
Signatures from Sequential-OR Proofs

Marc Fischlin, Patrick Harasser, and Christian Janson

Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
{marc.fischlin, patrick.harasser, christian.janson}@cryptoplexity.de

Abstract. OR-proofs enable a prover to show that it knows the witness
for one of many statements, or that one out of many statements is true.
OR-proofs are a remarkably versatile tool, used to strengthen security
properties, design group and ring signature schemes, and achieve tight
security. The common technique to build OR-proofs is based on an ap-
proach introduced by Cramer, Damgård, and Schoenmakers (CRYPTO’94),
where the prover splits the verifier’s challenge into random shares and
computes proofs for each statement in parallel.
In this work we study a different, less investigated OR-proof technique,
highlighted by Abe, Ohkubo, and Suzuki (ASIACRYPT’02). The differ-
ence is that the prover now computes the individual proofs sequentially.
We show that such sequential OR-proofs yield signature schemes which
can be proved secure in the non-programmable random oracle model.
We complement this positive result with a black-box impossibility proof,
showing that the same is unlikely to be the case for signatures derived
from traditional OR-proofs. We finally argue that sequential-OR signa-
ture schemes can be proved secure in the quantum random oracle model,
albeit with very loose bounds and by programming the random oracle.

Keywords. Sequential-OR Proofs · Zero-knowledge · Signatures · Non-
programmable random oracle model · Quantum random oracle model

1 Introduction

In a zero-knowledge Σ-protocol between a prover P and a verifier V, the prover
holds a statement x and a witness w for x, and the verifier only x. Both parties
engage in an interactive execution, resulting in an initial commitment com sent
by the prover, a verifier random challenge ch, and a final response resp computed
by the prover. With such a proof, P shows to V that x is true (in proof systems),
or that it knows a witness w for x (in proofs of knowledge). At the same time, the
zero-knowledge property guarantees that nothing beyond this fact is revealed.

1.1 OR-Proofs

Now assume that one has two interactive proof systems of the above form for
two statements x0 and x1, and a witness wb for xb, b ∈ {0, 1}. The goal is to
combine them into a single protocol which proves the logical OR of x0 and x1;

1

Ppar-OR(1λ; (x0, x1), (b, w)):

11: comb, ←$ Pb(1λ;xb, w)
12: ch1−b←${0, 1}`(λ)

13: (com1−b, resp1−b, ch1−b)←$

←$ S1−b(1λ;x1−b, ch1−b)
14: return (com0, com1)

Ppar-OR(1λ; (x0, x1), (b, w), (com0, com1), ch):

21: chb ← ch⊕ ch1−b

22: respb←$ Pb(1λ;xb, w, comb, chb)
23: return (ch0, ch1, resp0, resp1)

Fig. 1: Description of the prover algorithm Ppar-OR from the parallel-OR con-
struction by Cramer et al. [23] in the standard model. On the left, generation
of the first message com = (com0, com1). On the right, computation of the final
response resp = (ch0, ch1, resp0, resp1) answering the verifier challenge ch.

that is, the prover should be able to convince a verifier that it holds a witness for
one of the two statements, ideally without revealing which one. The first instan-
tiation of such general OR-proofs, sometimes called CDS-OR proofs, was given
by Cramer, Damgård, and Schoenmakers [23]. Their construction works under
the assumption that the two protocols are special honest-verifier zero-knowledge,
meaning that a simulator S, given x and a random challenge ch at the outset, is
able to generate a verifier view (com, resp, ch) without knowing a witness for x, in
such a way that this view is indistinguishable from a genuine interaction between
the real prover and an honest verifier using the given challenge. The prover in
the CDS-OR protocol from [23] is described in Figure 1. For reasons that will
become apparent soon, we call such CDS-OR proofs also parallel-OR proofs.

An important observation is that the resulting protocol is witness indistin-
guishable, i.e., it does not reveal for which statement the prover holds a witness.
Moreover, since the resulting protocol is again a Σ-protocol, one can apply the
Fiat-Shamir transform [32] to it and obtain a non-interactive version or a signa-
ture scheme in the random oracle model. Also, the construction easily generalizes
to the case of 1-out-of-n proofs.

1.2 Applications of OR-Proofs

OR-proofs have turned out to be a very powerful tool in the design of efficient
protocols. Early on they have been identified as a means to thwart man-in-the-
middle attacks [22] and, similarly in spirit, to give designated-verifier proofs [43].
The idea in both cases is to have the verifier send its public key to the prover, who
then shows that the statement x it originally wanted to prove is true or that it
knows the verifier’s secret key. This proof is still convincing for the verifier (who
knows it is the only holder of its secret key), but not transferable to other parties.
Garay et al. [38] apply the same idea to make zero-knowledge proofs simulation-
sound and non-malleable, by putting a verification key into a common reference

2

string (CRS). The prover then shows that the original statement x is true or
that it knows the secret to the verification key in the CRS.

The idea of giving a valid proof when knowing a witness for only one of several
statements can also be used in the context of group signatures [19] and ring
signatures [56]. Given a set of public keys x1, . . . , xn, where the signer knows only
one witness wi (their own secret key), an OR-proof allows to sign anonymously
on behalf of the entire group, and witness indistinguishability implies that the
identity of the signer remains hidden. This design strategy appears explicitly for
example in the group signature scheme of Camenisch [13].

The OR-technique has also proved very useful in deriving tightly-secure
schemes. This approach has appeared in several works in the literature [6, 39,
42]. The idea is to first derive tightly-secure signature schemes from the OR-
combination of some Σ-protocols. These schemes are then used within higher-
level solutions (like key exchange protocols), passing on the tight security guar-
antees to these protocols.

1.3 Non-Programmable Random Oracles

Another important feature of the OR-technique is that it facilitates the design
of schemes in the non-programmable random oracle model. The general random
oracle model comes with several remarkable technical properties, rooted in the
formalization of the hash function as a truly random, oracle-based function. One
of the most extraordinary consequences of this formalization is the programma-
bility property of the random oracle, saying that one can adaptively choose the
answers to random oracle queries made by the adversary. Indeed, the ability
to change answers on the fly is a necessary feature of security proofs of some
signature schemes [33, 35, 37, 61]. In practice, however, hash functions are not
programmable and their values are fixed. Therefore, one would ideally prefer to
forgo the programming of random oracle replies.

The fact that the OR-technique can be used to bypass the programmabil-
ity issues with the random oracle model can already be observed in the early
constructions of Σ-protocols, namely, the Okamoto variant [52] of the Schnorr
signature scheme [57] and the Guillou-Quisquater variant [41] of the Fiat-Shamir
signature protocol [32]. In these variants, based on number-theoretic specifics,
one uses “embedded” OR-proofs which allow to simulate signatures without hav-
ing to program the random oracle, as opposed to [32, 57] and explicitly carried
out in [55]: One can then simply use the known witness to generate signatures.

Unfortunately, the security proofs of the signature schemes in [41, 52] still
need programming at another step. Namely, in order to show that the adversary
cannot forge signatures, one rewinds the execution and re-programs the random
oracle in order to extract a witness (a technique called forking in [55]). This
also comes with a loose security bound. Abdalla et al. [1] overcome the forking
technique by considering passively-secure identification schemes, where the ad-
versary is allowed to see transcripts of honest executions. Still, they program the
random oracle when simulating signatures.

3

Later, Abdalla et al. [2] used the notion of lossy identification schemes to give
non-forking security proofs for signatures derived via the Fiat-Shamir heuristic.
Lossiness here roughly means that valid statements x are indistinguishable from
so-called lossy ones, for which it is statistically impossible to find convincing
proofs. This idea has later been adopted by lattice-based and LWE-based signa-
ture schemes such as [7,49] (in the classical random oracle model) or the TESLA
signature scheme [4] (in the quantum random oracle model [10]). Still, all ap-
proaches program the random oracle in order to be able to simulate signatures.

1.4 Sequential-OR Proofs

The above construction is the classical technique to combine Σ-protocols and
prove OR-statements, but it is not the only possible solution. Indeed, there is at
least one other way to prove the disjunction of two or more statements in the
random oracle model, which in its spirit already appears in a work by Rivest,
Shamir, and Tauman [56]. Here, we follow the exposition given by Abe, Ohkubo,
and Suzuki [3] in the context of group signature schemes, and call this approach
the sequential-OR technique.

In this construction, the non-interactive prover computes the individual proofs
sequentially, starting with the commitment comb for the statement xb for which
it knows the witness wb. Next it derives the challenge ch1−b for the proof of x1−b
(with unknown witness) as the hash value of comb. This in turn allows the
OR-prover to simulate a view (com1−b, resp1−b, ch1−b) for x1−b with this pre-
determined challenge, as done in parallel-OR proofs. The simulated commit-
ment com1−b again yields the challenge chb for the first proof through the hash
function, which the prover now can answer with a valid response respb since it
knows the witness wb. The details of the prover in the sequential-OR protocol
from [3] are described in Figure 2.

Note that this technique generalizes to the 1-out-of-n case (we provide all de-
tails in the full version [34]). In fact, Abe et al. [3] and follow-up works like [8,47],
use this more general version of the sequential-OR technique to build group sig-
nature schemes, yet still programming the random oracle to fork and extract.
The paradigm proposed by Abe et al. has also been applied in the area of cryp-
tocurrencies, in particular Monero [58] and Mimblewimble [44, 54]. There, in
order to prevent overflow attacks, it is necessary to prove that committed values
fall within a specific range. One instance of such range proofs uses a special type
of ring signature, called borromean ring signature [50], which is based on ideas
presented in [3]. Observe that, in the aforementioned range proofs, borromean
signatures have since been superseded by more efficient bulletproofs [12].

1.5 Our Results

At first glance, the sequential-OR technique does not seem to give any significant
advantage over the parallel version. Both protocols are based on the idea that
one can easily give a proof for a statement for which the witness is known,
and simulate the proof for the other statement where the challenge is known

4

Pseq-OR(1λ; (x0, x1), (b, w)):

11: comb←$ Pb(1λ;xb, w)
12: ch1−b ← H(b, x0, x1, comb)
13: (com1−b, resp1−b, ch1−b)←$ S1−b(1λ;x1−b, ch1−b)
14: chb ← H(1− b, x0, x1, com1−b)
15: respb←$ Pb(1λ;xb, w, comb, chb)
16: return (com0, com1, resp0, resp1)

Fig. 2: Description of the prover algorithm Pseq-OR from the sequential-OR con-
struction by Abe et al. [3] in the random oracle model.

in advance. This, however, misses one important point if we combine these two
approaches with the idea of lossy statements as in the work by Abdalla et al. [2]:
We show that signatures derived from sequential-OR proofs are secure in the non-
programmable random oracle model, whereas those originating from parallel-OR
proofs do not seem to have a security proof in this model.

The signature scheme in the sequential-OR case is based on two valid state-
ments x0 and x1 (the public keys), for which we know one of the two witnesses wb
(one of the secret keys). A signature for a messagem is basically a sequential-OR
proof, wherem is included in the hash evaluations. In contrast to the proof in [3],
which is based on forking, we can now reduce unforgeability to a decisional prob-
lem about the languages. This allows us to avoid rewinding and re-programming
the random oracle.

The idea of our proof in the sequential-OR case can be illustrated by looking
at the honest signer first. If one was able to observe the signer’s random oracle
queries, then their order reveals which witness the signer is using: The signer
first queries the commitment comb of the instance xb for which it knows the
witness wb. We will use the same idea against the adversary, helping us to decide
if some random input x1−b is in the language or not. If x1−b is not in the
language, and thus does not have a witness, the special soundness of the Σ-
protocol guarantees that the adversary will never make the first query about this
part, since it will then not be able to answer the random challenge.1 Hence, by
merely observing the adversary’s queries, we can decide membership of x1−b. We
use the other part xb in the key and its witness wb to simulate signatures without
programming the random oracle. But we need to make sure that the adversary is
not biased by our signatures. This follows from the witness indistinguishability
of the proofs (against an adversary who cannot observe random oracle queries).

We next argue that it is in general hard to show that the parallel-OR
technique of Cramer et al. [23] yields a secure signature scheme in the non-
programmable random oracle model. Our result assumes a black-box reduction R

1 One can think of this as a very lossy mode.

5

transforming any (PPT or unbounded) adversary against the signature scheme
into a solver of some hard problem, and makes a mild assumption about the zero-
knowledge simulators of the languages (namely, that they work independently of
how the statements x are generated). Remarkably, we do not make any stipula-
tions about the reduction’s executions of the adversary instances: The reduction
can run an arbitrary (bounded) number of instances of the adversary, and there
are no restrictions on the inputs of these instances or their scheduling. However,
the reduction R can only use the external random oracle.

Our approach is based on the meta-reduction technique [11, 40, 53]. That is,
we start with an unbounded adversary A, who breaks the signature scheme easily
with its super-polynomial power by computing a secret key and signing as the
honest prover would. This means that the reduction R also solves the underly-
ing problem when interacting with A. Afterwards, we show how to simulate A
efficiently, resulting in an efficient algorithm solving the problem directly. This
implies that there cannot exist such a reduction R in the first place.

The crucial difference between the sequential and the parallel version of the
OR-technique is that in the latter case observing the random oracle queries of the
adversary does not reveal which witness is being used. By the zero-knowledge
property one cannot distinguish real and simulated sub-proofs in the parallel
case. Indeed, our negative result relies exactly on this zero-knowledge property,
taking advantage of the fact that the random oracle is external to the reduction.

1.6 Further Related Work

The issue of non-programmability of random oracles also appears in recent works
related to Canetti’s universal composability (UC) framework [15]. In this model,
random oracles can be cast as an ideal functionality FRO, and protocols can be
developed in the hybrid setting where FRO is present. A technical consequence
of this design choice is that the random oracle is programmable, and a com-
positional consequence is that one would need a fresh random oracle for each
protocol instance. Therefore, the global random oracle model [18], based on ideas
of global set-ups [16, 26], defines a random oracle functionality GsRO which can
be used by all protocols, obliterating also the programmability of the random
oracle in this model.

We stress, however, that protocols designed in the global random oracle model
are not necessarily secure for non-programmable random oracles. The discrep-
ancy lies in the distinction between the model and the security proof: In the
global random oracle model, one may no longer be able to program the ran-
dom oracle when devising a simulator in the model, but a reduction may still
program the random oracle in the security proof showing that the simulator is
good. Indeed, this can be observed in the security reductions in [14] proving
that all signature schemes which have a stand-alone proof of unforgeability in
the “isolated” random oracle model, including schemes with a security reduction
via programming, remain secure in the strict global random oracle model GsRO.

The impossibility of proving the security of specific types of signatures de-
rived via the Fiat-Shamir transform in the non-programmable random oracle

6

model has already been discussed in prior works, e.g., [33, 36]. These works
usually make some restrictions on the reduction being ruled out (like key preser-
vation or being single-instance), whereas we do not need any such condition. We
remark here that our impossibility result for parallel-OR signatures does likely
not follow in a general way from these results, since the same approach fails in
the sequential-OR case.

In terms of OR-proofs, Ciampi et al. [20], based on an earlier approach by
Lindell [46], use the OR-technique to build non-interactive zero-knowledge proofs
from Σ-protocols in the non-programmable random oracle model. For technical
reasons they also need a common reference string, which is used to form the OR-
language. Note that this is orthogonal to our goal here, where we aim to build
OR-proofs for two languages in the non-programmable random oracle model. In
another work, Ciampi et al. [21] consider extensions of parallel-OR proofs where
(some of) the languages are not specified yet when the execution starts. This
includes the solution in the common reference string model in [20].

1.7 Extension to the Quantum Random Oracle Model

The results discussed so far are in the classical random oracle model. In terms
of the quantum random oracle model (QROM), introduced by Boneh et al. [10],
the situation regarding OR-proofs is less scrutinized. Our approach in the (clas-
sical) sequential-OR case is based on the observability of queries to the random
oracle, a technique that usually does not carry over to the QROM because of
superposition queries. In the parallel-OR case, we have seen that observability
may not even help in the classical setting.

Fortunately, there have been two recent results regarding the security of
Fiat-Shamir protocols in the QROM [27,48], bypassing previous negative results
concerning the Fiat-Shamir transform in this model [5, 24]. These works both
yield a non-tight bound, but give an immediate solution for the parallel-OR
case in the QROM. There, one first combines the two interactive proofs via
the parallel-OR construction to get an interactive Fiat-Shamir proof, and then
applies these techniques. We show in Section 6 that one can also prove security
of signatures derived from the sequential-OR construction in the QROM via the
measure-and-reprogram technique described in [27]. The price we pay is that
we inherit the loose security bound from the solution in [27] and we, like all
currently known constructions in the QROM, need to program the quantum
random oracle.

2 Preliminaries

2.1 Basic Notation

We denote by N = Z≥0 the set of non-negative integers, and by λ ∈ N the
security parameter (often written in unary notation as 1λ). A function µ : N→ R
is called negligible if, for every constant c ∈ R>0, there exists λc ∈ N such that,

7

for every λ ∈ N with λ ≥ λc, we have µ(λ) ≤ λ−c. For a random variable X,
we write x←$ X to denote that x is a random variate of X. For a finite set S
of size |S|, we use s←$ S as a shorthand for s←$ US , where US is a random
variable uniformly distributed over S. The arrow ← will be used for assignment
statements. We denote the length of a string x ∈ {0, 1}∗ by |x|, and we write ε
for the empty string. We consider an injective, efficiently computable, efficiently
reversible, and length-increasing encoding function ({0, 1}∗)∗ → {0, 1}∗. This
allows us to represent sequences of strings again as strings, and will be tacitly
used throughout the paper.

In this work we use the computational model of probabilistic oracle Turing
machines, also called algorithms. We assume that they are equipped with a
separate security parameter tape containing the value 1λ. The running time of
algorithms, which is intended to be bounded by the worst case, is a function of the
security parameter input length only. A uniform algorithm is called probabilistic
polynomial-time (PPT) if its running time is bounded by a polynomial, whereas a
non-uniform algorithm is PPT if it corresponds to an infinite sequence of Turing
machines, indexed by the security parameter λ, whose description sizes and
running times are bounded by a polynomial in λ. Queries to the oracles always
count as one operation each. For an algorithm A, we denote by AO(1λ;x) the
random variable representing the output of A when run on security parameter λ
and input x ∈ {0, 1}∗, with access to oracles O = (O1, . . . ,Ot).

We use ⊥ as a special symbol to denote rejection or an error, and we assume
that ⊥ /∈ {0, 1}∗. Both inputs and outputs of algorithms can be ⊥, and we
convene that if any input to an algorithm is ⊥, then its output is ⊥ as well.
Double square brackets J·K enclosing boolean statements return the bit 1 if the
statement is true, and 0 otherwise.

2.2 Random Oracle Model

Let ` : N → N be a polynomial-time computable function. For a security pa-
rameter λ ∈ N, a random oracle (RO) [9, 17] is an oracle H that implements a
function randomly chosen from the space of all functions {0, 1}∗ → {0, 1}`(λ), to
which all parties have access. In other words, it is an oracle that answers every
query with a truly random response chosen from the range {0, 1}`(λ). For every
repeated query the random oracle consistently returns the same output.

Constructions established and statements proved in the presence of a RO
are said to hold in the random oracle model (ROM). Throughout the paper,
whenever a security game is set in the ROM, we assume that at the beginning of
the experiment a random oracle is sampled uniformly from the aforementioned
function space, and then used throughout the experiment. In this setting, it will
sometimes be necessary to record queries to the random oracle H, and we will
do so via a set QH: If (i, x) ∈ QH, this means that the i-th query to H was x.

We also define the “zero oracle” as a function Z : {0, 1}∗ → {0, 1}`(λ), with
Z(x) = 0`(λ) for all x ∈ {0, 1}∗. This allows us to state our definitions simulta-
neously in the standard model and in the ROM: Parties will be given access to a

8

generic oracle O, and it is understood that O := Z if the definition is formulated
in the standard model, and O := H if it is in the ROM.

The quantum analogue of the above is the so-called quantum random oracle
model (QROM), introduced by Boneh et al. [10]. Here, a quantum algorithm may
query the random oracle H in superposition, i.e., submit superposition queries
of the form

∑
x αx|x〉|0〉 and obtain the output

∑
x αx|x〉|H(x)〉. We refer to [51]

for further background and conventions regarding quantum information.

2.3 Languages and Relations

A language is a subset L ⊆ {0, 1}∗. In this work, we assume that every language L
is equipped with a uniform PPT algorithm GL (called instance generator) which,
on input (1λ; b) with b ∈ {0, 1}, returns an element x ∈ L if b = 1 (yes-instance),
and an element x /∈ L if b = 0 (no-instance). Usually, the complexity of x is
closely related to the security parameter λ, e.g., |x| = λ, but we can allow for
other (polynomial) dependencies as well.

A binary relation is a subset R ⊆ {0, 1}∗ × {0, 1}∗ which is polynomially
bounded, i.e., there exists a polynomial p such that, for every (x,w) ∈ R,
we have |w| ≤ p(|x|). If (x,w) ∈ R, we call x an R-instance and w an R-
witness of x. For every x ∈ {0, 1}∗, we denote the set of all R-witnesses of x by
WR(x) := {w | (x,w) ∈ R} (if x is not an R-instance, then WR(x) = ∅). Note
that every binary relation R defines a language LR := {x | ∃w : (x,w) ∈ R}.
Just like before for languages, we also assume that every binary relation R is
equipped with a uniform PPT algorithm GR (called instance generator) which,
on input (1λ; b) with b ∈ {0, 1}, returns a pair (x,w) ∈ R if b = 1 (yes-instance),
and an element x /∈ LR if b = 0 (no-instance). Observe that from an instance
generator GR for a binary relation R we get an instance generator GLR for LR
by simply running GR and returning the first component only if b = 1.

An NP-relation is a binary relation that is polynomial-time recognizable,
i.e., R ∈ P. Observe that if R is an NP-relation, then LR ∈ NP, and vice-versa
if L ∈ NP, then the set RL of all string pairs (x,w) ∈ {0, 1}∗×{0, 1}∗ with x ∈ L
and w an NP-witness for x (w.r.t. a fixed polynomial and Turing machine) is
an NP-relation. In this situation, we have of course LRL = L and RLR ⊇ R.

We next define the OR-combination of two relations and its instance genera-
tor. Here and in the following, we present all definitions and constructions with
respect to the OR of two relations only, but all results extend to the more gen-
eral 1-out-of-n case. A yes-instance of the OR-relation is a pair of values (x0, x1),
each in its respective language, together with a witness w of either value. A no-
instance of the OR-relation is again a pair of values, where at least one is not
in the corresponding language, while the other may or may not belong to its
language. The convention that a yes-instance has both inputs in their respec-
tive languages corresponds to the setting of group signature schemes, where all
parties choose their public keys honestly; only in security reductions one may
diverge from this. It is also in general necessary to ensure completeness of the
OR-protocol, since the simulator for x1−b is only guaranteed to output a valid
transcript for yes-instances.

9

Definition 1. Let R0 and R1 be two binary relations. Define the OR-relation
of R0 and R1 as the binary relation

ROR :=
{(

(x0, x1), (b, w)
) ∣∣ b ∈ {0, 1} ∧ (xb, w) ∈ Rb ∧ x1−b ∈ LR1−b

}
,

equipped with the instance generator GROR defined in Figure 3. We denote the
corresponding OR-language by LOR := LROR .

Observe that, for binary relations R0 and R1, the relation ROR is indeed a
binary relation, and that LOR = LR0 × LR1 .

We now recall two hardness notions a binary relation R may satisfy. Intu-
itively, R is decisionally hard if no PPT distinguisher can decide if it is given
an R-instance or a no-instance. It is computationally hard if no PPT adversary
can efficiently compute an R-witness w for a given R-instance x.

Definition 2. Let R be a binary relation. We say that R is:
1. Decisionally Hard if, for every PPT distinguisher D, there exists a negligible

function µ : N→ R such that, for every λ ∈ N and every z ∈ {0, 1}∗,∣∣∣Pr
[

ExpDHR,0
D,R (λ, z) = 1

]
− Pr

[
ExpDHR,1

D,R (λ, z) = 1
]∣∣∣ ≤ µ(λ),

where ExpDHR,0
D,R (λ, z) and ExpDHR,1

D,R (λ, z) are defined in Figure 3.
2. Computationally Hard if, for every PPT algorithm A, there exists a negligible

function µ : N→ R such that, for every λ ∈ N and every z ∈ {0, 1}∗,

Pr
[

ExpCHR
A,R (λ, z) = 1

]
≤ µ(λ),

where ExpCHR
A,R (λ, z) is defined in Figure 3.

It is readily verified that two binary relations R0 and R1 are computation-
ally hard if and only if ROR is computationally hard. Furthermore, if an NP-
relation R is decisionally hard, it is also computationally hard.

2.4 Interactive Protocols

An interactive protocol Π between two parties, called prover and verifier, is a
pair of uniform algorithms Π = (P,V). We write PO(1λ;x,w) � VO(1λ;x, z)
to denote the interaction between P and V on security parameter λ, common
input x, respective auxiliary inputs w and z, and with access to oracle O.

Algorithms P and V compute the next-message function of the corresponding
party. In more detail, PO(1λ;βi, stP) is the random variable which returns the
prover’s next message αi+1 and its updated state stP, both computed on input
the security parameter λ, the last incoming message βi, and the current state stP.
Here we assume that stP contains all the information necessary for P to perform
its computation, including at least the common input, its auxiliary input, and
the messages exchanged thus far. Similar considerations hold for V.

10

GROR (1λ; b):

11: if b = 0 then
12: b′, b′′←${0, 1}
13: xb′←$ GLb′ (1

λ; 0)
14: x1−b′←$ GLR1−b′

(1λ; b′′)
15: return (x0, x1)
16: else
17: b′←${0, 1}
18: (x0, w0)←$ GR0 (1λ; 1)
19: (x1, w1)←$ GR1 (1λ; 1)
20: return ((x0, x1), (b′, wb′))

ExpDHR,b
D,R (λ, z):

31: x←$ GR(1λ; 0)
32: if b = 1 then
33: (x,w)←$ GR(1λ; 1)
34: b′←$ DO(1λ;x, z)
35: return b′

ExpCHR
A,R (λ, z):

41: (x,w)←$ GR(1λ; 1)
42: w∗←$ AO(1λ;x, z)
43: return J(x,w∗) ∈ RK

Fig. 3: Definition of the instance generator GROR of the relation ROR, and of the
experiments ExpDHR,b

D,R (λ, z) and ExpCHR
A,R (λ, z) from Definition 2. Recall that O

is either a random oracle or the trivial all-zero oracle.

We write trans
[
PO(1λ;x,w) � VO(1λ;x, z)

]
= (A1, B1, . . . , At, Bt, At+1)

for the transcript of the interaction between P and V. This is the ran-
dom variable which returns a sequence of messages (α1, β1, . . . , αt, βt, αt+1),
where (αi+1, stP)←$ PO(1λ;βi, stP) and (βj , stV)←$ VO(1λ;αj , stV) for every
0 ≤ i ≤ t and 1 ≤ j ≤ t. Here we assume that stP, stV and β0 are initial-
ized to stP ← (x,w), stV ← (x, z) and β0 ← ε. The view of V in the inter-
action with P, denoted viewV

[
PO(1λ;x,w) � VO(1λ;x, z)

]
, is the random vari-

able (A1, A2, . . . , At, At+1, RV), whereRV is the random variable representing V’s
random coins.

The interaction between prover and verifier terminates with V computing a
decision v←$ VO(1λ;αt+1, stV), where v ∈ {0, 1}, on whether to accept or reject
the transcript. This is also called V’s local output, and the corresponding random
variable will be denoted by outV

[
PO(1λ;x,w) � VO(1λ;x, z)

]
.

We say that a protocol Π = (P,V) is efficient if V is a PPT algorithm. For
a binary relation R, we say that Π has an efficient prover w.r.t. R if P is a
PPT algorithm and, on security parameter λ, it receives common and auxiliary
inputs x and w such that (x,w)←$ GR(1λ; 1). Note that we will only consider
protocols which are efficient, have an efficient prover w.r.t. a specified binary
relation R, and where the honest verifier is independent of its auxiliary input
(we can therefore assume z = ε in this case). We call these protocols w.r.t. R.

We call Π public-coin (PC) if all the messages the honest verifier sends
to P consist of disjoint segments of its random tape, and if V’s local output is
computed as a deterministic function of the common input and the transcript,
that is v ← VO(1λ;x, α1, β1, . . . , αt, βt, αt+1). In this situation we say that a
transcript is accepting for x if v = 1.

11

ExpCWI,b
V∗,D,Π(λ, x, w,w′, z, z′):

11: y ← w

12: if b = 1 then
13: y ← w′

14: v∗←$ outV∗
[

PO(1λ;x, y) � V∗O(1λ;x, z)
]

15: d←$ DO
(
1λ;x, z, z′, v∗

)
16: return d

ExpSCZK,b
D,Π (λ, x, w, z):

21: (ch, stD)←$ DO0 (1λ;x, z)
22: stP ← (x,w)
23: (com, stP)←$ PO(1λ; stP)
24: (resp, stP)←$ PO(1λ; ch, stP)
25: v ← (com, resp, ch)
26: if b = 1 then
27: v←$ SO(1λ;x, ch)
28: d←$ DO1

(
1λ;x, z, v, stD

)
29: return d

Fig. 4: Definition of the experiments ExpCWI,b
V∗,D,Π(λ, x, w,w′, z, z′) and

ExpSCZK,b
D,Π (λ, x, w, z) from Definitions 3 and 4.

We now recall the notion of computational witness indistinguishability [31],
which is the property of general interactive protocols that is most relevant to our
work. Intuitively, this notion captures the idea that protocol runs for a fixed R-
instance but different witnesses should be indistinguishable. For the sake of com-
pleteness, we state the precise definitions of the completeness, soundness, honest-
verifier zero-knowledge (HVCZK), and computational witness hiding (CWH)
properties in the full version [34].

Definition 3. Let R be a binary relation, and let Π = (P,V) be a protocol
w.r.t. R. We say that Π is Computationally Witness Indistinguishable (CWI) if,
for every uniform PPT algorithm V∗ and every PPT distinguisher D, there exists
a negligible function µ : N→ R such that, for every λ ∈ N, every x←$ GLR(1λ; 1),
every w,w′ ∈WR(x), and every z, z′ ∈ {0, 1}∗,∣∣∣Pr

[
ExpCWI,0

V∗,D,Π(λ, x, w,w′, z, z′) = 1
]
−

Pr
[

ExpCWI,1
V∗,D,Π(λ, x, w,w′, z, z′) = 1

]∣∣∣ ≤ µ(λ),

where ExpCWI,b
V∗,D,Π(λ, x, w,w′, z, z′) is defined in Figure 4.

Note that we will later require a stronger version of CWI, which we term
multi-query computational witness indistinguishability (mqCWI) and define for-
mally in the full version [34]. This is basically an oracle extension of ordinary
CWI, where the distinguisher can query arbitrarily many protocol executions
before guessing which witness was used to generate them. One can prove via
a simple hybrid argument that CWI and mqCWI are equivalent, albeit with a
polynomial loss in the distinguishing advantage.

12

PO(1λ;x,w) � VO(1λ;x)

stP ← (x,w)
(com, stP)←$ PO(1λ; stP)

stV ← x

ch←${0, 1}`(λ)

stV ← (stV, com, ch)

(resp, stP)←$ PO(1λ; ch, stP)

v ← VO(1λ;x, com, ch, resp)

com

ch
resp

Fig. 5: Representation of a 3PC protocol w.r.t. a binary relation R.

2.5 3PC-Protocols and Σ-Protocols

Let R be a binary relation. We will be mainly interested in so-called 3PC-
protocols w.r.t. R, i.e., protocols w.r.t. R which are public-coin, and where the
two parties exchange exactly three messages. We also assume that, on secu-
rity parameter λ, the only message sent by the verifier to the prover has fixed
length `(λ), for a function ` : N→ N called the length function associated to the
protocol. A graphical representation of such a protocol is given in Figure 5.

In this particular context, we call the three messages exchanged between
prover and verifier the commitment, the challenge, and the response, and denote
them by com := α1, ch := β1, and resp := α2, respectively. Furthermore, we
say that two accepting transcripts (com, ch, resp) and (com′, ch′, resp′) for an
element x constitute a transcript collision for x if com = com′ and ch 6= ch′.

We now recall the critical notion of special computational zero-knowledge. In-
tuitively, it means that there exists a simulator which, for any maliciously chosen
challenge given in advance, is able to create an authentic-looking transcript.

Definition 4. Let R be a binary relation, and let Π = (P,V) be a 3PC proto-
col w.r.t. R. We say that Π is Special Computational Zero-Knowledge (SCZK),
if there exists a uniform PPT algorithm S with the following property: For ev-
ery two-stage PPT distinguisher D = (D0,D1), there exists a negligible func-
tion µ : N → R such that, for every λ ∈ N, every (x,w)←$ GR(1λ; 1), and ev-
ery z ∈ {0, 1}∗,∣∣∣Pr

[
ExpSCZK,0

D,Π (λ, x, w, z) = 1
]
− Pr

[
ExpSCZK,1

D,Π (λ, x, w, z) = 1
]∣∣∣ ≤ µ(λ),

where ExpSCZK,b
D,Π (λ, x, w, z) is defined in Figure 4.

The definitions of other properties of 3PC protocols, like optimal and special
soundness, are included in the full version [34]. Roughly, optimal soundness says
that for every x /∈ L and every commitment, there is at most one challenge
which can lead to a valid response. Special soundness says that for x ∈ L, any

13

Ppar-OR(1λ; (x0, x1), (b, w)) � Vpar-OR(1λ; (x0, x1))

stPpar-OR ← ((x0, x1), (b, w)), stPb ← (xb, w)
(comb, stPb)←$ Pb(1λ; stPb)
ch1−b←${0, 1}`(λ)

(com1−b, resp1−b, ch1−b)←$ S1−b(1λ;x1−b, ch1−b)
stPpar-OR ← (stPpar-OR , stPb , com1−b, ch1−b, resp1−b)
com← (com0, com1)

stVpar-OR ← (x0, x1)

ch←${0, 1}`(λ)

stVpar-OR ← (stVpar-OR , com, ch)

chb ← ch⊕ ch1−b
(respb, stPb)←$ Pb(1λ; chb, stPb)
stPpar-OR ← (stPpar-OR , stPb , ch)
resp← (ch0, ch1, resp0, resp1)

v ← Jch0 ⊕ ch1 = chK
v0 ← V0(1λ;x0, com0, ch0, resp0)
v1 ← V1(1λ;x1, com1, ch1, resp1)

return (v ∧ v0 ∧ v1)

com

ch

resp

Fig. 6: Details of the parallel-OR construction by Cramer et al. [23]. Parts specific
to the case where both Π0 and Π1 are SCZK (in comparison to HVCZK) are
highlighted in gray.

transcript collision yields a witness, and for x /∈ L no collisions can be found.
We are now in a position to define the notion of a Σ-protocol.

Definition 5. Let R be a binary relation. A Σ-protocol w.r.t. R is a 3PC pro-
tocol Π w.r.t. R which is complete, specially sound, and SCZK.

3 Parallel-OR Proofs

In this section we recall the classical parallel-OR construction of Cramer et
al. [23], which works for two arbitrary 3PC HVCZK protocols.

Let R0 and R1 be binary relations, and consider two 3PC HVCZK proto-
cols Π0 = (P0,V0), Π1 = (P1,V1) w.r.t. R0 and R1 (with HVCZK-simulators S0
and S1), such that the two length functions `0 = `1 =: ` coincide (this is no
real restriction, as the challenge length of such a protocol can be increased
via parallel repetition). The construction, first presented in [23] and depicted
in Figure 6, allows to combine Π0 and Π1 into a new 3PC HVCZK protocol
par-OR[Π0, Π1,S0,S1] = (Ppar-OR,Vpar-OR) w.r.t. the binary relation ROR. Note
that the simulators of the two protocols become an integral part of the scheme.

The key idea of the construction is to split the challenge ch sent by Vpar-OR
into two random parts, ch = ch0 ⊕ ch1, and to provide accepting transcripts for

14

both inputs x0 and x1 with the corresponding challenge share. If the prover
knows a witness w for xb, it can use the HVCZK-simulator S1−b of Π1−b to
generate a simulated view (com1−b, resp1−b, ch1−b) for x1−b, and then compute
a genuine transcript (comb, chb, respb) for xb using the witness w it knows.

Observe that the same idea works with minor changes if Π0 and Π1 are both
SCZK w.r.t. R0 and R1 (instead of HVCZK). The only difference is that Ppar-OR
must now sample a random challenge ch1−b before running the SCZK-
simulator S1−b in the first step. The main properties of par-OR[Π0, Π1,S0,S1]
are summarized in the following.

Theorem 6. Let R0 and R1 be binary relations, and let Π0 and Π1 be two
3PC HVCZK protocols w.r.t. R0 and R1, such that the length functions satisfy
`0 = `1 =: `. Consider the protocol Π = par-OR[Π0, Π1,S0,S1]. Then:
1. Π is a 3PC CWI HVCZK protocol w.r.t. ROR.
2. If Π0 and Π1 are complete, then Π is also complete.
3. If R0 and R1 are NP-relations and ROR is computationally hard, then Π is

CWH.
Furthermore, if both Π0 and Π1 are SCZK, then Π is SCZK.

The proof of the above can be found in a slightly different syntactical version
in [25], whereas the particular proof of the CWH property can be found in [59].
Note that one can build a secure signature scheme sFS[Π,H] in the ROM from
the protocol Π applying the Fiat-Shamir transform, which we discuss in more
detail in the full version [34].

4 Sequential-OR Proofs

In this section, we discuss an alternative OR-proof technique which we call
sequential-OR. This technique was first used in the context of group signature
schemes by Abe et al. [3]. On a high level, in the sequential-OR variant the
prover derives two sub-proofs, where data from one proof is used to derive the
challenge for the other one.

4.1 Protocol

Similarly to Section 3, we denote by R0 and R1 two binary relations, and consider
two 3PC SCZK protocols Π0 = (P0,V0) and Π1 = (P1,V1) w.r.t. R0 and R1
and simulators S0 and S1, such that the two length functions `0 = `1 =: ` co-
incide. Furthermore, let H be a random oracle. The sequential-OR construction
enables one to merge the two protocols Π0 and Π1 into a non-interactive proto-
col seq-OR[Π0, Π1,S0,S1,H] = (Pseq-OR,Vseq-OR) w.r.t. the binary relation ROR.
The formal details of the protocol are summarized in Figure 7.

The key idea of the construction is to compute the challenge for the instance
the prover indeed does know the witness of, based on the commitment for which
it does not know the witness (derived via the SCZK-simulator). In more detail,

15

PHseq-OR(1λ; (x0, x1), (b, w)) � VHseq-OR(1λ; (x0, x1))

stPseq-OR ← ((x0, x1), (b, w)), stPb ← (xb, w)
(comb, stPb)←$ Pb(1λ; stPb)
ch1−b ← H(b, x0, x1, comb)
(com1−b, resp1−b, ch1−b)←$ S1−b(1λ;x1−b, ch1−b)
chb ← H(1− b, x0, x1, com1−b)
(respb, stPb)←$ Pb(1λ; chb, stPb)
stPseq-OR ← (stPseq-OR , stPb , com1−b, resp1−b)
resp← (com0, com1, resp0, resp1)

stVseq-OR ← (x0, x1)

ch1 ← H(0, x0, x1, com0)
ch0 ← H(1, x0, x1, com1)

v0 ← V0(1λ;x0, com0, ch0, resp0)
v1 ← V1(1λ;x1, com1, ch1, resp1)

return (v0 ∧ v1)

resp

Fig. 7: Details of the sequential-OR construction by Abe et al. [3].

on input the security parameter λ ∈ N, consider a yes-instance for the OR-
relation ((x0, x1), (b, w))←$ GROR(1λ; 1). The protocol seq-OR[Π0, Π1,S0,S1,H]
starts with the prover Pseq-OR and verifier Vseq-OR receiving (x0, x1) as common
input. Additionally, Pseq-OR receives the witness (b, w) as auxiliary input. The
protocol then proceeds in the following way:
1. Pseq-OR sets stPb ← (xb, w) and computes (comb, stPb)←$ Pb(1λ; stPb).

It then computes the challenge ch1−b evaluating the random oracle H
on the common input (x0, x1) and the previously generated commit-
ment comb. It also includes the bit b from the witness for domain sep-
aration. Next, it runs the SCZK-simulator S1−b to obtain a simulated
view (com1−b, resp1−b, ch1−b)←$ S1−b(1λ;x1−b, ch1−b). It then obtains the
challenge chb for the first proof by evaluating H on the common in-
put (x0, x1), the commitment com1−b from the simulator, and the bit 1− b.
Finally, Pseq-OR computes (respb, stPb)←$ Pb(1λ; chb, stPb) using the witness
for xb, and sends resp← (com0, com1, resp0, resp1) to Vseq-OR.

2. Vseq-OR first re-computes both challenge values using the random oracle H.
It then accepts the proof if and only if both transcripts verify correctly,
i.e., V0(1λ;x0, com0, ch0, resp0) = 1 and V1(1λ;x1, com1, ch1, resp1) = 1.

In the following theorem, we establish the main properties of the protocol
seq-OR[Π0, Π1,S0,S1,H].

Theorem 7. Let R0 and R1 be binary relations, and let Π0 and Π1 be two
3PC SCZK protocols w.r.t. R0 and R1, such that the length functions satisfy
`0 = `1 =: `. Consider the protocol Π = seq-OR[Π0, Π1,S0,S1,H]. Then the
following holds in the ROM:
1. Π is a 1-move CWI protocol w.r.t. ROR.

16

KGen(1λ):

11: ((x0, x1), (b, w))←$ GROR (1λ; 1)
12: vk← (x0, x1)
13: sk← (b, w)
14: return (vk, sk)

VerifyH(1λ;m,σ, vk):

41: parse σ = (com0, com1, resp0, resp1)
42: ch1 ← H(0, vk, com0,m)
43: ch0 ← H(1, vk, com1,m)
44: v0 ← V0(1λ;x0, com0, ch0, resp0)
45: v1 ← V1(1λ;x1, com1, ch1, resp1)
46: return (v0 ∧ v1)

SignH(1λ;m, vk, sk):

21: parse vk = (x0, x1)
22: parse sk = (b, w)
23: stPb ← (xb, w)
24: (comb, stPb)←$ Pb(1λ; stPb)
25: ch1−b ← H(b, vk, comb,m)
26: (com1−b, resp1−b, ch1−b)←$

←$ S1−b(1λ;x1−b, ch1−b)
27: chb ← H(1− b, vk, com1−b,m)
28: (respb, stPb)← Pb(1λ; chb, stPb)
29: σ ← (com0, com1, resp0, resp1)
30: return σ

Fig. 8: Description of the signature scheme Γ = (KGen,Sign,Verify) obtained
from the protocol seq-OR[Π0, Π1,S0,S1,H] by appending the message m being
signed to all random oracle queries.

2. If Π0 and Π1 are complete, then Π is also complete.
3. If R0 and R1 are NP-relations and ROR is computationally hard, then Π is

CWH.

A detailed proof of Theorem 7 as well as an extension of the above technique
to the more general 1-out-of-n case can be found in the full version [34].

4.2 Sequential-OR Signatures

We now show how one can use the sequential-OR proof technique (see Fig-
ure 7) to build a secure signature scheme Γ = (KGen,Sign,Verify) in the non-
programmable ROM. On a high level, the signer runs a normal execution of
the protocol seq-OR[Π0, Π1,S0,S1,H], but always includes the message m being
signed when it queries the random oracle to obtain the challenges. Signatures in
this scheme consist of the commitments and responses generated during the pro-
tocol execution, and verification can be achieved by re-computing the challenges
(again, including the message) and checking whether the two transcripts verify.
The formal details of the scheme can be found in Figure 8, and we provide a
detailed description in the following.

The signature scheme’s key generation algorithm runs the instance genera-
tor ((x0, x1), (b, w))←$ GROR(1λ; 1) of the relation ROR, which returns an ROR-
instance (x0, x1) and a witness w for xb. The pair (x0, x1) then constitutes the
public verification key, and (b, w) is set to be the secret signing key.

17

Signing a message m starts with running Pb on the instance xb with the
corresponding known witness (contained in the signing key), which results in
a commitment comb. The next step is to compute the challenge ch1−b for the
instance the prover does not know the witness for, and this is done querying
the random oracle H, as done before. The only difference is that now the mes-
sage m is appended to the oracle’s input. Next, the signer runs the SCZK-
simulator ofΠ1−b on the instance x1−b and this challenge, generating a simulated
view (com1−b, resp1−b, ch1−b). To complete the signature, it is still necessary to
derive the missing response respb. In order to do so, first the random oracle is
invoked to output chb from com1−b (again, the message m is appended to its
argument), and on input this challenge the prover computes the response respb.
Finally, the signature is (com0, com1, resp0, resp1).

The verification algorithm checks whether the signature is valid for the given
message. The signature is parsed in its components, and the algorithm queries the
random oracle twice (including the message) to obtain the challenges ch0 and ch1,
as computed by the signing algorithm. It then verifies whether (com0, ch0, resp0)
and (com1, ch1, resp1) are accepting transcripts for x0 and x1, respectively. If
both transcripts verify correctly then the verification algorithm accepts the sig-
nature, and rejects otherwise.
Theorem 8. Let R0 and R1 be decisional hard relations, and let Π0 and Π1
be two 3PC optimally sound SCZK protocols w.r.t. R0 and R1, such that the
length functions satisfy `0 = `1 =: `. Consider the signature scheme Γ obtained
from the protocol Π = seq-OR[Π0, Π1,S0,S1,H] as depicted in Figure 8. Then Γ
is an UF-CMA-secure signature scheme in the non-programmable random oracle
model. More precisely, for any PPT adversary A against the UF-CMA-security
of Γ making at most qH queries to the random oracle H, there exist PPT algo-
rithms C, V∗, D0 and D1 such that

AdvUF-CMA
A,Γ (λ) ≤ AdvmqCWI

V∗,C,Π(λ) + AdvDHR
D0,R0

(λ) + AdvDHR
D1,R1

(λ)

+ 2 · (qH(λ) + 2)2 · 2−`(λ).

In particular, for a perfectly witness indistinguishable proof system, where
AdvmqCWI

V∗,C,Π(λ) ≤ qs(λ) ·AdvCWI
V∗,C,Π(λ) = 0 (here and in the following, qs denotes

the number of queries the adversary makes to the signature oracle), the bound
becomes tightly related to the underlying decisional problem. This holds for
example if we have a perfect zero-knowledge simulator. We remark that our
proof also works if the relations are not optimally sound but instead c-optimally
sound, i.e., for every x /∈ LR and every commitment, there is a small set of at
most c challenges for which a valid response can be found. In this case we get
the term c(λ) · 2−`(λ) in place of 2−`(λ) in the above bound.

The complete proof of Theorem 8 can be found in the full version [34], but
we still give a proof sketch here. We show that the obtained signature scheme Γ
is secure via a sequence of game hops. The general approach is based on the
following idea:
1. Assume that we have an adversary A which creates a forgery

(com∗0, com∗1, resp0∗, resp∗1) for message m∗. We can modify A into

18

an adversary B which will always query both (0, x0, x1, com∗0,m∗)
and (1, x0, x1, com∗1,m∗) to the random oracle when computing the forgery,
simply by making the two additional queries if necessary.

2. Since the adversary is oblivious about which witness wb is being used to cre-
ate signatures, B will submit the query (1−b, x0, x1, com∗1−b,m∗) first, before
making any query about (b, x0, x1, com∗b ,m∗), with probability roughly 1/2,
and will still succeed with non-negligible probability.

3. If we next replace x1−b with a no-instance (which is indistinguishable for
B because R1−b is decisionally hard) we obtain the contradiction that B’s
advantage must be negligible now, because finding a forgery when query-
ing com∗1−b first should be hard by the optimal soundness property of Π1−b,
since x1−b is a no-instance.

In more detail, in the first step we transition from the classical unforgeability
game G0 for the signature scheme Γ to a game G1 where the adversary is ad-
ditionally required to query both (0, x0, x1, com∗0,m∗) and (1, x0, x1, com∗1,m∗)
to the random oracle. It is always possible to make this simplifying assumption:
Indeed, given any adversary A against the UF-CMA-security of Γ , we can modify
it into an adversary B which works exactly like A, but whose last two operations
before returning the forgery as computed by A (or aborting) are the two required
oracle queries, in the order given above. It is clear that B is a PPT algorithm,
that it makes at most qH + 2 random oracle queries, and that the probabilities
of adversaries A winning game G0 and B winning game G1 are the same.

We remark that it was also possible, albeit a bit lengthy, to prove that a
successful adversary A against G0 would already make both oracle queries with
overwhelming probability, so that one could replace this first step with a more
cumbersome security proof ruling out adversaries that do not make both queries.
We choose here not to do so, because it would make the proof much longer and
worsen the overall bound on the advantage of A.

Next, we define a game G2 which is the same as game G1 with the change
that the adversary is required to query (1− b, x0, x1, com∗1−b,m∗) to the random
oracle before submitting any query of the form (b, x0, x1, com∗b ,m∗). By witness
indistinguishability this should happen with roughly the same probability as the
other case (with the opposite order), because from the adversary’s perspective
the signatures do not reveal which witness wb is used by the signer. Indeed, we
show that the difference between both games is (up to the factor 1

2) negligibly
close. This is shown by building a distinguisher against a multi-query extension
of the CWI property (see the full version [34] for its definition), and proving that
the difference coincides with the distinguishing advantage of this distinguisher
in the mqCWI experiment. As a result, the winning probability of B in game G1
is approximately twice its winning probability in game G2.

Finally, we move to a game G3 which is identical to G2 with the difference
that the (1− b)-th instance is switched to a no-instance. Since the relations are
decisionally hard, we can build another distinguisher playing the DHR experi-
ment, showing that the winning probabilities are again roughly the same.

19

To conclude the proof we argue that the probability of the adversary win-
ning game G3 can be bounded using the fact that Π1−b is optimally sound.
Indeed, by the winning condition in the game, the adversary needs to provide
the commitment com∗1−b early on. By the fact that the (1 − b)-th instance is
a no-instance, we know that for every such commitment there exists at most
one challenge (derived querying H on com∗b later in the game) for which there
exists a response such that the transcript for x1−b verifies correctly. Since the
adversary must ask com∗1−b in one of the random oracle queries, there are at
most qH + 2 commitments com∗1−b it can check. For every such commitment it
can try at most qH + 2 other oracle queries to find the matching challenge, so
that we can bound B’s winning probability in G3 by (qH(λ) + 2)2 · 2−`(λ)+1.

4.3 Example: Post-Quantum Ring Signatures

We discuss here briefly that our sequential-OR technique can be applied to build
lattice-based ring signatures. We exemplify this for the case of the Dilithium
signature scheme [28]. We stress that our solution may be less efficient than
optimized lattice-based constructions such as [30] (but which, again, relies on
programming the random oracle and yields a loose reduction). Our aim is to
demonstrate that one can use the sequential-OR approach in principle to im-
mediately obtain a solution with security guarantees in the non-programmable
classical ROM (with tight security relative to the underlying lattice problem)
and also in the QROM (with loose security at this point).

We briefly recall the Dilithium signature scheme [29]. The scheme works over
a ring Rq = Zq[X]/(Xn + 1). The public key consists of (a size-reduced version
of) t = As1 + s2, where the matrix A ∈ Rk×`q and the vectors s1, s2 become part
of the secret key. The signature σ = (z, h, c) of a message m consists of a short
response value z = y + cs1, where y is chosen randomly and c = H(µ,w1) is a
(deterministically post-processed) hash value of a salted hash µ of the messagem
and the commitment of w = Ay in form of its higher-order bits w1. The value h
is a hint required for verification. When generating a signature, the process may
not always create a sufficiently short value z, in which case the generation is
started from scratch.

The security proof of Dilithium [45] is based on the presumably hard problem
to distinguish genuine public keys (A,As1 + s2) from (A, t) for random t. As
such we have our required decisional hard relation. Optimal soundness, in the
sense that for random public keys there exists at most one challenge for which
one can find a valid answer for a given commitment, has been also shown to
hold with overwhelming probability in [45]. The zero-knowledge property in [45]
reveals, by inspecting the construction of the simulator, that the construction is
special zero-knowledge with perfectly indistinguishable distribution. The witness
indistinguishability of the sequential-OR protocol hence follows from Theorem 7.

We can now apply Theorem 8 to conclude that the sequential-OR version
is a secure signature scheme (in the non-programmable random oracle model).
Note that it is irrelevant for us how many trials the signature generation takes,
since we are merely interested in the point in time when we actually observe the

20

right random oracle queries. With Theorem 10 we can also conclude that the
protocol is secure in the quantum random oracle model.

5 Impossibility of parallel-OR Signatures in the
Non-Programmable Random Oracle Model

In this section we show that it may be hard to prove the unforgeability of the
parallel-OR signature scheme Γ = sFS[par-OR[Π0, Π1,S0,S1],H] in the non-
programmable ROM (all formal details about the definition of Γ can be found
in the full version [34]). On a high level, this means that we must rule out the
existence of an efficient reduction R which has access to a random oracle but is
not allowed to program it, and which transforms any (bounded or unbounded)
successful adversary A against the unforgeability of Γ into an algorithm C solving
some problem G assumed to be hard with non-negligible advantage.

Our proof will proceed in two steps. First, assuming by contradiction that
such a reduction R indeed does exist, we will construct a specific unbounded
adversary A which breaks the unforgeability of Γ with overwhelming probability.
By the properties of R, this means that the unbounded algorithm C resulting from
the interaction between R and A must successfully break instances of G in the
non-programmable ROM with non-negligible probability. Then, we show how
to efficiently simulate to R its interaction with A, thereby yielding an efficient
algorithm B against G in the standard model with roughly the same advantage
as C. This is impossible by the hardness of G, which means that R cannot exist.

In the following paragraphs we discuss which kinds of reductions R we are able
to rule out, define what types of problems G the algorithms B and C play against,
and discuss a pointwise version of zero-knowledge which the base protocols must
satisfy for our result to work. We then come to the main result of this section.

Reduction. The efficient reductions R we consider have oracle access to the ran-
dom oracle H, as well as a (bounded) number of adversary instances Ai which
themselves have oracle access to H. The latter guarantees that the reduction
cannot program the random oracle for the adversarial instances, but we stress
that R gets to see all the queries made by any instance Ai. We let each adversarial
instance be run on the same security parameter λ as the reduction itself.

Recall that, in the first step of our proof, the adversary A is unbounded.
Therefore, we can assume that A incorporates a truly random function which it
uses if random bits are required. With this common derandomization technique,
we can make some simplifying assumptions about the reduction: Without loss
of generality, R runs the instances of the adversary in sequential order, starting
with A1. It also never revisits any of the previous instances A1, . . . ,Ai once it
switches to the next instance Ai+1 by inputting a verification key vki+1. Further-
more, we can disallow any resets of the adversarial instances: The reduction can
simply re-run the next instance up to the desired reset point and then diverge
from there on.

21

Games. The hard problems that algorithms B and C are trying to solve are non-
interactive (“oracle-free”) problems, like distinguishing between different inputs.
Formally, we consider games of the form G = (I,V, α) consisting of an instance
generation algorithm I and a verification algorithm V, where (inst, st)←$ I(1λ)
generates a challenge inst of the game and some state information st. On input
a potential solution sol computed by some algorithm, the deterministic algo-
rithm V(1λ; inst, sol, st) returns 0 or 1, depending on whether sol is a valid so-
lution of inst. The constant α allows to measure the advantage of an algorithm
trying to win the game over some trivial guessing strategy (e.g., α = 1

2 for dis-
tinguishing games). We say that an algorithm B has advantage ε winning the
game G = (I,V, α) if

Pr
[
V(1λ; inst, sol, st) = 1 : (inst, st)←$ I(1λ), sol←$ B(1λ; inst)

]
≥ α+ ε(λ).

For us, the canonical problem to reduce security of the signature scheme to would
be the distinguishing game against the hard instance generator for the underlying
language. However, our theorem holds more generally for other problems.

The all-powerful Adversary. In our setting, the reduction RH,AH1 ,AH2 ,...(1λ; inst)
has black-box access to a successful adversary A against Γ , receives as input
some instance inst of a game G = (I,V, α), and is supposed to output a valid
solution sol, winning the game with non-negligible advantage ε, while interacting
with A. Recall that R must be able to convert any (efficient or unbounded)
adversary A into a solver for G; in particular, this must be the case for the
following all-powerful forger A, which we will consider throughout the proof:
1. Upon receiving a verification key vk = (x0, x1) as input, the adversary first

queries its singing oracle for a signature on the message mvk = vk.
2. When receiving the signature σ, adversary A verifies the signature and aborts

if this check fails.
3. Else, adversary A uses its power to compute the lexicographic first witness w

of x0 (if it exists), or of x1 (if it exists, and no witness for x0 has been found).
If no witness can be found, then A aborts. Otherwise, let b ∈ {0, 1} be such
that A has found a witness for xb.

4. Adversary A picks a random λ-bit message m∗ and runs the signing algo-
rithm with secret key sk = (b, w) to create a signature σ∗. This requires one
random oracle query over the message (x0, x1, com∗0, com∗1,m∗). The random-
ness necessary to create the signature and the message m∗ is computed by
applying the inner random function to (vk, σ).

5. The adversary outputs (m∗, σ∗) as its forgery.
Note that since the adversary includes the public key vk in the messagesmvk, our
result would also hold if the signing process itself did not include vk; according
to our specification it currently does.

We observe that A obviously wins the UF-CMA experiment of Γ with over-
whelming probability. We denote by CH(1λ; inst) the adversary against G in the
non-programmable ROM obtained by letting R interact with A (see the left-hand
side of Figure 9). By the properties of R, the advantage of C against G in the
non-programmable ROM must be non-negligible.

22

Zero-Knowledge. Recall that we defined the zero-knowledge property for proto-
cols w.r.t. relations R that have an efficient instance generator. Here, we need a
stronger notion: Zero-knowledge must hold pointwise for every (x,w) ∈ R. The
reason is that we will rely on the zero-knowledge property to argue that the re-
duction R does not learn any useful information from the signatures created by
the all-powerful adversary A. The problem here is that the reduction may choose
the instance vki = (x0, x1) in the execution of the i-th adversary adaptively and
in dependence of the behavior of A in previous instances. The reduction may
then also base its final output on this choice.

We therefore say that a protocol Π = (P,V) w.r.t. a relation R is point-
wise HVCZK, if there exist a uniform PPT algorithm S and a polynomial p
with the following property: For every PPT distinguisher D, there exists a
negligible function µ : N → R such that, for every λ ∈ N, every (x,w) ∈ R
with |x| , |w| ≤ p(λ), and every z ∈ {0, 1}∗, D can distinguish verifier views
viewV

[
PO(1λ;x,w) � VO(1λ;x)

]
in the honest interaction between P and V

from the simulator’s output S(1λ;x) with advantage at most µ(λ), even if D
receives z as auxiliary input.

Note that in the definition above, the relation and the language are still fixed,
only the sampling process may vary. This seems to be a reasonable assumption
which applies to known protocols, as the zero-knowledge simulator is usually
independent of the generation process for the statement.

Impossibility Result. We now show that, if there exists a black-box reduction R
as described above, our all-powerful adversary A induces an efficient algorithm B
winning the game directly, such that the advantages of B and C are roughly the
same. This is impossible by the assumed hardness of G, so that R cannot exist.

Theorem 9. Let R0 and R1 be binary relations, and let Π0 and Π1 be two 3PC
optimally sound pointwise HVCZK protocols w.r.t. R0 and R1, such that the
length functions satisfy `0 = `1 =: `. Denote by Π = par-OR[Π0, Π1,S0,S1] the
corresponding parallel-OR protocol, and let Γ = sFS[Π,H] be the parallel-OR
signature scheme derived from Π in the ROM.

Assume that there exists a PPT black-box reduction R from the unforgeability
of Γ to winning a game G = (I,V, α). Then there exists a PPT algorithm B
which wins the game G with non-negligible advantage in the standard model.

The idea is as follows. Algorithm B receives as input a challenge inst of the
game G, and must compute a valid solution sol with non-negligible probability.
The strategy of B is to run the reduction R on inst as a subroutine, and to
efficiently simulate to R its interaction with A. To do so, B must be able to
answer the two types of queries that R can make: Random oracle evaluations and
forgery queries to A. The former are handled via lazy sampling, i.e., B simulates
a random oracle to R. If on the other hand R requests a forgery for a verification
key vk = (x0, x1), B at first follows the definition of A and requests a signature
for mvk. This initial signature request ensures that the verification key vk must
be such that x0 ∈ L0 or x1 ∈ L1 or both. Indeed, the reduction cannot program

23

R

Compute (b, w) s.t.
((x0, x1), (b, w)) ∈ ROR

Generate m∗ and sign

Ai

..

.

...

H
in

st
so

l

C
inst

sol

(x0, x1)

(v
k,

co
m
∗
,m
∗
)

H
(v

k,
co

m
∗
,m
∗
)

(m∗, σ∗) R

m∗←${0, 1}λ
(com∗0 , resp∗0 , ch∗0)←$ S0(1λ; x0)
(com∗1 , resp∗1 , ch∗1)←$ S1(1λ; x1)
H(vk, com∗,m∗) := ch∗0 ⊕ ch∗1

Ai

..

.

...

if s already queried then
t← H(s)

else
t←${0, 1}`(λ)

H(s) := t H

B
inst

in
st

sol
so

l

(x0, x1)

(m∗, σ∗)

(v
k,

co
m
∗
,m
∗
)

ch
∗ 0
⊕

ch
∗ 1

Fig. 9: Representation of the reduction R interacting with adversarial instances Ai
in the ROM (left) and of the efficient solver B running R (right). The compo-
nents simulated by B are dashed, and the queries of which R gets informed are
highlighted in gray.

the random oracle (which is controlled by B) and, by special soundness of Π0
and Π1, finding a valid signature when both x0 /∈ L0 and x1 /∈ L1 is infeasible
for parallel-OR signatures. Hence, in the original experiment A will always be
able to find a witness (b, w) for vk if it receives a valid signature.

Next, A will compute a forgery for the messagem∗. Here B, instead of using w
from the witness (b, w) to run Pb and compute com∗b and resp∗b in its forgery,
uses the zero-knowledge simulator Sb for this part as well. Now both parts of
the signature of m∗ are independent of the actual witness. The algorithm B can
now program the random oracle H it is simulating to R, so that H(vk, com∗,m∗)
matches the XOR of the two challenges obtained from the two simulators.2 By
the strong zero-knowledge property of the base protocols, and since m∗ contains
sufficient randomness to make sure that we can still set the random oracle for R at
this point, this is indistinguishable for the reduction. Finally, if at some point R
returns a solution to the given instance, algorithm B terminates with the same
output. In conclusion, we can now efficiently simulate A’s behavior to R, so
that the reduction together with this simulation technique yields our efficient
algorithm B against game G (see the right-hand side of Figure 9).

2 One could indeed argue why we are here allowed to program the random oracle in
light of the discussion about non-programmability. One may think of this here as
a restriction of the reduction, that it needs to be able to cope with such external
oracles. Technically, it gives the required advantage over the reduction to make the
meta-reduction argument work.

24

Let us stress that the impossibility result above does not hold for
sequential-OR signatures. The difference lies in the observability of the re-
duction in both cases. In the parallel-OR case we still need to tell R which
query H(vk, com∗0, com∗1,m∗) the adversary has made to compute the forgery.
But we have already argued that the simulated value com∗b is indistinguishable
from the prover’s value com∗b in the forgery, so that this query does not give any
additional information to R. In the sequential-OR case, however, we would need
to inform R which query A makes first, revealing which witness it has computed.

Proof. Consider an efficient reduction R interacting with instances of our all-
powerful adversary A. Assume that the reduction calls at most qA instances of A
and makes at most qH calls to the random oracle. Since R is polynomial-time,
both parameters are polynomially bounded. We can also assume that R never
runs an instance for the same key vk and then the same signature σ twice,
because it will just receive the same answers as before.

We start by making some simplifying assumptions about the reduction. First,
we can assume that R only provides A with a valid signature to some verification
key vk = (x0, x1) if x0 ∈ L0 or x1 ∈ L1 (or both). Indeed, since Π0 and Π1
are optimally sound, if both values are not in their language, then each com-
mitment com0 for x0 and com1 for x1 only allows for at most one challenge,
ch0 and ch1, to have a valid response. But then, the probability that a random
oracle query H(vk, com0, com1,mvk) matches the unique value ch0 ⊕ ch1 is at
most 2−`(λ). The probability that such a random oracle query exists at all, ei-
ther made by R or, if not, later made by any instance of the adversary A when
verifying the signature, is therefore at most (qH(λ)+qA(λ)) ·2−`(λ). Given that A
aborts if the signature it receives is not valid, we can from now on assume that
each public key vk for which R requests a forgery (and must provide a signa-
ture) allows A to compute a witness (b, w), and that R itself leaves the instance
immediately if verification fails.

Second, we may assume that, whenever A creates a forgery for m∗, the ran-
dom oracle has not been queried by any party yet about any value terminating
in m∗. Indeed, since A applies the internal random function to compute m∗
from vk and σ, and we assume that the reduction never runs the adversary twice
on the same values, this can only happen if two random messages m∗ of the
adversary collide, or if the reduction has made such a query by chance. The
probability for this is at most (qH(λ) + qA(λ))2 · 2−λ. Hence, we can from now
on assume that this does not happen. In other words, if R stumbles upon such
a value it immediately aborts.

We now define the algorithm B as explained in the overview above. On in-
put (1λ; inst), B runs the reduction on security parameter 1λ and instance inst
as a subroutine, and simulates to R its interaction with A. The random oracle
queries made by R are answered via lazy sampling. If on the other hand R calls
an adversarial instance for a forgery under vk = (x0, x1), B does the following:
1. It first requests a signature of mvk = vk under vk to its signature oracle

(provided by the reduction), and checks if the corresponding signature is
valid. If not, it aborts the simulation of the current instance of A.

25

2. Assuming that R has provided a valid signature of mvk under vk, B does
not compute a witness (b, w) for vk (as A would do). It still picks a random
message m∗ ∈ {0, 1}λ and fresh coins for the signing process, though.

3. To compute the forgery for m∗, instead of invoking Pb(1λ;xb, w) to gener-
ate comb, B now runs the two simulators S0(1λ;x0) and S1(1λ;x1) to compute
simulated views (com∗0, resp∗0, ch∗0) and (com∗1, resp∗1, ch∗1).

4. Algorithm B savesH(vk, com∗0, com∗1,m∗) := ch∗0⊕ch∗1 into the lookup table it
keeps to simulate the random oracle to R, and informs R that the adversary A
it is simulating has made a query (vk, com∗0, com∗1,m∗) to the random oracle,
with answer ch∗0 ⊕ ch∗1.

5. Finally, B sends m∗ and σ∗ = (com∗0, com∗1, resp∗0, resp∗1) to R as the forgery
computed by the simulated instance of A.
Note that B is now efficient: The only potentially exponential step involving

the witness search has been eliminated. We must now argue that B’s success
probability in the standard model is close to the one of C in the ROM. This is
done by carrying out a reduction to the pointwise zero-knowledge property of
the protocols Π0 and Π1, where zero-knowledge must hold for every (x,w) ∈ R,
even in the presence of some auxiliary information z ∈ {0, 1}∗ that may contain
further information about (x,w). The proof is done via a hybrid argument for
hybrids Hyb0, . . . ,HybqA

, where Hybi answers R’s forgery requests by running
the (unbounded) algorithm A up to, and including, the i-th adversarial instance
(as C would do), and then efficiently simulates A for the remaining instances (as B
would do). Then the extreme hybrid HybqA

corresponds to the original inefficient
algorithm C, whereas the extreme hybrid Hyb0 coincides with B’s simulation.

The jump from hybrid Hybi−1 to hybrid Hybi substitutes the honestly gener-
ated proof for xb (where xb is the instance that A finds a witness for) in the i-th
adversarial instance with a simulated one, so that we can construct a reduction to
the pointwise HVCZK property ofΠb. The main idea is to let the reduction inter-
act with the inefficient forger A for the first i instances, up to the point where Ai
has determined the witness (b, w) for xb, and save all the state information into
the auxiliary input z. This allows us to pick up the reduction later. We then
leverage the pointwise HVCZK property of Πb, with instance (xb, w) ∈ Rb: The
zero-knowledge distinguisher Db receives a genuine or simulated view for xb and
the state information z, and continues to run the reduction, but now using B’s
simulation for the remaining instances (so that Db is efficient).

More formally, we use the pointwise HVCZK property of Πb for the distin-
guisher Db, the instance (xb, w) ∈ Rb, and the auxiliary information z defined
as follows. We let (inst, sol)←$ I(1λ) generate an instance of G, pick a random
tape r for the reduction and a random index i between 1 and qA for the jump in
the hybrids, and then run the reduction (interacting with A) on input inst, up
to the point where A has computed a witness for one of the two instances in the
i-th execution (on input vk = (x0, x1)) and has generated the message m∗. All
random oracle queries are answered via lazy sampling and a table H is main-
tained to record previously answered queries. Let S store all forgery attempts
of A. Then we let (xb, w) ∈ Rb be the instance and the corresponding witness

26

found by A, and we set z = (inst, st, r, i, x1−b, b, w,m
∗, H, S). Note that if no

witness can be found by A, or if A has stopped in this instance prematurely,
then we simply set xb and w to some fixed elements of the relation R0 and the
output z as before. In any case, z is of polynomial size and can be processed by
an efficient distinguisher, because qH and qA are polynomially bounded.

The (efficient) distinguisher Db against the pointwise HVCZK property of Πb

receives xb, a real or simulated view (com∗b , resp∗b , ch∗b) for xb, and the auxiliary
information z = (inst, st, r, i, x1−b, b, w,m

∗, H, S). With these data Db can re-
run the reduction up to the interaction of R with the i-th adversarial instance
and then inject the given transcript (com∗b , ch∗b , resp∗b) into this instance (the
transcript for x1−b needed to complete the forgery is obtained via the simula-
tor S1−b(1λ;x1−b)). Algorithm Db now completes the execution of the reduction,
using lazy sampling and the table H to continue the consistent simulation of
random oracle queries. In particular, in all subsequent signature forgeries it will
use B’s efficient simulation technique, calling the simulators S0 and S1 to cre-
ate the two transcripts and programming the random oracle accordingly. Note
that the order of execution of these two simulators is irrelevant, because Db only
needs to inform the reduction about a single random oracle query. Finally, Db
takes the reduction’s output sol and returns the decision bit V(1λ; inst, sol, st).

Observe that Db runs in polynomial time, because it does not need
to invoke any super-polynomial subroutines like A. If Db receives a real
view (com∗b , resp∗b , ch∗b) in the i-th instance, then ch∗b is truly random and
independent, and therefore programming the (simulated) random oracle
to H(vk, com∗0, com∗1,m∗) := ch∗0 ⊕ ch∗1 is perfectly sound. Hence, for real tran-
scripts Db simulates the hybrid Hybi with the first i instances according to C’s
strategy, and the following instances with the simulated mode of B.

If on the other hand the transcript is simulated by Sb, then both parts of the
signature are simulated. This means that both ch∗0 and ch∗1 are indistinguishable
from random strings to an efficient adversary, which again implies that pro-
gramming H(vk, com∗0, com∗1,m∗) := ch∗0 ⊕ ch∗1 is sound for R. In this case, only
the first i − 1 instances follow C’s method; starting form the i-th adversarial
instance we have two simulated proofs, each simulated individually. Hence, this
corresponds to the (i− 1)-th hybrid Hybi−1.

Let µb : N→ R be the negligible function bounding the distinguishing advan-
tage of Db in the pointwise HVCZK experiment of Πb. It follows via a standard
hybrid argument that any change in the reduction’s behavior translates into a
distinguisher against the pointwise HVCZK property of Π0 and Π1 (times the
number of queries qA). The advantage of our algorithm B in breaking the game
is thus at least

ε(λ)− (qH(λ) + qA(λ))2 · 2−λ − (qH(λ) + qA(λ)) · 2−`(λ) − qA(λ)
(
µ0(λ) + µ1(λ)

)
,

where ε is the advantage of C. Since ε is non-negligible by assumption, so must
be B’s advantage. But this contradicts the presumed hardness of G.

27

6 Security in the Quantum Random Oracle Model

In this section we give an outline of the security proof for signatures derived
from the sequential-OR construction in the QROM. More details can be found
in the full version [34].

While treating quantum random oracles is a clear qualitative extension in
terms of the security guarantees (especially if we work with quantum-resistant
primitives), we have to sacrifice two important features of our proof in the classi-
cal case. One is that the bound we obtain is rather loose. The other point is that
we need to program the random oracle in the security reduction. Both proper-
ties are currently shared by all proofs in the quantum random oracle model, e.g.,
programmability appears in form of using pairwise independent hash functions
or semi-constant distributions (see [60]). Hopefully, progress in this direction will
also carry over to the case of sequential-OR signatures.

Our starting point is the “measure-and-reprogram” technique of Don et
al. [27] for Fiat-Shamir protocols in the QROM. They show that it is possi-
ble to turn a quantum adversary A into an algorithm RA such that RA measures
one of the qH quantum queries of A to the random oracle, yielding some clas-
sical query com′. The choice of this query is made at random. Algorithm RA

returns either correctly H(com′) or an independent and random value Θ to this
now classical query, the choice being made at random. Algorithm RA continues
the execution of A but always returns Θ for com′ from then on. Algorithm RA

eventually returns the output (com, resp) of A.
Don et al. [27] now show that, for any quantum adversary A making at

most qH quantum random oracle queries, there exists a (quantum) algorithm RA

such that, for every fixed com0 and every predicate Λ, there exists a negligible
function µcom0 : N→ R such that

Pr
[
com = com0 ∧ Λ(1λ; com, Θ, resp) : (com, resp)←$ RA,H(1λ;Θ)

]
≥ 1
O(qH(λ)2) ·Pr

[
com = com0 ∧

Λ(1λ; com,H(com), resp) : (com, resp)←$ AH(1λ)
]
−µcom0(λ),

where
∑

com0
µcom0(λ) = 1

qH(λ)·2`(λ)+1 for the output size ` of the random oracle.
We will apply the above measure-and-reprogram technique twice in order

to capture the two (classical) queries in which the adversary asks for the two
commitments com∗0 and com∗1 for the forgery. However, we do not know if the
strategy can be safely applied multiple times in general. Fortunately, we can
apply the technique in our setting once without actually reprogramming the
random oracle, only turning one of the queries into a classical one, and then
view this as a special adversary B which still works with the given random
oracle model. In doing so we lose a factor of approximately 1/q2 in the success
probability, where q(λ) = qH(λ) + 2 + 2qs(λ) counts the number of hash queries
made by both the adversary and the signature scheme. Then we can apply the
technique once more to B, losing another factor 1/q2. Finally, we need to take into
account that we actually obtain the matching commitments in the two measured

28

queries, costing us another factor 1/q. Eventually, we get an algorithm R which
makes two classical queries about the two commitments in the forgery with high
probability, but with a loose factor of 1/q5 compared to the original success
probability of the forger.

Note that we now have a forger making two classical queries about the com-
mitments com∗a∗ and com∗1−a∗ in the forgery in this order, but where we re-
program the random oracle reply in the second query about com∗1−a∗ to Θ.
In our sequential-OR construction this value Θ describes the (now repro-
grammed) challenge for the first commitment. In particular, the forgery then
satisfies Va∗(1λ;xa∗ , com∗a∗ , Θ, resp∗a∗) = 1 for the commitment com∗a∗ chosen be-
fore Θ is determined. If xa∗ was a no-instance, this should be infeasible by the
optimal soundness property. The last step in the argument is then similar to the
classical setting, showing that if R is forced to use the “wrong order” and queries
about a no-instance first with sufficiently high probability, its success proba-
bility will be small by the witness indistinguishability of the protocol and the
decisional hardness of the problems (but this time against quantum algorithms).

Overall, we get:

Theorem 10. Let R0 and R1 be decisional hard relations against quantum algo-
rithms, and let Π0 and Π1 be two 3PC optimally sound SCZK protocols w.r.t. R0
and R1, where zero-knowledge holds with respect to quantum distinguishers, such
that the length functions satisfy `0 = `1 =: `. Consider the signature scheme Γ
obtained from the protocol Π = seq-OR[Π0, Π1,S0,S1,H] as depicted in Fig-
ure 8. Then Γ is an UF-CMA-secure signature scheme in the quantum ran-
dom oracle model. More precisely, for any polynomial-time quantum adversary A
against the UF-CMA-security of Γ making at most qH quantum queries to the
random oracle H and at most qs signature queries, there exist a negligible func-
tion µ : N→ R and polynomial-time quantum algorithms C, V∗, D0 and D1 such
that

AdvUF-CMA
A,Γ (λ) ≤ O((qH(λ) + qs(λ) + 2)5) ·

(
AdvmqCWI

V∗,C,Π(λ) + AdvDHR
D0,R0

(λ)

+ AdvDHR
D1,R1

(λ) + 2−`(λ)+1
)

+ µ(λ).

Acknowledgments

We thank the anonymous reviewers for valuable comments. We thank Serge Fehr
and Tommaso Gagliardoni for helpful discussions. This work was funded by the
Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297.

References

1. M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to
signatures via the Fiat-Shamir transform: Minimizing assumptions for security
and forward-security. In EUROCRYPT 2002, pages 418–433, 2002.

29

2. M. Abdalla, P.-A. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly secure
signatures from lossy identification schemes. Journal of Cryptology, 29(3):597–631,
2016.

3. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.
In ASIACRYPT 2002, pages 415–432, 2002.

4. E. Alkim, N. Bindel, J. A. Buchmann, Ö. Dagdelen, E. Eaton, G. Gutoski,
J. Krämer, and F. Pawlega. Revisiting TESLA in the quantum random oracle
model. In PQCrypto 2017, pages 143–162, 2017.

5. A. Ambainis, A. Rosmanis, and D. Unruh. Quantum attacks on classical proof
systems: The hardness of quantum rewinding. In 55th FOCS, pages 474–483,
2014.

6. C. Bader, D. Hofheinz, T. Jager, E. Kiltz, and Y. Li. Tightly-secure authenticated
key exchange. In TCC 2015, Part I, pages 629–658, 2015.

7. S. Bai and S. D. Galbraith. An improved compression technique for signatures
based on learning with errors. In CT-RSA 2014, pages 28–47, 2014.

8. C. Baum, H. Lin, and S. Oechsner. Towards practical lattice-based one-time link-
able ring signatures. In ICICS 18, pages 303–322, 2018.

9. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62–73, 1993.

10. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry.
Random oracles in a quantum world. In ASIACRYPT 2011, pages 41–69, 2011.

11. D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring.
In EUROCRYPT’98, pages 59–71, 1998.

12. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334, 2018.

13. J. Camenisch. Efficient and generalized group signatures. In EUROCRYPT’97,
pages 465–479, 1997.

14. J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and G. Neven. The
wonderful world of global random oracles. In EUROCRYPT 2018, Part I, pages
280–312, 2018.

15. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145, 2001.

16. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security
with global setup. In TCC 2007, pages 61–85, 2007.

17. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited
(preliminary version). In 30th ACM STOC, pages 209–218, 1998.

18. R. Canetti, A. Jain, and A. Scafuro. Practical UC security with a global random
oracle. In ACM CCS 2014, pages 597–608, 2014.

19. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT’91, pages 257–
265, 1991.

20. M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi, and I. Visconti. Improved OR-
composition of sigma-protocols. In TCC 2016-A, Part II, pages 112–141, 2016.

21. M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi, and I. Visconti. Online/offline
OR composition of sigma protocols. In EUROCRYPT 2016, Part II, pages 63–92,
2016.

22. R. Cramer and I. Damgård. Fast and secure immunization against adaptive man-
in-the-middle impersonation. In EUROCRYPT’97, pages 75–87, 1997.

23. R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In CRYPTO’94, pages 174–187, 1994.

30

24. Ö. Dagdelen, M. Fischlin, and T. Gagliardoni. The Fiat-Shamir transformation in
a quantum world. In ASIACRYPT 2013, Part II, pages 62–81, 2013.

25. I. Damgård. On Σ-protocols. Lecture Notes, University of Aarhus, Department
for Computer Science, 2002.

26. Y. Dodis, V. Shoup, and S. Walfish. Efficient constructions of composable com-
mitments and zero-knowledge proofs. In CRYPTO 2008, pages 515–535, 2008.

27. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the Fiat-Shamir trans-
formation in the quantum random-oracle model. In CRYPTO 2019, Part II, pages
356–383, 2019.

28. L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR
TCHES, 2018(1):238–268, 2018. https://tches.iacr.org/index.php/TCHES/
article/view/839.

29. L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehle. Crystals-dilithium: Algorithm specifications and supporting documen-
tation, 2019. https://pq-crystals.org/dilithium/index.shtml.

30. M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu. Lattice-based zero-knowledge
proofs: New techniques for shorter and faster constructions and applications. In
CRYPTO 2019, Part I, pages 115–146, 2019.

31. U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols.
In 22nd ACM STOC, pages 416–426, 1990.

32. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO’86, pages 186–194, 1987.

33. M. Fischlin and N. Fleischhacker. Limitations of the meta-reduction technique:
The case of Schnorr signatures. In EUROCRYPT 2013, pages 444–460, 2013.

34. M. Fischlin, P. Harasser, and C. Janson. Signatures from sequential-OR proofs.
IACR Cryptology ePrint Archive, 2020.

35. M. Fischlin, A. Lehmann, T. Ristenpart, T. Shrimpton, M. Stam, and S. Tessaro.
Random oracles with(out) programmability. In ASIACRYPT 2010, pages 303–320,
2010.

36. M. Fukumitsu and S. Hasegawa. Impossibility on the provable security of the
Fiat-Shamir-type signatures in the non-programmable random oracle model. In
ISC 2016, pages 389–407, 2016.

37. M. Fukumitsu and S. Hasegawa. Black-box separations on fiat-shamir-type signa-
tures in the non-programmable random oracle model. IEICE Transactions, 101-
A(1):77–87, 2018.

38. J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge proto-
cols using signatures. In EUROCRYPT 2003, pages 177–194, 2003.

39. K. Gjøsteen and T. Jager. Practical and tightly-secure digital signatures and
authenticated key exchange. In CRYPTO 2018, Part II, pages 95–125, 2018.

40. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

41. L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted
to security microprocessor minimizing both trasmission and memory. In EURO-
CRYPT’88, pages 123–128, 1988.

42. D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption. In
CRYPTO 2012, pages 590–607, 2012.

43. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In EUROCRYPT’96, pages 143–154, 1996.

44. T. E. Jedusor. Mimblewimble, 2016. https://download.wpsoftware.net/
bitcoin/wizardry/mimblewimble.txt.

31

https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://pq-crystals.org/dilithium/index.shtml
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt

45. E. Kiltz, V. Lyubashevsky, and C. Schaffner. A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In EUROCRYPT 2018, Part III,
pages 552–586, 2018.

46. Y. Lindell. An efficient transform from sigma protocols to NIZK with a CRS and
non-programmable random oracle. In TCC 2015, Part I, pages 93–109, 2015.

47. J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group
signature for ad hoc groups (extended abstract). In ACISP 04, pages 325–335,
2004.

48. Q. Liu and M. Zhandry. Revisiting post-quantum Fiat-Shamir. In CRYPTO 2019,
Part II, pages 326–355, 2019.

49. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT 2012,
pages 738–755, 2012.

50. G. Maxwell and A. Poelstra. Borromean ring signatures, 2015. https://pdfs.
semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf.

51. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th
edition, 2011.

52. T. Okamoto. Provably secure and practical identification schemes and correspond-
ing signature schemes. In CRYPTO’92, pages 31–53, 1993.

53. P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be equivalent
to discrete log. In ASIACRYPT 2005, pages 1–20, 2005.

54. A. Poelstra. Mimblewimble, 2016. https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.pdf.

55. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, 2000.

56. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASI-
ACRYPT 2001, pages 552–565, 2001.

57. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

58. N. van Saberhagen. Cryptonote v 2.0, 2013. https://cryptonote.org/
whitepaper.pdf.

59. D. Venturi. Zero-knowledge proofs and applications, 2015. http://wwwusers.di.
uniroma1.it/~venturi/misc/zero-knowledge.pdf.

60. M. Zhandry. Secure identity-based encryption in the quantum random oracle
model. In CRYPTO 2012, pages 758–775, 2012.

61. Z. Zhang, Y. Chen, S. S. M. Chow, G. Hanaoka, Z. Cao, and Y. Zhao. Black-box
separations of hash-and-sign signatures in the non-programmable random oracle
model. In ProvSec 2015, pages 435–454, 2015.

32

https://pdfs.semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf
https://pdfs.semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
http://wwwusers.di.uniroma1.it/~venturi/misc/zero-knowledge.pdf
http://wwwusers.di.uniroma1.it/~venturi/misc/zero-knowledge.pdf

	Signatures from Sequential-OR Proofs
	Introduction
	OR-Proofs
	Applications of OR-Proofs
	Non-Programmable Random Oracles
	Sequential-OR Proofs
	Our Results
	Further Related Work
	Extension to the Quantum Random Oracle Model

	Preliminaries
	Basic Notation
	Random Oracle Model
	Languages and Relations
	Interactive Protocols
	3PC-Protocols and -Protocols

	Parallel-OR Proofs
	Sequential-OR Proofs
	Protocol
	Sequential-OR Signatures
	Example: Post-Quantum Ring Signatures

	Impossibility of parallel-OR Signatures in the Non-Programmable Random Oracle Model
	Security in the Quantum Random Oracle Model

