
Compact Adaptively Secure ABE from k-Lin:
Beyond NC1 and towards NL

Huijia Lin and Ji Luo

University of Washington
{rachel,luoji}@cs.washington.edu

Abstract. We present a new general framework for constructing com-
pact and adaptively secure attribute-based encryption (ABE) schemes
from k-Lin in asymmetric bilinear pairing groups. Previously, the only
construction [Kowalczyk and Wee, Eurocrypt ’19] that simultaneously
achieves compactness and adaptive security from static assumptions sup-
ports policies represented by Boolean formulae. Our framework enables
supporting more expressive policies represented by arithmetic branching
programs.
Our framework extends to ABE for policies represented by uniform mod-
els of computation such as Turing machines. Such policies enjoy the
feature of being applicable to attributes of arbitrary lengths. We ob-
tain the first compact adaptively secure ABE for deterministic and non-
deterministic finite automata (DFA and NFA) from k-Lin, previously
unknown from any static assumptions. Beyond finite automata, we ob-
tain the first ABE for large classes of uniform computation, captured by
deterministic and non-deterministic logspace Turing machines (the com-
plexity classes L and NL) based on k-Lin. Our ABE scheme has compact
secret keys of size linear in the description size of the Turing machine
M . The ciphertext size grows linearly in the input length, but also lin-
early in the time complexity, and exponentially in the space complexity.
Irrespective of compactness, we stress that our scheme is the first that
supports large classes of Turing machines based solely on standard as-
sumptions. In comparison, previous ABE for general Turing machines all
rely on strong primitives related to indistinguishability obfuscation.

1 Introduction

Attribute-based encryption (ABE) [32] is an advanced form of public-key encryp-
tion that enables fine-grained access control. The encryption algorithm using the
master public key mpk can encrypt a message m with a descriptive attribute x,1

producing a ciphertext ctx(m). The key generation algorithm using the master
secret key msk can produce a secret key sky associated with an access policy
y. Decrypting ctx(m) using sky reveals the message m if the attribute x satis-
fies the policy y; otherwise, no information about m is revealed. The security

1 Some works call x a set of attributes, and each bit or component of x an attribute.
We treat the attribute as a single vector.

requirement of ABE stipulates resilience to collusion attacks — any group of
users holding secret keys for different policies learn nothing about the plaintext
as long as none of them is individually authorized to decrypt the ciphertext.

A primary goal of research on ABE is designing ABE schemes for expressive
classes of policies, usually defined by computation models or complexity classes.
A beautiful and fruitful line of works have constructed ABE for many different
policy classes. For non-uniform computation, we have ABE for Boolean [32,44]
or arithmetic formulae, branching/span programs [13,23,31,37,45,47,48,53,54],
and circuits [14,19,30]. For uniform computation, we have ABE for deterministic
finite automata [1,5,12,13,29,58], non-deterministic finite automata [4], and even
Turing machines [3,8]. These constructions, however, achieve different trade-offs
between security, efficiency, and underlying computational assumptions. It is
rare to have a construction that simultaneously achieves the following natural
desirata on all fronts:

– Security :Security : (full) adaptive security (as opposed to selective or semi-adaptive
security);

– Efficiency :Efficiency : having compact secret key and ciphertext, whose sizes grow lin-
early with the description size of the policy and the length of the attribute,
respectively;

– Assumptions:Assumptions: relying on standard and simple assumptions, such as LWE
and k-Lin or SXDH in bilinear pairing groups (in particular, it is prefer-
able to avoid the use of strong primitives such as indistinguishability ob-
fuscation, and instance-dependent assumptions such as q-type assumptions,
whose strength can be weakened by adversarially chosen parameters).

All previous constructions of ABE fail to achieve at least one of the desirable
properties, except for the recent construction of ABE for Boolean formulae from
the k-Lin assumption by Kowalczyk and Wee [44]. This raises the question:

Can we construct ABE schemes with all the desirable properties above
for more expressive classes of policies than Boolean formulae?

When it comes to uniform computation, the state of affairs is even less satisfac-
tory. All constructions of ABE for general Turing machines are based on strong
primitives such as indistinguishability obfuscation and multilinear map. With-
out these powerful tools, existing schemes can only handle the weak computation
model of finite automata.

Can we construct ABE schemes based on standard assumptions
for more expressive uniform computations than finite automata?

Our Result. Via a unified framework, we construct compact and adaptively
secure ABE schemes based on the k-Lin assumption in asymmetric prime-order
bilinear pairing groups for the following classes of policies:

Arithmetic Branching Programs.Arithmetic Branching Programs. ABPs capture many functions of interest, in-
cluding arithmetic computations like sparse polynomials, mean, and variance, as
well as combinatorial computations like string-matching, finite automata, and

decision trees. It is also known that Boolean/arithmetic formulae and Boolean
branching programs can all be converted into ABPs with polynomial blow-up in
description size. Thus, ABPs can be viewed as a more powerful computational
model than them.

Previous ABE schemes for ABPs only provide selective security [30,37] or
do not have compact ciphertexts [23].2 In addition to achieving both adaptive
security and compactness, our scheme is the first one that handles ABPs directly
without converting it to circuits or arithmetic span programs, which leads to an
efficiency improvement in the size of the secret keys from up to quadratic to
linear in the size of the ABP.3

(Non-)Deterministic Logspace Turing Machines (L and NL).(Non-)Deterministic Logspace Turing Machines (L and NL). Here, a secret key
is associated with a Turing machine M , and the attribute in a ciphertext specifies
an input x, a polynomial time bound T , and a logarithmic space bound S.
Decryption succeeds if and only if M accepts x within time T and space S.
Our scheme is unbounded in the sense that the public parameters do not restrict
the sizes of the Turing machine M and input x, nor the time/space bounds
T, S. Furthermore, it enjoys the advantage of ABE for uniform computation
that a secret key for M can decrypt ciphertexts with arbitrarily long inputs
and arbitrary time/space bounds. This stands in contrast with ABE for non-
uniform computation (like ABPs), where a program or circuit f takes inputs of
a specific length n, and a secret key for f decrypts only ciphertext of length-n
inputs. Achieving this feature is precisely the challenge in constructing ABE for
uniform models of computation.

Our scheme is the first ABE for large classes of Turing machine computation,
captured by the complexity classes L and NL, without using the heavy machiner-
ies of multilinear map, extractable witness encryption, or indistinguishability
obfuscation as in previous works [3,9,27,41]. In addition, our scheme is adap-
tively secure and half-compact. The secret keys are compact, of size O(|M |)
linear in the description size of M , while the ciphertext size depends linearly in
|x|TS2S (both ignoring fixed polynomial factors in the security parameter).

Removing the dependency on 2S or T is an interesting open problem that
requires technical breakthrough. In particular, removing the dependency on 2S

would give an ABE for polynomial-time Turing machine computation from pair-
ing, a long sought-after goal that has remained elusive for more than a decade.
Removing the dependency of encryption time on T even only in the 1-key 1-
ciphertext setting implies a succinct message-hiding encoding [42],4 which is

2 More precisely, they construct ABE for read-once branching programs. For general
branching programs, one can duplicate each component in the attribute for the
number of times it is accessed [43]. As such, the ciphertext size grows linearly with
the size of the branching program.

3 An ABP is specified by a directed graph, with edges weighted by affine functions
of the input. The size of an ABP is measured by the number of vertices (instead of
edges) in the graph.

4 Message-hiding encodings [42] are a weaker variant of randomized encodings that
allow encoding a public computation f, x with a secret message m such that the

only known from strong primitives like indistinguishability obfuscation or func-
tional encryption [18,21,41,42]. Removing the dependency of ciphertext size on
T might be an easier task, but would need new techniques different from ours.

Finite Automata.Finite Automata. As a special case of ABE for L and NL, we obtain ABE
for deterministic finite automata (DFA) and non-deterministic finite automata
(NFA).5 This simply follows from the fact that DFA and NFA can be represented
as simple deterministic and non-deterministic Turing machines with space com-
plexity 1 and time complexity N that always move the input tape pointer to the
right and never use the work tape.

Previous schemes for DFA based on pairing either achieve only selective secu-
rity [5,29,58] or rely on q-type assumptions [1,12,13]. The only direct construc-
tion of ABE for NFA [4] based on LWE, however, is symmetric-key and only
selectively secure. We settle the open problem of constructing adaptively secure
ABE for DFA from static assumptions [29] and that of constructing ABE for
NFA that is public-key, adaptively secure, or based on assumptions other than
LWE [4].

New Techniques for Constructing Adaptively Secure ABE. Construct-
ing adaptively secure ABE is a challenging task. Roughly speaking, previous
constructions proceed in two steps. First, a secure core secret-key ABE com-
ponent for a single ciphertext and a single secret key — termed 1-ABE — is
designed. Then, Dual System Encryption framework, originally proposed in [57]
and refined in [1,12,13,22,59], provides guidance on how to lift 1-ABE to the
public-key and multi-secret-key setting. The main technical challenge lies in the
first step: Adaptively secure schemes prior to that of Kowalczyk and Wee [44]
either impose a read-once restriction on the attribute6 [45,59] or rely on q-type
assumptions [1,12,16,48]. Kowalczyk and Wee [44] elegantly applied the “par-
tial selectivization” framework [6,38] for achieving adaptive security in general
to constructing 1-ABE. In particular, they used a variant of the secret-sharing
scheme for Boolean formulae in [38] whose selective simulation security can be
proven via a sequence of hybrids, each only requiring partial information of the
input to be chosen selectively. Then, to show adaptive security, the reduction can
guess this partial information while incurring only a polynomial security loss.

However, secret-sharing schemes as needed in [44] are only known for Boolean
formulae. When dealing with computation over arithmetic domains of potentially
exponential size, we have the additional challenge that it is hard to guess even

encoding reveals m if and only if f(x) = 1. Such encodings are succinct if the time
to encode is much smaller than the running time of the computation. A pair of
ABE secret key for predicate f and ciphertext for attribute x and message m is a
message-hiding encoding.

5 DFA and NFA both characterize regular languages, yet a DFA recognizing a language
could have exponentially more states than an NFA recognizing the same language. In
this work, by ABE for DFA/NFA, we mean ABE schemes that run in time polynomial
in the description size of the finite automata.

6 As mentioned in Footnote 2, read-once restriction can be circumvented by duplicat-
ing attribute components at the cost of losing ciphertext compactness.

a single component of the input, except with exponentially small probability,
rendering the partial selectivization framework ineffective. When dealing with
uniform computation, we further encounter the challenge that neither the secret
key nor the ciphertext is as large as the secret-sharing, making it impossible to
directly use information-theoretically secure secret-sharing schemes. We develop
new techniques to overcome these challenges.

1. First, we present a generic framework for constructing adaptively secure
1-ABE from i) an information theoretic primitive called arithmetic key gar-
bling, and ii) a computational primitive called function-hiding inner-product
functional encryption (IPFE) [17,40,49,56]. Our arithmetic key garbling schemes
are partial garbling schemes [37] with special structures, which act as the
counterpart of secret-sharing schemes for arithmetic computation. Our frame-
work is modular: It decomposes the task of constructing 1-ABE to first de-
signing an arithmetic key garbling scheme for the computation class of in-
terest, and second applying a generic transformation depending solely on
structural properties of the garbling and agnostic of the underlying com-
putation. In particular, the security proof of the transformation does not
attempt to trace the computation, unlike [29,44].

2. Second, we formulate structural properties of arithmetic key garbling schemes
— called piecewise security — sufficient for achieving adaptive security. The
properties are natural and satisfied by the garbling scheme for ABPs in [37].
For logspace Turing machine computation, we present a simple arithmetic
key garbling scheme for L and NL, inspired by the garbling schemes in [11,19].

3. Third, we present a new method of lifting 1-ABE to full-fledged ABE using
function-hiding IPFE. Our method can be cast into the dual system en-
cryption framework, but is natural on its own, without seeing through the
lens of dual system encryption. One feature of IPFE is that it provides a
conceptually simple abstraction which allows moving information between
ABE keys and ciphertexts easily, and hides away lower-level details on how
to guarantee security. This feature makes it a convenient tool in many other
parts of the security proof as well.

4. Lastly, to overcome the unique challenge related to ABE for uniform com-
putation, we further enhance our generic method to be able to use partial
garbling generated with pseudorandomness so that the total size of the secret
keys and ciphertexts can be smaller than the garbling.

Organization. In Section 2, we give an overview of our framework for con-
structing compact adaptively secure ABE schemes for ABPs, logspace Turing
machines, and finite automata, using as tools IPFE and arithmetic key garbling
schemes (AKGS, a refinement of partial garbling schemes). After introducing
basic notations and definitions in Section 3, we define AKGS and its security in
Section 4. In Section 5, we show how to construct 1-ABE (the core component
of our ABE schemes) for ABPs from an AKGS. Due to space constraints, the
security proof of our 1-ABE for ABPs, the construction of full-fledged ABE for
ABPs, and ABE for L and NL are provided in the full version.

2 Technical Overview

We now give an overview of our technique, starting with introducing the two
key tools arithmetic key garbling schemes and IPFE. Below, by bilinear pairing
groups, we mean asymmetric prime-order bilinear pairing groups, denoted as
(G1, G2, GT, g1, g2, e) and implicitly, gT = e(g1, g2). We use [[a]]b to represent the
encoding gab of a in group Gb.

Arithmetic Key Garbling Scheme. We use a refinement of the notion of
partial garbling schemes [37] (which in turn is based on the notion of garbling and
randomized encoding [10,36,61]). An arithmetic key garbling scheme (AKGS) is
an information-theoretic partial garbling scheme for computing αf(x) + β that
hides the secrets α, β ∈ Zp, but not f,x:

– A garbling procedure (L1, . . . ,Lm) ← Garble(f, α, β; r) turns f and two se-
crets α, β (using randomness r) into m affine label functions L1, . . . , Lm,
described by their coefficient vectors L1, . . . ,Lm over Zp. The label func-
tions specify how to encode an input x to produce the labels for computing
f(x) with secrets α, β:

f̂(x)α,β = (`1, . . . , `m), where `j = Lj(x) = 〈Lj , (1,x)〉 over Zp. (1)

– A linear evaluation procedure γ ← Eval(f,x, `1, . . . , `m) recovers the sum
γ = αf(x) + β weighted by the function value f(x).

AKGS is a partial garbling as it only hides information of the secrets α and
β beyond the weighted sum αf(x) + β, and does not hide (f,x), captured by
a simulation procedure (`′1, . . . , `

′
m)

$← Sim(f,x, αf(x) + β) that produces the
same distribution as the honest labels.

Ishai and Wee [37] proposed a partial garbling scheme for ABPs, which di-
rectly implies an AKGS for ABPs. It is also easy to observe that the (fully
secure) garbling scheme for arithmetic formulae in [11] can be weakened [19] to
an AKGS. Later, we will introduce additional structural and security properties
of AKGS needed for our 1-ABE construction. These properties are natural and
satisfied by both schemes [11,37].

Inner-Product Functional Encryption. A function-hiding (secret-key) inner-
product functional encryption (IPFE)7 enables generating many secret keys
isk(vj) and ciphertexts ict(ui) associated with vectors vj and ui such that de-
cryption yields all the inner products {〈ui,vj〉}i,j (mod p) and nothing else. In
this work, we need an adaptively secure IPFE, whose security holds even against
adversaries choosing all the vectors adaptively. Such an IPFE scheme can be
constructed based on the k-Lin assumption in bilinear pairing groups [50,60].
The known scheme also has nice structural properties that will be instrumental
to our construction of ABE:

7 Some works use “inner-product encryption” (IPE) to refer to IPFE [17,25,49,50] and
some others [24,39,52–55] use it for inner-product predicate encryption.

– isk(v)
$← IPFE.KeyGen(msk, [[v]]2) operates linearly on v (in the exponent of

G2) and the size of the secret key isk(v) grows linearly with |v|.
– ict(u)

$← IPFE.Enc(msk, [[u]]1) also operates linearly on u (in the exponent of
G1) and the size of the ciphertext ict(u) grows linearly with |u|.

– IPFE.Dec(sk(v), ct(u)) simply invokes pairing to compute the inner product
[[〈u,v〉]]T in the exponent of the target group.

2.1 1-ABE from Arithmetic Key Garbling and IPFE Schemes

1-ABE is the technical heart of our ABE construction. It works in the setting
where a single ciphertext ct(x) for an input vector x and a single secret key
sk(f, µ) for a policy y = f6=0 and a secret µ are published. Decryption reveals µ
if f(x) 6= 0; otherwise, µ is hidden.8

1-ABE. To hide µ conditioned on f(x) = 0, our key idea is using IPFE to

compute an AKGS garbling f̂(x)µ,0 of f(x) with secrets α = µ and β = 0. The
security of AKGS guarantees that only µf(x) is revealed, which information
theoretically hides µ when f(x) = 0.

The reason that it is possible to use IPFE to compute the garbling is at-
tributed to the affine input-encoding property of AKGS — the labels `1, . . . , `m
are the output of affine functions L1, . . . , Lj of x as described in Equation (1).
Since f, α, β are known at key generation time, the ABE key can be a collec-
tion of IPFE secret keys, each encoding the coefficient vector Lj of one label
function Lj . On the other hand, the ABE ciphertext can be an IPFE cipher-
text encrypting (1,x). When put together for decryption, they reveal exactly
the labels L1(x), . . . , Lm(x), as described below on the left.

Honest Algorithms Hybrid for Selective Security

ct(x): ict((1,x) ‖ 0) ct(x): ict((1,x) ‖ 1 ‖ 0)
sk(f, µ): j ∈ [m]: iskj(Lj ‖ 0) sk(f, µ): j ∈ [m]: iskj(0 ‖ `j ‖ 0)

We note that the positions or slots at the right end of the vectors encoded
in isk and ict are set to zero by the honest algorithms — 0 denotes a vector
(of unspecified length) of zeros. These slots provide programming space in the
security proof.

It is extremely simple to prove selective (or semi-adaptive) security, where
the input x is chosen before seeing the sk. By the function-hiding property of
IPFE, it is indistinguishable to switch the secret keys and the ciphertext to
encode any vectors that preserve the inner products. This allows us to hardwire

honestly generated labels f̂(x)µ,0 = {`j ← 〈Lj , (1,x)〉}j∈[m] in the secret keys
as described above on the right. The simulation security of AKGS then implies
that only µf(x) is revealed, i.e., nothing about µ is revealed.

8 We can also handle policies of the form f=0 so that µ is revealed if and only if
f(x) = 0. For simplicity, we focus on one case in this overview.

Achieving Adaptive Security. When it comes to adaptive security, where the
input x is chosen after seeing sk, we can no longer hardwire the honest labels

f̂(x)µ,0 in the secret key, as x is undefined when sk is generated, and hence
cannot invoke the simulation security of AKGS. Our second key idea is relying
on a stronger security property of AKGS, named piecewise security, to hardwire
simulated labels into the secret key in a piecemeal fashion.

Piecewise security of AKGS requires the following two properties: i) reverse
sampleability — there is an efficient procedure RevSamp that can perfectly re-
versely sample the first label `1 given the output αf(x) + β and all the other
labels `2, . . . , `m, and ii) marginal randomness — each `j of the following la-
bels for j > 1 is uniformly distributed over Zp even given all subsequent label
functions Lj+1, . . . ,Lm. More formally,{
`1 ← 〈L1, (1,x)〉, L2, . . . ,Lm

}
≡
{
`′1

$← RevSamp(· · ·), L2, . . . ,Lm
}
, (2){

`j ← 〈Lj , (1,x)〉, Lj+1, . . . ,Lm
}
≡
{
`′j

$← Zp , Lj+1, . . . ,Lm
}
. (3)

In Equation (2), `′1
$← RevSamp(f,x, αf(x) + β, `2, . . . , `m). These properties are

natural and satisfied by existing AKGS for ABPs and arithmetic formulae [11,
37].

Adaptive Security via Piecewise Security.Adaptive Security via Piecewise Security. We are now ready to prove adaptive
security of our 1-ABE. The proof strategy is to first hardwire `1 in the ci-
phertext and sample it reversely as `1

$← RevSamp(f,x, 0, `2, . . . , `m), where
`j = 〈Lj , (1,x)〉 for j > 1 and µf(x) = 0 by the constraint, as described
in hybrid k = 1 below. The indistinguishability follows immediately from the
function-hiding property of IPFE and the reverse sampleability of AKGS. Then,
we gradually replace each remaining label function Lj for j > 1 with a randomly
sampled label `j

$← Zp in the secret key, as described in hybrids 1 ≤ k ≤ m+1. It
is easy to observe that in the final hybrid k = m+ 1, where all labels `2, . . . , `m
are random and `1 reversely sampled without µ, the value µ is information-
theoretically hidden.

Hybrid 1 ≤ k ≤ m+ 1 Hybrid k : 1 or k : 2

sk(f, µ): isk1(0 ‖ 1 ‖ 0 ‖ 0)
1 < j < k: iskj(0 ‖ 0 ‖ `j ‖ 0)

iskk(Lk ‖ 0 ‖ 0 ‖ 0) iskk(0 ‖ 0 ‖ 0 ‖ 1)

j > k: iskj(Lj ‖ 0 ‖ 0 ‖ 0)
ct(x): ict((1,x) ‖ `1 ‖ 1 ‖ 0) ict((1,x) ‖ `1 ‖ 1 ‖ `k)

`1
$← RevSamp(· · ·), for 1 < j < k: `j

$← Zp `k ← 〈Lk, (1,x)〉 or `k
$← Zp

To move from hybrid k to k + 1, we want to switch the kth IPFE secret key
iskk from encoding the label function Lk to a simulated label `k

$← Zp. This
is possible via two moves. First, by the function-hiding property of IPFE, we
can hardwire the honest `k = 〈Lk, (1,x)〉 in the ciphertext as in hybrid k : 1
(recall that at encryption time, x is known). Then, by the marginal randomness

property of AKGS, we switch to sample `k as random in hybrid k : 2. Lastly,
hybrid k : 2 is indistinguishable to hybrid k + 1 again by the function-hiding
property of IPFE.

1-ABE for ABPs. Plugging in the AKGS for ABPs by Ishai and Wee [37], we
immediately obtain 1-ABE for ABPs based on k-Lin. The size of the garbling
grows linearly with the number of vertices |V | in the graph describing the ABP,
i.e., m = O(|V |). Combined with the fact that IPFE has linear-size secret keys
and ciphertexts, our 1-ABE scheme for ABPs has secret keys of size O(m|x|) =
O(|V ||x|) and ciphertexts of size O(|x|). This gives an efficiency improvement
over previous 1-ABE or ABE schemes for ABPs [23,37], where the secret key
size grows linearly with the number of edges |E| in the ABP graph, due to that
their schemes first convert ABPs into an arithmetic span program, which incurs
the efficiency loss.

Discussion. Our method for constructing 1-ABE is generic and modular. In
particular, it has the advantage that the proof of adaptive security is agnostic
of the computation being performed and merely carries out the simulation of
AKGS in a mechanic way. Indeed, if we plug in an AKGS for arithmetic formulae
or any other classes of non-uniform computation, the proof remains the same.
(Our 1-ABE for logspace Turing machines also follows the same blueprint, but
needs additional ideas.) Furthermore, note that our method departs from the
partial selectivization technique used in [44], which is not applicable to arithmetic
computation as the security reduction cannot afford to guess even one component
of the input x. The problem is circumvented by using IPFE to hardwire the labels
(i.e., `1, `k) that depend on x in the ciphertext.

2.2 Full-Fledged ABE via IPFE

From 1-ABE for the 1-key 1-ciphertext setting to full-fledged ABE, we need
to support publishing multiple keys and make encryption public-key. It turns
out that the security of our 1-ABE scheme directly extends to the many-key
1-ciphertext (still secret-key) setting via a simple hybrid argument. Consider
the scenario where a ciphertext ct and multiple keys {skq(fq, µq)}q∈[Q] that are
unauthorized to decrypt the ciphertext are published. Combining the above se-
curity proof for 1-ABE with a hybrid argument, we can gradually switch each
secret key skq from encoding honest label functions encapsulating µq to ones en-
capsulating an independent secret µ′q

$← Zp. Therefore, all the secrets {µq}q∈[Q]

are hidden.
The security of our 1-ABE breaks down once two ciphertexts are released.

Consider publishing just a single secret key sk(f, µ) and two ciphertexts ct1(x1),
ct2(x2). Since the label functions L1, . . . , Lm are encoded in sk, decryption com-

putes two AKGS garblings f̂(x1)µ,0 and f̂(x2)µ,0 generated using the same label
functions. However, AKGS security does not apply when the label functions are
reused.

What we wish is that IPFE decryption computes two garblings f̂(x1)µ,0 =

(L1(x1), . . . , Lm(x1)) and f̂(x2)µ,0 = (L′1(x2), . . . , L′m(x2)) using independent

label functions. This can be achieved in a computational fashion relying on the
fact that the IPFE scheme encodes the vectors and the decryption results in
the exponent of bilinear pairing groups. Hence we can rely on computational
assumptions such as SXDH or k-Lin, combined with the function-hiding property
of IPFE to argue that the produced garblings are computationally independent.
We modify the 1-ABE scheme as follows:

– If SXDH holds in the pairing groups, we encode in the ciphertext (1,x) multi-
plied by a random scalar s

$← Zp. As such, decryption computes (sL1(x), . . . ,
sLm(x)) in the exponent. We argue that the label functions sL1, . . . , sLm are
computationally random in the exponent : By the function-hiding property
of IPFE, it is indistinguishable to multiply s not with the ciphertext vector,
but with the coefficient vectors in the secret key as depicted below on the
right; by DDH (in G2) and the linearity of Garble (i.e., the coefficients Lj
depend linearly on the secrets α, β and the randomness r used by Garble),
sLj are the coefficients of pseudorandom label functions.

Algorithms based on SXDH Hybrid

≈L′j (fresh)

sk(f, µ): j ∈ [m]: iskj(Lj ‖ 0) iskj(Lj ‖ sLj ‖ 0)
ct(x): ict(s(1,x) ‖ 0) ict(0 ‖ (1,x) ‖ 0)

– If k-Lin holds in the pairing groups, we encode in the secret key k indepen-
dent copies of label functions Lt1, . . . , L

t
m for t ∈ [k], and in the ciphertexts

k copies of (1,x) multiplied with independent random scalars s[t] for t ∈ [k].
This way, decryption computes a random linear combination of the garblings
(
∑
t∈[k] s[t]Lt1(x), . . . ,

∑
t∈[k] s[t]Ltm(x)) in the exponent, which via a similar

hybrid as above corresponds to pseudorandom label functions in the expo-
nent.

Algorithms based on k-Lin

sk(f, µ): j ∈ [m]: iskj(L1
j ‖ · · · ‖ Lkj ‖ 0)

ct(x): ict(s[1](1,x) ‖ · · · ‖ s[k](1,x) ‖ 0)

Hybrid
≈ L′j (fresh)

sk(f, µ): j ∈ [m]: iskj(L1
j ‖ · · · ‖ Lkj ‖

∑
t∈[k] s[t]Ltj ‖ 0)

ct(x): ict(0 ‖ · · · ‖ 0 ‖ (1,x) ‖ 0)

The above modification yields a secret-key ABE secure in the many-ciphertext
many-key setting. The final hurdle is how to make the scheme public-key, which
we resolve using slotted IPFE.

Slotted IPFE. Proposed in [50], slotted IPFE is a hybrid between a secret-
key function-hiding IPFE and a public-key IPFE. Here, a vector u ∈ Znp is

divided into two parts (upub,upriv) with upub ∈ Znpub
p in the public slot and

upriv ∈ Znpriv
p in the private slot (npub+npriv = n). Like a usual secret-key IPFE,

the encryption algorithm IPFE.Enc using the master secret key msk can encrypt
to both the public and private slots, i.e., encrypting any vector u. In addition,
there is an IPFE.SlotEnc algorithm that uses the master public key mpk, but
can only encrypt to the public slot, i.e., encrypting vectors such that upriv = 0.
Since anyone can encrypt to the public slot, it is impossible to hide the public
slot part vpub of a secret-key vector v. As a result, slotted IPFE guarantees
function-hiding only w.r.t. the private slot, and the weaker indistinguishability
security w.r.t. the public slot. Based on the construction of slotted IPFE in [49],
we obtain adaptively secure slotted IPFE based on k-Lin.

The aforementioned secret-key ABE scheme can be easily turned into a
public-key one with slotted IPFE: The ABE encryption algorithm simply uses
IPFE.SlotEnc and mpk to encrypt to the public slots. In the security proof, we
move vectors encrypted in the public slot of the challenge ciphertext to the pri-
vate slot, where function-hiding holds and the same security arguments outlined
above can be carried out.

Discussion. Our method can be viewed as using IPFE to implement dual system
encryption [57]. We believe that IPFE provides a valuable abstraction, making
it conceptually simpler to design strategies for moving information between the
secret key and the ciphertext, as done in the proof of 1-ABE, and for generating
independent randomness, as done in the proof of full ABE. The benefit of this
abstraction is even more prominent when it comes to ABE for logspace Turing
machines.

2.3 1-ABE for Logspace Turing Machines

We now present ideas for constructing 1-ABE for L, and then its extension to NL
and how to handle DFA and NFA as special cases for better efficiency. Moving
to full-fledged ABE follows the same ideas in the previous subsection, though
slightly more complicated, which we omit in this overview.

1-ABE for L enables generating a single secret key sk(M,µ) for a Turing
machine M and secret µ, and a ciphertext ct(x, T, S) specifying an input x of
length N , a polynomial time bound T = poly(N), and a logarithmic space bound
S = O(logN) such that decryption reveals µM |N,T,S(x), where M |N,T,S(x) rep-
resents the computation of running M(x) for T steps with a work tape of size
S, which outputs 1 if and only if the computation lands in an accepting state
after T steps and has never exceeded the space bound S. A key feature of ABE
for uniform computation is that a secret key sk(M,µ) can decrypt ciphertexts
with inputs of unbounded lengths and unbounded time / (logarithmic) space
bounds. (In contrast, for non-uniform computation, the secret key decides the in-
put length and time/space bounds.) Our 1-ABE for L follows the same blueprint
of combining AKGS with IPFE, but uses new ideas in order to implement the
unique feature of ABE for uniform computation.

Notations for Turing Machines. We start with introducing notations for
logspace Turing machines (TM) over the binary alphabet. A TM M = (Q, qacc, δ)

consists of Q states, with the initial state being 1 and an accepting state9 qacc ∈
[Q], and a transition function δ. The computation of M |N,T,S(x) goes through
a sequence of T + 1 configurations (x, (i, j,W, q)), where i ∈ [N] is the input

tape pointer, j ∈ [S] the work tape pointer, W ∈ {0, 1}S the content of the
work tape, and q ∈ [Q] the state. The initial internal configuration is thus
(i = 1, j = 1,W = 0S , q = 1), and the transition from one internal configuration
(i, j,W, q) to the next (i′, j′,W′, q′) is governed by the transition function δ and
the input x. Namely, if δ(q,x[i],W[j]) = (q′, w′,∆i,∆j),

(i, j,W, q)→ (i′ = i+ ∆i, j′ = j + ∆j, W′ = overwrite(W, j, w′), q′).

In other words, the transition function δ on input state q and bits x[i], W[j]
on the input and work tape under scan, outputs the next state q′, the new bit
w′ ∈ {0, 1} to be written to the work tape, and the directions ∆i,∆j ∈ {0,±1}
to move the input and work tape pointers. The next internal configuration is
then derived by updating the current configuration accordingly, where W′ =
overwrite(W, j, w′) is a vector obtained by overwriting the jth cell of W with w′

and keeping the other cells unchanged.

AKGS for Logspace Turing Machines. To obtain an AKGS for L, we repre-
sent the TM computation algebraically as a sequence of matrix multiplications
over Zp, for which we design an AKGS. To do so, we represent each internal
configuration as a basis vector e(i,j,W,q) of dimension NS2SQ with a single 1 at
position (i, j,W, q). We want to find a transition matrix M(x) (depending on
δ and x) such that moving to the next state e(i′,j′,W′,q′) simply involves (right)
multiplying M(x), i.e., eT

(i,j,W,q)M(x) = eT

(i′,j′,W′,q′). It is easy to verify that
the correct transition matrix is

M(x)[(i, j,W, q), (i′, j′,W′, q′)] = CanTransit[(i, j,W), (i′, j′,W′)]

×Mx[i],W[j],W′[j],i′−i,j′−j [q, q
′], (4)

CanTransit[(i, j,W), (i′, j′,W′)] = 1 iff W′[6= j] = W[6= j] and

i′ − i, j′ − j ∈ {0,±1},
Mx,w,w′,∆i,∆j [q, q

′] = 1 iff δ(q, x, w′) = (q′, w′,∆i,∆j). (5)

Here, CanTransit[(i, j,W), (i′j′,W′)] indicates whether it is possible, irrespective
of δ, to move from an internal configuration with (i, j,W) to one with (i′, j′,W′).
If possible, then Mx[i],W[j],W′[j],∆i,∆j [q, q

′] indicates whether δ permits moving
from state q with current read bits x = x[i], w = W[j] to state q′ with overwriting
bit w′ = W′[j] and moving directions ∆i = i′− i,∆j = j′− j. Armed with this,
the TM computation can be done by right multiplying the matrix M(x) for
T times with the initial configuration eT

(1,1,0,1), reaching the final configuration

eT

(iT ,jT ,WT ,qT), and then testing whether qT = qacc. More precisely,

M |N,T,S(x) = eT

(1,1,0,1)

(
M(x)

)T
t for t = 1NS2S ⊗ eqacc .

9 For simplicity, in this overview, we assume there is only one accepting state.

To construct AKGS for L, it boils down to construct AKGS for matrix multi-
plication. Our construction is inspired by the randomized encoding for arithmetic
NC1 scheme of [11] and the garbling mechanism for multiplication gates in [19].
Let us focus on garbling the computation M |N,T,S(x) with secrets α = µ and
β = 0 (the case needed in our 1-ABE). The garbling algorithm Garble produces
the following affine label functions of x:

`init = Linit(x) = eT

(1,1,0,1)r0,

t ∈ [T]: `t = (`t,z) =
(
Lt,z(x)

)
z

= − rt−1 + M(x)rt,

`T+1 = (`T+1,z)z =
(
LT+1,z(x)

)
z

= − rT + µt.

Here, z = (i, j,W, q) runs through all NS2SQ possible internal configurations

and rt
$← Z[N]×[S]×{0,1}S×[Q]

p . The evaluation proceeds inductively, starting with
`init = eT

(1,1,0,1)r0, going through eT

(it,jt,Wt,qt)
rt for every t ∈ [T] using the iden-

tity below, and completing after T steps by combining eT

(iT ,jT ,WT ,qT)rT with

`T+1 to get eT

(iT ,jT ,WT ,qT)µt = µM |N,T,S(x) as desired:

eT

(it+1,jt+1,Wt+1,qt+1)rt+1 = eT

(it,jt,Wt,qt)
rt + eT

(it,jt,Wt,qt)
(−rt + M(x)rt+1︸ ︷︷ ︸

`t+1

).

We now show that the above AKGS is piecewise secure. First, `init is reversely
sampleable. Since Eval is linear in the labels and `init has coefficient 1, given
all but the first label `init, one can reversely sample `init, the value uniquely
determined by the linear equation10 imposed by the correctness of Eval. Second,
the marginal randomness property holds because every label `t is random due
to the random additive term rt−1 that is not used in subsequent label functions
Lt′,z for all t′ > t and z, nor in the non-constant terms of Lt,z’s — we call rt−1

the randomizers of `t (highlighted in the box). Lastly, we observe that the size
of the garbling is (T + 1)NS2SQ+ 1.

1-ABE for L. We now try to construct 1-ABE for L from AKGS for L, follow-
ing the same blueprint of using IPFE. Yet, applying the exact same method for
non-uniform computation fails for multiple reasons. In 1-ABE for non-uniform
computation, the ciphertext ct contains a single IPFE ciphertext ict encoding
(1,x), and the secret key sk contains a set of IPFE secret keys iskj encoding
all the label functions. However, in the uniform setting, the secret key sk(M,µ)
depends only on the TM M and the secret µ, and is supposed to work with
ciphertexts ct(x, T, S) with unbounded N = |x|, T, S. Therefore, at key genera-
tion time, the size of the AKGS garbling, (T + 1)NS2SQ + 1, is unknown, let
alone generating and encoding all the label functions. Moreover, we want our
1-ABE to be compact, with secret key size |sk| = O(Q) linear in the number Q of
states and ciphertext size |ct| = O(TNS2S) (ignoring polynomial factors in the

10 This means RevSamp is deterministic, and we can reversely sample `init in the expo-
nent and when the randomness is not uniform, which is important for our construc-
tion.

security parameter). The total size of secret key and ciphertext is much smaller
than the total number of label functions, i.e., |sk|+ |ct| � (T + 1)NS2SQ+ 1.

To overcome these challenges, our idea is that instead of encoding the label
functions in the secret key or the ciphertext (for which there is not enough space),
we let the secret key and the ciphertext jointly generate the label functions. For
this idea to work, the label functions cannot be generated with true random-
ness which cannot be “compressed”, and must use pseudorandomness instead.
More specifically, our 1-ABE secret key sk(M,µ) contains ∼ Q IPFE secret keys
{isk(vj)}j , while the ciphertext ct(x, T, S) contains ∼ TNS2S IPFE ciphertexts
{ict(ui)}i, such that decryption computes in the exponent ∼ TNS2SQ cross
inner products 〈ui,vj〉 that correspond to a garbling of M |N,T,S(x) with secret
µ. To achieve this, we rely crucially on the special block structure of the tran-
sition matrix M (which in turn stems from the structure of TM computation,
where the same transition function is applied in every step). Furthermore, as
discussed above, we replace every truly random value rt[i, j,W, q] with a prod-
uct rx[t, i, j,W]rf [q], which can be shown pseudorandom in the exponent based
on SXDH.11

Block Structure of the Transition Matrix.Block Structure of the Transition Matrix. Let us examine the transition matrix
again (cf. Equations (4) and (5)):

M(x)[(i, j,W, q), (i′, j′,W′, q′)] = CanTransit[(i, j,W), (i′, j′,W′)]

×Mx[i],W[j],W′[j],i′−i,j′−j [q, q
′].

We see that that every block M(x)[(i, j,W,), (i′, j′,W′,)] either is the Q×Q
zero matrix or belongs to a small set T of a constant number of transition blocks:

T =
{
Mx,w,w′,∆i,∆j

∣∣x,w,w′ ∈ {0, 1}, ∆i,∆j ∈ {0,±1}
}
.

Moreover, in the i = (i, j,W)th “block row”, M(x)[(i,), (, , ,)], each tran-
sition block Mx,w,w′,∆i,∆j either does not appear at all if x 6= x[i] or w′ 6= W[j],
or appears once as the block M(x)[(i,), (i′,)], where i′ is the triplet obtained
by updating i appropriately according to (w′,∆i,∆j):

i′
def
== i� (w′,∆i,∆j) = (i+ ∆i, j + ∆j, W′ = overwrite(W, j, w′)),

M(x)[(i,), (i′,)] = Mx[i],W[j],w′,∆i,∆j .

Thus we can “decompose” every label `t[i, q] as an inner product 〈ut,i,vq〉 as

`t[i, q] = −rt−1[i, q] + M(x)[(i, q)(, , ,)]rt

= −rt−1[i, q] +
∑

w′,∆i,∆j

(
Mx[i],W[j],w′,∆i,∆jrt[i

′,]
)
[q]

(
i′ = i� (w′,∆i,∆j)

)
= −rx[t− 1, i]rf [q] +

∑
w′,∆i,∆j

rx[t, i′]
(
Mx[i],W[j],w′,∆i,∆jrf

)
[q]

= 〈ut,i,vq〉,
↖(

rt′′ [i
′′, q′′] = rx[t′′, i′′]rf [q

′′]
)

11 Our scheme readily extends to be based on k-Lin. However, that makes the scheme
more complex to present. We choose to present this scheme using SXDH in this
paper.

where vectors ut,i and vq are as follows, with 1{· · ·} indicating if the conditions
(its argument) are true:

ut,i = (rx[t− 1, i] ‖ · · · ‖ rx[t, i′] · 1{x = x[i], w = W[j]} ‖ · · · ‖ 0),
vq = (−rf [q] ‖ · · · ‖ (Mx,w,w′,∆i,∆jrf)[q] ‖ · · · ‖ 0).

Similarly, we can “decompose” `init = eT
1,1,0,1r0 as 〈rx[0, 1, 1,0], rf [1]〉. (For sim-

plicity in the discussion below, we omit details on how to handle `T+1.) Given
such decomposition, our semi-compact 1-ABE scheme follows immediately by
using IPFE to compute the garbling:

Honest Algorithms

sk(M,µ): iskinit(rf [1] ‖ 0), ∀q: iskq(ut,i ‖ 0)
ct(x, T, S): ictinit(rx[0, 1, 1,0] ‖ 0), ∀t, i: icti,i(vq ‖ 0)

Decrypting the pair iskinit, ictinit (generated using one master secret key) gives
exactly the first label `init, while decrypting iskq, ictt,i (generated using another
master secret key) gives the label `t[i, q] in the exponent, generated using pseu-
dorandomness rt[i, q] = rx[t, i]rf [q]. Note that the honest algorithms encode rf [q]
(in vq) and rx[t, i] (in ut,i) in IPFE secret keys and ciphertexts that use the two
source groups G1 and G2 respectively. As such, we cannot directly use the SXDH
assumption to argue the pseudorandomness of rt[i, q]. In the security proof, we
will use the function-hiding property of IPFE to move both rx[t, i] and rf [q] into
the same source group before invoking SXDH.

Adaptive Security. To show adaptive security, we follow the same blueprint
of going through a sequence of hybrids, where we first hardcode `init and sample
it reversely using RevSamp, and next simulate the other labels `t[i, q] one by
one. Hardwiring `init is easy by relying on the function-hiding property of IPFE.
However, it is now more difficult to simulate `t[i, q] because i) before simulating
`t[i, q], we need to switch its randomizer rt−1[i, q] = rx[t − 1, i]rf [q] to truly
random rt−1[i, q]

$← Zp, which enables us to simulate the label `t[i, q] as random;
and ii) to keep simulation progressing, we need to switch the random `t[i, q] back
to a pseudorandom value `t[i, q] = sx[t, i]sf [q], as otherwise, there is not enough
space to store all ∼ TNS2SQ random labels `t[i, q].

We illustrate how to carry out above proof steps in the simpler case where
the the adversary queries for the ciphertext first and the secret key second. The
other case where the secret key is queried first is handled using similar ideas,
but the technicality becomes much more delicate.

In hybrid (t, i), the first label `init is reversely sampled and hardcoded in the
secret key iskinit, i.e., ictinit encrypts (1 ‖ 0) and iskinit encrypts (`init ‖ 0) with
`init ← RevSamp(· · ·). All labels `t′ [i

′, q] with (t′, i′) < (t, i) have been simulated
as sx[t′, i′]sf [q] — observe that the ciphertext ictt′,i′ encodes only sf [t

′, i′] in the
second slot, which is multiplied by sf [q] in the second slot of iskq. On the other
hand, all labels `t′ [i

′, q] with (t′, i′) ≥ (t, i) are generated honestly as the honest
algorithms do.

Hybrid (t, i), (t, i) : 1 , and (t, i) + 1

ct(x, T, S): (t′, i′) < (t, i): ictt′,i′(0 ‖ sx[t′, i′] ‖ 0)

(t′, i′) = (t, i): ictt ,i (ut,i 0 0 ‖ 0 0 sx[t, i] ‖ 0 1 0)

(t′, i′) > (t, i): ictt′,i′(ut′,i′ ‖ 0 ‖ 0)

sk(M,µ): q ∈ [Q]: iskq(vq ‖ sf [q] ‖ 0 `t[i, q] 0)

Moving from hybrid (t, i) to its successor (t, i) + 1, the only difference is that
labels `t[i, q] are switched from being honestly generated 〈ut,i,vq〉 to pseudo-
random sx[t, i]sf [q], as depicted above with values in the solid line box (the rest
of the hybrid is identical to hybrid (t, i)). The transition can be done via an
intermediate hybrid (t, i) : 1 with values in the dash line box. In this hybrid,
all labels `t[i, q] produced as inner products of all vq’s and ut,i are temporarily
hardcoded in the secret keys iskq, using the third slot (which is zeroed out in
all the other u(t′,i′) 6=(t,i)’s). Furthermore, ut,i is removed from ictt,i. As such,
the random scalar rx[t − 1, i] (formerly embedded in ut,i) no longer appears in
the exponent of group G1, and `init ← RevSamp(· · ·) can be performed using
rx[t− 1, i], rf [q], rt−1[i, q] in the exponent of G2. Therefore, we can invoke the
SXDH assumption in G2 to switch the randomizers rt−1[i, q] = rx[t − 1, i]rf [q]
to be truly random, and hence so are the labels `t[i, q]

$← Zp. By a similar ar-
gument, this intermediate hybrid (t, i) : 1 is also indistinguishable to (t, i) + 1,
as the random `t[i, q] can be switched to sx[t, i]sf [q] in hybrid (t, i) + 1, relying
again on SXDH and the function-hiding property of IPFE. This concludes our
argument of security in the simpler case where the ciphertext is queried first.

AKGS and 1-ABE for NL. Our construction of AKGS and 1-ABE essen-
tially works for NL without modification, because the computation of a non-
deterministic logspace Turing machine M = ([Q], qacc, δ) on an input x can
also be represented as a sequence of matrix multiplications. We briefly describe
how by pointing out the difference from L. The transition function δ of a non-
deterministic TM dost not instruct a unique transition, but rather specifies a set
of legitimate transitions. Following one internal configuration (i, j,W, q), there
are potentially many legitimate successors:

(i, j,W, q)→
{

(i′ = i+ ∆i, j′ = j + ∆j,W′ = overwrite(W, j, w′), q′)∣∣ (q′, w′,∆i,∆j) ∈ δ(q,x[i],W[j])
}
.

The computation is accepting if and only if there exists a path with T legiti-
mate transitions starting from (1, 1,0, 1), through (it, jt,Wt, qt) for t ∈ [T], and
landing at qT = qacc.

Naturally, we modify the transition matrix as below to reflect all legitimate
transitions. The only difference is that each transition block determined by δ
may map a state q to multiple states q′, as highlighted in the solid line box:

M(x)[(i, j,W, q), (i′, j′,W′, q′)] = CanTransit[(i, j,W), (i′, j′,W′)]

×Mx[i],W[j],W′[j],i′−i,j′−j [q, q
′],

Mx,w,w′,∆i,∆j [q, q
′] = 1 iff (q′, w′,∆i,∆j) ∈ δ(q, x, w′).

Let us observe the effect of right multiplying M(x) to an ei,q indicating configu-
ration (i, q): eT

i,qM(x) gives a vector c1 such that c1[i′, q′] = 1 if and only if (i′, q′)

is a legitimate next configuration. Multiplying M(x) one more time, eT

i,q

(
M(x)

)2
gives c2 where c2[i′, q′] is the number of length-2 paths of legitimate transitions

from (i, q) to (i′, q′). Inductively, eT

i,q

(
M(x)

)t
yields ct that counts the number

of length-t paths from (i, q) to any other internal configuration (i′, q′). Therefore,
we can arithmetize the computation of M on x as

M |N,T,S(x) = eT

(1,1,0,1)

(
M(x)

)T
t for t = 1NS2S ⊗ eqacc . (6)

Right multiplying t in the end sums up the number of paths to (i, qacc) for all i
in cT (i.e., accepting paths).

If the computation is not accepting — there is no path to any (i, qacc) —
the final sum would be 0 as desired. If the computation is accepting — there
is a path to some (i, qacc) — then the sum should be non-zero (up to the fol-
lowing technicality). Now that we have represented NL computation as matrix
multiplication, we immediately obtain AKGS and 1-ABE for NL using the same
construction for L.

A Technicality in the Correctness for NL.A Technicality in the Correctness for NL. The correctness of our scheme relies
on the fact that when the computation is accepting, the matrix multiplication
formula (Equation (6)) counts correctly the total number of length-T accepting
paths. However, a subtle issue is that in our 1-ABE, the matrix multiplications
are carried out over Zp, where p is the order of the bilinear pairing groups. This
means if the total number of accepting paths happens to be a multiple of p,
the sequence of matrix multiplications mod p carried out in 1-ABE would re-
turn 0, while the correct output should be non-zero. This technicality can be
circumvented if p is entropic with ω(log n) bits of entropy and the computation
(M,x, T, S) is independent of p. In that case, the probability that the number of
accepting paths is a multiple of p is negligible. We can achieve this by letting the
setup algorithm of 1-ABE sample the bilinear pairing groups from a distribu-
tion with entropic order. Then, we have statistical correctness for computations
(M,x, T, S) chosen statically ahead of time (independent of p). We believe such
static correctness is sufficient for most applications where correctness is meant
for non-adversarial behaviors. However, if the computation (M,x, T, S) is cho-
sen adaptively to make the number of accepting paths a multiple of p, then an
accepting computation will be mistakenly rejected. We stress that security is
unaffected since if an adversary chooses M and (x, T, S) as such, it only learns
less information.

The Special Cases of DFA and NFA. DFA and NFA are special cases of
L and NL, respectively, as they can be represented as Turing machines with a
work tape of size S = 1 that always runs in time T = N , and the transition
function δ always moves the input tape pointer to the right. Therefore, the
internal configuration of a finite automaton contains only the state q, and the
transition matrix M(x) is determined by δ and the current input bit x under
scan. Different from the case of L and NL, here the transition matrix no longer

keeps track of the input tape pointer since its move is fixed — the tth step uses
the transition matrix M(x[t]) depending on x[t]. Thus, the computation can be
represented as follows:

M(x) = eT

1

N∏
t=1

M(x[t]) · eqacc = eT

1

N∏
t=1

(
M0(1− x[t]) + M1x[t]

)
· eqacc ,

Mb[q, q
′] = 1{δ(q, b) = q′}.

Our construction of AKGS directly applies:

`init = Linit(x) = eT

1r0,

t ∈ [N]: `t =
(
Lt,q(x)

)
q∈[Q]

= −rt−1 + M(x[t]) rt,
(
rt−1, rt

$← ZQp
)

`N+1 =
(
LN+1,q(x)

)
q∈[Q]

= −rN + µeqacc .

When using pseudorandomness rt[q] = rf [q]rx[t], the labels `t[q] can be com-
puted as the inner products of vq = (−rf [q] ‖ (M0rf)[q] ‖ (M1rf)[q] ‖ 0) and
ut = (rx[t− 1] ‖ (1−x[t])rx[t] ‖ x[t]rx[t] ‖ 0). Applying our 1-ABE construction
with respect to such “decomposition” gives compact 1-ABE for DFA and NFA
with secret keys of size O(Q) and ciphertexts of size O(N).

Discussion. Prior to our work, there have been constructions of ABE for DFA
based on pairing [1,5,12,13,29,58] and ABE for NFA based on LWE [4]. However,
no previous scheme achieves adaptive security unless based on q-type assump-
tions [12,13]. The work of [20] constructed ABE for DFA, and that of [7] for
random access machines, both based on LWE, but they only support inputs
of bounded length, giving up the important advantage of uniform computa-
tion of handling unbounded-length inputs. There are also constructions of ABE
(and even the stronger generalization, functional encryption) for Turing ma-
chines [3,9,28,41] based on strong primitives such as multilinear map, extractable
witness encryption, and indistinguishability obfuscation. However, these primi-
tives are non-standard and currently not well-understood.

In terms of techniques, our work is most related to previous pairing-based
ABE for DFA, in particular, the recent construction based on k-Lin [29]. These
ABE schemes for DFA use a linear secret-sharing scheme for DFA first proposed
in [58], and combining the secret key and ciphertext produces a secret-sharing
in the exponent, which reveals the secret if and only if the DFA computation is
accepting. Proving (even selective) security is complicated. Roughly speaking,
the work of [29] relies on an entropy propagation technique to trace the DFA
computation and propagate a few random masks “down” the computation path,
with which they can argue that secret information related to states that are
backward reachable from the final accepting states is hidden. The technique is
implemented using the “nested two-slot” dual system encryption [23,33,46,47,
54,57] combined with a combinatorial mechanism for propagation.

Our AKGS is a generalization of Waters’ secret-sharing scheme to L and NL,
and the optimized version for DFA is identical to Waters’ secret-sharing scheme.
Furthermore, our 1-ABE scheme from AKGS and IPFE is more modular. In

particular, our proof (similar to our 1-ABE for non-uniform computation) does
not reason about or trace the computation, and simply relies on the structure of
AKGS. Using IPFE enables us to design sophisticated sequences of hybrids with-
out getting lost in the algebra, as IPFE helps separating the logic of changes in
different hybrids from how to implement the changes. For instance, we can eas-
ily manage multiple slots in the vectors encoded in IPFE for holding temporary
values and generating pseudorandomness.

3 Preliminaries

Indexing. Let S be any set, we write SI for the set of vectors whose entries
are in S and indexed by I, i.e., SI = {(v[i])i∈I |v[i] ∈ S}. Suppose s1, s2 are
two index sets with s1 ⊆ s2. For any vector v ∈ Zs1

p , we write u = v|s2 for its

zero-extension into Zs2
p , i.e., u ∈ Zs2

p and u[i] = v[i] if i ∈ s1 and 0 otherwise.

Conversely, for any vector v ∈ Zs2
p , we write u = v|s1

for its canonical projection

onto Zs1
p , i.e., u ∈ Zs1

p and u[i] = v[i] for i ∈ s1. Lastly, let u,v ∈ Zsp, denote by
〈u,v〉 their inner product, i.e.,

∑
i∈s u[i]v[i].

Coefficient Vector. We conveniently associate an affine function f : ZIp → Zp
with its coefficient vector f ∈ Zsp (written as the same letter in boldface) for
s = {const} ∪ {coefi | i ∈ I} such that f(x) = f [const] +

∑
i∈I f [coefi]x[i].

3.1 Bilinear Pairing and Matrix Diffie-Hellman Assumption

Throughout the paper, we use a sequence of bilinear pairing groups

G = {(Gλ,1, Gλ,2, Gλ,T, gλ,1, gλ,2, eλ)}λ∈N,

where Gλ,1, Gλ,2, Gλ,T are groups of prime order p = p(λ), and Gλ,1 (resp. Gλ,2)
is generated by gλ,1 (resp. gλ,2). The maps eλ : Gλ,1 ×Gλ,2 → Gλ,T are

– bilinear: eλ(gaλ,1, g
b
λ,2) =

(
eλ(gλ,1, gλ,2)

)ab
for all a, b; and

– non-degenerate: eλ(gλ,1, gλ,2) generates Gλ,T.

Implicitly, we set gλ,T = e(gλ,1, gλ,2). We require the group operations as well
as the bilinear maps be efficiently computable.

Bracket Notation. Fix a security parameter, for i = 1, 2,T, we write [[A]]i for
gAλ,i, where the exponentiation is element-wise. When bracket notation is used,
group operation is written additively, so [[A + B]]i = [[A]]i + [[B]]i for matrices
A,B. Pairing operation is written multiplicatively so that [[A]]1[[B]]2 = [[AB]]T.
Furthermore, numbers can always operate with group elements, e.g., [[A]]1B =
[[AB]]1.

Matrix Diffie-Hellman Assumption. In this work, we rely on the MDDH
assumptions defined in [26], which is implied by k-Lin.

Definition 1 (MDDHk [26]). Let k ≥ 1 be an integer constant. For a sequence
of pairing groups G of order p(λ), MDDHk holds in Gi (i = 1, 2,T) if

{([[A]]i, [[s
TA]]i)}λ∈N ≈ {([[A]]i, [[c

T]]i)}λ∈N for A
$← Zk×(k+1)

p(λ) , s
$← Zkp(λ), c

$← Zk+1
p(λ).

3.2 Attribute-Based Encryption

Definition 2. Let M = {Mλ}λ∈N be a sequence of message sets. Let P =
{Pλ}λ∈N be a sequence of families of predicates, where Pλ = {P : XP × YP → {0, 1}}.
An attribute-based encryption (ABE) scheme for message space M and predi-
cate space P consists of 4 efficient algorithms:

– Setup(1λ, P ∈ Pλ) generates a pair of master public/secret key (mpk,msk).
– KeyGen(1λ,msk, y ∈ YP) generates a secret key sky associated with y.
– Enc(1λ,mpk, x ∈ XP , g ∈Mλ) generates a ciphertext ctx,g for g associated

with x.
– Dec(1λ, sk, ct) outputs either ⊥ or a message in Mλ.

Correctness requires that for all λ ∈ N, all P ∈ Pλ, g ∈ Mλ, and all y ∈ YP ,
x ∈ XP such that P (x, y) = 1,

Pr

 (mpk,msk)
$← Setup(1λ, P)

sk
$← KeyGen(1λ,msk, y)

ct
$← Enc(1λ,mpk, x, g)

: Dec(1λ, sk, ct) = g

 = 1.

The basic security requirement of an ABE scheme stipulates that no information
about the message can be inferred as long as each individual secret key the
adversary receives does not allow decryption. The adversary is given the master
public key and allowed arbitrarily many secret key and ciphertexts queries. For
the secret key queries, the adversary is given the secret key for a policy of
its choice. For the ciphertext queries, the adversary is either given a correct
encryption to the message or an encryption of a random message. It has to
decide whether the encryptions it receives are correct or random. We stress that
in the adaptive setting considered in this work, the secret key and ciphertext
queries can arbitrarily interleave and depend on responses to previous queries.
The definition is standard in the literature, and we refer the readers to [32] or
the full version for details.

3.3 Function-Hiding Slotted Inner-Product Functional Encryption

Definition 3 (pairing-based slotted IPFE). Let G be a sequence of pairing
groups of order p(λ). A slotted inner-product functional encryption (IPFE)
scheme based on G consists of 5 efficient algorithms:

– Setup(1λ, spub, spriv) takes as input two disjoint index sets, the public slot
spub and the private slot spriv, and outputs a pair of master public key and
master secret key (mpk,msk). The whole index set s is spub ∪ spriv.

– KeyGen(1λ,msk, [[v]]2) generates a secret key skv for v ∈ Zsp(λ).

– Enc(1λ,msk, [[u]]1) generates a ciphertext ctu for u ∈ Zsp(λ) using the master
secret key.

– Dec(1λ, skv, ctu) is supposed to compute [[〈u,v〉]]T.

– SlotEnc(1λ,mpk, [[u]]1) generates a ciphertext ct for u|s when given input

u ∈ Zspub

p(λ) using the master public key.

Decryption correctness requires that for all λ ∈ N, all index set s, and all vectors
u,v ∈ Zsp(λ),

Pr

msk

$← Setup(1λ,s)

sk
$← KeyGen(1λ,msk, [[v]]2)

ct
$← Enc(1λ,msk, [[u]]1)

: Dec(1λ, sk, ct) = [[〈u,v〉]]T

 = 1.

Slot-mode correctness requires that for all λ ∈ N, all disjoint index sets spub, spriv,

and all vector u ∈ Zspub

p(λ) , the following distributions should be identical:{
(mpk,msk)

$← Setup(1λ,spub,spriv)

ct
$← Enc(1λ,msk, [[u|s]]1)

: (mpk,msk, ct)

}
,

{
(mpk,msk)

$← Setup(1λ,spub,spriv)

ct
$← SlotEnc(1λ,mpk, [[u]]1)

: (mpk,msk, ct)

}
.

Slotted IPFE generalizes both secret-key and public-key IPFEs: A secret-key
IPFE can be obtained by setting spub = ∅ and spriv = s; a public-key IPFE can
be obtained by setting spub = s and spriv = ∅.

We now define the adaptive function-hiding property.

Definition 4 (function-hiding slotted IPFE). Let (Setup,KeyGen,Enc,Dec,SlotEnc)
be a slotted IPFE. The scheme is function-hiding if Exp0

FH ≈ Exp1
FH, where

ExpbFH for b ∈ {0, 1} is defined as follows:

– Setup. Run the adversaryA(1λ) and receive two disjoint index sets spub, spriv

from A. Let s = spub ∪ spriv. Run (mpk,msk)
$← Setup(1λ, spub, spriv) and

return mpk to A.
– Challenge. Repeat the following for arbitrarily many rounds determined by
A: In each round, A has 2 options.
• A can submit [[v0

j]]2, [[v
1
j]]2 for a secret key, where v0

j ,v
1
j ∈ Zsp. Upon this

query, run skj
$← KeyGen(1λ,msk, [[vbj]]2) and return skj to A.

• A can submit [[u0
i]]1, [[u

1
i]]1 for a ciphertext, where u0

i ,u
1
i ∈ Zsp. Upon this

query, run cti
$← Enc(1λ,msk, [[ubi]]1) and return cti to A.

– Guess. A outputs a bit b′. The outcome is b′ if v0
j |spub

= v1
j |spub

for all j

and 〈u0
i ,v

0
j 〉 = 〈u1

i ,v
1
j 〉 for all i, j. Otherwise, the outcome is 0.

Applying the techniques in [49,50] to the IPFE of [2,60], we obtain adaptively
secure function-hiding slotted IPFE:

Lemma 5 ([2,49,50,60]). Let G be a sequence of pairing groups and k ≥ 1 an
integer constant. If MDDHk holds in both G1, G2, then there is an (adaptively)
function-hiding slotted IPFE scheme based on G.

4 Arithmetic Key Garbling Scheme

Arithmetic key garbling scheme (AKGS) is an information-theoretic primitive
related to randomized encodings [11] and partial garbling schemes [37]. It is the
information-theoretic core in our construction of one-key one-ciphertext ABE
(more precisely 1-ABE constructed in Section 5). Given a function f : ZIp → Zp
and two secrets α, β ∈ Zp, an AKGS produces label functions L1, . . . , Lm :
ZIp → Zp that are affine in x. For any x, one can compute αf(x) + β from
L1(x), . . . , Lm(x) together with f and x, while all other information about α, β
are hidden.

Definition 6 (AKGS, adopted from Definition 1 in [37]). An arithmetic key
garbling scheme (AKGS) for a function class F = {f}, where f : ZIp → Zp for
some p, I specified by f , consists of two efficient algorithms:

– Garble(f ∈ F , α ∈ Zp, β ∈ Zp) is randomized and outputs m affine functions
L1, . . . , Lm : ZIp → Zp (called label functions, which specifies how input is
encoded as labels). Pragmatically, it outputs the coefficient vectors L1, . . . ,Lm.

– Eval(f ∈ F ,x ∈ ZIp , `1 ∈ Zp, . . . , `m ∈ Zp) is deterministic and outputs a value
in Zp (the input `1, . . . , `m are called labels, which are supposed to be the
values of the label functions at x).

Correctness requires that for all f : ZIp → Zp ∈ F , α, β ∈ Zp,x ∈ ZIp ,

Pr

[
(L1, . . . ,Lm)

$← Garble(f, α, β)

`j ← Lj(x) for j ∈ [m]
: Eval(f,x, `1, . . . , `m) = αf(x) + β

]
= 1.

We also require that the scheme have deterministic shape, meaning that m is
determined solely by f , independent of α, β, and the randomness in Garble. The
number of label functions, m, is called the garbling size of f under this scheme.

Definition 7 (linear AKGS). An AKGS (Garble,Eval) for F is linear if the
following conditions hold:

– Garble(f, α, β) uses a uniformly random vector r
$← Zm′p as its random-

ness, where m′ is determined solely by f , independent of α, β.
– The coefficient vectors L1, . . . ,Lm produced by Garble(f, α, β; r) are linear in

(α, β, r).
– Eval(f,x, `1, . . . , `m) is linear in (`1, . . . , `m).

Later in this paper, AKGS refers to linear AKGS by default.
The basic security notion of AKGS requires the existence of an efficient simu-

lator that draws a sample from the real labels’ distribution given f,x, αf(x)+β.
We emphasize, as it’s the same case in [37], that AKGS does not hide x and
hides all other information about α, β except the value αf(x) + β.

Definition 8 ((usual) simulation security, Definition 1 in [37]). An AKGS
(Garble,Eval) for F is secure if there exists an efficient algorithm Sim such that

for all f : ZIp → Zp ∈ F , α, β ∈ Zp,x ∈ ZIp , the following distributions are
identical: {

(L1, . . . ,Lm)
$← Garble(f, α, β)

`j ← Lj(x) for j ∈ [m]
: (`1, . . . , `m)

}
,

{ (`1, . . . , `m)
$← Sim(f,x, αf(x) + β) : (`1, . . . , `m)}.

As discussed in Section 2.1, the usual simulation security suffices for selective
(or semi-adaptive) security. To achieve adaptive security, we need the following
stronger property.

Definition 9 (piecewise security). An AKGS (Garble,Eval) for F is piecewise
secure if the following conditions hold:

– The first label is reversely sampleable from the other labels together with
f and x. This reconstruction is perfect even given all the other label func-
tions. Formally, there exists an efficient algorithm RevSamp such that for all
f : ZIp → Zp ∈ F , α, β ∈ Zp,x ∈ ZIp , the following distributions are identical:{

(L1, . . . ,Lm)
$← Garble(f, α, β)

`1 ← L1(x)
: (`1,L2, . . . ,Lm)

}
,

(L1, . . . ,Lm)
$← Garble(f, α, β)

`j ← Lj(x) for j ∈ [m], j > 1

`1
$← RevSamp(f,x, αf(x) + β, `2, . . . , `m)

: (`1,L2, . . . ,Lm)

 .

– For the other labels, each is marginally random even given all the label
functions after it. Formally, this means for all f : ZIp → Zp ∈ F , α, β ∈ Zp,
x ∈ ZIp and all j ∈ [m], j > 1, the following distributions are identical:{

(L1, . . . ,Lm)
$← Garble(f, α, β)

`j ← Lj(x)
: (`j ,Lj+1, . . . ,Lm)

}
,{

(L1, . . . ,Lm)
$← Garble(f, α, β)

`j
$← Zp

: (`j ,Lj+1, . . . ,Lm)

}
.

As piecewise security is stronger, it implies the usual simulation security:

Lemma 10. A piecewise secure AKGS for some function class is also secure
for the same function class.

5 1-ABE for ABPs

Arithmetic branching program (ABP) is a computation model introduced by
Nisan [51] and later studied in [15,34–37]. It is defined by a directed acyclic

graph (V,E) with distinguished vertices s, t ∈ V where every edge e ∈ E is
labeled by an affine function we of the input x, and the output is computed as

f(x) =
∑

s-t path
e1···ei

i∏
j=1

w(ej)(x).

Our ABE for ABPs relies on an AKGS for ABPs, which we derive as a special
case of the partial garbling scheme for ABPs in [37].

Lemma 11. There is a piecewise secure AKGS for ABPs. Moreover, the garbling
size of an ABP coincides with the number of vertices in the graph.

Below, we define and construct 1-ABE, a precursor to our full-fledged ABE,
using a piecewise secure AKGS for the matching function class. It captures
the key ideas for achieving adaptive security using AKGS and function-hiding
IPFE, while keeping the ciphertext compact. (For technical reasons, it is more
convenient to define it as a key encapsulation mechanism.)

Definition 12. Let G be a sequence of pairing groups of order p(λ). A 1-ABE
scheme based on G has the same syntax as an ABE scheme in Definition 2,
except that

– There is no message space M.
– Setup outputs a master secret key msk, without a mpk.
– KeyGen(1λ,msk, y, µ) outputs a secret key sk for policy y that encapsulates a

pad µ ∈ Zp(λ).
– Enc(1λ,msk, x) uses msk and outputs a ciphertext ct for attribute x without

encrypting a message.
– Dec(sk, ct) outputs ⊥ or some [[µ′]]T.
– Correctness requires that µ = µ′ if the decapsulation should be successful,

i.e., P (x, y) = 1.

Such a scheme is 1-key 1-ciphertext secure (or simply secure) if Exp0
1-sk,1-ct ≈

Exp1
1-sk,1-ct, where Expb1-sk,1-ct is defined as follows:

– Setup. Run the adversary A(1λ) and receive a predicate P from it.
– Query I. A can submit a key query y. Upon this query, sample two random

pads µ0, µ1 $← Zp(λ), run sk
$← KeyGen(1λ,msk, y, µ0), and return (sk, µb) to

A.
– Challenge. A submits a challenge attribute x. Upon the challenge, run ct

$←
Enc(1λ,msk, x), and return ct to A.

– Query II. Same as Query I.
– Guess. A outputs a bit b′. The outcome of the experiment is b′ if the adver-

sary makes only a single key query for some y and P (x, y) = 0. Otherwise,
the outcome is 0.

For any function class F (e.g., arithmetic branching programs), we show how to
construct a 1-ABE for the class of zero-test predicates in F (i.e., predicates of
form f 6=0, f=0 that computes whether f(x) evaluates to zero or non-zero), using
a piecewise secure AKGS for F and a function-hiding secret-key IPFE scheme.

Construction 13 (1-ABE). We describe the construction for any fixed value of
the security parameter λ and suppress the appearance of λ below for simplicity
of notations. Let (Garble,Eval) be an AKGS for a function class F , G pairing
groups of order p, and (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a secret-
key IPFE based on G. We construct a 1-ABE scheme based on G for the predicate
space P induced by F :

Xn = Znp , Yn = {f 6=0, f=0 | f ∈ F , f : Znp → Zp},
P = {Pn : Xn × Yn → {0, 1}, (x, y) 7→ y(x) |n ∈ N}.

The 1-ABE scheme (Setup,KeyGen,Enc,Dec) operates as follows:

– Setup(1n) takes the attribute length in unary (i.e., Pn is encoded as 1n) as
input. It generates an IPFE master secret key msk

$← IPFE.Setup(s1-ABE)
for the index set s1-ABE = {const, coef1, . . . , coefn, sim1, sim?}. The algorithm
returns msk as the master secret key.

Note: The positions indexed by const, coef1, . . . , coefn in the secret key encode
the coefficient vectors Lj of the label functions Li produced by garbling f with
secrets α, β, and these positions encode (1,x) in the ciphertext. The positions
indexed by sim1, sim? are set to zero by the honest algorithms, and are only
used in the security proof.

– KeyGen(msk, y ∈ Yn, µ ∈ Zp) samples η
$← Zp and garbles the function f

underlying y as follows:{
α

α

← µ, β ← 0, if y = f 6=0;

← η, β ← µ, if y = f=0;
(L1, . . . ,Lm)

$← Garble(f, α, β).

It generates an IPFE key iskj
$← IPFE.KeyGen(msk, [[vj]]2) for the following

vector vj encoding each label function Lj :

vector const coefi sim1 sim?

vj Lj [const] Lj [coefi] 0 0

The algorithm returns sky = (y, isk1, . . . , iskm) as the secret key.
– Enc(msk,x ∈ Znp) generates an IPFE ciphertext ict

$← IPFE.Enc(msk, [[u]]1)
encrypting the vector u that contains 1,x:

vector const coefi sim1 sim?

u 1 x[i] 0 0

It returns ct = (x, ict) as the ciphertext.
– Dec(sk, ct) parses sk as (y, isk1, . . . , iskm) and ct as (x, ict), and returns ⊥ if
y(x) = 0. Otherwise, it does the following:

for j ∈ [m]: [[`j]]T ← IPFE.Dec(iskj , ict),

[[µ′]]T ←

{
1

f(x)Eval(f,x, [[`1]]T, . . . , [[`m]]T), if y = f6=0;

Eval(f,x, [[`1]]T, . . . , [[`m]]T), if y = f=0.

The algorithm returns [[µ′]]T as the decapsulated pad.

Note: We show the correctness of the scheme. First, by the correctness of
IPFE and the definition of vectors vj ,u, we have `j = 〈u,vj〉 = Lj(x) for all
j ∈ [m]. Next, by the linearity of Eval in `1, . . . , `m, we can evaluate the gar-
bling in the exponent of the target group and obtain Eval(f,x, `1, . . . , `m) =
αf(x) +β in the exponent. In the two cases where decapsulation should suc-
ceed, we have

αf(x) + β =

{
µf(x), if y = f 6=0 and f(x) 6= 0;

µ, if y = f=0 and f(x) = 0.

In both cases, the µ′ above equals to µ. Therefore, Dec correctly decapsulates
the pad.

Theorem 14. Suppose in Construction 13, the AKGS is piecewise secure and
the IPFE scheme is function-hiding, then the constructed 1-ABE scheme is 1-
key 1-ciphertext secure.

We refer the readers to the full version for the formal proof.

Acknowledgments. The authors were supported by NSF grants12 CNS-1528178,
CNS-1929901, CNS-1936825 (CAREER). The authors thank Hoeteck Wee for
helpful discussions and the anonymous reviewers for insightful comments.

References

1. Shashank Agrawal and Melissa Chase. Simplifying design and analysis of com-
plex predicate encryption schemes. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 627–
656. Springer, Heidelberg, April / May 2017.

2. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional en-
cryption for inner products, from standard assumptions. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
333–362. Springer, Heidelberg, August 2016.

3. Shweta Agrawal and Monosij Maitra. FE and iO for turing machines from minimal
assumptions. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II,
volume 11240 of LNCS, pages 473–512. Springer, Heidelberg, November 2018.

4. Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based encryp-
tion (and more) for nondeterministic finite automata from LWE. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693
of LNCS, pages 765–797. Springer, Heidelberg, August 2019.

5. Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based encryp-
tion for deterministic finite automata from DLIN. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 91–117. Springer,
Heidelberg, December 2019.

12 The views expressed are those of the authors and do not reflect the official policy
or position of the Department of Defense, the National Science Foundation, or the
U.S. Government.

6. Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin.
Delegating RAM computations with adaptive soundness and privacy. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS,
pages 3–30. Springer, Heidelberg, October / November 2016.

7. Prabhanjan Ananth, Xiong Fan, and Elaine Shi. Towards attribute-based encryp-
tion for RAMs from LWE: Sub-linear decryption, and more. Cryptology ePrint
Archive, Report 2018/273, 2018. https://eprint.iacr.org/2018/273.

8. Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryp-
tion and indistinguishability obfuscation from degree-5 multilinear maps. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I,
volume 10210 of LNCS, pages 152–181. Springer, Heidelberg, April / May 2017.

9. Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for turing
machines. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 125–153. Springer, Heidelberg, January 2016.

10. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In
45th FOCS, pages 166–175. IEEE Computer Society Press, October 2004.

11. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic
circuits. In Rafail Ostrovsky, editor, 52nd FOCS, pages 120–129. IEEE Computer
Society Press, October 2011.

12. Nuttapong Attrapadung. Dual system encryption via doubly selective security:
Framework, fully secure functional encryption for regular languages, and more.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 557–577. Springer, Heidelberg, May 2014.

13. Nuttapong Attrapadung. Dual system encryption framework in prime-order groups
via computational pair encodings. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 591–623. Springer,
Heidelberg, December 2016.

14. Nuttapong Attrapadung. Dual system framework in multilinear settings and ap-
plications to fully secure (compact) ABE for unbounded-size circuits. In Serge
Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 3–35. Springer,
Heidelberg, March 2017.

15. Amos Beimel and Anna Gal. On arithmetic branching programs. In IN PROC.
OF THE 13TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COM-
PLEXITY, pages 68–80, 1998.

16. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In 2007 IEEE Symposium on Security and Privacy (SP ’07),
pages 321–334, May 2007.

17. Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner prod-
uct encryption. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
Part I, volume 9452 of LNCS, pages 470–491. Springer, Heidelberg, November / De-
cember 2015.

18. Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, 47th ACM STOC, pages 439–448. ACM Press, June 2015.

19. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

https://eprint.iacr.org/2018/273

20. Xavier Boyen and Qinyi Li. Attribute-based encryption for finite automata from
LWE. In Man Ho Au and Atsuko Miyaji, editors, ProvSec 2015, volume 9451 of
LNCS, pages 247–267. Springer, Heidelberg, November 2015.

21. Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Suc-
cinct garbling and indistinguishability obfuscation for RAM programs. In Rocco A.
Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 429–437. ACM
Press, June 2015.

22. Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-
order groups via predicate encodings. In Elisabeth Oswald and Marc Fischlin, edi-
tors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 595–624. Springer,
Heidelberg, April 2015.

23. Jie Chen, Junqing Gong, Lucas Kowalczyk, and Hoeteck Wee. Unbounded ABE
via bilinear entropy expansion, revisited. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 503–
534. Springer, Heidelberg, April / May 2018.

24. Jie Chen, Junqing Gong, and Hoeteck Wee. Improved inner-product encryption
with adaptive security and full attribute-hiding. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages
673–702. Springer, Heidelberg, December 2018.

25. Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption
for inner product with full function privacy. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume 9614 of
LNCS, pages 164–195. Springer, Heidelberg, March 2016.

26. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An
algebraic framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147.
Springer, Heidelberg, August 2013.

27. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. How to run turing machines on encrypted data. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 536–553. Springer, Heidelberg, August 2013.

28. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryp-
tion. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM
STOC, pages 555–564. ACM Press, June 2013.

29. Junqing Gong, Brent Waters, and Hoeteck Wee. ABE for DFA from k-lin. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II,
volume 11693 of LNCS, pages 732–764. Springer, Heidelberg, August 2019.

30. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 545–554. ACM Press, June 2013.

31. Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry: Effi-
cient ABE for branching programs. In Tetsu Iwata and Jung Hee Cheon, editors,
ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 550–574. Springer, Hei-
delberg, November / December 2015.

32. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 89–
98. ACM Press, October / November 2006. Available as Cryptology ePrint Archive
Report 2006/309.

33. Dennis Hofheinz, Jessica Koch, and Christoph Striecks. Identity-based encryption
with (almost) tight security in the multi-instance, multi-ciphertext setting. In
Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 799–822. Springer,
Heidelberg, March / April 2015.

34. Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with
applications. In In Proc. of 5th ISTCS, pages 174–183, 1997.

35. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st FOCS, pages 294–
304. IEEE Computer Society Press, November 2000.

36. Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation
via perfect randomizing polynomials. In Peter Widmayer, Francisco Triguero
Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan Eidenbenz, and Ricardo
Conejo, editors, ICALP 2002, volume 2380 of LNCS, pages 244–256. Springer,
Heidelberg, July 2002.

37. Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In
Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors,
ICALP 2014, Part I, volume 8572 of LNCS, pages 650–662. Springer, Heidelberg,
July 2014.

38. Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof
Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommitting. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 133–163. Springer, Heidelberg, August 2017.

39. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. Journal of Cryptology,
26(2):191–224, April 2013.

40. Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and
David J. Wu. Function-hiding inner product encryption is practical. In Dario
Catalano and Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages
544–562. Springer, Heidelberg, September 2018.

41. Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adap-
tively secure and succinct functional encryption: Improving security and effi-
ciency, simultaneously. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 521–551. Springer, Hei-
delberg, August 2019.

42. Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for turing machines with unbounded memory. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 419–428. ACM Press, June
2015.

43. Lucas Kowalczyk, Jiahui Liu, Tal Malkin, and Kailash Meiyappan. Mitigating the
one-use restriction in attribute-based encryption. In Kwangsu Lee, editor, ICISC
18, volume 11396 of LNCS, pages 23–36. Springer, Heidelberg, November 2019.

44. Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for NC1 from
k-Lin. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I,
volume 11476 of LNCS, pages 3–33. Springer, Heidelberg, May 2019.

45. Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption
and (hierarchical) inner product encryption. In Henri Gilbert, editor, EU-
ROCRYPT 2010, volume 6110 of LNCS, pages 62–91. Springer, Heidelberg,
May / June 2010.

46. Allison B. Lewko and Brent Waters. New techniques for dual system encryp-
tion and fully secure HIBE with short ciphertexts. In Daniele Micciancio, editor,
TCC 2010, volume 5978 of LNCS, pages 455–479. Springer, Heidelberg, February
2010.

47. Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based en-
cryption. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of
LNCS, pages 547–567. Springer, Heidelberg, May 2011.

48. Allison B. Lewko and Brent Waters. New proof methods for attribute-based en-
cryption: Achieving full security through selective techniques. In Reihaneh Safavi-
Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
180–198. Springer, Heidelberg, August 2012.

49. Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 599–629. Springer, Heidelberg, August 2017.

50. Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th
FOCS, pages 11–20. IEEE Computer Society Press, October 2016.

51. Noam Nisan. Lower bounds for non-commutative computation (extended ab-
stract). In 23rd ACM STOC, pages 410–418. ACM Press, May 1991.

52. Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption
for inner-products. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of
LNCS, pages 214–231. Springer, Heidelberg, December 2009.

53. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In Tal Rabin, edi-
tor, CRYPTO 2010, volume 6223 of LNCS, pages 191–208. Springer, Heidelberg,
August 2010.

54. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-
product and attribute-based encryption. In Xiaoyun Wang and Kazue Sako, edi-
tors, ASIACRYPT 2012, volume 7658 of LNCS, pages 349–366. Springer, Heidel-
berg, December 2012.

55. Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption sys-
tems. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 457–473.
Springer, Heidelberg, March 2009.

56. Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. Efficient functional en-
cryption for inner-product values with full-hiding security. In Matt Bishop and
Anderson C. A. Nascimento, editors, ISC 2016, volume 9866 of LNCS, pages 408–
425. Springer, Heidelberg, September 2016.

57. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 619–636. Springer, Heidelberg, August 2009.

58. Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-
Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
218–235. Springer, Heidelberg, August 2012.

59. Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 616–637. Springer, Heidelberg,
February 2014.

60. Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups, revisited.
In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 206–233. Springer, Heidelberg, November 2017.

61. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

	Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and towards NL

