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Abstract. The hardness of the Learning with Errors (LWE) problem
is by now a cornerstone of the cryptographic landscape. In many of its
applications the so called “LWE secret” is not sampled uniformly, but
comes from a distribution with some min-entropy. This variant, known
as “Entropic LWE”, has been studied in a number of works, starting with
Goldwasser et al. (ICS 2010). However, so far it was only known how to
prove the hardness of Entropic LWE for secret distributions supported
inside a ball of small radius.
In this work we resolve the hardness of Entropic LWE with arbitrary
long secrets, in the following sense. We show an entropy bound that
guarantees the security of arbitrary Entropic LWE. This bound is higher
than what is required in the ball-bounded setting, but we show that this is
essentially tight. Tightness is shown unconditionally for highly-composite
moduli, and using black-box impossibility for arbitrary moduli.
Technically, we show that the entropic hardness of LWE relies on a sim-
ple to describe lossiness property of the distribution of secrets itself. This
is simply the probability of recovering a random sample from this distri-
bution s, given s + e, where e is Gaussian noise (i.e. the quality of the
distribution of secrets as an error correcting code for Gaussian noise).
We hope that this characterization will make it easier to derive entropic
LWE results more easily in the future. We also use our techniques to
show new results for the ball-bounded setting, essentially showing that
under a strong enough assumption even polylogarithmic entropy suffices.

1 Introduction

Lattice-based cryptography has emerged in the last few decades as one of the
most important developments in cryptography. Lattice-based cryptographic schemes
have been shown to achieve functionalities that are unknown under any other
cryptographic structure (such as fully homomorphic encryption [Gen09,BV11],
attribute-based encryption for circuits [GVW13] and many others). At the same
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time, it is possible in many cases to show strong security properties such as worst-
case to average-case hardness results [Ajt96,AD97,MR04,Reg05] that relate the
hardness of breaking the cryptographic scheme to that of solving approximate
short-vector problems in worst-case lattices, a problem that resists algorithmic
progress even when when use of quantum computers is considered.

Much of the progress in advancing lattice-based cryptography can be at-
tributed to the hardness of the Learning with Errors (LWE) problem, introduced
by Regev [Reg05]. This problem can be stated in a very clean linear-algebraic
syntax, which allows to utilize it for applications very easily, and at the same
time was shown to enjoy worst-case hardness as explained above. An instance
of the LWE problem has the following form. It is parameterized by a dimension
n and modulus q � n. Consider the following distribution. Sample a (public)
random matrix A ∈ Zn×mq , for arbitrary m = poly(n), and a (secret) random
vector s ∈ Znq , and output (A,y), where y = sA + e (mod q), and e is a noise
vector selected from some distribution (often a Gaussian with parameter σ � q).
The goal of the LWE solver is to find s given (A,y), where m can be as large
as the adversary desires. In the most straightforward use of this assumption for
cryptography (suggested in Regev’s original paper), (A,y) are used as public
key for an encryption scheme, and s is the secret key. Similar roles are assumed
in other cryptographic constructions.

Goldwasser et al. [GKPV10] initiated a study on the hardness of LWE when
s is not chosen uniformly at random. This study was motivated by the desire to
achieve an entropic notion of security that will allow to guarantee that the prob-
lem remains hard even if some information about s is leaked. They showed that
if s is sampled from a binary distribution (i.e. supported over {0, 1}n), then LWE
remains hard so long as s has sufficient entropy. In fact, sampling s from a (possi-
bly sparse) binary distribution is attractive in other contexts such as constructing
efficient post-quantum cryptographic objects [NIS], minimizing noise blowup in
homomorphic encryption [BGV12], classical worst-case to average-case reduc-
tion [BLP+13] and proving hardness for the so-called Learning with Rounding
(LWR) problem [BPR12,BGM+16]. Progress on understanding entropic LWE in
the binary setting was made in subsequent works [BLP+13,Mic18].

However, the question of hardness of LWE on imperfect secret distributions
carries significance beyond the binary setting. If we consider the key-leakage
problem, then changing the honest key distribution to be binary just for the
sake of improving robustness against key-leakage carries a heavy cost in the per-
formance and security features in case no leakage occurs. An entropic hardness
result for the general uniform setting is thus a natural question. Furthermore,
for a problem as important as LWE, the mere scientific understanding of the
robustness of the problem to small changes in the prescribed distributions and
parameters stands as a self-supporting goal.

Alas, it appears that current approaches provide no insight for the general
setting. Existing results can be extended beyond the binary setting so long as
the norm of the vectors s is bounded, i.e. so long as the secret distribution is
contained within some small enough ball, as was made explicit by Alwen et
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al. [AKPW13]. However this appeared to be an artifact of the proof technique
and it was speculated by some that a general entropic LWE result should exist.
Exploring the hardness of general entropic LWE is the goal of this work.

1.1 Our Results

We relate the hardness of Entropic LWE for arbitrary distributions to a basic
property of the distribution, specifically to how bad the distribution performs
as an error correcting code against Gaussian noise. Specifically, let S be some
distribution over secrets in Znq . Recall the notion of conditional smooth min-

entropy H̃∞ and define the noise lossiness of S as

νσ(S) = H̃∞(s|s + e) = − log

(
Pr
s,e

[A∗(s + e) = s]

)
, (1)

where s is sampled from S and e is (continuous, say) Gaussian noise with pa-
rameter σ, and A∗ is the optimal maximal likelihood decoder for s, namely
A∗(y) = arg maxs Prs,e[s|y = s + e]. This notion is a min-entropy analogue to
the notion of equivocation for Shannon-entropy, and can be seen as a guaranteed
information loss of a gaussian channel (rather than average information loss).

We advocate for noise lossiness as a new and natural measure for a distribu-
tion and show that it allows to get a good handle on the entropic LWE question.
We do this by showing that distributions with sufficiently high noise lossiness
lead to hard instances of Entropic LWE (under assumptions, see details below).
We then show that high min-entropy implies (some limited level of) noise lossi-
ness, which allows us to derive hardness results for general Entropic LWE. We
furthermore show that results for distributions supported inside a ball can also
be derived using our technique and show that noise lossiness of such distributions
is larger than that of general distributions.3 Finally, we show that our bounds
for the general entropic setting are essentially tight. See below for details.

Noise Lossiness Implies Entropic LWE Hardness (Section 4). We show
that high noise lossiness implies entropic hardness. Our result relies on the
hardness of the decision version of LWE (with “standard” secret distribution).
Whereas the variant we discussed so far is the search variant, which asserts that
finding s given (A,y) should be hard, the decision variant dLWE asserts that it
is computationally hard to even distinguish (A,y) from (A,u) where u ∈ Zmq is
uniform. The hardness of decision LWE immediately implies hardness for search
LWE, and the converse is also true but not for every noise distribution and via
a reduction that incurs some cost. This is also the case in the entropic setting.
By default when we refer to (Entropic) LWE in this work, we refer to the search
version. We will mention explicitly when referring to the decision version.

3 In fact, noise lossiness provides a simple intuitive explanation on why ball-bounded
distributions with given min-entropy yield harder Entropic LWE instances than gen-
eral ones. This is due to the fact that packing the same number of elements in a
small ball necessarily makes it harder to go back to the point of origin once noise is
added.
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Our results in this setting are as follows.

Theorem 1.1 (Main Theorem, Informal). Assume that decision LWE with
dimension k, modulus q and Gaussian noise parameter γ is hard. Let S be a
distribution over Znq with νσ1(S) ≥ k log(q) + ω(log λ) for some parameter σ1,
then Entropic LWE with secret distribution S and Gaussian noise parameter
σ ≈ σ1γ

√
m is hard.

Our actual theorem is even more expressive on two aspects. First, while the
above result applies for search Entropic LWE for all values of q, but in some
cases, e.g. when q is prime, it also applies to decision Entropic LWE. Second,
in the case where S is supported inside a ball, the term k log(q) can be relaxed
to roughly k log(γr) where r is the radius of the ball (this only applies to the
search version).

We note that we incur a loss in noise that depends on
√
m, i.e. depends on

the number of LWE samples. This is inherent in our proof technique, but using
known statistical or computational rerandomization results, this dependence can
be replaced by dependence on n, γ.

As explained above, most of our results imply hardness for search Entropic
LWE and do not directly imply hardness for the decision version (albeit search-
to-decision reductions can be applied, as we explained below). We note that this
is an artifact of the applicability of our proof technique even in cases where the
decision problem is not hard at all. We view this as a potentially useful property
which may find future applications. To illustrate, consider the setting where the
distributions of s and e, as well as the modulus q, are all even. (Indeed, usually we
consider the coordinates of e to be continuous Gaussians or a discrete Gaussians
over Z, but one may be interested in a setting where they are, say, discrete
Gaussian over 2Z.) In this setting, decision LWE is trivially easy, but search
LWE remains hard. Our techniques (as detailed in the technical overview below)
naturally extend to this setting and can be used to prove entropic hardness in
this case as well.

In the standard regime of parameters, where e is a continuous Gaussian, we
can derive the hardness of the decision problem using known search-to-decision
reductions. The most generic version, as in e.g. [Reg05], runs in time q · poly(n)
but in many cases the dependence on q can be eliminated [Pei09,MM11]. In
particular we note that in the ball-bounded setting, search-to-decision does not
incur dependence on q.

Noise-Lossiness and Entropy (Section 5). We analyze the relation between
noise-lossiness and min-entropy of a distribution both in the general setting and
in the ball-bounded setting. We derive the following bounds.

Lemma 1.2 (Noise-Lossiness of General Distributions). Let S be a gen-
eral distribution over Znq , then νσ(S) ≥ H̃∞(s)− n log(q/σ)− 1.

Lemma 1.3 (Noise-Lossiness of Small Distributions.). Let S be a distri-
bution over Znq which is supported only inside a ball of radius r, then νσ(S) ≥
H̃∞(s)− 2r

√
n/σ.
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Putting these results together with our main theorem, we get general En-
tropic LWE hardness whenever H̃∞(s) & k log(q) + n log(qγ

√
m/σ). In the r-

ball-bounded setting we require entropy H̃∞(s) & k log(γr)+2r
√
nmγ/σ.4 Note

that if we make the very strong (yet not implausible) assumption that LWE is
sub-exponentially secure, then we can use complexity leveraging and choose k
to be polylogarithmic, we can choose σ to be large enough that the second term
vanishes, and we get entropic hardness even with H̃∞(s) which is polylogarithmic
in the security parameter, in particular independent of log(q).

Tightness (Sections 6 and 7). We provide two tightness results. The first one
is essentially a restatement of a bound that was shown in the Ring-LWE setting
by Bolboceanu et al. [BBPS19]. It is unconditional, but requires q to have a
factor of a proper size.

Theorem 1.4 (Counterexample for Entropic LWE, Informal [BBPS19]).
Let n, q, σ be LWE parameters. Then if there exists p s.t. p|q and p ≈ σ

√
n,

then there exists a distribution S with min-entropy roughly n log(q/σ), such that
Entropic LWE is insecure with respect to S.

However, the above requires that q has a factor of appropriate size. One could
wonder whether one can do better for a prime q. While we do not have an explicit
counterexample here, we can show that proving such a statement (i.e. security
for Entropic LWE with entropy below roughly n log(q/σ)) cannot be done by
a black-box reduction to a standard “game based” assumption. In particular if
the reduction can only access the adversary and to the distribution of secrets as
black-box, then the entropy bound n log(q/σ) applies even for prime q.

Theorem 1.5 (Barrier for Entropic LWE, Informal). Let n, q, σ be LWE
parameters. Then there is no black-box reduction from Entropic LWE with en-
tropy � n log(q/σ) to any game-based cryptographic assumption.

1.2 Technical Overview

We provide a technical overview of our main contributions.

The Lossiness Approach to Entropic LWE. The starting point of our proof
is the lossiness approach. This approach (in some small variants) was used in
all existing hardness results for Entropic LWE [GKPV10]. However, prior works
were only able to use it for norm-bounded secrets. We show a minor yet crucial
modification that allows to relate the hardness of Entropic LWE to the noise-
lossiness of the noise distribution.

4 In the ball-bounded setting, our main improvement over [AKPW13, Appendix B] is
that our entropy bound is independent of q. This is due to our use of Hermite normal
form. Beyond this important difference, our flooding method and that of [AKPW13]
are asymptotically similar in the ball-bounded setting. Our method of flooding at the
source, however, is a general method that performs at least as well as the state of
the art in the ball-bounded setting, and also implies tight results in the unbounded
setting.
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Fix parameters n, q, σ and recall that the adversary is given (A,y), where A is
uniform, y = sA+e (mod q), s sampled from S and e is a (continuous) Gaussian
with parameter σ. The lossiness approach replaces the uniform matrix A with an
“LWE matrix” of the form: BC + F, where B ∈ Zn×kq , C ∈ Zk×mq are uniform,
and k � n,m, and where F is a matrix whose every element is a (discrete)
Gaussian with parameter γ. The decisional LWE assumption with dimension
k, modulus q and noise parameter γ asserts that BC + F is computationally
indistinguishable from a uniform matrix, and therefore the adversary should
also be able to recover s when (A,y) is generated using A = BC + F. At this
point, the vector y is distributed as

y = sA + e = sBC + sF + e .

The strategies on how to continue from here diverge. The [GKPV10] approach
is to say that when s is confined inside a ball, and when e is a wide enough
Gaussian, then the value sF + e is “essentially independent” of s. This is some-
times referred to as “noise flooding” since the noise e “floods” the value sF
and minimizes its effect. This allows to apply the leftover hash lemma to ar-
gue that sB is statistically close to a uniform s′ and obtain a new “standard”
LWE instance. The [BLP+13,Mic18] approaches can be viewed as variants of
this method, where the argument on sF + e is refined in non-trivial ways to
achieve better parameters.

This type of argument cannot work for the general setting (i.e. when s is not
short) since in this case sF + e can reveal noticeable information about s. For
example, if s is a multiple of some large enough factor then the noise e can just
be rounded away (indeed this will be the starting point for our tightness result,
as we explain further below).

Our approach therefore is to resort to a weaker claim. We do not try to
change y into a form of standard LWE, but instead all we show is that y loses
information about s. Namely, we will show that even information-theoretically it
is not possible to recover s from (A,y). This approach was taken, for example,
by Alwen et al. [AKPW13], but they were unable to show lossiness for the
general setting. The reason, essentially, is that they also use a refined version of
noise flooding, one that did not require that e completely floods sF, only slightly
perturb it. We can call it “gentle flooding” for the purpose of this work. A similar
argument was used in [DM13] to establish hardness of LWE with uniform errors
from a short interval.

We note that in all flooding methods, it is beneficial if F contains small
values as much as possible. Therefore in order to show hardness for s with as
low entropy as possible, the parameter γ is to be taken as small as possible,
while still supporting the hardness of distinguishing BC + F from uniform.

Our Approach: Gentle Flooding at the Source. Our approach can be
viewed in hindsight as a very simple modification of the lossiness / flooding
approach, that results in a very clean statement, and the characterization of the
noise lossiness as the “right” parameter for the hardness of Entropic LWE.
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We take another look at the term sF + e and recall that our goal is to use
e to lose information about s. Clearly, if e was of the form e1F, then things
would be more approachable since then we would simply have (s + e1)F, and
we will simply need to argue about the lossiness of s under additive Gaussian
noise (which is exactly our notion of noise lossiness for the distribution S). Our
observation is that even though e does not have this form, the properties of
the Gaussian distribution allow to present e as e = e1F + e2, where e1, e2 are
independent random variables (but the distribution of e2 depends on F). This
is easiest to analyze when e is a continuous Gaussian, which is the approach we
take in this work.5

It can be shown essentially by definition that the sum of two independent
Gaussian vectors with covariance matrices Σ1,Σ2 is a Gaussian with covariance
matrix Σ1 + Σ2. It follows that if we choose e1 to be a spherical Gaussian
with parameter σ1 then e1F will have covariance matrix σ1F

TF. Therefore if
we choose e2 to be an aspherical Gaussian with covariance σI − σ1F

TF, we
get that e = e1F + e2 is indeed a spherical σ Gaussian. There is an important
emphasis here, the matrix σI − σ1FTF must be a valid covariance matrix, i.e.
positive semidefinite. To guarantee this, we must set the ratio σ/σ1 to be at
least the largest singular value of the matrix F. Standard results on singular
values of Gaussian matrices imply that the largest singular value is roughly√
mγ, which governs the ratio between σ1 and σ. We stress again that e1 and

e2 are independent random variables.
Once we established the decomposition of the Gaussian, we can write y as

y = sA + e = sBC + (s + e1)F + e2 .

Now, our noise lossiness term νσ1
(S) = H̃∞(s|s + e1) naturally emerges. Note

that y cannot provide more information about s than the two variables (sB, s +
e1). Since the former contains only k log q bits, it follows that if the noise lossiness
is sufficiently larger than k log q, then naturally H̃∞(s|s + e1, sB) is non-trivial
(we need ω(log λ) where λ is the security parameter), which implies that finding
s is information theoretically hard. Thus the hardness of Entropic (search) LWE
is established.

If in addition B can serve as an extractor (this is the case when the modulus
q is prime, or when the S is binary), then we can make a stronger claim, that sB
is statistically close to uniform, and then apply (standard) LWE again in order
to obtain hardness for Entropic dLWE directly.

Finally, we notice that for norm-bounded distributions we can improve the
parameters further by using LWE in Hermite Normal Form (HNF) which has
been shown to be equivalent to standard LWE in [ACPS09]. HNF LWE allows
to argue that BC + F is indistinguishable from uniform even when the elements
of B are also sampled from a Gaussian with parameter γ (same as F). Using
HNF, we can further bound the entropy loss caused by the term sB and achieve

5 It can be shown and is by now standard that the hardness of LWE is essentially
equivalent whether e is a continuous Gaussian, discrete Gaussian, or “rounded”
Gaussian [Pei10].
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a bound that is independent of q, and only depends on γ, r, σ. We can only apply
this technique for Entropic search LWE.

For the complete analysis and formal statement of the result, see Section 4.

Computing The Noise Lossiness. We briefly explain the intuition behind
the noise lossiness computation. The exact details require calculation and are
detailed in Section 5.

For the sake of this overview, let us consider only “flat” distributions, i.e. ones
that are uniform over a set of K strings (and thus have min-entropy logK). We
will provide an upper bound on the probability Prs,e[A∗(s+e) = s] from Eq. (1),
which will immediately translate to a bound on the noise-lossiness.

For general distributions, we note that we can write

Pr
s,e

[A∗(s + e) = s] =

∫
y

Pr
s,e

[s + e = y ∧ A∗(y) = s]dy ,

where the integral is over the entire q-cube (we use integral since we use a
continuous distribution for e, but a calculation with discrete Gaussian will be
very similar). Note that the expression Prs,e[s + e = y ∧ A∗(y) = s] can be
written as Prs,e[A∗(y) + e = y ∧ A∗(y) = s], which can then be decomposed
since the event A∗(y) + e = y depends only on e and the event A∗(y) = s
depends only on s (recall that y is fixed at this point). We can therefore write

Pr
s,e

[A∗(s + e) = s] =

∫
y

Pr
e

[e = y −A∗(y)] · Pr
s

[A∗(y) = s]dy .

Now, for all y it holds that Prs[A∗(y) = s] ≤ 1/K, simply since A∗(y) is a fixed
value. It also holds that Pre[e = y −A∗(y)] is bounded by the maximum value
of the Gaussian mass function, which is 1/σn. We get that

Pr
s,e

[A∗(s + e) = s] ≤ 1

Kσn

∫
y

dy =
qn

Kσn
,

and Lemma 1.2 follows.
For the setting of Lemma 1.3, recall that S is supported only over r-norm-

bounded vectors. Note that the analysis above is correct up to and including the
conclusion that Prs[A∗(y) = s] ≤ 1/K. Furthermore, A∗(y) must return a value
in the support of S, that is small. We therefore remain with the challenge of
bounding

∫
y

Pre[e = y −A∗(y)]dy, when we are guaranteed that ‖A∗(y)‖ ≤ r.
We can deduce that this can only induce a minor perturbation to the e Gaussian.
Using Gaussian tail bounds the result follows.

Tightness. The result of [BBPS19] (Theorem 1.4 above) is quite straightforward
in our setting (they showed a ring variant which is somewhat more involved).
The idea to choose S to be uniform over the set of all vectors that are multiples
of p (or in the [BBPS19] terminology, uniform over an ideal dividing the ideal
q). This distribution has min-entropy n log(q/p) ≈ n log(q/σ) (since p ≈ σ), and
it clearly leads to an insecure LWE instance since the instance can be taken
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modulo p in order to recover the noise, and then once the noise is removed the
secret can easily be recovered.

The above argument seems to “unfairly” rely on the structure of the modulus
q, and one could hope that for prime q, which has no factors, a better result can
be achieved. We extend a methodology due to Wichs [Wic13] to show that if such
a result exists then it will require non-black-box use of the adversary and/or the
sampler for the distribution S. Consider a black-box reduction that given access
to an entropic LWE adversary A and a sampler for S (we overload the notation
and denote the sampler by S as well), manages to solve some hard problem, e.g.
solve a standard LWE instance.

We show that it is possible to efficiently (jointly) simulate A,S, such that
in the eyes of a reduction they are indistinguishable from a real high-entropy
distribution S and an adversary A that solves Entropic LWE on it, thus leading
to an efficient unconditional algorithm for said hard problem. The basic idea
relies on the natural intuition that it is hard to generate a “valid” LWE instance
without knowing the value of s that is being used. While this intuition is false in
many situations, we show that in the entropic setting with black-box reductions
it can be made formal.

Specifically, consider S that is just a uniform distribution over a set of K
randomly chosen strings (note that this distribution does not have an efficient
sampler, but a black-box reduction is required to work in such a setting as well,
and we will show how to simulate S efficiently). The adversary A, upon receiving
an instance (A,y) first checks that A is full rank (otherwise return ⊥), and if
so it brute-forces s out of y by trying all possible s∗ in the support of S, and if
there is one for which y−s∗A (mod q) is short (i.e. of the length that we expect
from noise with Gaussian parameter σ), then return a random such s∗ as answer
(otherwise return ⊥). This is a valid adversary for Entropic LWE and therefore
it should allow the reduction to solve the hard problem.

Now, let us show how to simulate S,A efficiently. The idea is to rely on the
intuition that the reduction cannot generate valid LWE instances with values
of S that it does not know, and since the distribution is sparse, the reduction
cannot generate strings in the support of S in any way except calling the S
sampler. Furthermore, since the reduction can only make polynomially many
queries to the sampler, there are only polynomially many options for s for which
it can generate valid LWE instances, and our efficient implementation of A can
just check these polynomially many options. (Note that throughout this intuitive
outline we keep referring to valid Entropic LWE instances, the above argument
actually fails without a proper notion of validity as will be explained below.)

Concretely, we will simulate the adversary using a stateful procedure, i.e.
one that keeps state. However, in the eyes of the reduction this will simulate the
original stateless adversary and therefore will suffice for our argument. We will
simulate S using “lazy sampling”. Whenever the reduction makes a call to S, we
will just sample a new random string s, and save the new sample to its internal
state. When a query (A,y) to A is made, then we first check that A is indeed
full rank (otherwise return ⊥), and if it is the case, go over all vectors s∗ that
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we generated so far (and are stored in the state), and check whether y − s∗A
(mod q) is short (in the same sense as above, i.e. of the length that we expect
from noise with Gaussian parameter σ). If it is the case then a random such s∗

is returned as the Entropic LWE answer. If the scan did not reveal any adequate
candidate, then return ⊥.

We want to argue that the above simulates the stateless process. The first step
is to show that if there is no s∗ in the state and thus our simulated adversary
returns ⊥, then the inefficient adversary would also have returned ⊥ with all
but negligible probability. Secondly, noticing that when our simulated adversary
does return a value s∗, this s∗ is a value that the reduction already received as a
response to a S query, and only one such s∗ exists. In fact, both of these concerns
boil down to properly defining a notion of validity of the Entropic LWE instance
that will prevent both of these concerns.

To this end, we notice that the original inefficient adversary return a non-⊥
value only on instances where A is full rank, and there exists a short e∗ and
value s∗ in the support of S such that y = s∗A + e∗. We will prove that it is
not possible to find an instance which is valid for s in the support of S which
has not been seen by the reduction. This will address both concerns and can
be proven since the unseen elements of S are just randomly sampled strings,
so we can think of the vectors as sampled after the matrix A is determined.
The probability of a random vector s to be s.t. y − sA is σ-short, where y is
arbitrary and A is full rank, is roughly (σ/q)n. This translates to the cardinality
K of S being as large as (roughly) n log(q/σ) and still allowing to apply the
union bound. The result thus follows.

Maybe somewhat interestingly, while our security proofs for entropic LWE
are technically similar to converse coding theorems [Sha48,W+59], our barrier
result resembles the random coding arguments used to prove the coding theo-
rem [Sha48,Sha49].

2 Preliminaries

We will denote the security parameter by λ. We say a function ν(λ) is negligible
if ν(λ) ∈ λ−ω(1). We will generally denote row vectors by x and column vectors
by x>. We will denote the L2 norm of a vector x by ‖x‖ =

√∑
i x

2
i and the L∞

norm by ‖x‖∞ = maxi |xi|.
We denote by Tq = R/qZ be the real torus of scale q. We can embed Zq =

Z/qZ into Tq in the natural way. Tq is an abelian group and therefore a Z-
algebra. Thus multiplication of vectors from Tnq with Z-matrices is well-defined.
Tq is however not a Zq-algebra. We will represent Tq elements by their central
residue class representation in [−q/2, q/2).

For a continuous random variable x, we will denote the probability-density
function of x by px(·). We will denote the probability density of x conditioned
on an event E by px|E(·). Let X,Y be two discrete random variables defined
on a common support X . We define the statistical distance between X and
Y as ∆(X,Y ) =

∑
x∈X |Pr[X = x] − Pr[Y = x]|. Likewise, if X and Y are
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two continuous random variables defined on a measurable set X , we define the
statistical distance between X and Y as ∆(X,Y ) =

∫
x∈X |pX(x)− pY (x)|.

Random Matrices Let p be a prime modulus. Let A ←$ Zn×mp be chosen
uniformly at random. Then the probability that A is not invertible (i.e. does
not have an invertible column-submatrix)

Pr[A not invertible] = 1−
n−1∏
i=0

(1− pi−m) ≤ pn−m.

For an arbitrary modulus q, a matrix A is invertible if and only if it is invertible
modulo all prime factors pi of q. As we can bound the number of prime factors
of q by log(q), we get for an A←$ Zn×mp that

Pr[A not invertible] ≤ log(q) · 2n−m.

2.1 Min-Entropy

Let x be a discrete random variable supported on a set X and z be a possibly
(continuous) random variable supported on a (measurable) set Z. The condi-
tional min-entropy H̃∞(x|z) of x given z is defined by

H̃∞(x|z) = − log

(
Ez′

[
max
x′∈X

Pr[x = x′|z = z′]

])
.

In the case that z is continuous, this becomes

H̃∞(x|z) = − log

(∫
z′
pz(z′) max

x′∈X
Pr[x = x′|z = z′]

)
,

where pz(·) is the probability density of z.

2.2 Leftover Hashing

We recall the generalized leftover hash lemma [DORS08,Reg05]

Lemma 2.1. Let q be a modulus and let n, k be integers. Let s be a random
variable defined on Znq and let B ←$ Zn×kq be chosen uniformly random. Fur-
thermore let Y be a random-variable (possibly) correlated with s. Then it holds
that

∆((B, sB, Y ), (B,u, Y )) ≤
√
qk · 2−H̃∞(s|Y ).

2.3 Gaussians

Continuous Gaussians A matrix Σ ∈ Rn×n is called positive definite, if it
holds for every x ∈ Rn\{0} that xΣx> > 0. For every positive definite matrix
Σ there exists a unique positive definite matrix

√
Σ such that (

√
Σ)2 = Σ.
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For a parameter σ > 0 define the n-dimensional gaussian function ρσ : Rn →
(0, 1] by

ρσ(x) = e−π‖x‖
2/σ2

.

For a positive definite matrix Σ ∈ Rn×n, define the function ρ√Σ : Rn →
(0, 1] by

ρ√Σ(x) := e−πxΣ−1x> .

For a scalar σ > 0, we will define

ρσ(x) := ρσ·I(x) = e−π‖x‖
2/σ2

.

The total measure of ρ√Σ over Rn is

ρ√Σ(Rn) =

∫
Rn
ρ√Σ(x)dx =

√
det(Σ).

In the scalar case this becomes

ρσ(Rn) =

∫
Rn
ρσ(x)dx = σn.

Normalizing ρ√Σ by ρ√Σ(Rn) yields the probability density for the continuous
gaussian distribution D√Σ over Rn.

For a discrete set S ⊆ Rn we define ρ√Σ(S) by

ρ√Σ(S) :=
∑
s∈S

ρ√Σ(s).

In particular, for a integer q we have

ρ√Σ(qZn) =
∑

z∈qZn
ρ√Σ(z).

For a gaussian x ∼ Dσ we get the tail-bound

Pr[|x| ≥ t] ≤ 2 · e−
t2

2σ2 .

As a simple consequence we get Pr[|x| ≥ (log(λ)) · σ] ≤ negl(λ).

Discrete Gaussians We say a random variable x defined on Z follows the
discrete gaussian distribution DZ,σ for a parameter σ > 0, if the probability
mass function of x is given by

Pr[x = x′] =
ρσ(x′)

ρσ(Z)

for every x′ ∈ Z.

Modular Gaussians For a modulus q, we also define the q-periodic gaussian
function ρ̃q,

√
Σ : by

ρ̃q,
√

Σ(x) :=
∑

z∈qZn
ρq,
√

Σ(x− z).



Hardness of LWE on General Entropic Distributions 13

We define ρ̃q,
√

Σ(Tnq ) by

ρ̃q,
√

Σ(Tnq ) := ρ̃q,
√

Σ([−q/2, q/2)n) =

∫
[−q/2,q/2)n

ρ̃q,
√

Σ(x)dx = ρ√Σ(Rn).

Consequently, normalizing ρ̃q,
√

Σ by ρ̃q,
√

Σ(Tnq ) yields a probability density on
Tnq . We call the corresponding distribution D√Σ mod q a modular gaussian. A
x ∼ D√Σ mod q can be sampled by sampling and x′ ←$ D√Σ and computing
x← x′ mod q.

In order to prove our strong converse coding theorems, we need various upper
bounds for the periodic gaussian function. We will use the following variant of
the smoothing lemma of Micciancio and Regev [MR04]6.

Lemma 2.2 (Smoothing Lemma [MR04]). Let ε > 0. Given that 1
σ ≥√

ln(2n(1+1/ε))
π · 1q , then it holds that

ρσ(qZn\{0}) ≤ ε.

Lemma 2.3. The periodic gaussian function ρ̃q,σ assumes its maximum at q·Zn.
In particular, it holds for all x ∈ Rn that ρ̃q,σ(x) ≤ ρ̃q,σ(0).

See the full version [BD20] for proof.

Lemma 2.4. If q
σ ≥

√
ln(4n)
π , then it holds for all x ∈ Rn that

ρ̃q,σ(x) ≤ 2.

See the full version [BD20] for proof.

We will use the following estimate for shifted gaussians.

Lemma 2.5. Let σ2 > σ1 > 0. Then it holds for all x ∈ Rn and t ∈ Rn that

ρσ1(x− t) ≤ e
π
‖t‖2

σ22−σ
2
1 · ρσ2

(x).

Moreover, the same holds for the q-periodic gaussian function ρ̂qZn,σ1 , i.e.

ρ̂qZn,σ1(x− t) ≤ e
π
‖t‖2

σ22−σ
2
1 · ρ̂qZn,σ2(x).

See the full version [BD20] for proof.

6 We use the smoothing lemma with the parameter s = 1/σ and the lattice Λ = 1
q
Zn.

Note that for this lattice it holds that λn = 1/q.
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2.4 Learning with Errors

The learning with errors (LWE) problem was defined by Regev [Reg05]. The
search problem LWE(n,m, q, χ), for n,m, q ∈ N and for a distribution χ sup-
ported over the torus Tq is to find s given (A, sA + e), where A ←$ Zn×mq

is chosen uniformly random and e ←$ χ
m is chosen according to χm. The de-

cisional version dLWE(n,m, q, χ) asks to distinguish between the distributions
(A, sA + e) and (A,u + e), where A, s and e are as in the search version and
u←$ Zmq is chosen uniformly random. We also consider the hardness of solving
dLWE for any m = poly(n log q). This problem is denoted dLWE(n, q, χ). The
matrix version of this problem asks to distinguish (A,S ·A + E) from (A,U),
where S ←$ Zk×nq , E ←$ χ

k×m and U ← Zk×mq . The hardness of the matrix
version for any k = poly(n) can be established from dLWEn,m,q,χ via a rou-
tine hybrid-argument. Moreover, Applebaum et al. [ACPS09] showed that if the
error-distribution χ is supported on Zq, then the matrix S can also be chosen
from χk×m without affecting the hardness of the problem.

As shown in [Reg05], the LWE(n, q, χ) problem with χ being a continuous
Gaussian distribution with parameter σ = αq ≥ 2

√
n is at least as hard as

approximating the shortest independent vector problem (SIVP) to within a fac-
tor of γ = Õ(n/α) in worst case dimension n lattices. This is proven using a
quantum reduction. Classical reductions (to a slightly different problem) exist
as well [Pei09,BLP+13] but with somewhat worse parameters. The best known

(classical or quantum) algorithms for these problems run in time 2Õ(n/ log γ), and
in particular they are conjectured to be intractable for γ = poly(n).

Regev also provided a search-to-decision reduction which bases the hardness
of the decisional problem dLWE(n, q, χ) on the search version LWE(n, q, χ) when-
ever q is prime of polynomial size. This reduction has been generalized to more
general classes of moduli [Pei09,BLP+13]. Moreover, there exists a sample pre-
serving reduction which [MM11] which bases the hardness of dLWE(n,m, q, χ)
on LWE(n,m, q, χ) for certain moduli q without affecting the number of samples
m.

Finally, Peikert [Pei10] provided a randomized rounding algorithm which
allows to base the hardness of LWE(n,m, q,DZ,σ′) (i.e. LWE with a discrete
gaussian error DZ,σ′) on LWE(n,m, q,Dσ) (continuous gaussian error), where σ′

is only slightly larger than σ.

2.5 Entropic LWE

We will now consider LWE with entropic secrets, entropic LWE for short. In
this variant, we allow the distribution of secrets S to be chosen from a family
of distributions S̄ = {Si}i. This captures the idea the distribution of secrets can
be worst-case from a certain family.

Definition 2.6 (Entropic LWE). Let q = q(λ) be a modulus and n,m =
poly(λ). Let χ be an error-distribution on Tq. Let S̄ = S(λ, q, n,m) be a family
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of distributions on Znq . We say that the search problem ent-LWE(q, n,m, S̄, χ) is

hard, if it holds for every PPT adversary A and every S ∈ S̄ that

Pr[A(1λ,A, s ·A + e) = s] ≤ negl(λ),

where A←$ Zm×nq , s←$ S and e←$ χ
m. Likewise, we say that the decisional

problem ent-dLWE(q, n,m, S̄, χ) is hard, if it holds for every PPT distinguisher
D and every S ∈ S̄ that

|Pr[D(1λ,A, sA + e) = 1]− Pr[D(1λ,u + e) = 1]| ≤ negl(λ),

where A←$ Zm×nq , s←$ S, e←$ χ
m and u←$ Zmq .

3 Probability-Theoretic Tools

3.1 Singular Values of Discrete Gaussian Matrices

Consider a real valued matrix A ∈ Rn×m, assume for convenience that m ≥ n.
The singular values of A are the square roots of the eigenvalues of the positive
semidefinite (PSD) matrix AA>. They are denoted σ1(A) ≥ · · · ≥ σn(A) ≥ 0.
The spectral norm of A is σ1(A), and we will also denote it by σA. It holds that

σA = σ1(A) = max
x∈Rm\{0}

‖Ax‖
‖x‖

.

We will be interested in the of discrete Gaussian matrices.

Proposition 3.1 ([MP12, Lemma 2.8, 2.9]). Let F ∼ Dn×m
Z,γ , assume for

convenience that m ≥ n. Then with all but 2−m probability it holds that σF ≤
γ · C ·

√
m, where C is a global constant.

3.2 Decomposition Theorem for Continuous Gaussians

The following proposition is an immediate corollary of the properties of (contin-
uous) Gaussian vectors. We provide a proof for the sake of completeness.

Proposition 3.2. Let F ∈ Zn×m be an arbitrary matrix with spectral norm
σF . Let σ, σ1 > 0 be s.t. σ > σ1 · σF . Let e1 ∼ Dn

σ1
and let e2 ∼ D√Σ for

Σ = σ2I − σ2
1F
>F. Then the random variable e = e1F + e2 is distributed

according to Dm
σ .

Proof. First note that Σ is positive definite: It holds for any x ∈ Rm\{0} that

xΣx> = σ2‖x‖2 − σ2
1‖xF‖2 ≥ σ2‖x‖ − σ2σ2

F‖x‖2 ≥ (σ2 − σ2
1σ

2
F) · ‖x‖2 > 0,

as σ > σ1 · σF. Since e1, e2 are independent Gaussian vectors, they are also
jointly Gaussian, and therefore e is also a Gaussian vector. Since e1, e2 have
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expectation 0, then so does e. The covariance matrix of e is given by a direct
calculation, recalling that e1, e2 are independent:

E[e>e] = E[F>e>eF] + E[e>2 e2]

= F>σ2
1IF + Σ

= σ2
1F
>F + σ2I− σ2

1F
>F

= σ2I ,

and the statement follows. ut

4 Hardness of Entropic LWE with Gaussian Noise

In this Section we will establish our main result, the hardness of entropic search
LWE with continuous gaussian noise. Using standard techniques, we can con-
clude that entropic search LWE with discrete gaussian noise is also hard. Finally
for suitable moduli a search-to-decision reduction can be used to establish the
hardness of entropic decisional LWE.

Theorem 4.1. Let C be the global constant from Proposition 3.1. Let q = q(λ)
be a modulus and n,m = poly(λ) where m ≥ n, and let r, γ, σ1 > 0. Let s
be a random variable on Znq distributed according to some distribution S. Let
e1 ∼ Dσ1 mod q be an error term. Assume that s is r-bounded, where we assume
that r = q if no bound for s is known. Further assume that

H̃∞(s|s + e1) ≥ k · log(min{2C · γ ·
√
nr, q}) + ω(log(λ))

Let σ > C ·
√
m ·γ ·σ1. Then the search problem ent-LWE(q, n,m,S, Dσ) is hard,

provided that dLWE(q, k,DZ,γ) is hard.

Furthermore, if H̃∞(s|s+e1) ≥ k · log(q) +ω(log(λ)) and we have that either
q is prime or s ∈ {0, 1}n, then the decisional problem ent-dLWE(q, n,m,S, Dσ)
is hard, provided that dLWE(q, k,DZ,γ) and dLWE(q, k,m,Dσ) are hard.

See the full version [BD20] for proof.

5 Noise-Lossiness for Modular Gaussians

In this Section, we will compute the noise lossiness for general high-minentropy
distributions. We further show that considerable improvements can be achieved
when considering short distributions. Our Lemmas in this Section can be seen
as strong converse coding theorems for gaussian channels. I.e. if a distribution
codes above a certain information rate, then information must be lost and noise
lossiness quantifies how much information is lost. The following lemma will allow
us to bound H̃∞(s|s + e) by suitably bounding maxs∗ pe(y − s∗).



Hardness of LWE on General Entropic Distributions 17

Lemma 5.1. Let q ∈ N be a modulus and fix n,m ∈ N with m > n. Let s be a
random variable on Zkq with min-entropy H̃∞(s). Let χ be a noise distribution
over Rn and let e ∼ χ. Then it holds that

H̃∞(s|s + e) ≥ H̃∞(s)− log

(∫
y

max
s∗

pe(y − s∗)dy

)
in the case that χ is continuous and

H̃∞(s|s + e) ≥ H̃∞(s)− log

(∑
y

max
s∗

Pr
e

[e = y − s∗]

)

in the case that χ is discrete. Moreover, if s is a flat distribution then equality
holds.

Proof. The lemma follows from the following derivation in the continuous case.
The discrete case follows analogously.

H̃∞(s|s + e) = − log

(
E
y

[max
s∗∈S

Pr
s,e

[s = s∗|s + e = y]]

)
= − log

(∫
y

ps+e(y) ·max
s∗

Pr
s,e

[s = s∗|s + e = y]dy

)
= − log

(∫
y

max
s∗

ps,s+e(s∗,y)dy

)

= − log

∫
y

max
s∗

ps+e|s=s∗(y) · Pr[s = s∗]︸ ︷︷ ︸
≤2−H̃∞(s)

dy


≥ H̃∞(s)− log

(∫
y

max
s∗

pe(y − s∗)dy

)
.

To see that equality holds for flat distributions, note that in this case we have

Pr[s = s∗] = 2−H̃∞(s).

5.1 General High Entropy Secrets

We first turn to the case of general high-entropy secrets and prove the following
lemma.

Lemma 5.2. Let n be an integer, let q be a modulus and σ1 be a parameter for
a gaussian. Assume that

q

σ1
≥
√

ln(4n)

π
.

Let s be a random variable on Znq and e1 ∼ Dσ1
mod q. Then it holds that

H̃∞(s|s + e1) ≥ H̃∞(s)− n · log(q/σ1)− 1
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We remark that the requirement q
σ1
≥
√

ln(4n)
π is made for technical reasons,

but we restrict ourselves to keep the proof simple. We also remark that this
condition is essentially trivially fulfilled by interesting parameter choices.

We can instantiate Theorem 4.1 with Lemma 5.2 obtaining the following
corollary.

Corollary 5.3. Let C be a global constant. Let q = q(λ) be a modulus and let
n,m, k = poly(λ). Let γ, σ1 > 0. Assume that S is a distribution on Znq with

H̃∞(s) > k · log(q) + n · log(q/σ1) + ω(log(λ)). Now let σ > C ·
√
m · γσ1. Then

ent-LWE(q, n,m,S, Dσ) is hard, provided that dLWE(q, k,DZ,γ) is hard.

Proof (of Lemma 5.2). It holds that∫
y

max
s∗

pe(y − s∗)dy =
1

ρσ1
(Rn)

∫
y

max
s∗

ρ̂qZn,σ1
(y − s∗)dy

≤ 1

ρσ1(Rn)
·
∫

y

2dy

= 2 · qn

ρσ1(Rn)

= 2 · q
n

σn1
,

where the ρ̂qZn,σ1(y − s∗) ≤ 2 follows by Lemma 2.4 as q
σ1
≥
√

ln(4n)
π . We can

conclude by Lemma 5.1 that

H̃∞(s|s + e) ≥ H̃∞(s)− log

(∫
y

max
s∗

pe(y − s∗)dy

)
≥ H̃∞(s)− n · log(q/σ1)− 1.

5.2 Short Secrets

We will now turn to the case where the secret has bounded norm.

Lemma 5.4. Let n be an integer, let q be a modulus and σ1 be a parameter for
a gaussian. Assume that s is a random-variable on Znq such that ‖s‖ ≤ r for a
parameter r = r(λ). Let e1 ∼ Dσ1

mod q Then it holds that

H̃∞(s|s + e1) ≥ H̃∞(s)−
√

2πn · r
σ1

log(e).

In particular, if σ1 >
√
n · r, then H̃∞(s|s + e1) ≥ H̃∞(s)− π log(e). We can

instantiate Theorem 4.1 with Lemma 5.4 obtaining the following corollary.

Corollary 5.5. Let C be a global constant. Let q = q(λ) be a modulus and let
n,m, k = poly(λ). Let γ = γ(λ) > 0 and σ1 = σ1(λ) > 0. Assume that S is a r-
bounded distribution with H̃∞(s) > k·log(2C ·γ ·σ1)+

√
2πn· rσ1

log(e)+ω(log(λ)).

Now let σ > C ·
√
mσ1 · γ. Then ent-LWE(q, n,m,S, Dσ) is hard, provided that

dLWE(q, k,DZ,γ) is hard.
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Proof (of Lemma 5.4). Fix some σ2 > σ1. Since it holds that ‖s‖ ≤ r, it holds
that ∫

y

max
s∗

pe(y − s∗)dy =
1

ρσ1(Rn)

∫
y

max
s∗

ρ̂qZn,σ1(y − s∗)dy

≤ 1

ρσ1
(Rn)

∫
y

max
s∗

e
π
‖s∗‖2

σ22−σ
2
1 · ρ̂qZn,σ2

(y)dy

≤ 1

ρσ1
(Rn)

· e
π r2

σ22−σ
2
1 ·
∫

y

ρ̂qZn,σ2
(y)dy

= e
π r2

σ22−σ
2
1 · ρσ2

(Rn)

ρσ1
(Rn)

= e
π r2

σ22−σ
2
1 ·
(
σ2
σ1

)n
Now, setting σ2 = σ1 ·

√
1 + η we get that∫

y

max
s∗

pe(y − s∗)dy ≤ e
π r2

σ22−σ
2
1 ·
(
σ2
σ1

)n
= e

π r2

ησ21 · (1 + η)n/2 ≤ e
π r2

ησ21
+nη

2

By Lemma 5.1, we can conclude that

H̃∞(s|s + e1) ≥ H̃∞(s)−
(
π
r2

ησ2
1

+
nη

2

)
log(e).

Recall that η is still a free parameter. This expression is minimized by choosing

η =
√

2π
n

r
σ1

, which yields

H̃∞(s|s + e1) ≥ H̃∞(s)−
√

2πn · r
σ1

log(e).

6 Tightness of the Result

In this Section, we will show that for general moduli and general min-entropy
distributions our result is tight up to polynomial factors.

For a modulus q and a noise parameter σ, we will provide an example of a
distribution s with min-entropy ≈ n · log(q/σ), such that ent-LWE(q, n,m,X , χ)
is easy. For this counter-example, the choice of the modulus q is critical.

Lemma 6.1. Let q = q(λ) be a modulus such that q has a divisor p of size
|p| > 2B + 1, let n,m = poly(λ) and let χ be a B-bounded error-distribution.
Define the distribution S to be the uniform distribution on p · Znq . Then there
exists an efficient algorithm A that solves ent-LWE(q, n,m,S, χ)

Corollary 6.2. There exist moduli q and distributions S with min-entropy ≥
n · (log(q/σ)− log(log(λ)))) such that ent-LWE(q, n,m,S, Dσ) is easy.
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The corollary follows from Lemma 6.1 by choosing p such that p = 2 log(λ) ·
σ + 1 and noting that a gaussian of parameter σ is log(λ) · σ bounded, except
with negligible probability. Moreover, for this choice of p the distribution S in
Lemma 6.1 has min-entropy n · log(q/p) ≥ n · log(q/σ)− 2 log(log(λ))

Proof (of Lemma 6.1). Assume that reduction modulor p computes a central
residue class representation in [−p/2, p/2]. The algorithm A proceeds as follows.

A(A,y) :
– Compute e← y mod p
– Solve the equation system s ·A = y− e for s, e.g. via Gaussian elimina-

tion.
– Output s

To see that the algorithm A is correct, note that

y mod p = (s ·A + e) mod p = (p · r ·A + e) mod p = e

as p ≥ 2B and ‖e‖ ≤ B.

7 Barriers for Entropic LWE

In the last Section we provided an attack on entropic LWE when the min-entropy
of the secret is below n · log(q/σ) for a worst-case choice of the modulus q. On
might still hope that for more benign choices of the modulus q this problem
might be hard in this entropy regime. In this section we will provide a barrier
for the hardness of entropic LWE in this regime for any modulus. In particular,
we will show that for entropies below n · log(q/σ), the hardness of entropic LWE
does not follow from any standard assumption in a black-box way. This leaves
open the possibility that in this regime the hardness of entropic LWE may be
established from more exotic knowledge assumptions. To establish our result, we
will use a framework developed by Wichs [Wic13].

7.1 Simulatable Attacks

We first recall the notion of cryptographic games as a way to characterize cryp-
tographic standard assumptions due to Haitner and Holenstein [HH09]. This
chracterization captures essentially all falsifiable assumptions [Nao03] used in
cryptography, such as LWE.

Definition 7.1 (Cryptographic Games [HH09]). A cryptographic game C =
(Γ, c) is defined by a (possibly inefficient) randomized machine Γ , called the
challenger, and a constant c ∈ [0, 1). On input a security parameter 1λ, the
challenger interacts with an attack A(1λ) and outputs a bit b. Denote this by
Γ (1λ)� A(1λ). The advantage of an attacker A against C is defined by

AdvAC (1λ) = Pr[(Γ (1λ)� A(1λ)) = 1]− c.

We say that a cryptographic game C is secure if for all PPT attackers A the

advantage AdvÅC (λ) is negligible.
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Definition 7.2 (Black-Box Reduction). Let C1 and C2 be cryptographic games.
A black-box reduction deriving the security of C2 from the security of C1 is an
oracle PPT-machine B(·) for which there are constants c, λ0 such that for all
λ ≥ λ0 and all (possibly inefficient, non-uniform) attackers Aλ with advantage

AdvAλC1 (λ) ≥ 1/2, we have AdvB
Aλ
C2 (λ) ≥ λ−c.

We remark that the choice of the constant 1/2 for the advantage of Aλ is
arbitrary and can be replaced by a non-negligible function (depending Aλ). We
now recall the notion of simulatable attacks [Wic13].

Definition 7.3 (Simulatable Attacks [Wic13]). An ε-simulatable attack on
an assumption C is a tuple (A,Sim) such that A is a stateless, non-uniform
possibly inefficient attacker against C, and Sim is a stateful PPT simulator. We
require the following two properties to hold.

– The (inefficient) attacker A successfully breaks C with advantage 1−negl(λ).
– For every (possibly inefficient) oracle machineM(·) making at most q queries

to its oracle it holds that

|Pr[MA(1λ,1)(1λ) = 1]− Pr[MSim(1λ) = 1]| ≤ poly(q) · ε.

where the probabilities are taken over all the random choices involved.

We use the shorthand simulatable attack for ε-simulatable attack with some neg-
ligible ε.

We remark that for reasons of conceptual simplicity Wichs [Wic13] required
the advantage of the simulatable adversary A to be 1. But it can easily be verified
that Theorem 7.4 below also works with our slightly relaxed notion which allows
the unbounded adversary to have advantage 1− negl(λ). The following theorem
by Wichs [Wic13] shows that the existence of a simulatable attack for some
assumption C1 implies that there cannot by a reduction B which reduces the
hardness of C1 to any standard assumption C2, where C1 and C2 are cryptographic
games in the sense of Definition 7.1.

Theorem 7.4 ([Wic13] Theorem 4.2). If there exists a simulatable attack
against some assumption C1 and there is a black-box reduction B reducing the
security of C1 to some assumption C2, then C2 is not secure.

The idea for the proof of this theorem is simple: If an attack A against C1
is simulatable, then the behavior of BSim will be indistinguishable from BA. But
since A breaks C1, it holds that BA breaks C2. Therefore, the efficient algorithm
BSim must also break C2, implying that C2 is insecure.

7.2 A Simulatable Attack for Entropic LWE

We will now provide a simulatable attack against entropic (search-)LWE. The
attack consists of a pair of a min-entropy distribution S and an attacker A.
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Since we want to prove a result for general min-entropy distributions, we assume
that both the adversary and the min-entropy distribution S are adversarially
chosen. Thus, we can consider the distribution S as running a coordinated attack
with the attacker A. More importantly, any black-box reduction B reducing the
entropic LWE to a standard assumption will only have black-box access to the
distribution S. We remark that, to the best of our knowledge, currently all
reductions in the realm of leakage resilient cryptography only make black-box
use of the distribution. Making effective non-black box use of an adversarially
chosen sampling circuit seems out of reach for current techniques. Assume in the
following that m ≥ 2n and let χ be a B-bounded error distribution. Furthermore
let k be a positive integer. Consider the following attacker, consisting of the
adversary A and the distribution S.

– The distribution S is a flat distribution on a set S of size 2k, where the set
S is chosen uniformly random.

– AS(A,y): Given a pair (A,y), the attacker A proceeds as follows:
• Check if the matrix A has an invertible column-submatrix, if not abort

and output ⊥ (this check can be performed efficiently using linear alge-
bra).

• Compute a set I ⊆ [m] of size n such that the column-submatrix AI is
invertible (where AI is obtained by dropping all columns of A that do
not have indices in I).

• Set A′ = AI and y′ = yI (i.e. y′ is y projected to the coordinates in I)
• Initialize a set S′ = ∅
• For every s ∈ S, check if ‖y − sA‖∞ ≤ B, if so include s in the set S′.
• Choose an s←$ S

′ uniformly random and output s

First observe that whenever the matrix A has an invertible submatrix, then
A does have advantage 1. The probability that A does not have an invertible
submatrix is at most log(q) ·2n−m = log(q) ·2−n, which is negligible (see Section
2). Consequently, A breaks ent-LWE(q, n,m,S, χ) with probability 1− negl(λ).

We will now provide our simulator for the adversary A and the distribution
S. The simulator jointly simulates the distribution S and the attacker A, i.e.
from the interface of an oracle machine B it holds that Sim(1λ, ·, ·) simulates
(S(·),A(·)). The advantage of the simulator stems from having a joint view of
the samples provided so far and the inputs of the adversary A. The main idea
of our simulator is that is samples the set S lazily and keeps track of all the
samples S∗ it gave out so far. When provided with an instance (A,y), it will
perform the same check as A but restricted to the set X ′ and therefore run in
time O(q). Recall that the simulator is stateful.

– Simulator Sim(1λ, ·, ·):
• Initialize a set S∗ = ∅.
• Whenever a sample is queried from S, choose s ←$ Z

n
q uniformly ran-

dom, include s in the set S∗ and output s.
• Whenever an instance is provided to A, do the following:
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∗ Initialize a set S′ = ∅
∗ Check for every s ∈ S∗, check if ‖y − sA‖∞ ≤ B, if so include s in

the set S′.
∗ Choose an s←$ S

′ uniformly random and output s.

We will now show that the simulator Sim simulates the attack (A,X ) with
negligible error. We need the following lemma.

Lemma 7.5. Let z←$ Znq be distributed uniformly random. Then it holds that

Pr[‖z‖∞ ≤ B] ≤ ((2B + 1)/q)n.

Proof. Since all the components zi of z are distributed uniformly and indepen-
dently, it holds that

Pr[‖z‖∞ ≤ B] =

n∏
i=1

Pr[|zi| ≤ B] ≤ ((2B + 1)/q)n.

Theorem 7.6. Let χ = χ(λ) be a B-bounded error-distribution. Further, let
k < n · log(q/(2B + 1)) − ω(log(λ)) be an integer. Let S̄ be the family of all
distributions on Znq with min-entropy at most k. Then, if there is a reduction B
from ent-LWE(q, n,m, S̄, χ) to any cryptographic game C, then C is not secure.

See the full version [BD20] for proof.
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