algorithms in groups.
In Advances in Cryptology – EUROCRYPT ’98, pages 72–84, 1998.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Mathematical Notes, 55(2):91–101, 1994.

[Pie19] K. Pietrzak. Simple verifiable delay functions. In Proceedings of the 10th
Conference on Innovations in Theoretical Computer Science, pages 60:1–
60:15, 2019.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-
release crypto, 1996.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In
Advances in Cryptology – EUROCRYPT ’97, pages 256–266, 1997.

[Smi61] H. J. S. Smith. On systems of linear indeterminate equations and congruences.
Philosophical Transactions of the Royal Society, 151(1):293–326, 1861.

[Sto96] A. Storjohann. Near optimal algorithms for computing Smith normal forms
of integer matrices. In Proceedings of the International Symposium on
Symbolic and Algebraic Computation, pages 267–274, 1996.

[Wes19] B. Wesolowski. Efficient verifiable delay functions. In Advances in Cryptology
– EUROCRYPT ’19, pages 379–407, 2019.

A Fast Internal Computation via Smith Normal Forms

As discussed in Section 1.3, the most significant operation that is performed by
our attacker which is non-trivial in terms of its computational cost is checking
in each iteration whether or not a given linear equation follows from the linear
equations already in the set L. When considering groups of prime order, this can
be done simply by testing for linear independence among the vectors of coefficients
corresponding to these equations. When considering groups of composite order,
this is a bit more subtle, and in what follows we show that this can be done
for example by relying on fast algorithms for computing the Smith normal form
of integer matrices (e.g., [Sto96]) and without knowing the factorization of the
order of the group.

The Smith normal form. The Smith normal form is a canonical diagonal form
for equivalence of matrices over a principal ideal ring R. For any A ∈ Rn×m there
exist square invertible matrices S and T over R such that D = SAT is the all-zeros
matrix except for the first r terms s1, . . . , sr on its main diagonal, where si|si+1

for every 0 ≤ i ≤ r−1. The matrix D is called the Smith normal form of A and it

Generic-Group Delay Functions Require Hidden-Order Groups 25

is unique up to multiplications of its non-zero terms by units. The Smith normal
form was first proven to exist by Smith [Smi61] for matrices over the integers,
and in this case each si is positive, r = rank(A) and |det(S)| = |det(T)| = 1. For
our purposes we consider Smith forms of integer matrices, and we will not be
relying on the fact that si|si+1 for every 0 ≤ i ≤ r − 1.

A fast algorithm for computing Smith normal forms over the integers was pre-
sented by Storjohann [Sto96]. His algorithm requires Õ

(
nω−1m ·M (n log ||A||)

)
bit operations for computing the Smith normal form of a matrix A ∈ Zn×m,
where ω is the exponent for matrix multiplication over rings (i.e., two n×n matri-
ces can be multiplied in O(nω) ring operations), M(t) bounds the number of bit
operations required for multiplying two dte-bit integers, and ||A|| = max |Ai,j |.
Efficiently realizing our attacker. Let L be a set of linear equations over
ZN in the formal variables Z = (Z1, . . . , Zk), and let `(Z) be an additional such
linear equation. Then, we would like to determine whether or not there exists
z ∈ ZkN such that `′(z) holds for every `′(Z) ∈ L but `(z) does not hold (i.e., ` is
not implied by L).

Denote L = {〈a(i),Z〉 = bi mod N : i ∈ [t]}, where t = |L|, a(i) ∈ Zk
and bi ∈ Z for every i ∈ [t] (that is, we identify ZN with {0, . . . , N − 1} ⊆ Z).
First, we convert our equations to equations over Z by adding new variables
W = (W1, . . . ,Wt) and for each i ∈ [t] we convert the equation 〈a(i),Z〉 = bi
mod N into the equation

〈a(i),Z〉+N ·Wi = bi .

In matrix notation we let

A =

 a(1)

...
a(t)

N · It×t

 ∈ Z(k+t)×t , b =

 b1...
bt

 ∈ Zt , v =

[
Z
W

]
∈ Zk+t ,

and then our system of linear equations is Av = b. Next, we compute the Smith
normal form of A, that is, we find matrices S ∈ Z(k+t)×(k+t) and T ∈ Zt×t that
are invertible over Z (i.e., |detS| = |detT| = 1), such that the matrix D = SAT
is zero everywhere except for the first r terms on its main diagonal for some
0 ≤ r ≤ t. Now, by multiplying from left by S, our system is the same as
SATT−1v = Sb, and denoting u = T−1v and c = Sb, we obtain the equivalent
system Du = c. Let d1, . . . , dr be the non-zero diagonal values of D. If there
exists i ∈ [r] such that di does not divide ci, or r ≤ i ≤ k+ t such that ci 6= 0 then
the system does not have any solution. Otherwise, the general solution for the
system Du = c is of the form u = (u1, . . . , uk+t) = (c1/d1, . . . , cr/dr, y1, . . . , ys),
where s = k + t− r and the y coordinates can take any value.

Now, let `(Z) be another linear equation in ZN , and denote it by 〈a′,Z〉 = b′

mod N , where a′ ∈ Zk and b′ ∈ Z (recall that we identify ZN with {0, . . . , N −
1} ⊆ Z as mentioned above). We may substitute Z = T′u, where T′ ∈ Zk×t
consists of the first k rows of T. Then, we obtain the linear equation 〈a′,T′u〉 = b′

mod N . Substituting the general solution u = (c1/d1, . . . , cr/dr, y1, . . . , ys), we

26 L. Rotem, G. Segev and I. Shahaf

obtain a linear equation of the form
∑s
i=1 αiyi = β mod N . If β = 0 mod N

and αi = 0 mod N for all i ∈ [s] then every z ∈ Zk satisfying L also satisfies `(Z).
Otherwise, if β 6= 0 mod N then the solution corresponding to (y1, . . . , ys) =
(0, . . . , 0) satisfies L but does not satisfy `(Z), and if β = 0 mod N but there
exists i ∈ [s] such that αi 6= 0 mod N then the solution corresponding to
(y1, . . . , ys) = ei satisfies L but does not satisfy `(Z).

