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Abstract. We consider the problem of efficiently simulating random
quantum states and random unitary operators, in a manner which is
convincing to unbounded adversaries with black-box oracle access.

This problem has previously only been considered for restricted ad-
versaries. Against adversaries with an a priori bound on the number of
queries, it is well-known that t-designs suffice. Against polynomial-time
adversaries, one can use pseudorandom states (PRS) and pseudorandom
unitaries (PRU), as defined in a recent work of Ji, Liu, and Song; unfor-
tunately, no provably secure construction is known for PRUs.

In our setting, we are concerned with unbounded adversaries. Nonethe-
less, we are able to give stateful quantum algorithms which simulate the
ideal object in both settings of interest. In the case of Haar-random
states, our simulator is polynomial-time, has negligible error, and can
also simulate verification and reflection through the simulated state. This
yields an immediate application to quantum money: a money scheme
which is information-theoretically unforgeable and untraceable. In the
case of Haar-random unitaries, our simulator takes polynomial space,
but simulates both forward and inverse access with zero error.

These results can be seen as the first significant steps in developing a
theory of lazy sampling for random quantum objects.

1 Introduction

1.1 Motivation

Efficient simulation of randomness is a task with countless applications, ranging
from cryptography to derandomization. In the setting of classical probabilistic
computation, such simulation is straightforward in many settings. For example, a
random function which will only be queried an a priori bounded number of times
t can be perfectly simulated using a t-wise independent function [30]. In the case
of unbounded queries, one can use pseudorandom functions (PRFs), provided
the queries are made by a polynomial-time algorithm [16]. These are examples
of stateless simulation methods, in the sense that the internal memory of the
simulator is initialized once (e.g., with the PRF key) and then remains fixed
regardless of how the simulator is queried. Against arbitrary adversaries, one
must typically pass to stateful simulation. For example, the straightforward and



well-known technique of lazy sampling suffices to perfectly simulate a random
function against arbitrary adversaries; however, the simulator must maintain a
list of responses to all previous queries.

Each of these techniques for simulating random classical primitives has a
plethora of applications in theoretical cryptography, both as a proof tool and for
cryptographic constructions. These range from constructing secure cryptosys-
tems for encryption and authentication, to proving security reductions in a wide
range of settings, to establishing security in idealized models such as the Random
Oracle Model [7].

Quantum randomness. As is well-known, quantum sources of randomness
exhibit dramatically different properties from their classical counterparts [23,8].
Compare, for example, uniformly random n-bit classical states (i.e., n-bit strings)
and uniformly random n-qubit (pure) quantum states. A random string x is
obviously trivial to sample perfectly given probabilistic classical (or quantum)
computation, and can be copied and distributed arbitrarily. However, it is also
(just as obviously) deterministic to all parties who have examined it before. By
contrast, a random state |ϕ〉 would take an unbounded amount of information
to describe perfectly. Even if one manages to procure such a state, it is then
impossible to copy due to the no-cloning theorem. On the other hand, parties
who have examined |ϕ〉 many times before, can still extract almost exactly n
bits of randomness from any fresh copy of |ϕ〉 they receive – even if they use the
exact same measurement procedure each time.

The differences between random classical and random quantum maps are
even more stark. The outputs of a classical random function are of course clas-
sical random strings, with all of the aforementioned properties. Outputs which
have already been examined become effectively deterministic, while the rest re-
main uniformly random and independent. This is precisely what makes efficient
simulation possible via lazy sampling. A Haar-random unitary U queried on two
inputs |ψ〉 and |φ〉 also produces (almost) independent and uniformly random
states when queried, but only if the queries are orthogonal, i.e., 〈ψ | φ〉 = 0.
Unitarity implies that overlapping queries must be answered consistently, i.e.,
if 〈ψ | φ〉 = δ then 〈(Uψ) | (Uφ)〉 = δ. This possibility of querying with a dis-
tinct pure state which is not linearly independent from previous queries simply
doesn’t exist for classical functions.

We emphasize that the above differences should not be interpreted as quan-
tum random objects simply being “stronger” than their classical counterparts.
In the case of classical states, i.e. strings, the ability to copy is quite useful,
e.g., in setting down basic security definitions [9,3,2] or when rewinding an algo-
rithm [28,29,14]. In the case of maps, determinism is also quite useful, e.g., for
verification in message authentication.

1.2 The problem: efficient simulation

Given the dramatic differences between classical and quantum randomness, and
the usefulness of both, it is reasonable to ask if there exist quantum analogues
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of the aforementioned efficient simulators of classical random functions. In fact,
given the discussion above, it is clear that we should begin by asking if there
even exist efficient simulators of random quantum states.

Simulating random states. The first problem of interest is thus to efficiently
simulate the following ideal object: an oracle IS(n) which contains a description
of a perfectly Haar-random n-qubit pure state |ϕ〉, and which outputs a copy of
|ϕ〉 whenever it is invoked. We first make an obvious observation: the classical
analogue, which is simply to generate a random bitstring x← {0, 1}n and then
produce a copy whenever asked, is completely trivial. In the quantum case,
efficient simulation is only known against limited query algorithms (henceforth,
adversaries.)

If the adversary has an a priori bound on the number of queries, then state
t-designs suffice. These are indexed families {|ϕk,t〉 : k ∈ Kt} of pure states
which perfectly emulate the standard uniform “Haar” measure on pure states,
up to the first t moments. State t-designs can be sampled efficiently, and thus
yield a stateless simulator for this case [5]. A recent work of Ji, Liu and Song
considered the case of polynomial-time adversaries [18]. They defined a notion
of pseudorandom states (PRS), which appear Haar-random to polynomial-time
adversaries who are allowed as many copies of the state as they wish. They also
showed how to construct PRS efficiently, thus yielding a stateless simulator for
this class of constrained adversaries [18]; see also [10].

The case of arbitrary adversaries is, to our knowledge, completely unex-
plored. In particular, before this work it was not known whether simulating
IS(n) against adversaries with no a priori bound on query or time complexity
is possible, even if given polynomial space (in n and the number of queries)
and unlimited time. Note that, while the state family constructions from [18,10]
could be lifted to the unconditional security setting by instantiating them with
random instead of pseudorandom functions, this would require space exponential
in n regardless of the number of queries.

Simulating random unitaries. In the case of simulating random unitaries,
the ideal object is an oracle IU (n) which contains a description of a perfectly
Haar-random n-qubit unitary operator U , and applies U to its input whenever
it is invoked. The classical analogue is the well-known Random Oracle, and can
be simulated perfectly using the aforementioned technique of lazy sampling. In
the quantum case, the situation is even less well-understood than in the case of
states.

For the case of query-limited adversaries, we can again rely on design tech-
niques: (approximate) unitary t-designs can be sampled efficiently, and suffice for
the task [11,21]. Against polynomial-time adversaries, Ji, Liu and Song defined
the natural notion of a pseudorandom unitary (or PRU) and described candi-
date constructions [18]. Unfortunately, at this time there are no provably secure
constructions of PRUs. As in the case of states, the case of arbitrary adversaries
is completely unexplored. Moreover, one could a priori plausibly conjecture that
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simulating IU might even be impossible. The no-cloning property seems to rule
out examining input states, which in turn seems to make it quite difficult for a
simulator to correctly identify the overlap between multiple queries, and then
answer correspondingly.

Extensions. While the above problems already appear quite challenging, we
mention several natural extensions that one might consider. First, for the case of
repeatedly sampling a random state |ϕ〉, one would ideally want some additional
features, such as the ability to apply the two-outcome measurement {|ϕ〉〈ϕ|,1−
|ϕ〉〈ϕ|} (verification) or the reflection 1− 2|ϕ〉〈ϕ|. In the case of pseudorandom
simulation, these additional features can be used to create a (computationally
secure) quantum money scheme [18]. For the case of simulating random unitaries,
we might naturally ask that the simulator for a unitary U also has the ability to
respond to queries to U−1 = U†.

1.3 This work

In this work, we make significant progress on the above problems, by giving the
first simulators for both random states and random unitaries, which are convinc-
ing to arbitrary adversaries. We also give an application of our sampling ideas:
the construction of a new quantum money scheme, which provides information-
theoretic security guarantees against both forging and tracing.

We begin by remarking that our desired simulators must necessarily be
stateful, for both states and unitaries. Indeed, since approximate t-designs have
Ω((22n/t)2t) elements (see, e.g., [25] which provides a more fine-grained lower
bound), a stateless approach would require superpolynomial space simply to
store an index from a set of size Ω((22n/t(n))2t(n)) for all polynomials t(n).

In the following, we give a high-level overview of our approach for each of
the two simulation problems of interest.

Simulating random states. As discussed above, we wish to construct an
efficient simulator ES(n) for the ideal oracle IS(n). For now we focus on simu-
lating the procedure which generates copies of the fixed Haar-random state; we
call this IS(n).Gen. We first note that the mixed state observed by the adversary
after t queries to IS(n).Gen is the expectation of the projector onto t copies of
|ψ〉. Equivalently, it is the (normalized) projector onto the symmetric subspace
Symn,t of (C2n)⊗t:

τt = Eψ∼Haar|ψ〉〈ψ|⊗t ∝ ΠSymtC2n . (1)

Recall that Symn,t is the subspace of (C2n)⊗t of vectors which are invariant
under permutations of the t tensor factors. Our goal will be to maintain an
entangled state between the adversary A and our oracle simulator ES such that
the reduced state on the side of A is τt after t queries. Specifically, the joint
state will be the maximally entangled state between the Symn,t subspace of the
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t query output registers received by A, and the Symn,t subspace of t registers
held by ES. If we can maintain this for the first t queries, then it’s not hard to
see that there exists an isometry V t→t+1 which, by acting only on the state of
ES, implements the extension from the t-fold to the (t+ 1)-fold joint state.

The main technical obstacle, which we resolve, is showing that V t→t+1 can be
performed efficiently. To achieve this, we develop some new algorithmic tools for
working with symmetric subspaces, including an algorithm for coherent prepa-
ration of its basis states. We let A denote an n-qubit register, Aj its indexed
copies, and At = A1 · · ·At t-many indexed copies (and likewise for B.) We also
let {|Sym(α)〉 : α ∈ S↑n,t} denote a particular orthonormal basis set for Symn,t,
indexed by some set S↑n,t (see Section 3 for definitions of these objects.)

Theorem 1. For each n and t, there exists a polynomial-time quantum algo-
rithm which implements an isometry V = V t→t+1 from Bt to At+1B

t+1 such
that, up to negligible trace distance,

(1At ⊗ V )
∑

α∈S↑n,t

|Sym(α)〉At |Sym(α)〉Bt =
∑

β∈S↑n,t+1

|Sym(β)〉At+1 |Sym(β)〉Bt+1 .

Above, V is an operator defined to apply to a specific subset of registers
of a state. When no confusion can arise, in such settings we will abbreviate
1⊗ V—the application of this operator on the entire state—as simply V .

It will be helpful to view V t→t+1 as first preparing |0n〉At+1
|0n〉Bt+1

and
then applying a unitary U t→t+1 on At+1B

t+1. Theorem 1 then gives us a way
to answer Gen queries efficiently, as follows. For the first query, we prepare a
maximally entangled state |φ+〉A1B1

across two n-qubit registers A1 and B1,
and reply with register A1. Note that Symn,1 = C2n . For the second query, we
prepare two fresh registers A2 and B2, both in the |0n〉 state, apply U1→2 on
A2B1B2, return A2, and keep B1B2. For the t-th query, we proceed similarly,
preparing fresh blank registers At+1Bt+1, applying U t→t+1, and then outputting
the register At+1.

With this approach, as it turns out, there is also a natural way to respond
to verification queries Ver and reflection queries Reflect. The ideal functionality
IS.Ver is to apply the two-outcome measurement {|ϕ〉〈ϕ|,1 − |ϕ〉〈ϕ|} corre-
sponding to the Haar-random state |ϕ〉. To simulate this after producing t sam-
ples, we apply the inverse of U t−1→t, apply the measurement {|02n〉〈02n|,1 −
|02n〉〈02n|} to AtBt, reapply U t−1→t, and then return At together with the mea-
surement outcome (i.e., yes/no). For IS.Reflect, the ideal functionality is to
apply the reflection 1− 2|ϕ〉〈ϕ| through the state. To simulate this, we perform
a sequence of operations analogous to Ver, but apply a phase of −1 on the |02n〉
state of AtBt instead of measuring.

Our main result on simulating random states is to establish that this col-
lection of algorithms correctly simulates the ideal object IS, in the following
sense.

Theorem 2. There exists a stateful quantum algorithm ES(n, ε) which runs in
time polynomial in n, log(1/ε), and the number of queries q submitted to it, and
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satisfies the following. For all oracle algorithms A,∣∣∣Pr
[
AIS(n) = 1

]
− Pr

[
AES(n,ε) = 1

]∣∣∣ ≤ ε .
A complete description of our construction, together with the proofs of The-

orem 1 and Theorem 2, are given in Section 3.
We remark that, if one can give a certain mild a-priori bound on the number of

queries that will be made to the state sampler, an alternative construction4 based
on the compressed oracle technique of Zhandry [31] and the aforementioned
work by Ji, Liu and Song [18] becomes possible. We describe this construction
in Section 3.3.

Application: untraceable quantum money. To see that the efficient state
sampler leads to a powerful quantum money scheme, consider building a scheme
where the bank holds the ideal object IS. The bank can mint bills by IS.Gen,
and verify them using IS.Ver. As each bill is guaranteed to be an identical and
Haar-random state, it is clear that this scheme should satisfy perfect unforge-
ability and untraceability, under quite strong notions of security.

By Theorem 7, the same properties should carry over for a money scheme
built on ES, provided ε is sufficiently small. We call the resulting scheme Haar
money. Haar money is an information-theoretically secure analogue of the scheme
of [18], which is based on pseudorandom states. We remark that our scheme re-
quires the bank to have quantum memory and to perform quantum communica-
tion with the customers. However, given that quantum money already requires
customers to have large-scale, high-fidelity quantum storage, these additional
requirements seem reasonable.

The notions of correctness and unforgeability (often called completeness and
soundness) for quantum money are well-known (see, e.g., [1].) Correctness asks
that honestly generated money schemes should verify, i.e., Ver(Mint) should al-
ways accept. Unforgeability states that an adversary with k bills and oracle
access to Ver should not be able to produce a state on which Ver⊗k+1 accepts.
In this work, we consider untraceable quantum money (also called “quantum
coins” [24].) We give a formal security definition for untraceability, which states
that an adversary A with oracle access to Ver and Mint cannot do better than
random guessing in the following experiment:

1. A outputs some candidate bill registers {Mj} and a permutation π;
2. b ← {0, 1} is sampled, and if b = 1 the registers {Mj} are permuted by π;

each candidate bill is verified and the failed ones are discarded;
3. A receives the rest of the bills and the entire internal state of the bank, and

outputs a guess b′ for b.

Theorem 3. The Haar money scheme HM, defined by setting

1. HM.Mint = ES(n, negl(n)).Gen

4 We thank Zvika Brakerski for pointing out this alternative approach.
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2. HM.Ver = ES(n, negl(n)).Ver

is a correct quantum money scheme which satisfies information-theoretic un-
forgeability and untraceability.

One might reasonably ask if there are even stronger definitions of security
for quantum money. Given its relationship to the ideal state sampler, we be-
lieve that Haar money should satisfy almost any notion of unforgeability and
untraceability, including composable notions. We also remark that, based on the
structure of the state simulator, which maintains an overall pure state supported
on two copies of the symmetric subspace of banknote registers, it is straightfor-
ward to see that the scheme is also secure against an “honest but curious” or
“specious” [26,15] bank. We leave the formalization of these added security guar-
antees to future work.

Sampling Haar-random unitaries. Next, we turn to the problem of simulat-
ing Haar-random unitary operators. In this case, the ideal object IU(n) initially
samples a description of a perfectly Haar-random n-qubit unitary U , and then
responds to two types of queries: IU.Eval, which applies U , and IU.Invert, which
applies U†. In this case, we are able to construct a stateful simulator that runs
in space polynomial in n and the number of queries q, and is exactly indistin-
guishable from IU(n) to arbitrary adversaries. Our result can be viewed as a
polynomial-space quantum analogue of the classical technique of lazy sampling
for random oracles.

Our high-level approach is as follows. For now, suppose the adversary A only
makes parallel queries to Eval. If the query count t of A is a priori bounded,
we can simply sample an element of a unitary t-design. We can also do this
coherently: prepare a quantum register I in uniform superposition over the index
set of the t-design, and then apply the t-design controlled on I. Call this efficient
simulator EUt. Observe that the effect of t parallel queries is just the application
of the t-twirling channel T (t) to the t input registers [11], and that EUt simulates
T (t) faithfully. What is more, it applies a Stinespring dilation5 [27] of T (t) with
dilating register I.

Now suppose A makes an “extra” query, i.e., query number t+1. Consider an
alternative Stinespring dilation of T (t), namely the one implemented by EUt+1

when queried t times. Recall that all Stinespring dilations of a quantum channel
are equivalent, up to a partial isometry on the dilating register. It follows that
there is a partial isometry, acting on the private space of EUt, that transforms
the dilation of T (t) implemented by EUt into the dilation of T (t) implemented by
EUt+1. If we implement this transformation, and then respond to A as prescribed
by EUt+1, we have achieved perfect indistinguishability against the additional
query. By iterating this process, we see that the a priori bound on the number

5 The Stinespring dilation of a quantum channel is an isometry with the property that
the quantum channel can be implemented by applying the isometry and subsequently
discarding an auxiliary register.
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of queries is no longer needed. We let EU denote the resulting simulator. The
complete construction is described in Construction 4 below.

Our high-level discussion above did not take approximation into account.
All currently known efficient constructions of t-designs are approximate. Here,
we take a different approach: we will implement our construction using ex-
act t-designs. This addresses the issue of adaptive queries: if there exists an
adaptive-query distinguisher with nonzero distinguishing probability, then by
post-selection there also exists a parallel-query one via probabilistic telepor-
tation. This yields that the ideal and efficient unitary samplers are perfectly
indistinguishable to arbitrary adversaries.

Theorem 4. For all oracle algorithms A, Pr
[
AIU(n) = 1

]
= Pr

[
AEU(n) = 1

]
.

The existence of exact unitary t-designs for all t is a fairly recent result. It
follows as a special case of a result of Kane [19], who shows that designs exist for
all finite-dimensional vector spaces of well-behaved functions on path-connected
topological spaces. He also gives a simpler result for homogeneous spaces when
the vector space of functions is invariant under the symmetry group action. Here,
the number of elements of the smallest design is bounded just in terms of the
dimension of the space of functions. The unitary group is an example of such a
space, and the dimension of the space of homogeneous polynomials of degree t in
both U and U† can be explicitly derived, see e.g. [25]. This yields the following.

Corollary 1. The space complexity of EU(n) for q queries is bounded from above
by 2q(2n+ log e) +O(log q).

An alternative approach. We now sketch another potential approach to lazy
sampling of unitaries. Very briefly, this approach takes a representation-theoretic
perspective and suggests that the Schur transform [6] could lead to a polynomial-
time algorithm for lazy sampling Haar-random unitaries. The discussion below
uses tools and language from quantum information theory and the representation
theory of the unitary and symmetric groups to a much larger extent than the
rest of the article, and is not required for understanding our main results.

We remark that the analogous problem of lazy sampling a quantum oracle
for a random classical function was recently solved by Zhandry [31]. One of the
advantages of Zhandry’s technique is that it partly recovers the ability to inspect
previously made queries, an important feature of classical lazy sampling. The key
insight is that the simulator can implement the Stinespring dilation of the oracle
channel, and thus record the output of the complementary channel.6 As the
classical function is computed via XOR, changing to the Zn2 -Fourier basis makes
the recording property explicit. It also allows for an efficient implementation.

In the case of Haar-random unitary oracles, we can make an analogous obser-
vation. Consider an algorithm that makes t parallel queries to U . The relevant

6 The complementary channel of a quantum channel maps the input to the auxiliary
output of the Stinespring dilation isometry.
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Fourier transform is now over the unitary group, and is given by the Schur trans-

form [6]. By Schur-Weyl duality (see e.g. [13]), the decomposition of
(
C2n

)⊗t
into

irreducible representations is given by(
Cd
)⊗t ∼= ⊕

λ`dt

[λ]⊗ Vλ,d. (2)

Here λ `d t means λ is any partition of t into at most d parts, [λ] is the Specht
module of St, and Vλ,d is the Weyl module of U(d), corresponding to the partition
λ, respectively. By Schur’s lemma, the t-twirling channel acts as

T (t) =
⊕
λ`dt

id[λ] ⊗ ΛVλ,d , (3)

where id is the identity channel, and Λ = Tr(·)τ with the maximally mixed state
τ is the depolarizing channel. We therefore obtain a Stinespring dilation of the
t-twirling channel as follows. Let B̃, B̃′ be registers with Hilbert spaces

HB̃ = HB̃′ =
⊗
λ`dt

Vλ,d (4)

and denote the subregisters by B̃λ and B̃′λ, respectively. Let further |φ+〉B̃B̃′
be the standard maximally entangled state on these registers, and let C be a
register whose dimension is the number of partitions of t (into at most 2n parts).
Define the isometry

V̂AtB̃→AtB̃C =
⊕
λ`dt

FVλ,dB̃λ ⊗ I[λ] ⊗ |λ〉C (5)

In the above equation Vλ,d and [λ] are understood to be subspaces of At, the

identity operators on B̃µ, µ 6= λ are omitted and F is the swap operator. By (3),
a Stinespring dilation of the t-twirling channel is then given by

VAt→AtB̃B̃′C = V̂AtB̃→AtB̃C |φ
+〉B̃B̃′ . (6)

By the equivalence of all Stinespring dilations, the exists an isometry WB̂t→B̃B̃′C
that transforms the state register of EU(n) after t parallel queries so that the
global state is the same as if the Stinespring dilation above had been applied to
the t input registers. But now the quantum information that was contained in
the subspace Vλ,d of the algorithm’s query registers can be found in register B̃λ.

1.4 Organization

The remainder of the paper is organized as follows. In Section 2, we recall some
basic notation and facts, and some lemmas concerning coherent preparation of
certain generic families of quantum states. The proofs for these lemmas are given
in the full version [4]. We also describe stateful machines, which will be our model
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for thinking about the aforementioned ideal objects and their efficient simulators.
In Section 3 we describe our efficient simulator for Haar-random states, and in
Section 4 we describe our polynomial-space simulator for Haar-random unitaries.
We end by describing the Haar money scheme and establishing its security in
Section 5.
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2 Preliminaries

Given a fixed-size (e.g., n-qubit) register A, we will use A1, A2, . . . to denote
indexed copies of A. We will use At to denote a register consisting of t indexed
copies of A, i.e., At = A1A2 · · ·At. Unless stated otherwise, distances of quantum
states are measured in the trace distance, i.e., d(ρ, σ) = 1

2‖ρ−σ‖1 where ‖X‖1 =

Tr
[√
X†X

]
. Distances of unitary operators are measured in the operator norm.

We will frequently apply operators to some subset of a larger collection of
registers. In that context, we will use register indexing to indicate which registers
are being acted upon, and suppress identities to simplify notation. The register
indexing will also be suppressed when it is clear from context. For example, given
an operator XA→B and some state ρ on registers A and C, we will write X(ρ)
in place of (X ⊗ 1C)(ρ) to denote the state on BC resulting from applying X
to the A register of ρ.

We let |φ+〉AA′ denote the maximally entangled state on registers A and A′.
For a linear operator X and some basis choice, we denote its transpose by XT .

Lemma 1 (Mirror lemma; see, e.g., [22]). For XA→B a linear operator,

XA→B |φ+〉AA′ =

√
dim(B)

dim(A)
XT
B′→A′ |φ+〉BB′ .

2.1 Unitary designs

Let µn be the Haar measure on the unitary group U(2n). We define the Haar

t-twirling channel T (t)
Haar by

T (t)
Haar(X) =

∫
U(2n)

U⊗tX
(
U⊗t

)†
dµ(U). (7)
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For a finite subset D ⊂ U(2n), we define the t-twirling map with respect to D
as

T (t)
D (X) =

1

|D|
∑
U∈D

U⊗tX
(
U⊗t

)†
. (8)

An n-qubit unitary t-design is a finite set D ⊂ U(2n) such that

T (t)
D = T (t)

Haar(X) (9)

Another twirling channel is the mixed twirling channels with ` applications
of the unitary and t− ` applications of it’s inverse,

T (`,t−`)
Haar (Γ ) =

∫
U(2n)

U⊗` ⊗
(
U⊗(t−`)

)†
Γ
(
U⊗`

)† ⊗ U⊗(t−`)dµ(U). (10)

The mixed twirling channel T (`,t−`)
D for a finite set D ⊂ U(2n) is also defined

analogous to Equation (8). As our definition of unitary t-designs is equivalent
to one based on the expectation values of polynomials (see, e.g., [21]), we easily
obtain the following.

Proposition 1. Let D be an n-qubit unitary t-design and 0 ≤ ` ≤ t. Then

T (`,t−`)
Haar = T (`,t−`)

D (11)

Finite exact unitary t-designs exist. In particular, one can apply the following
theorem to obtain an upper bound on their minimal size. Here, a design for a
function space W on a topological space X with measure µ is a finite set D ⊂ X
such that the expectation of a function f ∈ W is the same whether it is taken
over X according to µ or over the uniform distribution on D.

Theorem 5 ([19], Theorem 10). Let X be a homogeneous space, µ an in-
variant measure on X and W a M -dimensional vector subspace of the space of
real functions on X that is invariant under the symmetry group of X, where
M > 1. Then for any N > M(M − 1), there exists a W -design for X of size N .
Furthermore, there exists a design for X of size at most M(M − 1).

The case of unitary t-designs is the one where X = U(2n) is acting on itself (e.g.,
on the left), µ is the Haar measure, and W is the vector space of homogeneous
polynomials of degree t in both U and U†7. The dimension of this space is

Mt =

(
22n + t− 1

t

)2

≤
(
e(22n + t− 1)

t

)t
, (12)

see e.g. [25]. We therefore get

Corollary 2. For all n, there exists an exact n-qubit unitary t-design with a
number of elements which is at most(

e(22n + t− 1)

t

)2t

.

7 The output of the twirling channel (7) is a matrix of such polynomials.
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2.2 Real and ideal stateful machines

We will frequently use stateful algorithms with multiple “interfaces” which allow
a user to interact with the algorithm. We will refer to such objects as stateful
machines. We will use stateful machines to describe functionalities (and imple-
mentations) of collections of oracles which relate to each other in some way.
For example, one oracle might output a fixed state, while another oracle reflects
about that state.

Definition 1 (Stateful machine). A stateful machine S consists of:

– A finite set Λ, whose elements are called interfaces. Each interface I ∈ Λ
has two fixed parameters nI ∈ N (input size) and mI ∈ N (output size), and
a variable tI initialized to 1 (query counter.)

– For each interface I ∈ Λ, a sequence of quantum algorithms {S.Ij : j =
1, 2, . . . }. Each S.Ij has an input register of nI qubits, an output register
of mI qubits, and is allowed to act on an additional shared work register
R (including the ability to add/remove qubits in R.) In addition, each S.Ij
increments the corresponding query counter tI by one.

The typical usage of a stateful machine S is as follows. First, the work register
R is initialized to be empty, i.e., no qubits. After that, whenever a user invokes
an interface S.I and supplies nI qubits in an input register M , the algorithm
S.ItI is invoked on registers M and R. The contents of the output register are
returned to the user, and the new, updated work register remains for the next
invocation. We emphasize that the work register is shared between all interfaces.

We remark that we will also sometimes define ideal machines, which behave
outwardly like a stateful machine but are not constrained to apply only maps
which are implementable in finite space or time. For example, an ideal machine
can have an interface that implements a perfectly Haar-random unitary U , and
another interface which implements U†.

2.3 Some state preparation tools

We now describe some algorithms for efficient coherent preparation of certain
quantum state families. The proofs for the following lemmas can be found in the
full version [4]. We begin with state families with polynomial support.

Lemma 2. Let |ϕ〉 =
∑
x∈{0,1}n ϕ(x)|x〉 be a family of quantum states whose

amplitudes ϕ have an efficient classical description ϕ̃, and such that |{x : ϕ(x) 6=
0}| ≤ poly(n). Then there exists a quantum algorithm P which runs in time
polynomial in n and log(1/ε) and satisfies ‖P|ϕ̃〉|0n〉 − |ϕ̃〉|ϕ〉‖2 ≤ ε.

Given a set S ⊂ {0, 1}n, we let

|S〉 :=
1√
|S|

∑
x∈S
|x〉 and |S̄〉 :=

1√
2n − |S|

∑
x∈{0,1}\S

|x〉

12



denote the states supported only on S and its set complement S̄, respectively.
Provided that S has polynomial size, we can perform coherent preparation of
both state families efficiently: the former by Lemma 2 and the latter via the
below.

Lemma 3. Let S ⊂ {0, 1}n be a family of sets of size poly(n) with efficient
description S̃, and let ε > 0. There exists a quantum algorithm P which runs in
time polynomial in n and log(1/ε) and satisfies∥∥∥P|S̃〉A|0n〉B − |S̃〉A|S̄〉B∥∥∥

2
≤ ε .

Finally, we show that if two orthogonal quantum states can be prepared,
then so can an arbitrary superposition of the two.

Lemma 4. Let |ζ0,j 〉, |ζ1,j 〉 be two familes of n-qubit quantum states such that
〈ζ0,j | ζ1,j〉 = 0 for all j, and such that there exists a quantum algorithm Pb which
runs in time polynomial in n and log(1/ε) and satisfies ‖Pb|j〉|0n〉−|j〉|ζb,j 〉‖2 ≤
ε for b ∈ {0, 1}.

For z0, z1 ∈ C such that |z0|2 + |z1|2 = 1, let z̃ denote a classical description
of (z0, z1) to precision at least ε. There exists a quantum algorithm Q which runs
in time polynomial in n and log(1/ε) and satisfies∥∥Q|j〉|z̃〉|0n〉 − |j〉|z̃〉(z0|ζ0,j 〉+ z1|ζ1,j 〉

)∥∥
2
≤ ε . (13)

3 Simulating a Haar-random state oracle

3.1 The problem, and our approach

We begin by defining the ideal object we’d like to emulate. Here we deviate
slightly from the discussion above, in that we ask for the reflection oracle to also
accept a (quantum) control bit.

Construction 1 (Ideal state sampler) The ideal n-qubit state sampler is an
ideal machine IS(n) with interfaces (Init,Gen,Ver,CReflect), defined as follows.

1. IS(n).Init : takes no input; samples a description ϕ̃ of an n-qubit state |ϕ〉
from the Haar measure.

2. IS(n).Gen : takes no input; uses ϕ̃ to prepare a copy of |ϕ〉 and outputs it.
3. IS(n).Ver : receives n-qubit input; uses ϕ̃ to apply the measurement {|ϕ〉〈ϕ|,

1 − |ϕ〉〈ϕ|}; return the post-measurement state and output acc in the first
case and rej in the second.

4. IS(n).CReflect : receives (n + 1)-qubit input; uses ϕ̃ to implement the con-
trolled reflection Rϕ := |0〉〈0| ⊗ 1+ |1〉〈1| ⊗ (1− 2 |ϕ〉〈ϕ|) about |ϕ〉.

We assume that Init is called first, and only once; the remaining oracles can
then be called indefinitely many times, and in any order. If this is inconvenient
for some application, one can easily adjust the remaining interfaces to invoke
Init if that has not been done yet. We remark that Ver can be implemented with
a single query to CReflect.

13



Lemma 5. Ver can be simulated with one application of CReflect.

Proof. Prepare an ancilla qubit in the state |+〉 and apply reflection on the
input controlled on the ancilla. Then apply H to the ancilla qubit and measure
it. Output all the qubits, with the ancilla interpreted as 1 = acc and 0 = rej. ut

Our goal is to devise a stateful simulator for Construction 1 which is efficient.
Efficient here means that, after t total queries to all interfaces (i.e., Init, Gen, Ver,
and CReflect), the simulator has expended time polynomial in n, t, and log(1/ε).

As described in Section 1.3, our approach will be to ensure that, for every t,
the state shared between the adversary A and our stateful oracle simulator ES
will be maximally entangled between two copies of the t-fold symmetric subspace
Symn,t: one held by A, and the other by ES. The extension from the t-fold to
the (t+ 1)-fold joint state will be performed by an isometry V t→t+1 which acts
only on the state of ES and two fresh n-qubit registers At+1 and Bt+1 initialized
by ES. After V is applied, At+1 will be given to A. As we will show, V can be
performed efficiently using some algorithmic tools for working with symmetric
subspaces, which we will develop in the next section. This will yield an efficient
way of simulating Gen. Simulation of Ver and CReflect will follow without much
difficulty, as outlined in Section 1.3.

3.2 Some tools for symmetric subspaces

A basis for the symmetric subspace. We recall an explicit orthonormal
basis of the symmetric subspace (see, e.g., [18] or [17].) Let

S↑n,t =
{
α ∈ ({0, 1}n)

t
∣∣∣α1 ≤ α2 ≤ ... ≤ αt

}
(14)

be the set of lexicographically-ordered t-tuples of n bit strings. For each α ∈ S↑n,t,
define the unit vector

|Sym(α)〉 =

t! ∏
x∈{0,1}n

fx(α)!

− 1
2 ∑
σ∈St

|ασ(1)〉|ασ(2)〉...|ασ(t)〉. (15)

Here, fx(α) is the number of times the string x appears in the tuple α. The set
{|Sym(α)〉 : α ∈ S↑n,t} is an orthonormal basis for SymtC2n . We remark that the
Schmidt decomposition of |Sym(α)〉 with respect to the bipartition formed by
the t-th register vs. the rest is given by

|Sym(α)〉 =
∑

x∈{0,1}n

√
fx(α)

t
|Sym(α−x)〉|x〉, (16)

where α−x ∈ S↑n,t−1 is the tuple α with one copy of x removed.
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Some useful algorithms. We now describe some algorithms for working in
the above basis. Let A and B denote n-qubit registers. Recall that Aj denotes
indexed copies of A and that At denotes A1A2 · · ·At, and likewise for B. In our
setting, the various copies of A will be prepared by the oracle simulator and then
handed to the query algorithm at query time. The copies of B will be prepared
by, and always remain with, the oracle simulator.

Proposition 2. For each n, t and ε = 2−poly(n,t), there exists an efficiently im-
plementable unitary USym

n,t on At such that for all α ∈ S↑n,t, U
Sym
n,t |α〉 = |Sym(α)〉

up to trace distance ε.

Proof. Clearly, the operation

|Sym(α)〉|β〉 7→ |Sym(α)〉|β ⊕ α〉 (17)

is efficiently implementable exactly, by XORing the classical sort function of the
first register into the second register.

Let us now show that the operation |α〉 7→ |α〉|Sym(α)〉 is also efficiently
implementable (up to the desirable error) by exhibiting an explicit algorithm.
We define it recursively in t, as follows. For t = 1, Sym(x) = x for all x ∈ {0, 1}n,
so this case is simply the map |x〉 7→ |x〉|x〉. Suppose now the operation |α〉 7→
|α〉|Sym(α)〉 can be implemented for any α ∈ S↑n,t−1. The t-th level algorithm
will begin by applying

|α〉 7→ |α〉
∑

x∈{0,1}n

√
fx(α)

t
|x〉 .

Since fx(α) is nonzero for only t-many x ∈ {0, 1}n, this can be implemented
efficiently by Lemma 2. Next, we perform |α〉|x〉 7→ |α〉|x〉|α−x〉. Using the
algorithm for t− 1, we then apply |α〉|x〉|α−x〉 7→ |α〉|x〉|α−x〉|Sym(α−x)〉, and
uncompute α−x. By (16), we have in total applied |α〉 7→ |α〉|Sym(α)〉 so far.
To finish the t-th level algorithm for approximating |α〉 7→ |Sym(α)〉, we simply
apply (17) to uncompute α from the first register. ut

Theorem 6 (Restatement of Theorem 1). For each n, t and ε = 2−poly(n,t),
there exists an efficiently implementable isometry V t→t+1 from Bt to At+1B

t+1

such that, up to trace distance ε,

V :
∑

α∈S↑n,t

|Sym(α)〉At |Sym(α)〉Bt 7−→
∑

β∈S↑n,t+1

|Sym(β)〉At+1 |Sym(β)〉Bt+1 .

We expect the techniques used here to generalize to other irreducible represen-
tations of the unitary group.

Proof. We describe the algorithm assuming all steps can be implemented per-
fectly. It is straightforward to check that each step can be performed to a suffi-
cient accuracy that the accuracy of the entire algorithm is at least ε.
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We will need a couple of simple subroutines. First, given α ∈ S↑n,t and x ∈
{0, 1}n, we define α+x to be the element of S↑n,t+1 produced by inserting x at
the first position such that the result is still lexicographically ordered. One can
perform this reversibly via |α〉|0n〉|x〉 7→ |α〉|x〉|x〉 7→ |α+x〉|x〉. Second, we will
need to do coherent preparation of the state

|ψα〉 =
∑

x∈{0,1}n

√
1 + fx(α)

2n + t
|x〉 . (18)

For any given α ∈ S↑n,t, the state |ψα〉 can be prepared via the preparation circuit
for the two orthogonal components of the state whose supports are {x : fx(α) >
0} and {x : fx(α) = 0}. These two components can be prepared coherently using
Lemma 2 and Lemma 3, respectively. Their superposition can be prepared with
Lemma 4. All together, we get an algorithm for |α〉|0n〉 7→ |α〉|ψα〉.

The complete algorithm is a composition of several efficient routines. We de-
scribe this below, explicitly calculating the result for the input states of interest.
For readability, we omit overall normalization factors.

∑
α

|Sym(α)〉At |Sym(α)〉Bt

7−→
∑
α

|Sym(α)〉At |0n〉|Sym(α)〉Bt |0n〉 add working registers

7−→
∑
α

|Sym(α)〉At |0n〉|α〉Bt |0n〉 apply
(
USym
n,t

)†
to Bt

7−→
∑
α,x

√
1 + fx(α)

2n + t
|Sym(α)〉At |x〉|α〉Bt |0n〉 prepare |ψα〉

7−→
∑
α,x

√
1 + fx(α)

2n + t
|Sym(α)〉At |x〉|α+x〉Bt+1 insert x into α

7−→
∑
α,x

√
1 + fx(α)

2n + t
|Sym(α)〉At |x〉At+1

|Sym(α+x)〉Bt+1 apply USym
n,t+1 to Bt+1

To see that the last line above is the desired result, we observe that we can
index the sum in the last line above in a more symmetric fashion: the sum is just
taken over all pairs (α, β) such that the latter can be obtained from the former
by adding one entry (i.e., the string x). But that is the same as summing over all
pairs (α, β), such that the former can be obtained from the latter by removing
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one entry.∑
α,x

√
1 + fx(α)

2n + t
|Sym(α)〉At |x〉At+1

|Sym(α+x)〉Bt+1

=
∑
β,x

√
fx(β)

2n + t
|Sym(β−x)〉At |x〉At+1

|Sym(β)〉Bt+1

=

√
t

2n + t

∑
β

(∑
x

√
fx(β)

t
|Sym(β−x)〉At |x〉At+1

)
|Sym(β)〉Bt+1

=

√
t

2n + t

∑
β

|Sym(β)〉At+1 |Sym(β)〉Bt+1 .

Here, the last equality is (16), and the prefactor is the square root of the quotient
of the dimensions of the t- and (t+1)-copy symmetric subspaces, as required for
a correct normalization of the final maximally entangled state. ut

3.3 State sampler construction and proof

Construction 2 (Efficient state sampler) Let n be a positive integer and ε
a negligible function of n. The efficient n-qubit state sampler with precision ε
is a stateful machine ES(ε, n) with interfaces (Init,Gen,Reflect), defined below.
For convenience, we denote the query counters by t = tGen and q = tReflect in the
following.

1. ES(ε, n).Init : prepares the standard maximally entangled state |φ+〉A1B1 on
n-qubit registers A1 and B1, and stores both A1 and B1.

2. ES(ε, n).Gen : On the first query, outputs register A1. On query t, takes as
input registers Bt−1 and produces registers AtB

t by applying the isometry
V t−1→t from Theorem 6 with accuracy ε2−(t+2q); then it outputs At and
stores Bt.

3. ES(ε, n).CReflect : On query q with input registers CA∗, do the following

controlled on the qubit register C: apply
(
U t−1→t)†, a unitary implemen-

tation of V t−1→t, with accuracy ε2−(t+2(q−1)), in the sense that V t−1→t =
U t−1→t|02n〉AtBt , with A∗ playing the role of At. Subsequently, apply a phase
−1 on the all-zero state of the ancilla registers At and Bt, and reapply
U t−1→t, this time with accuracy ε2−(t+2(q−1)+1).

We omitted defining ES.Ver since it is trivial to build from CReflect, as
described in Lemma 5. By Theorem 6, the runtime of ES(ε, n) is polynomial
in n, log(1/ε) and the total number of queries q that are made to its various
interfaces.

We want to show that the above sampler is indistinguishable from the ideal
sampler to any oracle algorithm, in the following sense. Given a stateful machine
C ∈ {IS(n),ES(n, ε)} and a (not necessarily efficient) oracle algorithm A, we
define the process b← AC as follows:
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1. C.Init is called;
2. A receives oracle access to C.Gen and C.CReflect;
3. A outputs a bit b .

Theorem 7. For all oracle algorithms A and all ε > 0 that can depend on n in
an arbitrary way, ∣∣∣Pr

[
AIS(n) = 1

]
− Pr

[
AES(n,ε) = 1

]∣∣∣ ≤ ε . (19)

Proof. During the execution of ES(ε, n), the i-th call of V t−1→t (for any t) incurs
a trace distance error of at most ε2−i. The trace distance between the outputs
of AES(ε, n) and AES(0, n) is therefore bounded by

∑∞
i=1 ε2

−i = ε. It is thus
sufficient to establish the theorem for ES(0, n).

For any fixed q, there exists a stateful machine ÊS(0, q, n) which is perfectly
indistinguishable from IS(n) to all adversaries who make a maximum total

number q of queries. The Init procedure of ÊS(0, q, n) samples a random element
Ui from an exact unitary 2q-design D2q = {Ui}i∈I . Queries to Gen are answered

with a copy of Ui|0〉, and Reflect is implemented by applying 1 − 2Ui|0〉〈0|U†i .

It will be helpful to express ÊS(0, q, n) in an equivalent isometric form. In this
form, the initial oracle state is |η〉 = |I|−1/2

∑
i∈I |i〉B̂ . Gen queries are answered

using the B̂-controlled isometry

V̂ t→t+1

B̂→B̂At+1
=
∑
i∈I
|i〉〈i|B̂ ⊗ Ui|0〉At+1

. (20)

Reflect queries are answered by

V̂ Reflect
B̂A∗→B̂A∗ =1− 2

∑
i∈I
|i〉〈i|B̂ ⊗ Ui|0〉〈0|A∗U

†
i (21)

=1− 2V̂ t→t+1

B̂→B̂A∗

(
V̂ t→t+1

)†
B̂A∗→B̂

. (22)

Now suppose A is an arbitrary (i.e., not bounded-query) algorithm mak-
ing only Gen queries. We will show that after q queries, the oracles ES(0, n)

and ÊS(0, q, n) are equivalent, and that this holds for all q. We emphasize that
ES(0, n) does not depend on q; we can thus apply the equivalence for the appro-
priate total query count qtotal after A has produced its final state, even if qtotal is
determined only at runtime. It will follow that ES(0, n) is equivalent to IS(n).

To show the equivalence betwen ES(0, n) and ÊS(0, q, n), we will demon-
strate a partial isometry V switch,t that transforms registers Bt of ES(0, n) (after

t Gen queries and no Reflect queries) into the register B̂ of ÊS(0, q, n), in such a
way that the corresponding global states on AtBt and AtB̂ are mapped to each
other. The isometry is partial because its domain is the symmetric subspace of

C2n⊗t. It is defined as follows:

V switch,t

Bt→B̂
=

√
dSymtCd2n

|I|
∑
i∈I

(
〈0|UTi

)⊗t
Bt
⊗ |i〉B̂ . (23)

18



To verify that this is indeed the desired isometry, we calculate:

(
〈0|UTi

)⊗t
Bt
|φ+

Sym〉AtBt =

√
2nt

dSymtC2n

(
〈0|UTi

)⊗t
Bt
ΠSym
Bt |φ

+〉AtBt (24)

=

√
2nt

dSymtC2n

(
〈0|UTi

)⊗t
Bt
|φ+〉AtBt (25)

=

√
2nt

dSymtC2n
(〈0|)⊗tBt ⊗ (Ui)

⊗t
At |φ

+〉AtBt (26)

=

√
1

dSymtC2n
(Ui|0〉)⊗tAt . (27)

Here we have used the fact that
(
〈0|UTi

)⊗t
is in the symmetric subspace in the

second equality, and the third and forth equality are applications of the Mirror
Lemma (Lemma 1) with d = d′ = 2nt, and d = 1, d′ = 2nt, respectively.

We have hence proven the exact correctness of ES(0, n) without the Reflect
interface. Note that the global state after t queries to ES(0, n).Gen is the maxi-
mally entangled state of two copies of the t-fold symmetric subspace; of course,
this is only true up to actions performed by the adversary, but those trivially
commute with maps applied only to the oracle registers. As the global state is
in the domain of V switch,t

Bt→B̂
, we obtain the equation

V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂
= V switch,t+1

Bt+1→B̂
V t→t+1
Bt→Bt+1At+1

. (28)

More precisely, we observe that the two sides of the above have the same effect
on the global state, and then conclude that they must be the same operator by
the Choi-Jamoi lkowski isomorphism.

Recalling that V switch,t is partial with the symmetric subspace as its domain,
we see that Equation (28) is equivalent to

(
V switch,t+1

Bt+1→B̂

)†
V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂
=ΠSymt+1C2n

Bt+1 V t→t+1
Bt→Bt+1At+1

(29)

=V t→t+1
Bt→Bt+1At+1

ΠSymtC2n

Bt . (30)

By taking the above equality times its adjoint, we arrive at

(
V switch,t

Bt→B̂

)† (
V̂ t→t+1

B̂→B̂At+1

)†
V switch,t+1

Bt+1→B̂

(
V switch,t+1

Bt+1→B̂

)†
V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂

=ΠSymtC2n

Bt

(
V t→t+1
Bt→Bt+1At+1

)†
V t→t+1
Bt→Bt+1At+1

ΠSymtC2n

Bt . (31)
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By Equation (28), the range of V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂
is contained in the range of

V switch,t+1

Bt+1→B̂
⊗ 1At+1 . We can thus simplify as follows:(

V switch,t

Bt→B̂

)† (
V̂ t→t+1

B̂→B̂At+1

)†
V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂

=ΠSymtC2n

Bt

(
V t→t+1
Bt→Bt+1At+1

)†
V t→t+1
Bt→Bt+1At+1

ΠSymtC2n

Bt . (32)

Now observe that both sides of the above consist of a projection operator “sand-
wiched” by some operation. These two projection operators are precisely the
projectors which define the reflection operators of ÊS(0, q, n) (on the left-hand
side) and ES(0, n) (on the right-hand side.) We thus see that Equation (32)

shows that applying ES(0, n).Reflect is the same as switching to ÊS(0, q, n), ap-

plying ÊS(0, q, n).Reflect, and then switching back to ES(0, n). The same holds

for the controlled versions ES(0, n).CReflect and ÊS(0, n).CReflect.
This completes the proof of the exact equality between the stateful machines

IS(n) and ES(0, n). The approximate case follows as argued above. ut

It turns out that if we have an a priori bound of the form q = O(
√

2nε) on
the number of queries that will be made to our state sampler, in relation to the
number of qubits n and the desired accuracy ε, there is also an alternative pro-
tocol, due to Zvika Brakerski. The approach is based on Zhandry’s compressed
oracle technique and the work by Ji, Liu and Song. In [18] and in [10] one can
find the following theorem for the two mentioned phase variants, respectively.

Theorem 8 (Lemma 1 in [18], respectively Theorem 1.2 in [10]). Let H :
{0, 1}n → {0, 1}n be a random function. Then k copies of the n-qubit quantum
state

|ψH 〉 = 2−n/2
∑

x∈{0,1}n
ωH(x)|x〉 (33)

are statistically indistinguishable from k copies of a Haar random quantum state
up to error O(k2/2n), for ω = e

2πi
2n , respectively ω = −1.

Let now EF(n, n) be the stateful machine with interfaces Init and Query simu-
lating a random function from n bits to n bits that was given in [31]. Then we
get the following

Corollary 3. Let ES′(n) be the following stateful machine:

– ES′(n).Init is equal to EF(n, n).Init.
– ES′(n).Gen produces a copy of |ψH 〉, simulating H using a single query to

EF(n, n).Query.
– ES′(n).CCReflect implements the controlled reflection about |ψH 〉, simulat-

ing H using two queries to EF(n, n).Query.

For all oracle algorithms A making q that make q queries and that can depend
on n in an arbitrary way,∣∣∣Pr

[
AIS(n) = 1

]
− Pr

[
AES′(n) = 1

]∣∣∣ ≤ O(q2/2n) . (34)
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4 Simulating a Haar-random unitary oracle

4.1 The problem, and our approach

We begin by defining the ideal object we’d like to emulate. This ideal object
samples a Haar-random unitary U , and then answers two types of queries: queries
to U , and queries to its inverse U†.

Construction 3 (Ideal unitary sampler) Let n be a positive integer. The
ideal unitary sampler is an ideal machine IU(n) with interfaces (Init,Eval, Invert),
defined as follows.

1. IU(n).Init : takes no input; samples a description Ũ of a Haar-random n-
qubit unitary operator U .

2. IU(n).Eval : takes n-qubit register as input, applies U and responds with the
output;

3. IU(n).Invert : takes n-qubit register as input, applies U−1 and responds with
the output.

Below, we construct a stateful machine that runs in polynomial space (and
the runtime of which we don’t characterize), and that is indistinguishable from
IU(n) for arbitrary query algorithms.

Our approach. It turns out that the solution of a much easier task comes to our
help, namely simulating a Haar random unitary for an algorithm that makes an a
priori polynomially bounded number t of queries. In this case we can just pick a
unitary t-design, sample an element from it and answer the up to t queries using
this element. As in the proof of Theorem 7, we can also construct an isometric
stateful machine version of this strategy: Instead of sampling a random element
from the t-design, we can prepare a quantum register in a superposition, e.g.
over the index set of the t-design (Init), and then apply the t-design element
(Eval) or its inverse (Invert) controlled on that register.

Now consider an algorithm that makes t parallel queries to a Haar random
unitary (for ease of exposition let us assume here that the algorithm makes no
inverse queries). The effect of these t parallel queries is just the application of the
t-twirling channel (or the mixed twirling channel defined in Equation (10)) to the
t input registers. The t-design-based isometric stateful machine simulates this t-
twirling channel faithfully. What is more, it applies a Stinespring dilation of the
t-twirling channel, the dilating register being the one created by initialization.

Now suppose we have answered t queries using the t-design-based machine,
and are now asked to answer another, still parallel, query. Of course we cannot,
in general, just answer it using the t-design, as its guarantees only hold for t
applications of the unitary. But all Stinespring dilations of a quantum channel
are equivalent in the sense that there exists a (possibly partial) isometry acting
on the dilating register of one given dilation, that transforms it into another
given dilation. So we can just apply an isometry that transforms our t-design
based Stinespring dilation into a t+1-design based one, and subsequently answer
the t+ 1st query using a controlled unitary.
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4.2 Construction and proof

We continue to describe a stateful machine that simulates IU(n) exactly and has
a state register of size polynomial in n and the total number of queries q that an
algorithm makes to its Eval and Invert interfaces. The existence of the required
unitary t-designs is due to Corollary 2.

We recall our conventions for dealing with many copies of fixed-sized registers.
We let A denote an n-qubit register, we let Aj denote indexed copies of A, and
we let At denote A1A2 · · ·At. In this case, the various copies of A will be the
input registers of the adversary, on which the simulator will act. The oracle will
now hold a single register B̂t whose size will grow with the number of queries t.
This register holds an index of an element in a t-design.

For the construction below, we need the following quantum states and opera-
tors. For a positive integer n, choose a family of n-qubit unitary designs {Dt}t∈N,
where Dt = {Ut,i}i∈It is a unitary t-design. Let B̂t be a register of dimension
|It| and define the uniform superposition over indices

|ηt〉B̂t =
1√
|It|

∑
i∈It

|i〉B̂t . (35)

For nonnegative integers t, t′, `, define the unitaries

V
(t,t′,`)

At′ B̂t
=
∑
i∈It

(Ut,i)
⊗`
A1A2...A`

⊗
(
U†t,i

)⊗t′−`
A`+1A`+2...At′

⊗ |i〉〈i|B̂t . (36)

These isometries perform the following: controlled on an index i of a t-design
Ut,i, apply Ut,i to ` registers and U†t,i to t′ − ` registers. For us it will always be
the case that t′ ≤ t, since otherwise the t-design property no longer makes the
desired guarantees on the map V .

We also let W
(t,`)

B̂t→B̂t+1
be an isometry such that

V
(t+1,t,`)

AtB̂t+1
|ηt+1〉B̂t+1

= WB̂t→B̂t+1
V

(t,t,`)

AtB̂t
|ηt〉B̂t (37)

for ` = 0, ..., t. The isometry W always exists, as all Stinespring dilations are iso-

metrically equivalent, and both V
(t,t,`)

AtB̂t
|ηt〉B̂t and V

(t+1,t,`)

AtB̂t+1
|ηt+1〉B̂t+1

are Stine-

spring dilations of the mixed twirling channel T (t,`) by the t-design property.
We are now ready to define the space-efficient unitary sampler.

Construction 4 (Space-efficient unitary sampler) Let n be a positive in-
teger and {Dt}t∈N a family of n-qubit unitary t-designs Dt = {Ut,i}i∈It , with
|It| = 2poly(n,t). Define a stateful machine EU(n, ε) with interfaces (Init,Eval,
Invert) as follows. The machine will maintain counters te (the number of Eval
queries), ti (the number of Invert queries), and t := te + ti.

1. EU(n).Init : Prepares the state |η1〉B̂1
and stores it.

2. EU(n).Eval :
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– If t = 0, apply V
(1,1,1)

A1B̂1
, where A1 is the input register.

– If t > 0, apply W
(t,te)

B̂t→B̂t+1
to the state register and subsequently apply

V t+1,1,1

At+1B̂t+1
, where At+1 is the input register.

3. IU(n).Invert :

– If t = 0, apply V
(1,1,0)

A1B̂1
, where A1 is the input register.

– If t > 0, apply W
(t,te)

B̂t→B̂t+1
to the state register and subsequently apply

V t+1,1,0

At+1B̂t+1
, where At+1 is the input register.

We want to show that the above sampler is indistinguishable from the ideal
sampler to any oracle algorithm, in the following sense. Given a stateful machine
C ∈ {IU(n),EU(n, ε)} and a (not necessarily efficient) oracle algorithm A, we
define the process b← AC as follows:

1. C.Init is called;

2. A receives oracle access to C.Eval and C.Invert;

3. A outputs a bit b .

Theorem 9. For all oracle algorithms A

Pr
[
AIU(n) = 1

]
= Pr

[
AEU(n,ε) = 1

]
. (38)

Proof. We begin by proving the following claim by induction. The claim states
that the theorem holds for adversaries who only make parallel queries.

Claim. For all x ∈ {0, 1}t, let V
(x)

At→AtB̂t
be the isometry that is implemented

by making t parallel queries to EU(n, ε), where the i-th query is made to the
Eval interface if xi = 1 and to the Invert interface if xi = 0. Let further σ ∈ St
be a permutation such that σ.x = 11...100...0, where the lower dot denotes the
natural action of St on strings of length t. Then

V
(x)

At→AtB̂t
= σ−1

At V
(t,t,`)

AtB̂t
|ηt〉B̂t , (39)

where σ acts by permuting the t registers.

Proof. For t = 1, the claim trivially holds. Now suppose the claim holds for t−1.
By definition of the Eval and Invert interfaces,

V
(x)

At→AtB̂t
= V t,1,xt

AtB̂t
W

(t,`)

B̂t−1→B̂t
V

(x[1;t−1])

At−1→At−1B̂t−1
, (40)

where x[a,b] = xaxa+1...xb. By the induction hypothesis, we have

V
(x[1;t−1])

At−1→At−1B̂t−1
= σ̂−1

At−1V
(t−1,t−1,`−xt)
At−1B̂t−1

|ηt−1〉B̂t−1
(41)
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for an appropriate permutation σ̂ ∈ St−1. By the design property of Dj for
j = t, t− 1 and the definition of W (t,`) we obtain

T (t−1,`−xt)
Dt−1

= T (t−1,`−xt)
Dt

⇔ W
(t−1,`)

B̂t−1→B̂t
V

(t−1,t−1,`−xt)
At−1B̂t−1

|ηt−1〉B̂t−1
= V

(t,t−1,`−xt)
At−1B̂t

|ηt−1〉B̂t
⇔ W

(t,`)

B̂t−1→B̂t
σ̂−1
At−1V

(t−1,t−1,`−xt)
At−1B̂t−1

|ηt−1〉B̂t−1
= σ̂−1

At−1V
(t,t−1,`−xt)
At−1B̂t

|ηt−1〉B̂t .
(42)

Here we have used the fact that the permutation and W (t−1,`) commute because
they act on disjoint sets of registers. Putting Equations (40), (41) and (42)
together, it follows that

V
(x)

At→AtB̂t
= V t,1,xt

AtB̂t
σ̂−1
At−1V

(t,t−1,`−xt)
At−1B̂t

|ηt〉B̂t . (43)

But clearly

V t,1,xt
AtB̂t

σ̂−1
At−1V

(t,t−1,`−xt)
At−1B̂t

= σ−1
At V

(t,t,`)

AtB̂t
(44)

For an appropriate permutation σ that consists of applying σ̂ and then sorting
in xt correctly.

The generalization to adaptive algorithms is done via post-selection: Given an
algorithm A with some oracles O1, O2, ..., Ok, consider non-adaptive algorithm Ã
that first queries the oracles a sufficient number of times, each of the queries being
made with the first half of a maximally entangled state as input. Subsequently
the adaptive adversary is run, answering the queries by performing the sender’s
part of the standard quantum teleportation with the input playing the role of the
state to be teleported, and the second half of one of the maximally entangled
states playing the role of the sender’s half of the entangled resource state for
teleportation. Conditioned on the event that all the Pauli corrections in all the
teleportation protocols are equal to the identity, the output of Ã is equal to the
output of A.

Now consider the case where k = 2 and O1 and O2 are the Eval and Invert
interfaces of EU(n, 0), or IU(n). As the output of Ã is exactly the same in the two
cases, the same holds for the version of Ã where we condition, on the outcome
that all the Pauli corrections in all the teleportation protocols are equal to the
identity, which proves the theorem. ut

Using Corollary 2 and the above, we get the following upper bound on the
space complexity of lazy sampling Haar random unitaries.

Corollary 4. The space complexity S of simulating IU(n) as a function of n
and the number of queries q is bounded from above by the logarithm of number
of elements in any family of exact n-qubit unitary q-designs, and hence

S(n, q) ≤ 2q(2n+ log e) +O(log q) . (45)
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Proof. According to Corollary 2, There exists an exact unitary q-design such

that 2q log
(
e(22n+q−1)

q

)
≤ 2q(2n + log e) qubits suffice to coherently store the

index of an element from it. The only additional information that EU(n) needs
to store is how many direct and inverse queries have been answered, which can
be done using log q bits.

ut

Our results suggest two possible approaches to devise a time-efficient lazy
sampler for Haar random unitaries. The most promising one is to use the same
approach as for the state sampler and explicitly constructing the update isome-
try, possibly using explicit bases for the irreducible representations of U(2n), or
using the Schur transform [6]. The other one would be to use the t-design update
method described above, but using efficient approximate t-designs, e.g. the ones
constructed in [11]. This would, however, likely require a generalization of the
Stinespring dilation continuity result from [20] to so-called quantum combs [12].
In addition, we would need to show that the transition isometries, i.e. the ap-
proximate analogue of the isometries W (t,`) from Construction 4, are efficiently
implementable. We leave the exploration of these approaches for future work.

5 Application: untraceable quantum money

5.1 Untraceable quantum money

Our definition of quantum money deviates somewhat from others in the litera-
ture [1,18]. We allow the bank to maintain an internal quantum register, we do
not require that the money states are pure, and we allow adversaries to apply
arbitrary (i.e., not necessarily efficiently implementable) channels.

Definition 2 (Quantum money). A quantum money scheme is a family of
stateful machines M indexed by a security parameter λ, and having two inter-
faces:

1. Mint: receives no input, outputs an n-qubit register;
2. Ver: receives an n-qubit register as input, outputs an n-qubit register together

with a flag {acc, rej},

satisfying the following two properties:

– correctness: ‖Ver ◦Mint− 1⊗ |acc〉〈acc|‖ ≤ negl(λ);8

– unforgeability: for all channels Λ with oracle, and all k ≥ 0,

Pr
[
acck+1 ← flag|Ver⊗k+1 ◦ ΛVer ◦Mint⊗k

]
≤ negl(λ) ,

where flag| denotes discarding all registers except Ver flags.

8 Note that it is understood that this inequality should hold no matter which interfaces
have been called in between the relevant Mint and Ver calls
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It is implicit in the definition that n is a fixed polynomial function of λ, and
that all relevant algorithms are uniform in λ.

Next, we define untraceability for quantum money schemes.

Definition 3 (Untraceability game). The untraceability game Untraceλ[M,A]
between an adversary A and a quantum money scheme M at security parameter
λ proceeds as follows:

1. set up the trace: A(1λ) receives oracle access to Ver and Mint, and outputs
registers M1, M2, . . . , Mk and a permutation π ∈ Sk;

2. permute and verify bills: b ← {0, 1} is sampled, and if b = 1 the registers
M1 · · ·Mk are permuted by π. Ver is invoked on each Mj; the accepted reg-
isters are placed in a set M while the rest are discarded;

3. complete the trace: A receives M and the entire internal state of M, and
outputs a guess b′ ∈ {0, 1}.

The output of Untraceλ[M,A] is δbb′ ; in the case b = b′, we say that A wins.

Definition 4 (Untraceable quantum money). A quantum money scheme
M is untraceable if, for every algorithm A,

Pr [1← Untraceλ[M,A]] ≤ 1

2
+ negl(λ) .

The intuition behind the definition is as follows. In general, one might con-
sider a complicated scenario involving many honest players and many adver-
saries, where the goal of the adversaries is to trace the movement of at least one
bill in transactions involving at least one honest player. Tracing in transactions
involving only adversaries is of course trivial. The first natural simplification is to
view all the adversaries as a single adversarial party; if that party cannot trace,
then neither can any individual adversary. Next, we assume that honest players
will verify any bills they receive immediately; obviously, if they do not do this,
and then participate in transactions with the adversary, then tracing is again
trivial. We thus arrive at the situation described in the game: the adversary is
first allowed to create candidate bills arbitrarily, including storing information
about them and entangling them with additional registers, before handing them
to honest players who may or may not perform some transactions; the goal of
the adversary is to decide which is the case, with the help of the bank. Note that
one round of this experiment is sufficient in the security game, as an adversary
can always use the Ver and Mint oracles to simulate additional rounds.

One might reasonably ask if there are even stronger definitions of untrace-
ability than the above. Given its relationship to the ideal state sampler, we
believe that Haar money, defined below, should satisfy almost any notion of un-
traceability, including composable notions. We also remark that, based on the
structure of the state simulator, which maintains an overall pure state supported
on two copies of the symmetric subspace of banknote registers, it is straightfor-
ward to see that the scheme is also secure against an “honest but curious” or
“specious” [26,15] bank. We leave the formalization of these added security guar-
antees to future work.
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5.2 Haar money

Next, we show how the lazy state sampler (Construction 2) yields untrace-
able quantum money. The construction follows the idea of [18] sample a single
(pseudo)random quantum state and hand out copies of it as banknotes.

Construction 5 (Haar money) Let n be a positive integer and ε > 0. The
Haar scheme HM(n, ε) is defined as follows:

– Mint: on first invocation, instantiate ES := ES(n, ε) by running ES.Init.
On all invocations, output result of ES.Gen;

– Ver: apply ES.Ver; in the acc case, call Mint and output the result; in the rej
case, output 0n.

We remark that, while Construction 2 does not explicitly include a Ver in-
terface, one can easily be added by Lemma 5.

Proposition 3. Haar money is an untraceable quantum money scheme.

Proof. We need to show three properties: completeness, unforgeability, and un-
traceability. For the completeness and unforgeability properties, observe that
Theorem 7 implies that the adversary’s view is indistinguishable (up to neg-
ligible terms) if we replace the efficient state sampler ES with the ideal IS.
Once we’ve made that replacement, completeness follows from the definition of
IS.Gen and IS.Ver, and unforgeability follows from the complexity-theoretic
no-cloning theorem [1].

For untraceability, it is of course true that IS is obviously untraceable. How-
ever, we cannot simply invoke Theorem 7 to conclude the same about ES, since
the adversary will receive the state of the bank at the end of the game. Instead,
we argue as follows. Consider step 2 (permute and verify bills) in the untrace-
ability game Untraceλ[HM,A]. An equivalent way to perform this step is to (i.)
verify all the registers first, (ii.) discard the ones that fail verification, and then
(iii.) apply the permutation, conditioned on the challenge bit b. Steps (i.) and
(ii.) are applied always and in particular do not depend on b. However, after
(i.) and (ii.) have been applied, by the definition of ES the joint state of the
bank and all the Mj ∈M (and indeed all verified bills in existence) is negligibly
far from the state |φ+

Sym〉, i.e., the maximally entangled state on the symmetric
subspace. This state is clearly invariant under permutation of the money reg-
isters, and in particular under the permutation of the registers in M selected
by the adversary. We emphasize that this invariance holds for the entire state
(including the bank.) As the remainder of the game experiment is simply some
channel applied to that state, and this channel does not depend on b, the result
follows. ut

While Haar money is an information-theoretically unforgeable and untrace-
able quantum money scheme, it is easy to see that the quantum money scheme
devised in [18] is computationally unforgeable and untraceable.
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