
Fractal: Post-Quantum and Transparent
Recursive Proofs from Holography

Alessandro Chiesa1, Dev Ojha2, and Nicholas Spooner3

1 UC Berkeley, alexch@berkeley.edu
2 UC Berkeley, dojha@berkeley.edu

3 UC Berkeley, nick.spooner@berkeley.edu

Abstract. We present a new methodology to efficiently realize recur-
sive composition of succinct non-interactive arguments of knowledge
(SNARKs). Prior to this work, the only known methodology relied on
pairing-based SNARKs instantiated on cycles of pairing-friendly elliptic
curves, an expensive algebraic object. Our methodology does not rely
on any special algebraic objects and, moreover, achieves new desirable
properties: it is post-quantum and it is transparent (the setup is public
coin).
We exploit the fact that recursive composition is simpler for SNARKs
with preprocessing, and the core of our work is obtaining a preprocessing
zkSNARK for rank-1 constraint satisfiability (R1CS) that is post-quantum
and transparent. We obtain this latter by establishing a connection
between holography and preprocessing in the random oracle model, and
then constructing a holographic proof for R1CS.
We experimentally validate our methodology, demonstrating feasibility
in practice.4

Keywords: succinct arguments; holographic proofs; recursive proof com-
position; post-quantum cryptography

1 Introduction

Succinct non-interactive arguments (SNARGs) are cryptographic proofs for non-
deterministic languages that are small and easy to verify. In the last few years,
researchers from across multiple communities have investigated many aspects
of SNARGs, including constructions under different cryptographic assumptions,
improvements in asymptotic efficiency, concrete performance of implementations,
and real-world applications. The focus of this paper is recursive composition, a
notion that we motivate next.

Recursive composition. The time to validate a SNARG can be exponentially
faster than the time to run the non-deterministic computation that it attests
to, a property known as succinct verification. This exponential speedup raises
an interesting prospect: could one produce a SNARG about a computation that

4 The full version of this work is available at https://ia.cr/2019/1076.

involves validating prior SNARGs? Thanks to succinct verification, the time
to run this (non-deterministic) computation would be essentially independent
of the time of the prior computations. This recursive composition of SNARGs
enables incrementally verifiable computation [56] and proof-carrying data [30,
18]. A critical technicality here is that, for recursive composition to work, the
SNARG must be an argument of knowledge, i.e., a SNARK. This is because the
security of a SNARG holds only against efficient adversaries, and the knowledge
property ensures that prior SNARGs must have been efficiently produced, and
so we can rely in turn on their security. A formal treatment of this can be found
in [18], which discusses how the “strength” of a SNARG’s knowledge property
relates to how many recursions the SNARG supports.

Efficient recursion. Theory tells us that any succinct-verifier SNARK is recur-
sively composable [18]. In practice, however, recursive composition is exceedingly
difficult to realize efficiently. The reason is that, even if we have a SNARK that is
concretely efficient when used “standalone”, it is often prohibitively expensive to
express the SNARK verifier’s computation through the language supported by the
SNARK. Indeed, while by now there are numerous SNARK constructions with
remarkable concrete efficiency, to date there is only a single efficient approach to
recursion. The approach, due to [15], uses pairing-based SNARKs with a special
algebraic property discussed below.5 This has enabled real-world applications
such as Coda [51], a cryptocurrency that uses recursive composition to achieve
strong scalability properties.

Limitations. The above efficient approach to recursion suffers from significant
limitations.
– It is pre-quantum. Pairing-based SNARKs rely (at least) on the hardness of

extracting discrete logarithms, and so are insecure against quantum attacks.
Hence the approach of [15] is also insecure against quantum attacks. Devising
an efficient post-quantum approach to recursion is an open problem.

– It introduces toxic waste. All known pairing-based SNARKs that can be used
in the approach of [15] rely on a structured reference string (SRS). Sampling
the SRS involves secret values (the “toxic waste”) that must remain secret for
security. Ensuring that this is the case in practice is difficult: the SRS must be
sampled by some trusted party or via a cryptographic ceremony [12, 21, 22, 1].
Devising an efficient transparent (toxic-waste free) approach to recursion is an
open problem.

– It uses expensive algebra. The approach of [15] uses pairing-based SNARKs
instantiated via pairing-friendly cycles of elliptic curves. Only a single cycle
construction is known, MNT cycles ; it consists of two prime-order elliptic curves,
with embedding degrees 4 and 6 respectively. Curves in an MNT cycle must be
much bigger than usual in order to compensate for the loss of security caused by
the small embedding degrees. Moreover the fields that arise from MNT cycles
are imposed on applications rather than being chosen depending on the needs

5 A recent note sketches an alternative approach to recursion based on batch verification
[23]. We omit a discussion of this note due to lack of sufficient detail (it does not
provide definitions, full constructions, security arguments, or an efficiency analysis).

2

of applications, causing additional performance overheads. Attempts to find
“better” cycles, without these limitations, have resulted in some negative results
[26]. Indeed, finding any other cycles beyond MNT cycles is a challenging open
problem.

1.1 Our results

We present a new methodology for recursive composition that simultaneously
overcomes all of the limitations discussed above. We experimentally validate our
methodology, demonstrating feasibility in practice.

The starting point of our work is the observation that recursive composition
is simpler when applied to a SNARG (of knowledge) that supports preprocessing,
as we explain in Section 2.1. This property of a SNARG means that in an
offline phase one can produce a short summary for a given circuit and then,
in an online phase, one may use this short summary to verify SNARGs that
attest to the satisfiability of the circuit with different partial assignments to its
inputs. The online phase can be as fast as reading the SNARG (and the partial
assignment), and in particular sublinear in the circuit size even for arbitrary
circuits. Throughout, by “preprocessing SNARG” we mean a SNARG whose
verifier runs in time polylogarithmic in the circuit size.6

Our methodology has three parts: (1) a transformation that maps any “holo-
graphic proof” into a preprocessing SNARG in the random oracle model; (2) a
holographic proof for (rank-1) constraint systems, which leads to a corresponding
preprocessing SNARG; (3) a transformation that recurses any preprocessing
SNARK (once the random oracle is heuristically instantiated via a cryptographic
hash function).

We now summarize our contributions for each of these parts.

(1) From holographic proofs to preprocessing SNARGs. A probabilistic
proof is holographic if the verifier does not receive the circuit description as an
input but, rather, makes a small number of queries to an encoding of the circuit
[7]. Recent work [27] has established a connection between holography and
preprocessing (which we review in Section 1.2). The theorem below adds to this
connection, by showing that interactive oracle proofs (IOPs) [14, 52] that are
holographic can be compiled into preprocessing SNARGs that are secure in the
quantum random oracle model [20, 28].

Theorem 1 (informal). There is an efficient transformation that compiles
any holographic IOP for a relation R into a preprocessing SNARG for R that
is unconditionally secure in the random oracle model. If the IOP is a (honest-
verifier) zero knowledge proof of knowledge then the transformation produces a

6 In contrast, non-preprocessing SNARGs can achieve fast verification only for struc-
tured circuits, because the verification procedure must at a minimum read the
description of the circuit whose satisfiability it checks. The description of a circuit can
be much smaller than the circuit itself only when the circuit has suitable structure,
e.g., repeated sub-components in parallel or in series.

3

zero knowledge SNARG of knowledge (zkSNARK). This extends to hold in the
quantum random oracle model.

By applying Theorem 1 to known holographic proofs for non-deterministic
computations (such as the PCP in [7] or the IPCP in [41]), we obtain the first
transparent preprocessing SNARG and the first post-quantum preprocessing
SNARG. Unfortunately, known holographic proofs are too expensive for practical
use, because encoding the circuit is costly (as explained in Section 1.2). In this
paper we address this problem by constructing an efficient holographic proof,
discussed below.

We note that holographic proofs involve relations R that consist of triples
rather than pairs because the statement being checked has two parts. One part
is called the index, which is encoded in an offline phase by the indexer and this
encoding is provided as an oracle to the verifier. The other part is called the
instance, which is provided as an explicit input to the verifier. For example, the
index may be a circuit description and the instance a partial assignment to its
inputs. We refer to this notion as indexed relations.

(2) Efficient protocols for R1CS. We present a holographic IOP for rank-1
constraint satisfiability (R1CS), a standard generalization of arithmetic circuits
where the “circuit description” is given by coefficient matrices. We describe the
corresponding indexed relation.

Definition 1 (informal). The indexed relation RR1CS is the set of triples
(i,x,w) =

(
(F, n,m,A,B,C), x, w

)
where F is a finite field, A,B,C are n × n

matrices over F, each containing at most m non-zero entries, and z := (x,w) is a
vector in Fn such that Az ◦Bz = Cz. (Here “◦” denotes the entry-wise product.)

Theorem 2 (informal). There exists a public-coin holographic IOP for the
indexed relation RR1CS that is a zero knowledge proof of knowledge with the
following efficiency features. In the offline phase, the encoding of an index is
computable in O(m logm) field operations and consists of O(m) field elements.
In the online phase, the protocol has O(logm) rounds, with the prover using
O(m logm) field operations and the verifier using O(|x|+ logm) field operations.
Proof length is O(m) field elements and query complexity is O(logm).

The above theorem improves, in the holographic setting, on prior IOPs for
R1CS (see Fig. 1): it offers an exponential improvement in verification time
compared to the linear-time verification of [13], and it offers succinct verification
for all coefficient matrices compared to only structured ones as in [11].

Armed with an efficient holographic IOP, we use our compiler to construct
an efficient preprocessing SNARG in the random oracle model. The following
theorem is obtained by applying Theorem 1 to Theorem 2.

Theorem 3 (informal). There exists a preprocessing zkSNARK for R1CS that
is unconditionally secure in the random oracle model (and the quantum random
oracle model) with the following efficiency features. In the offline phase, anyone
can publicly preprocess an index in time Oλ(m logm), obtaining a corresponding

4

verification key of size Oλ(1). In the online phase, the SNARG prover runs in time
Oλ(m logm) and the SNARG verifier runs in time Oλ(|x|+ log2m); argument
size is Oλ(log2m).

We have implemented the protocol underlying Theorem 3, obtaining the first
efficient realization of a post-quantum transparent preprocessing zkSNARK.

For example, for a security level of 128 bits over a 181-bit prime field, argu-
ments range from 80 kB to 200 kB for instances of up to millions of constraints.
These argument sizes are two orders of magnitude bigger than pre-quantum non-
transparent preprocessing zkSNARKs (see Section 1.2), and are 2× bigger that
the state of the art in post-quantum transparent non-preprocessing zkSNARKs
[13]. Our proving and verification times are comparable to prior work: proving
takes several minutes, while verification takes several milliseconds regardless of
the constraint system. (See the full version [29] for performance details.)

Besides its application to post-quantum transparent recursion, our prepro-
cessing zkSNARK provides attractive benefits over prior constructions, as we
discuss in Section 1.2.

Note that, when the random oracle in the construction is heuristically instan-
tiated via an efficient cryptographic hash function (as in our implementation),
the resulting preprocessing zkSNARK is in the uniform reference string (URS)
model, which means that the system parameters consist of a uniformly random
string of fixed size.7 The term “transparent” refers to a construction in the URS
model.

(3) Post-quantum transparent recursion. We obtain the first efficient
realization of post-quantum transparent recursive composition for SNARKs. The
cryptographic primitive that formally captures this capability is known as proof
carrying data (PCD) [30, 18], and so this is what we construct.

Theorem 4 (informal). There is an efficient transformation that compiles
any preprocessing SNARK in the URS model into a preprocessing PCD scheme
in the URS model. Moreover, if the preprocessing SNARK is post-quantum secure
then so is the preprocessing PCD scheme.

The above transformation, which preserves the “transparent” property and
post-quantum security, is where recursive composition occurs. For details, includ-
ing the definition of PCD, see the full version [29].

Moreover, we provide an efficient implementation of the transformation in
Theorem 4 applied to our implementation of the preprocessing zkSNARK from
Theorem 3. The main challenge is to express the SNARK verifier’s computation
in as few constraints as possible, and in particular to design a constraint system
for the SNARK verifier that on relatively small instances is smaller than the
constraint system that it checks (thereby permitting arbitrary recursion depth).
Via a combination of computer-assisted design and recent advances in algebraic

7 We stress that this step is a heuristic due to well-known limitations to the random
oracle methodology [24, 40]. Investigating how to provably instantiate the random
oracle for many natural constructions is an active research frontier.

5

hash functions, we achieve this threshold for all computations of at least 2 million
constraints. Specifically, we can express a SNARK verifier checking 2 million
constraints using only 1.7 million constraints, and this gap grows quickly with
the computation size. This is the first demonstration of post-quantum transparent
recursive composition in practice.

R1CS indexer prover verifier round proof query
instances holographic? time time time complexity length complexity

[13] arbitrary NO N/A O(m+ n logn) O(|x|+m) O(logn) O(n) O(logn)

[11] † semi-succinct NO N/A O(m+ n logn) O(|x|+ logn) O(logn) O(n) O(logn)

this work arbitrary YES O(m logm) O(m logm) O(|x|+ logm) O(logm) O(m) O(logm)

Fig. 1. Comparison of IOPs for R1CS: two prior non-holographic IOPs, and our
holographic IOP. Here n denotes the number of variables and m the number of non-
zero coefficients in the matrices. †: The parameters stated for [11] reflect replacing the
constant-query low-degree test in the construction with a concretely-efficient logarithmic-
query low-degree test such as [9], to simplify comparison.

⋮

!,",# "

holographic IOP

security against
all adversaries

Theorem 1 preprocessing SNARK
in the (Q)ROM

preprocessing SNARK
with a URS

(!)

Theorem 4 preprocessing PCD
with a URS

security against
query-bounded adversaries

$ %

ℐ
P V

I(!)
ivkipk

ρρ

ρ

",# "

$ %

ivkipk

π
",# "

(urs,!)ℐ

security against
(quantum) poly-size adversaries

ivkipk

'

((urs,))

ℙ +
security against

(quantum) poly-size adversaries

','loc
('i,,i)i

π

π

in
st

an
tia

te
 ra

nd
om

 o
ra

cle
⋮

!,",# "

holographic IOP

security against
all adversaries

Theorem 1 preprocessing SNARK
in the (Q)ROM

preprocessing SNARK
with a URS

(!)

Theorem 4 preprocessing PCD
with a URS

security against
query-bounded adversaries

$ %

ℐ
P V

I(!)
ivkipk

ρρ

ρ

",# "

$ %

ivkipk

π
",# "

(urs,!)ℐ

security against
(quantum) poly-size adversaries

ivkipk

'

((urs,))

ℙ +
security against

(quantum) poly-size adversaries

','loc
('i,,i)i

π

π

Fig. 2. Diagram of our methodology to recursive composition that is post-quantum
and transparent.

1.2 Comparison with prior work

We provide a comparison with prior work in the three areas to which we contribute:
holographic proofs (Section 1.2); preprocessing SNARGs (Section 1.2); and
recursive composition of SNARKs (Section 1.2). We omit a general discussion
of the now ample literature on SNARGs, and in particular do not discuss non-
preprocessing SNARGs for structured computations (e.g., [57], [10], and many
others).

Prior holographic proofs The verifier in a proof system cannot run in time
that is sublinear in its input, because it must at a minimum read the input in

6

order to know the statement being checked. Holographic proofs [7] avoid this
limitation by considering a setting where the verifier does not receive its input
explicitly but, instead, has query access to an encoding of it. The goal is then to
verify the statement in time sublinear in its size; note that such algorithms are
necessarily probabilistic.8

In Fig. 3 we compare the efficiency of prior holographic proofs and our
holographic proof for the case of circuit satisfiability, where the input to the
verifier is the description of an arbitrary circuit. There are two main prior
holographic proofs in the literature. One is the PCP construction in [7], where
it suffices for the verifier to query a few locations of a low-degree extension of
the circuit description. Another one is the “bare bones” protocol in [41], which
is a holographic IP for circuit evaluation that can be re-cast as a holographic
IPCP for circuit satisfaction; the verifier relies on the low-degree extensions of
functions that describe each layer of the circuit. The constructions in [7] and [41]
are unfit for practical use as holographic proofs in Theorem 1, because encoding
the circuit incurs a polynomial blowup due to the use of multivariate low-degree
extensions (which yield encodings with inverse polynomial rate).

In the table we exclude the “algebraic holographic proof” of Marlin [27],
because the soundness guarantee of such a proof is incompatible with Theorem 1.

Comparison with this work. Our holographic proof is the first to achieve
efficient asymptotics not only for the prover and verifier, but also for the indexer,
which is responsible for producing the encoding of the circuit.

proof indexer prover verifier
type time time time

[7] PCP poly(N) poly(N) poly(|x|+ log(N))
[41] IPCP poly(N) poly(|w|) +O(N) O(|x|+D logW)

this work IOP O(N logN) O(N logN) O(|x|+ logN)

Fig. 3. Comparison of holographic proofs for arithmetic circuit satisfiability. Here x
denotes the known inputs, w the unknown inputs, and N the total number of gates; if
the circuit is layered, D denotes circuit depth and W circuit width. Our Theorem 1 can
be used to compile any of these holographic proofs into a preprocessing SNARG. (For
better comparison with other works, [41] is stated as an IPCP for circuit satisfiability
rather than as an IP for circuit evaluation; in the latter case, the prover time would be
O(N). The prover times for [41] incorporate the techniques for linear-time sumcheck
introduced in [57].)

8 The goal of sublinear verification via holographic proofs is similar to, but distinct
from, the goal of sublinear verification via proximity proofs (as, e.g., studied in [35,
33, 17, 53, 46].) In this latter setting, the verifier has oracle access to an input that is
not promised to be encoded and, in particular, cannot in general decide if the input
is in the language without reading all of the input. To allow for sublinear verification
without any promises on the input, the decision problem is relaxed: the verifier is
only asked to decide if the input is in the language or far from any input in the
language.

7

Prior preprocessing SNARGs Prior works construct preprocessing SNARGs
in a model where a trusted party samples, in a parameter setup phase, a structured
reference string (SRS) that is proportional to circuit size. We summarize the main
features of these constructions, distinguishing between the case of circuit-specific
SRS and universal SRS.

– Circuit-specific SRS: a circuit is given as input to the setup algorithm, which
samples a (long) proving key and a (short) verification key that can be used to
produce and validate arguments for the circuit. Preprocessing SNARGs with
circuit-specific SRS originate in [43, 47, 39, 19], and have been studied in an
influential line of work that has led to highly-efficient constructions (e.g., [44])
and large-scale deployments (e.g., [34]). They are obtained by combining linear
interactive proofs and linear-only encodings. The argument sizes achievable in
this setting are very small: less than 200 bytes.

– Universal SRS: a size bound is given as input to the setup algorithm, which
samples a (long) proving key and a (short) verification key that can be used
to produce and validate arguments for circuits within this bound. A public
procedure can then be used to specialize both keys for arguments relative to
the desired circuit. Preprocessing SNARGs with universal (and updatable)
SRS were introduced in [45], and led to efficient constructions in [49, 27, 38].
They are obtained by combining “algebraic” holographic proofs (see below)
and polynomial commitment schemes. The argument sizes currently achievable
with universal SRS are bigger than with circuit-specific SRS: less than 1500
bytes.

Comparison with this work. Theorem 1 provides a methodology to obtain
preprocessing SNARGs in the (quantum) random oracle model, which heuristically
implies (by suitably instantiating the random oracle) preprocessing SNARGs that
are post-quantum and transparent. Neither of these properties is achieved by
prior preprocessing SNARGs. Theorem 1 also develops the connection between
holography and preprocessing discovered in [27], which considers the case of
holographic proofs where the completeness and soundness properties are restricted
to “algebraic provers” (which output polynomials of prescribed degrees). We
consider the case of general holographic proofs, where completeness and soundness
are not restricted.

Moreover, our holographic proof (Theorem 2) leads to a preprocessing SNARG
(Theorem 3) that, as supported by our implementation, provides attractive
benefits over prior preprocessing SNARGs.

– Prior preprocessing SNARGs require cryptographic ceremonies to securely
sample the long SRS, which makes deployments difficult and expensive. This
has restricted the use of preprocessing SNARGs to proving relatively small
computations, due to the prohibitive cost of securely sampling SRSs for large
computations. This is unfortunate because preprocessing SNARGs could be
useful for “scalability applications”, which leverage succinct verification to
efficiently check large computations (e.g., verifying the correctness of large
batches of trades executed at a non-custodial exchange [8, 55]).

8

The transparent property of our preprocessing SNARG means that the long
SRS is replaced with a fixed-size URS (uniform reference string). This simplifies
deployments and enables scalability applications.

– Prior preprocessing SNARGs are limited to express computations over the
prime fields that arise as the scalar fields of pairing-friendly elliptic curves. Such
fields are imposed by parametrized curve families that offer little flexibility
for optimizations or applications. (Alternatively one can use the Cocks–Pinch
method [37] to construct an elliptic curve with a desired scalar field, but the
resulting curve is inefficient.)
In contrast, our preprocessing SNARG is easily configurable across a range
of security levels, and supports most large prime fields and all large binary
fields, which offers greater flexibility in terms of performance optimizations
and customization for applications.

Remark 1 (weaker forms of preprocessing). Prior work proved recursive com-
position only for non-interactive arguments of knowledge with succinct verifiers
[18]; this is the case for our definition of preprocessing SNARGs. In this paper
we show that recursive composition is possible even when the verifier is merely
sublinear in the circuit size, though the cost of each recursion is much steeper
than in the polylogarithmic case.

This provides additional motivation to the study of preprocessing with sub-
linear verifiers, as recently undertaken by Setty [54]. In this latter work, Setty
proposes a non-interactive argument in the URS (uniform reference string) model
where, for n-gate arithmetic circuits and a chosen constant c ≥ 2, proving time
is Oλ(n), argument size is Oλ(n1/c), and verification time is Oλ(n1−1/c).

Recursion for pairing-based SNARKs The approach to recursive composi-
tion of [15] uses pairing-based (preprocessing) SNARKs based on pairing-friendly
cycles of elliptic curves. This approach applies to constructions with circuit-
specific SRS (e.g. [44]) and to those with universal SRS (e.g. [45, 49, 27, 38]).

Informally, pairing-based SNARKs support languages that involve the satis-
fiability of constraint systems over a field that is different from the field used
to compute the SNARK verifier — this restriction arises from the mathematics
of the underlying pairing-friendly elliptic curve used to instantiate the pairing.
This seemingly mundane fact has the regrettable consequence that expressing
the SNARK verifier’s computation in the language supported by the SNARK
(to realize recursive composition) is unreasonably expensive due to this “field
mismatch”. To circumvent this barrier, prior work leveraged two pairing-based
SNARKs where the field to compute one SNARK verifier equals the field of the
language supported by the other SNARK, and vice versa. This condition enables
each SNARK to efficiently verify the other SNARK’s proofs.

These special SNARKs rely on pairing-friendly cycles of elliptic curves, which
are pairs of pairing-friendly elliptic curves where the base field of one curve equals
the scalar field of the other curve and vice versa. The only known construction
is MNT cycles, which consist of two prime-order elliptic curves with embedding
degrees 4 and 6 respectively. An MNT cycle must be much bigger than usual in

9

order to compensate for the low security caused by the small embedding degrees.
For example, for a security level of 128 bits, curves in an MNT cycle must be
defined over a prime field with roughly 800 bits; this is over three times the 256
bits that suffice for curves with larger embedding degrees. These performance
overheads can be significant in practice, e.g., Coda [51] is a project that has
deployed MNT cycles in a product, and has organized a community challenge
to speed up the proof generation for pairing-based SNARKs [32]. A natural
approach to mitigate this problem would be to find “high-security” cycles (i.e.,
with higher embedding degrees) but to date little is known about pairing-friendly
cycles beyond a few negative results [26].

Comparison with this work. The approach to recursion that we present in
this paper is not tied to constructions of pairing-friendly cycles of elliptic curves.
In particular, our approach scales gracefully across different security levels, and
also offers more flexibility when choosing the desired field for an application. In
addition, our approach is post-quantum and, moreover, uses a transparent (i.e.,
public-coin) setup.

On the other hand, our approach has two disadvantages. First, argument size is
about 100 times bigger than the argument size achievable by cycle-based recursion.
Second, the number of constraints needed to express the verifier’s computation
is about 45 times bigger than those needed in the case of cycle-based recursion
(e.g., the verifier of [44] can be expressed in about 40,000 constraints). The vast
majority of these constraints come from the many hash function invocations
required to verify the argument.

Both of the above limitations are somewhat orthogonal to our approach and
arguably temporary: the large proof size and many hash invocations come from
the many queries required from current constructions of low-degree tests [9, 16].
As the state of the art in low-degree testing progresses (e.g., to high-soundness
constructions over large alphabets), both argument size and verifier size will also
improve.

2 Techniques

We discuss the main ideas behind our results. In Section 2.1 we explain how
preprocessing simplifies recursive composition. In Section 2.2 we describe our
compiler from holographic IOPs to preprocessing SNARGs (Theorem 1). In
Section 2.3 we describe our efficient holographic IOP (Theorem 2), and then in
Section 2.4 we discuss the corresponding preprocessing SNARG (Theorem 3).
In Section 2.5 we describe how to obtain post-quantum and transparent PCD
(Theorem 4). In Section 2.6 we discuss our verifier circuit.

Recall that indexed relations consist of triples (i,x,w) where i is the index,
x is the instance, and w is the witness. We use these relations because the
statements being checked have two parts, the index i (e.g., a circuit description)
given in an offline phase and the instance x (e.g., a partial input assignment)
given in an online phase.

10

2.1 The role of preprocessing SNARKs in recursive composition

We explain why preprocessing simplifies recursive composition of SNARKs. For
concreteness we consider the problem of incrementally proving the iterated
application of a circuit F : {0, 1}n → {0, 1}n to an initial input z0 ∈ {0, 1}n. We
are thus interested in proving statements of the form “given zT there exists z0

such that zT = FT (z0)”, but wish to avoid having the SNARK prover check the
correctness of all T invocations at once. Instead, we break the desired statement
into T smaller statements {“zi = F (zi−1)”}Ti=1 and then inductively prove them.
Informally, for i = 1, . . . , T , we produce a SNARK proof πi for this statement:

“Given a counter i and claimed output zi, there exists a prior output zi−1

such that zi = F (zi−1) and, if i > 1, there exists a SNARK proof πi−1

that attests to the correctness of zi−1.”

Formalizing this idea requires care, and in particular depends on how the SNARK
achieves succinct verification (a prerequisite for recursive composition). There
are two methods to achieve succinct verification.

(1) Non-preprocessing SNARKs for structured computations. The SNARK sup-
ports non-deterministic computations expressed as programs, i.e., it can be
used to prove/verify statements of the form “given a program M , primary
input x, and time bound t, there exists an auxiliary input w such that
M accepts (x,w) in t steps”. (More generally, the SNARK could support
any computation model for which the description of a computation can be
significantly smaller than the size of the described computation.)

(2) Preprocessing SNARKs for arbitrary computations. The SNARK supports
circuit satisfiability, i.e., it can be used to prove/verify statements of the form
“given a circuit C and primary input x, there exists an auxiliary input w such
that C(x,w) = 0”. Preprocessing enables the circuit C to be summarized
into a short verification key ivkC that can be used for succinct verification
regardless of the structure of C. (More generally, the SNARK could support
any computation model as long as preprocessing is possible.)

We compare the costs of recursive composition in these two cases, showing why the
preprocessing case is cheaper. Throughout we consider SNARKs in the uniform
reference string model, i.e., parameter setup consists of sampling a fully random
string urs of size poly(λ) that suffices for proving/verifying any statement.

(1) Recursion without preprocessing. Let (P,V) be a non-preprocessing
SNARK for non-deterministic program computations. In this case, recursion is
realized via a program R, which depends on urs and F , that checks one invocation
of the circuit F and the validity of a prior SNARK proof relative to the reference
string urs. The program R is defined as follows:

11

Primary input: a tuple x = (M, i, zi) consisting of the description
of a program M , counter i, and claimed output zi. (We later set
M := R to achieve recursion, as explained shortly.)

Auxiliary input: a tuple w = (zi−1, πi−1) consisting of a previous
output zi−1 and corresponding SNARK proof πi−1 that attests
to its correctness.

Code: R(x,w) accepts if zi = F (zi−1) and, if i > 1,
V(urs,M,xi−1, t, πi−1) = 1 where xi−1 := (M, i − 1, zi−1) and
t is a suitably chosen time bound.

The program R can be used to incrementally prove the iterated application of
the circuit F . Given a tuple (i−1, zi−1, πi−1) consisting of the current counter, out-
put, and proof, one can use the SNARK prover to obtain the next tuple (i, zi, πi)
by setting zi := F (zi−1) and computing the proof πi := P(urs, R, (R, i, zi), t, πi).
Note that we have set M := R, so that (the description of) R is part of the
primary input to R. A tuple (i, zi, πi) can then be verified by running the SNARK
verifier, as V(urs, R, (R, i, zi), t, πi).

9

We refer the reader to [18] for details on how to prove the above construction
secure. The aspect that we are interested to raise here is that the program R
is tasked to simulate itself, essentially working as a universal machine. This
means that every elementary operation of R, and in particular of F , needs to be
simulated by R in its execution. This essentially means that the computation
time of R, which dictates the cost of each proof composition, is at least a constant
c > 1 times the size of |F |. This multiplicative overhead on the size of the circuit
F , while asymptotically irrelevant, is a significant overhead in concrete efficiency.

(2) Recursion with preprocessing. We describe how to leverage prepro-
cessing in order to avoid universal simulation, and in particular to avoid any
multiplicative performance overheads in recursive composition. Intuitively, pre-
processing provides a “cryptographic simplification” to the requisite recursion,
by enabling us to replace the description of the computation with a succinct
cryptographic commitment to it.

Let (I,P,V) be a preprocessing SNARK for circuits. Recursion is realized
via a circuit R that depends on urs and F , and checks one invocation of F and a
prior proof. The circuit R is defined as follows:

9 The astute reader may notice that we could have applied the Recursion Theorem
to the program R to obtain a new program R∗ that has access to its own code, and
thereby simplify primary inputs from triples x = (M, i, zi) to pairs x = (i, zi). This,
however, adds unnecessary complexity. Indeed, here we can rely on the SNARK
verifier to provide R with its own code as part of the primary input, obviating this
extra step. (For reference, the Recursion Theorem states that for every program
A(x, y) there is a program B(y) that computes A(〈B〉, y), where the angle brackets
emphasize that the first argument is the description of the program B.)

12

Primary input: a tuple x = (ivk, i, zi) consisting of an index veri-
fication key ivk, counter i, and claimed output zi. (We later set
ivk := ivkR to achieve recursion.)

Auxiliary input: a tuple w = (zi−1, πi−1) consisting of a previous
output zi−1 and corresponding SNARK proof πi−1 that attests
to its correctness.

Code: R(x,w) accepts if zi = F (zi−1) and, if i > 1,
V(urs, ivk,xi−1, πi−1) = 1 where xi−1 := (ivk, i− 1, zi−1).

The circuit R can be used for recursive composition as follows. In the offline
phase, we run the indexer I on the circuit R, obtaining a long index proving
key ipkR and a short index verification key ivkR that can be used to produce
and validate SNARKs with respect to the circuit R. Subsequently, in the online
phase, one can use the prover P to go from a tuple (i− 1, zi−1, πi−1) to a new
tuple (i, zi, πi) by letting zi := F (zi−1) and πi := P(urs, ipkR, (ivkR, i, zi), πi).
Note that we have set ivk := ivkR, so that the verification key ivkR is part of the
primary input to the circuit R. A tuple (i, zi, πi) can then be verified by running
the SNARK verifier, as V(urs, ivkR, (ivkR, i, zi), πi).

Crucially, the circuit R does not perform any universal simulation involving
the circuit F , and in particular does not incur multiplicative overheads. Indeed,
|R| = |F |+ |V| = |F |+ o(|F |). This was enabled by preprocessing, which let us
provide the index verification key ivkR as input to the circuit R.

In fact, preprocessing is already part of the efficient approach to recursive
composition in [15]. There the preprocessing SNARK uses a structured, rather
than uniform, reference string but the benefits of preprocessing are analogous
(even when the reference string depends on the circuit or a bound on it).

In summary:. preprocessing SNARKs play an important role in efficient
recursive composition. Our first milestone is post-quantum and transparent pre-
processing SNARKs, which we then use to achieve post-quantum and transparent
recursive composition.

2.2 From holographic proofs to preprocessing with random oracles

We describe the main ideas behind Theorem 1, which provides a transformation
that compiles any holographic IOP for an indexed relation R into a corresponding
preprocessing SNARG for R. For more details, see the full version [29].

Warmup: holographic PCPs. We first consider the case of PCPs, a spe-
cial case of IOPs. Recall that the Micali transformation [50] compiles a (non-
holographic) PCP into a (non-preprocessing) SNARG. We modify this transfor-
mation to compile a holographic PCP into a preprocessing SNARG, by using the
fact that the SNARG verifier output by the Micali transformation invokes the
PCP verifier as a black box.

In more detail, the main feature of a holographic PCP is that the PCP verifier
does not receive the index as an explicit input but, rather, makes a small number
of queries to an encoding of the index given as an oracle. If we apply the Micali
transformation to the holographic PCP, we obtain a SNARG verifier that must
answer queries by the PCP verifier to the encoded index. If we simply provided

13

the index as an input to the SNARG verifier, then we cannot achieve succinct
verification and so would not obtain a preprocessing SNARG. Instead, we let the
SNARG indexer compute the encoded index, compute a Merkle tree over it, and
output the corresponding root as an index verification key for the SNARG verifier.
We can then have the SNARG prover extend the SNARG proof with answers to
queries to the encoded index, certified by authentication paths relative to the
index verification key. In this way the SNARG verifier can use the answers in
the SNARG proof to answer the queries to the encoded index by the underlying
PCP verifier.

This straightforward modification to the Micali transformation works: one can
prove that if the soundness error of the holographic PCP is ε then the soundness
error of the preprocessing SNARG is tε+O(t2 ·2−λ) against t-query adversaries in
the random oracle model. (A similar expression holds for quantum adversaries.)

General case: holographic IOPs. While efficient constructions of holo-
graphic PCPs are not known, in this paper we show how to construct an efficient
holographic IOP (see Section 2.3). Hence we are actually interested in compiling
holographic IOPs. In this case our starting point is the BCS transformation [14],
which compiles a (non-holographic) IOP into a (non-prepreprocessing) SNARG.
We adopt a similar strategy as above: we modify the BCS transformation to
compile a holographic IOP into a preprocessing SNARG, using the fact that the
SNARG verifier output by the BCS transformation invokes the IOP verifier as a
black box. Indeed, the main feature of a holographic IOP is the fact that the IOP
verifier makes a small number of queries to an encoding of the index given as an
oracle. Therefore the SNARG indexer can output the Merkle root of the encoded
index as an index verification key, which subsequently the SNARG verifier can
use to authenticate answers about the encoded index claimed by the SNARG
prover.

An important technical difference here is the fact that the soundness error
of the resulting preprocessing SNARG is not related to the soundness error
of the holographic IOP but, instead, to its state-restoration soundness (SRS)
error, a stronger notion of soundness introduced in [14]. Namely, we prove that if
the SRS error of the holographic PCP is εsr(t) then the soundness error of the
preprocessing SNARG is εsr(t) +O(t2 · 2−λ). This phenomenon is inherited from
the (unmodified) BCS transformation.

PoK and ZK. If the holographic IOP is a proof of knowledge, our transforma-
tion yields a preprocessing SNARG of knowledge (SNARK). If the holographic
IOP is honest-verifier zero knowledge, the preprocessing SNARG is statistical
zero knowledge. These features are inherited from the BCS transformation.

2.3 An efficient holographic proof for constraint systems

We describe the main ideas behind Theorem 2, which provides an efficient
construction of a holographic IOP for rank-1 constraint satisfiability (R1CS). See
Definition 1 for the indexed relation representing this problem.

14

Our starting point: Marlin. Our construction borrows ideas from the
algebraic holographic proof (AHP) underlying Marlin, a pairing-based zkSNARK
due to [27]. An AHP is similar to a holographic IOP, except that the indexer and
the prover (both honest and malicious) send low-degree univariate polynomials
rather than evaluations of functions. The verifier may evaluate these polynomials
at any point in the field.

To understand how AHPs and holographic IOPs differ, it is instructive to
consider how one might construct a holographic IOP from an AHP. A natural
approach is to construct the indexer and prover for the hIOP as follows: run
the indexer/prover of the AHP, and whenever the indexer/prover outputs a
polynomial, evaluate it and send this evaluation as the oracle. There are several
issues with this approach. First, hIOPs require a stronger soundness guarantee:
soundness must hold against malicious provers that send arbitrary oracles. Second,
evaluating the polynomial requires selecting a set L ⊆ F over which to evaluate
it. In general, since the verifier in the AHP may query any point in F, we would
need to take L := F, which is prohibitively expensive for the indexer and prover
if F is much larger than the instance size (as it often is, for both soundness and
application reasons). Third, assuming that one manages to decouple L and F,
the soundness error of one invocation of the AHP will (at best) decrease with
1/|L| instead of 1/F, which requires somehow reducing the soundness error of
the AHP to, say, 1/2λ, and simply re-running in parallel the AHP for λ− log |L|
would be expensive in all relevant parameters.

The first issue could be resolved by composing the resulting protocol with a
low-degree test. This introduces technicalities because we cannot hope to check
that the oracle is exactly low-degree (as required in an AHP) — we can only
check that the oracle is close to low-degree. The best way to resolve the second
issue depends on the AHP itself, and would likely involve out-of-domain sampling
[16]. Finally, resolving the third issue may not be possible in general (in fact, we
do not see how resolve it for the AHP in Marlin.)

These above issues show that, despite some similarities, there are markedly
different design considerations on hIOPs versus AHPs. For this reason, while we
will follow some of the ideas outlined above, we do not take the Marlin AHP as
a black box. Instead, we will draw on the ideas underlying the Marlin AHP in
order to build a suitable hIOP for this paper. Along the way, we also show how
to reduce the round complexity of the Marlin AHP from 3 to 2, an ideas that we
use to significantly improve the efficiency of our construction.

Aurora. The structure of our holographic IOP, like the Marlin AHP, follows
the one of Aurora [13], an IOP for R1CS that we now briefly recall. Given an
R1CS instance (A,B,C), the prover sends to the verifier fz, the RS-encoding of
a vector z, and three oracles fA, fB , fC which are purportedly the RS-encodings
of the three vectors Az,Bz,Cz respectively. The prover and verifier then engage
in subprotocols to prove that (i) fA, fB , fC are indeed encodings of Az,Bz,Cz,
and (ii) fA · fB − fC is an encoding of the zero vector.

Together these checks ensure that (A,B,C) is a satisfiable instance of R1CS.
Testing (ii) is a straightforward application of known probabilistic checking

15

techniques, and can be achieved with a logarithmic-time verifier. The primary
challenge in the Aurora protocol (and protocols based on it) is testing (i).

In the Aurora protocol this is achieved via a reduction to univariate sumcheck,
a univariate analogue of the [48] sumcheck protocol. Univariate sumcheck also has
a logarithmic verifier, but the reduction itself runs in time linear in the number
of nonzero entries in the matrices A,B,C. A key technical contribution of the
Marlin AHP is showing how to shift most of the cost of the reduction to the
indexer in order to reduce the online cost of verification to logarithmic, as we
now explain.

Challenges. We describe the original lincheck protocol of [13], and explain
why it is not holographic. The lincheck protocol, on input a matrix M ∈ Fk×k
and RS-encodings of vectors ~x, ~y ∈ Fk, checks whether ~x = M~y. It makes use
of the following two facts: (i) for a vector of linearly-independent polynomials
~u ∈ F[X]k and any vectors ~x, ~y ∈ Fk, if ~x 6= ~y then the polynomials 〈~u, ~x〉 and
〈~u, ~y〉 are distinct, and so differ with high probability at a random α ∈ F, and
(ii) for any matrix M ∈ Fk×k, 〈~u,M~y〉 = 〈~uM, ~y〉. The lincheck verifier sends
a random α ∈ F to the prover, and the prover then convinces the verifier that
〈~uM, ~y〉(α)− 〈~u, ~x〉(α) = 0 using the univariate sumcheck protocol.

This requires the verifier to evaluate the low-degree extensions of ~uα and ~uαM
at a point β ∈ F, where ~uα ∈ Fk is obtained by evaluating each entry of ~u at α.
This is equivalent to evaluating the bivariate polynomials u(X,Y), uM (X,Y) ∈
F[X,Y], obtained respectively by extending ~u, ~uM over Y , at a random point
in (α, β) ∈ F2. By choosing ~u appropriately, we can ensure that u(X,Y) can be
evaluated in logarithmic time [11]. But, without help from an indexer, evaluating
uM (α, β) requires time Ω(‖M‖).

A natural suggestion in the holographic setting is to have the indexer evaluate
uM over some domain S ⊆ F× F, and make this evaluation part of the encoded
index. This does achieve the goal of logarithmic verification time. Unfortunately,
the degree of uM in each variable is about k, and so even writing down the
coefficients of uM requires time Ω(k2), which for sparse M is quadratic in ‖M‖.

In the Marlin lincheck the indexer instead computes a certain linear-size
(polynomial) encoding of M , which the verifier then uses in a multi-round
protocol with the prover to evaluate uM at its chosen point. Our holographic
lincheck improves upon this protocol, reducing the number of rounds by one; we
describe it next.

Our holographic lincheck. Recall from above that the lincheck verifier needs
to check that 〈~u, ~x〉 and 〈~uM, ~y〉 are equal as polynomials in X. To do this, it will
choose a random α ∈ F and send it to the prover, then engage in the univariate
sumcheck protocol to show that

∑
h u(α, h)x̂(h)− uM (α, h)ŷ(h) = 0, where x̂, ŷ

are low-degree extensions of x and y.

To verify the above sum, the verifier must compute u(α, β) and uM (α, β)
for some β ∈ F. The former can be computed in by the verifier in logarithmic
time as discussed; for the latter, we ask the prover to help. Specifically, we
show that uM ≡ M̂∗, the unique bivariate low-degree extension of a matrix
M∗ which can be computed in quasilinear time from M (and in particular has

16

‖M∗‖ = ‖M‖). Hence to show that uM (α, β) = γ the prover and verifier can
engage in a holographic matrix arithmetization protocol for M∗ to show that
M̂∗(α, β) = γ. Marlin makes use of a similar matrix arithmetization protocol, but
for M itself, with a subprotocol to compute uM from M̂ , which is a cost that we
completely eliminate. Another improvement is that for our matrix arithmetization
protocol we can efficiently reduce soundness error even when using a low-degree
test, due to its non-recursive use of the sumcheck protocol.

Matrix arithmetization. Our matrix arithmetization protocol is a holo-
graphic IOP for computing the low-degree extension of a matrix M ∈ FH×H
(provided in the index). It is useful here to view M in its sparse representation
as a map 〈M〉 : K → H ×H × F for some K ⊆ F, where if 〈M〉(k) = (a, b, γ) for
some k ∈ K then Ma,b = γ, and Ma,b = 0 otherwise.

The indexer computes ˆrow, ĉol, v̂al which are the unique low-degree extensions
of the functions K → F induced by restricting 〈M〉 to its first, second, and third
coordinates respectively, and outputs their evaluations over L. It is not hard to
verify that

M̂(α, β) =
∑
k∈K

LH, ˆrow(k)(α)LH,ĉol(k)(β)v̂al(k) ,

for any α, β ∈ F, where LH,a is the polynomial of minimal degree which is 1 on
a and 0 on H \ {a}. In order to check this equation using the sumcheck protocol
we must modify the right-hand side: the summand must be a polynomial which
can be efficiently evaluated. To this end, we make use of the “unnormalized
Lagrange” polynomial uH(X,Y) := (vH(X)− vH(Y))/(X − Y) from [11]. This
polynomial has the property that for every a, b ∈ H, uH(a, b) is 0 if a 6= b and
nonzero if a = b; and it is easy to evaluate at every point in F. By having the
indexer renormalize v̂al appropriately, we obtain

M̂(X,Y) ≡
∑
k∈K

uH(ˆrow(k), α)uH(ĉol(k), β)v̂al(k) .

We have made progress, but now the summand has quadratic degree: Ω(|H||K|)
because we compose the polynomials uH and ˆrow, ĉol. Next we show how to
remove this composition.

Observe that since the image ofK under ˆrow, ĉol is contained inH, vH(ˆrow(k)) =

vH(ĉol(k)) = 0. Hence the rational function

vH(α)

(α− ˆrow〈M〉(X))
· vH(β)

(β − ĉol〈M〉(X))
· v̂al〈M〉(X)

agrees with the summand on K; it is a rational extension of the summands.
Moreover, the degrees of the numerator and denominator of the function are both
O(|K|). Now it remains to design a protocol to check the sum of a univariate
rational function.

Rational sumcheck. Suppose that we want to check that
∑
k∈K p(k)/q(k) =

γ, where p, q are low-degree polynomials. First, we have the prover send the

17

(evaluation of the) unique polynomial f of degree |K| − 1 which agrees with p/q
on K; that is, the unique low-degree extension of p/q viewed as a function from
K to F. We can use the standard univariate sumcheck protocol from [13] to test
that

∑
k∈K f(k) = γ.

It then remains to check that f does indeed agree with p/q on K. This is
achieved using standard techniques: if p(k)/q(k) = f(k) for all k ∈ K, then
p(k) = q(k) · f(k) for all k ∈ K (at least if q does not vanish on K). Then
p − q · f is a polynomial vanishing on K, and so is divisible by vK . This can
be checked using low-degree testing. Moreover, the degree of this equation is
max(deg(p),deg(q) + |K|); in the matrix arithmetization protocol, this is O(|K|).
Proof of knowledge and zero knowledge. Our full protocol for R1CS is a
proof of knowledge, because when the verifier accepts with high enough probability
it is possible to decode fz into a satisfying assignment. We further achieve zero
knowledge via techniques inherited from [13]. (Note that zero knowledge is not
relevant for the matrix arithmetization protocol because the constraint matrices
A,B,C are public.)

2.4 Post-quantum and transparent preprocessing

If we apply the compiler described in Section 2.2 (as captured in Theorem 1) to
the efficient holographic proof for R1CS described in Section 2.3 (as captured in
Theorem 2) then we obtain an efficient preprocessing zkSNARK for R1CS that
is unconditionally secure in the (quantum) random oracle model (as captured in
Theorem 3). We refer to the resulting construction as Fractal.

Implementation. We have implemented Fractal by extending the libiop

library to support generic compilation of holographic proofs into preprocessing
SNARGs, and then writing in code our holographic proof for R1CS. Our imple-
mentation supports a range of security levels and fields. (The only requirement
on the field is that it contains certain smooth subgroups.) See the full version
[29] for more details on the implementation.

Clearly, the security of our implementation relies on the random oracle
methodology applied to preprocessing SNARGs produced by our compiler, namely,
we assume that if we replace every call to the random oracle with a call to a
cryptographic hash function then the resulting construction, which formally is in
the URS model, inherits the relevant security properties that we proved in the
(quantum) random oracle model.

Evaluation. We have evaluated Fractal, and its measured performance
is consistent with asymptotic predictions. In particular, the polylogarithmic
argument size and verification time quickly become smaller than native witness
size and native execution time as the size of the checked computation increases.

We additionally compare the costs of Fractal to prior preprocessing SNARGs,
finding that (a) our prover and verifier times are comparable to prior construc-
tions; (b) argument sizes are larger than prior constructions (that have an SRS).
The larger argument sizes of Fractal are nonetheless comparable with other

18

post-quantum transparent non-preprocessing SNARGs. See the full version [29]
for more details on evaluation.

2.5 Post-quantum and transparent recursive composition

We summarize the ideas behind our contributions to recursive composition of
SNARKs.

Proof-carrying data. Recursive composition is captured by a cryptographic
primitive called proof-carrying data (PCD) [30, 18], which will be our goal.
Consider a network of nodes, where each node receives messages from other
nodes, performs some local computation, and sends the result on. PCD is a
primitive that allows us to check the correctness of such distributed computations
by recursively producing proofs of correctness for each message. Here “correctness”
is locally specified by a compliance predicate Φ, which takes as input the messages
received by a node and the message sent by that node (and possibly some auxiliary
local data). A distributed computation is then considered Φ-compliant if, for each
node, the predicate Φ accepts the node’s messages (and auxiliary local data).

PCD captures proving the iterated application of a circuit as in Section 2.1, in
which case the distributed computation evolves along a path. PCD also captures
more complex topologies, which is useful for supporting distributed computations
on long paths (via “depth-reduction” techniques [56, 18]) and for expressing
dynamic distributed computations (such as MapReduce computations [31]).

From random oracle model to the URS model. While we have so
far discussed constructions that are unconditionally secure in the (quantum)
random oracle model, for recursion we now leave this model (by heuristically
instantiating the random oracle with a cryptographic hash function) and start
from preprocessing SNARKs in the URS model. The reason for this is far from
mundane (and not motivated by implementation), as we now explain. The verifiers
from Theorem 1 make calls to the random oracle, and therefore proving that the
verifier has accepted would require using a SNARK that can prove the correctness
of computations in a relativized world where the oracle is a random function.
There is substantial evidence from complexity theory that such SNARKs do not
exist (e.g., the PCP Theorem does not relativize with respect to a random oracle
[25, 36]). By instantiating the random oracle, all oracle calls can be “unrolled”
into computations that do not involve oracle gates, and thus we can prove the the
correctness of the resulting computation.10 We stress that random oracles cannot
be securely instantiated in the general case [24], and so we will assume that there
is a secure instantiation of the random oracle for the preprocessing SNARKs
produced via Theorem 1 (which, in particular, preserves proof of knowledge).

10 The necessity to instantiate the random oracle before recursion also arises in the first
construction of incrementally verifiable computation [56]. One way to circumvent this
difficulty is to consider oracles that are equipped with a public verification procedure
[30], however this requires embedding a secret in the oracle, which does not lend itself
to straightforward software realizations and so we do not consider this approach in
this paper.

19

From SNARK to PCD. We prove that any preprocessing SNARK in the URS
model can be transformed into a preprocessing PCD scheme in the URS model.11

The construction realizes recursive composition by following the template given
in Section 2.1, except that the compliance predicate Φ may expect multiple input
messages. This construction simplifies that of [18] for preprocessing SNARKs in
the SRS model: we do not need to rely on collision-resistant hash functions to
shrink the verification key ivk because we require it to be succinct.12

Security against quantum adversaries. A key feature of our result is that
we prove that if the SNARK is secure (i.e., is a proof of knowledge) against
quantum adversaries then so is the resulting PCD scheme (i.e., it is also a proof of
knowledge). Therefore, if we assume that Fractal achieves proof of knowledge
against quantum adversaries when the random oracle is suitably instantiated,
then by applying our result to Fractal we obtain a post-quantum preprocessing
PCD scheme in the URS model.

We highlight here an important subtlety that arises when proving security
against quantum adversaries. The proof of [18] makes use of the fact that, in the
classical case, we may assume that the adversary is deterministic by selecting its
randomness. This is not the case for quantum adversaries, since a quantum circuit
can create its own randomness (e.g. by measuring a qubit in superposition). This
means that we must be careful in defining the proof-of-knowledge property we
require of the underlying SNARK. In particular, we must ensure that when we
recursively extract proofs, these proofs are consistent with previously extracted
proofs. When the adversary is deterministic, this is trivially implied by standard
proof of knowledge; for quantum adversaries, it is not. We give a natural definition
of proof of knowledge that suffices for the security reduction, and prove that it is
realized by our SNARK construction (in the random oracle model).

2.6 The verifier as a constraint system

In order to recursively compose Fractal (the preprocessing zkSNARK discussed
in Section 2.4), we need to express Fractal’s verifier as a constraint system.
The size of this constraint system is crucial because this determines the threshold
at which recursive composition becomes possible. Towards this goal, we design
and implement a constraint system that applies to a general class of verifiers, as
outlined below. Fractal’s verifier is obtained as an instantiation within this
class. See the full version [29] for details.

Hash computations introduced by the compiler. Our compiler (The-
orem 1) transforms any holographic IOP into a corresponding preprocessing

11 Analogously to a SNARK, here preprocessing denotes the fact that the PCD scheme
enables succinct verification regardless of the computation expressed by the compli-
ance predicate Φ (as opposed to only for structured computations).

12 In contrast, the verification key ivk in [18] is allowed to grow linearly with the public
input to the circuit that it summarizes, and so recursion required replacing ivk with
a short hash of it, and moving ivk to the witness of the recursion circuit.

20

SNARG, while preserving relevant zero knowledge or proof of knowledge proper-
ties. The preprocessing SNARG verifier makes a black-box use of the holographic
IOP verifier, which means that we can design a single (parametrized) constraint
system representing the transformation that works for any holographic IOP. All
additional computations introduced by the compiler involve cryptographic hash
functions (which heuristically instantiate the random oracle). In particular, there
are two types of hash computations: (1) a hash chain computation used to derive
the randomness for each round of the holographic IOP verifier, based on the
Merkle roots provided by the preprocessing SNARG prover; and (2) verification
of Merkle tree authentication paths in order to ensure the validity of the query
answers provided by the preprocessing SNARG prover. We design generic con-
straint systems for both of these tasks. Since we are designing constraint systems
it is more efficient to consider multiple hash functions specialized to work in
different roles: a hash function to absorb inputs or squeeze outputs in the hash
chain; a hash function to hash leaves of the Merkle tree; a many-to-one hash
function for the internal nodes of the Merkle tree; and others.

Choice of hash function. While our implementation is generic with respect to
the aforementioned hash functions (replacing any one of them with another would
be a rather straightforward task), the choice of hash function is nonetheless critical
for concrete efficiency as we now explain. Expressing standard cryptographic hash
functions, such as from the SHA or Blake family, as a constraint system requires
more than 20,000 constraints. While this is acceptable for certain applications,
these costs are prohibitive for hash-intensive computations, as is the case for the
verifiers output by our compiler. Fortunately, the last few years have seen exciting
progress in the design of algebraic hash functions [6, 2, 42, 4, 3], which by design
can be expressed via a small number of arithmetic constraints over large finite
fields. While this is an active research front, and in particular no standards have
been agreed upon, many of the proposed functions are significantly cheaper than
prior ones, and their security analyses are promising. In this work we decide to
use one of these as our choice of hash function (Rescue [4]). We do not claim that
this is the “best” choice among the currently proposed ones. (In fact, we know
how to achieve better results via a combination of different choices.) We merely
make one choice that we believe to be reasonable, and in particular suffices to
demonstrate the feasibility of our methodology in practice.

Holographic IOP computations. The constraint system that represents
the holographic IOP verifier will, naturally, depend on the specific protocol that
is provided as input to the compiler.

That said, all known efficient IOPs, holographic or otherwise, are obtained as
the combination of two ingredients: (1) a low-degree test for the Reed–Solomon
(RS) code; and (2) an RS-encoded IOP, which is a protocol where the verifier
outputs a set of algebraic claims, known as rational constraints, about the prover’s
messages. Examples of IOPs that fall in this category include our holographic
IOP for R1CS, as well as protocols for R1CS in [5, 13, 11] and for AIRs in [10].

We thus provide two constraint systems that target these two components.
First, we provide a constraint system that realizes the FRI low-degree test [9],

21

which is used in many efficient IOPs, including in our holographic IOP for R1CS.
Second, we provide infrastructure to write constraint systems that express a
desired RS-encoded IOP. This essentially entails specifying how many random
elements the verifier should send in each round of the protocol, and then specifying
constraints that express the rational constraints output by the verifier at the end
of the RS-encoded IOP.

We then use the foregoing infrastructure to express the verifier of our holo-
graphic IOP for R1CS as a constraint system. We note that the very same generic
infrastructure would make it straightforward to express the verifiers of other
protocols with the same structure [5, 10, 13, 11].

Remark 2 (succinct languages). We stress that our work in writing constraints for
the verifier is restricted to non-uniform computation models such as R1CS (i.e., we
are not concerned about the global structure of the constraint system). We do not
claim to have an efficient way to express the same verifier via succinct languages
such as AIR [10] or Succinct-R1CS [11]. Doing so remains a challenging open
problem, that would open up additional opportunities in recursive composition
of non-preprocessing SNARKs.

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zajac, M.: UC-Secure CRS
generation for SNARKs. In: Proceedings of the 11th International Conference on
Cryptology in Africa. pp. 99–117. AFRICACRYPT ’19 (2019)

2. Albrecht, M.R., Cid, C., Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger,
C., Schofnegger, M.: Algebraic cryptanalysis of STARK-friendly designs: Application
to MARVELlous and MiMC. IACR Cryptology ePrint Archive, Report 2019/419
(2019)

3. Albrecht, M.R., Grassi, L., Perrin, L., Ramacher, S., Rechberger, C., Rotaru, D.,
Roy, A., Schofnegger, M.: Feistel structures for MPC, and more. IACR Cryptology
ePrint Archive, Report 2019/397 (2019)

4. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of symmetric-
key primitives for advanced cryptographic protocols. IACR Cryptology ePrint
Archive, Report 2019/426 (2019)

5. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight
sublinear arguments without a trusted setup. In: Proceedings of the 24th ACM
Conference on Computer and Communications Security. pp. 2087–2104. CCS ’17
(2017)

6. Ashur, T., Dhooghe, S.: MARVELlous: a STARK-friendly family of cryptographic
primitives. IACR Cryptology ePrint Archive, Report 2018/1098 (2018)

7. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing. pp. 21–32. STOC ’91 (1991)

8. Barry Whitehat: Rollup (2018), https://github.com/barryWhiteHat/roll_up

9. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed–Solomon interactive
oracle proofs of proximity. In: Proceedings of the 45th International Colloquium on
Automata, Languages and Programming. pp. 14:1–14:17. ICALP ’18 (2018)

22

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Proceedings of the 39th Annual International Cryptology
Conference. pp. 733–764. CRYPTO ’19 (2019)

11. Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner, N.: Linear-
size constant-query IOPs for delegating computation. In: Proceedings of the 17th
Theory of Cryptography Conference. TCC ’19 (2019)

12. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: Proceedings of the 36th
IEEE Symposium on Security and Privacy. pp. 287–304. S&P ’15 (2015)

13. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Proceedings of the 38th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 103–128. EUROCRYPT ’19 (2019), full version available at https:

//eprint.iacr.org/2018/828
14. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Proceedings

of the 14th Theory of Cryptography Conference. pp. 31–60. TCC ’16-B (2016)
15. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via

cycles of elliptic curves. In: Proceedings of the 34th Annual International Cryptology
Conference. pp. 276–294. CRYPTO ’14 (2014), extended version at http://eprint.
iacr.org/2014/595.

16. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: Sampling outside
the box improves soundness (2019), eCCC TR19-044

17. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs of
proximity, shorter PCPs, and applications to coding. SIAM Journal on Computing
36(4), 889–974 (2006)

18. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and
bootstrapping for SNARKs and proof-carrying data. In: Proceedings of the 45th
ACM Symposium on the Theory of Computing. pp. 111–120. STOC ’13 (2013)

19. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Proceedings of the 10th
Theory of Cryptography Conference. pp. 315–333. TCC ’13 (2013)

20. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Proceedings of the 17th International
Conference on the Theory and Application of Cryptology and Information Security.
pp. 41–69. ASIACRYPT ’11 (2011)

21. Bowe, S., Gabizon, A., Green, M.: A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. Cryptology ePrint Archive, Report
2017/602 (2017)

22. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK pa-
rameters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050
(2017)

23. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without a
trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019)

24. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
Journal of the ACM 51(4), 557–594 (2004)

25. Chang, R., Chari, S., Ranjan, D., Rohatgi, P.: Relativization: a revisionistic retro-
spective. Bulletin of the European Association for Theoretical Computer Science
47, 144–153 (1992)

26. Chiesa, A., Chua, L., Weidner, M.: On cycles of pairing-friendly elliptic curves.
SIAM Journal on Applied Algebra and Geometry 3(2), 175–192 (2019), https:
//arxiv.org/abs/1803.02067

23

27. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. Cryptology ePrint Archive,
Report 2019/1047 (2019)

28. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random
oracle model. In: Proceedings of the 17th Theory of Cryptography Conference.
TCC ’19 (2019), available as Cryptology ePrint Archive, Report 2019/834

29. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive
proofs from holography (full version of this work). Cryptology ePrint Archive,
Report 2019/1076 (2019), https://ia.cr/2019/1076

30. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: Proceedings of the 1st Symposium on Innovations in Computer Science.
pp. 310–331. ICS ’10 (2010)

31. Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge. In: Pro-
ceedings of the 34th Annual International Conference on Theory and Application
of Cryptographic Techniques. pp. 371–403. EUROCRYPT ’15 (2015)

32. Coda: The SNARK Challenge (2019), https://coinlist.co/build/coda
33. Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof of the

PCP theorem. In: Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science. pp. 155–164. FOCS ’04 (2004)

34. Electric Coin Company: Zcash Cryptocurrency (2014), https://z.cash/
35. Ergün, F., Kumar, R., Rubinfeld, R.: Fast approximate probabilistically checkable

proofs. Information and Computation 189(2), 135–159 (2004)
36. Fortnow, L.: The role of relativization in complexity theory. Bulletin of the European

Association for Theoretical Computer Science 52, 229–244 (1994)
37. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.

Journal of Cryptology 23(2), 224–280 (2010)
38. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over lagrange-

bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953 (2019)

39. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Proceedings of the 32nd Annual International
Conference on Theory and Application of Cryptographic Techniques. pp. 626–645.
EUROCRYPT ’13 (2013)

40. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science. pp. 102–113. FOCS ’03 (2003)

41. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: Interactive
proofs for muggles. Journal of the ACM 62(4), 27:1–27:64 (2015)

42. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger, M.:
Starkad and Poseidon: New hash functions for zero knowledge proof systems. IACR
Cryptology ePrint Archive, Report 2019/458 (2019)

43. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Pro-
ceedings of the 16th International Conference on the Theory and Application of
Cryptology and Information Security. pp. 321–340. ASIACRYPT ’10 (2010)

44. Groth, J.: On the size of pairing-based non-interactive arguments. In: Proceed-
ings of the 35th Annual International Conference on Theory and Applications of
Cryptographic Techniques. pp. 305–326. EUROCRYPT ’16 (2016)

45. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Proceedings
of the 38th Annual International Cryptology Conference. pp. 698–728. CRYPTO ’18
(2018)

24

46. Gur, T., Rothblum, R.D.: Non-interactive proofs of proximity. In: Proceedings
of the 6th Innovations in Theoretical Computer Science Conference. pp. 133–142.
ITCS ’15 (2015)

47. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Proceedings of the 9th Theory of Cryptography Confer-
ence on Theory of Cryptography. pp. 169–189. TCC ’12 (2012)

48. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. Journal of the ACM 39(4), 859–868 (1992)

49. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge SNARKs
from linear-size universal and updateable structured reference strings. Cryptology
ePrint Archive, Report 2019/099 (2019)

50. Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4),
1253–1298 (2000), preliminary version appeared in FOCS ’94.

51. O(1) Labs: Coda Cryptocurrency (2017), https://codaprotocol.com/
52. Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive proofs

for delegating computation. In: Proceedings of the 48th ACM Symposium on the
Theory of Computing. pp. 49–62. STOC ’16 (2016)

53. Rothblum, G.N., Vadhan, S.P., Wigderson, A.: Interactive proofs of proximity: dele-
gating computation in sublinear time. In: Proceedings of the 45th ACM Symposium
on the Theory of Computing. pp. 793–802. STOC ’13 (2013)

54. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
Cryptology ePrint Archive, Report 2019/550 (2019)

55. StarkWare & 0x: StarkDEX (2019), https://www.starkdex.io/
56. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply

time/space efficiency. In: Proceedings of the 5th Theory of Cryptography Conference.
pp. 1–18. TCC ’08 (2008)

57. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-
knowledge proofs with optimal prover computation. In: Proceedings of the 39th
Annual International Cryptology Conference. pp. 733–764. CRYPTO ’19 (2019)

25

