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Abstract. We introduce the notion of a Succinct Parallelizable Argu-
ment of Knowledge (SPARK). This is an argument system with the
following three properties for computing and proving a time T (non-
deterministic) computation:
— The prover’s (parallel) running time is T + polylog T . (In other

words, the prover’s running time is essentially T for large compu-
tation times!)

— The prover uses at most polylog T processors.
— The communication complexity and verifier complexity are both

polylog T .
While the third property is standard in succinct arguments, the com-
bination of all three is desirable as it gives a way to leverage moderate
parallelism in favor of near-optimal running time. We emphasize that
even a factor two overhead in the prover’s parallel running time is not
allowed.
Our main results are the following, all for non-deterministic polynomial-
time RAM computation. We construct (1) an (interactive) SPARK based
solely on the existence of collision-resistant hash functions, and (2) a non-
interactive SPARK based on any collision-resistant hash function and
any SNARK with quasi-linear overhead (as satisfied by recent SNARK
constructions).

1 Introduction

Interactive proof systems, introduced by Goldwasser, Micali, and Rackoff [27],
are one of the most fundamental concepts in theoretical computer science. Such
systems consist of a prover who is able to convince a verifier of the validity of
some statement if and only if it is true. The “if” direction is called completeness
and the “only if” direction is called soundness. Proof systems where soundness
is only guaranteed to hold for efficient (i.e., polynomial-time) provers are called
argument systems.

We focus on succinct argument systems for NP: argument systems where
the total communication is essentially independent of the size of the verification
circuit of the language and even shorter than the statement. Since their introduc-
tion [31, 34, 12], succinct argument systems have drawn significant attention due
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to their appealing efficiency properties. Nowadays they are widely implemented
and used in various systems, most notably in numerous blockchain platforms.

One aspect of such argument systems that has been the center of many re-
cent works (e.g., [13, 18, 43, 28] to name a few) is prover efficiency. Consider
the application of succinct arguments to delegating (possibly non-deterministic)
computation, where a prover performs some expensive computation and then
uses a succinct argument to convince an efficient verifier the validity of the out-
put. If computing the proof takes much longer than the computation (even, say,
a multiplicative factor of two), this would cause a significant delay making the
system useless in various realistic settings. This motivates the following question:

Is it possible to compute the proof in parallel
to the computation while incurring no additional delay?

SPARKs. In this work, we answer the above question affirmatively. We in-
troduce succinct parallelizable arguments of knowledge (SPARKs) where the
prover’s running time is “essentially” optimal. More precisely, an interactive
argument (P, V ) is a SPARK if instances solvable in (non-deterministic) sequen-
tial time T can be proven with the following efficiency requirements (ignoring
dependence on the security parameter or statement size):

– The prover’s parallel time is T + polylog T .3 (In other words, the prover’s
running time is essentially T for large computations!)

– The total prover complexity is T · polylog T and only uses polylog T parallel
threads.

– The communication complexity and verifier complexity are polylog T .

Note that the third property is standard for succinct arguments. The first two
properties stipulate that the running time of a prover with only a moderate
amount of parallel processors is optimal—even a factor two overhead in terms
of a prover running time is not allowed. Without the first property, there are
existing succinct arguments with time T ·polylog T using only a single processor
(e.g., [10, 7, 28]). Without the second property, there are existing constructions
with parallel time T + polylog T using roughly T processors (e.g., [7]).

1.1 Our Results

For our main theorem, we show the existence of SPARKs for NP based on the ex-
istence of collision-resistant hash functions. The formal theorem and full details
are deferred to the full version of the paper.

Theorem 1.1 (Informal). Assuming collision resistant hash functions, there
exists a four-round SPARK for non-deterministic polynomial-time RAM com-
putation.

3 Only the additive polylog T term is allowed to additionally depend on the security
parameter or statement size.
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If we additionally assume succinct non-interactive arguments of knowledge
(SNARKs) where the prover’s sequential running time is quasi-linear in the
verification time, then we obtain non-interactive SPARKs. The formal theorem
and full details are deferred to the full version of the paper.

Theorem 1.2 (Informal). Assuming collision resistant hash functions and a
SNARK for NP with a quasi-linear prover, there exists a non-interactive SPARK
for non-deterministic polynomial-time RAM computation.

Our results are obtained by a generic construction that assumes collision
resistant hash functions and any succinct argument of knowledge for a specific
NP language, where the prover’s sequential running time is quasi-linear (i.e.
T ·polylog T when using a single processor for T time computations), and results
with a SPARK, where the prover’s parallel time is essentially optimal. More
precisely, we prove the following theorem.

Theorem 1.3 (Informal; see Theorem 5.6). Assuming collision resistant
hash functions, any succinct argument of knowledge for NP with a quasi-linear
prover can be generically transformed into a SPARK for non-deterministic poly-
nomial time RAM computation. Additionally, if the original succinct argument
of knowledge is non-interactive, then so is the resulting SPARK.

Applying the transformation to Kilian’s protocol [31] instantiated with a
quasi-linear size PCP [19, 10] yields a SPARK with poly-logarithmically many
rounds. A simple modification to this transformation, when instantiated with
Kilian’s protocol, preserves the round complexity and yields Theorem 1.1. The-
orem 1.2 follows by applying the above theorem to any SNARK where the prover
has quasi-linear overhead (e.g., based on Micali’s CS proofs [34] instantiated with
a quasi-linear size PCP [19, 10]; see also [7, 28]).

Model of Computation. We define and build SPARKs for sequential RAM
computations, whereas our construction of SPARKs is in the parallel RAM
model. While the RAM model of computation is very expressive in theory, there
is clearly not an exact one-to-one correspondence with real computers. For exam-
ple, we do not take into account the performance of caches or other optimizations
in modern processors that can easily result in additional overhead. As such, we
view the results in this paper as showing a theoretical feasibility for practical
implementations of SPARKs. We next briefly discuss and justify both the model
of computation and the notion of time used in this work. For further details, see
Section 3.1.

Recall that a RAM machine is a Turing machine with random access to its
memory string. Between accesses, the machine applies some transition function
to determine its next memory access. Each access is either a read or write, and
we additionally assume that every time a process writes a value to a location in
memory, it receives the previous value at that location. We define the running
time of a RAM machine as the number of memory accesses it makes. For parallel
RAM machines, we define the parallel running time as the number of “rounds”
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of memory accesses made by all processors, so if two processors access memory
during the same logical round, we only count it as a single unit of parallel time.
In other words, a SPARK proves a RAM computation that makes T sequential
accesses in T + polylog T rounds of parallel accesses.

Similar models have been used in other contexts for delegating RAM compu-
tation (see e.g., [29, 28]), but they were much less sensitive to the model since
they did not care about small multiplicative overheads. However, we believe that
the above timing model we propose is reflective of real programs. For memory-
intensive programs, our model captures the fact that memory accesses are prac-
tically the most time-consuming operations. For compute-intensive tasks, where
the memory accesses are more sparse, it is only better that the overhead of a
SPARK scales with the number of memory accesses and not the computation
time itself.

1.2 Applications

SPARKs are a variant of succinct argument systems where the prover both com-
putes and proves validity of the computation in parallel time which is essentially
as efficient as possible. While our focus here is on establishing a theoretical
feasibility result, we expect that our ideas may also be useful in practical con-
structions, which we leave for future work. Below we present applications of
SPARKs.

Time-tight delegation of RAM computation. In the problem of verifi-
able delegation of computation [26, 39, 29], there is a client who wishes to
outsource an expensive computation M on an input x to a powerful yet un-
trusted server. The server should not only produce the output y but also a proof
that the computation was done correctly.

A non-interactive SPARK directly gives a delegation protocol for sequen-
tial RAM computation. This is because SPARKs satisfy a “delayed-output”
property—the output y of the computation need not be known to the SPARK
prover or verifier in advance, as it is computed in parallel to the proof. Therefore,
using a non-interactive SPARK, a server can perform a RAM computation as
well as a proof with essentially no overhead over the sequential running time.
Specifically, for T -time computations, the server runs in time T + polylog T and
uses at most polylog T processors. We call delegation schemes with this prop-
erty time-tight. Previously, the best that was known was where the server uses
a single processor and runs in time T · polylog T [10, 7, 28], or where the server
uses roughly T processors and runs in parallel time T + polylog T [7].

Our time-tight delegation protocol also works for non-deterministic compu-
tations. For example, consider the case where a client wants to outsource a RAM
computation over a large database (stored at the server) but only knows a hash
of the database. The server can perform the computation while proving both
that the output is correct and the database is consistent with the client’s hash.
Furthermore, if both the server and the client have agreed upon the hash at
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the beginning of the protocol, the running time depends only on the time of
the RAM computation (otherwise, the server will need to prove that the initial
database hashes to the correct value, which requires computing a hash over the
whole database and will be expensive if the database is large).

Towards VDFs from sequential functions. Verifiable delay functions
(VDFs) are functions that require some “long” time T to compute (where T
is a parameter given to the function), yet the answer to the computation can be
efficiently verified given a proof that can be jointly generated with the output
(with only small overhead) [14, 15, 38, 42]. The original work of Boneh et al. [14]
suggests a theoretical construction of VDFs based on succinct non-interactive ar-
guments (SNARGs) and any iteratively sequential function (ISF).4 Other known
constructions of VDFs [38, 42] rely on the repeated squaring assumption—a con-
crete ISF.

Let us recall what ISFs are. A sequential function (SF) is a function that
takes a long time to compute, even if one has many parallel processors. An ISF
is the iteration of some round function and the assumption is that iterating the
round function is the fastest way to evaluate the ISF, even if one has many
parallel processors. Clearly, any VDF implies an SF and so any construction of
VDFs will necessarily rely on such (but this is not the case for an ISF5). It is
thus a very natural question whether we can get a VDF based on only SFs and
SNARGs. Note that the construction of Boneh et al. [14] inherently relies on the
iterated structure of the underlying sequential function.6

Towards answering this question, we observe that any non-interactive SPARK
for computing and proving an SF implies a VDF: simply compute the non-
interactive SPARK for the SF. If the SF does not require any parallelism to
compute, then by our main theorem, any SF, SNARK (with quasi-linear over-
head), and collision-resistant hash function imply a VDF. However, in general,
a moderate amount of parallelism may help to speed up the computation of an
SF, and thus for this application, we would require a SPARK for (moderately)
parallel computation. We defer this extension of our main theorem to the full
version.

In fact, one way to view our main construction is by improving existing
techniques for constructing verifiable computation for iterated functions from

4 Actually, their original construction relied on incremental verifiable computation [41],
which exists based on SNARKs [12], and any ISF. In an updated version they show
that actually SNARGs, along with ISFs, are sufficient.

5 However, a continuous VDF [24] does imply an ISF.
6 In the construction based on SNARGs and ISFs, they need to be able to “break”

the computation of the function in various mid-points of the computation and the
internal “state” in those locations has to be small for efficiency of the construction.
In the construction based on SNARKs and ISFs, they rely on a tight construction
of incremental verifiable computation but the number of parallel processors required
for the latter is as large as the cost of a single step [12, 8, 36], and so many steps are
needed.
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SNARGs to arbitrary functions using SNARKs (and collision resistant hash func-
tions). An interesting open question is how to construct verifiable computation
for arbitrary functions from only SNARGs, rather than SNARKs.

Memory-hard VDFs. A particularly appealing extension of the application
above is to the existence of memory-hard VDFs. Recall that VDFs only guar-
antee that a long computation has been performed (and anyone can verify this
publicly). It is very natural to require that not only a time-consuming computa-
tion was performed but also that the computation required many resources, for
example, a large portion of the memory across time.

Clearly any VDF that is based on an ISF is not memory hard. The reason is
that even if the basic round function is memory-hard, upon every iteration the
memory consumption goes to 0! Since the VDF construction discussed above
does not necessarily have to be instantiated with an ISF but rather any SF
(and a SPARK for computing it), we can use a memory hard sequential function
(e.g., [22, 23, 4, 3, 1, 2]) and get a VDF where the computation not only takes
a long time, but also requires large memory throughout. As above, this requires
a SPARK for a memory hard function, which may require using more than one
parallel processor, and as such we give this extension in the full version.

1.3 Related Work

Succinct arguments with efficient provers. We elaborate on the existing
succinct arguments that focus on prover efficiency. First, we recall that Kilian’s
succinct argument consists of a prover who commits to a PCP using a Merkle
tree and locally opens a set of random locations specified by the verifier. As
such, efficient PCP constructions immediately give rise to succinct arguments
with an efficient prover. Specifically in [10, 7], they show how to construct PCPs
in quasi-linear time, which yield succinct arguments with a prover running in
T · polylog T time for T -time computations. In [7], they show how to construct
a quasi-linear size PCP where every bit can be computed in polylog T depth
given the transcript of the computation. This results in a succinct argument
where the prover runs in parallel time T + polylog T using roughly T proces-
sors (as opposed to polylog T processors as required by SPARKs). Furthermore,
the above arguments can be made non-interactive by applying the Fiat-Shamir
transformation [25, 34].

A different line of work has focused additionally on the prover’s space com-
plexity. Bitansky et al. [12] (following Valiant’s [41] incrementally verifiable com-
putation framework using recursive proof composition) construct complexity-
preserving SNARKs, in which both the time and space of the underlying com-
putation up to (multiplicative) polynomial factors in the security parameter. For
the task of delegating deterministic T -time S-space computation, Holmgren and
Rothblum [28] give a prover with T · polylog T time and S + o(S) space assum-
ing sub-exponential LWE. We leave as future work the question of additionally
reducing the prover’s space complexity for SPARKs.
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Tight VDFs. As we describe shortly in Section 2, our construction splits the
computation into “chunks” and proves each of them in parallel. This idea is
inspired by the recent transformations of Boneh et al. and Döttling et al. [14, 20]
in the context of verifiable delay functions (VDFs) [14, 15]. Those works show
how to use a VDF for an iterated sequential function where the honest evaluator
has some overhead into a VDF where the honest evaluator uses multiple parallel
processors and has essentially no parallel time overhead at all. However, iterated
functions can be naturally split into chunks and so most of the technical difficulty
in our work does not arise in that context. See Section 2 for more details.

IOPs. In an effort to bring down the quasi-linear overhead of PCPs, Ben-
Sasson et al. [9] and Reingold et al. [39] introduced the concept of interactive
oracle proofs (IOPs).7 IOPs are a type of proof system that combines aspects of
interactive proofs (IPs) and PCPs: in every round a prover sends a possibly long
message but the verifier is allowed to read only a few bits. IOPs also generalize
Interactive PCPs [30]. The most recent IOP is due to Ron-Zewi and Rothblum
[40] (improving Ben-Sasson et al. [6]) and achieves nearly optimal overhead in
proof length (i.e., a 1 + ε factor for an arbitrary ε > 0) and constant rounds
and query complexity, however the prover’s running time is some unspecified
polynomial.

2 Technical Overview

In this section, we present the main techniques underlying our transformation
from succinct arguments of knowledge with quasilinear overhead to SPARKs.

2.1 Warmup: SPARKs for Iterated Functions

Our starting point stems from the recent works of Boneh et al. and Döttling et
al. [14, 21]. For concreteness, we describe the setting of [14], which focuses on
the simplified case of proving correctness of the output of an iterated function
g(T )(x0) = (g ◦ . . . ◦ g)(x0) for some T ∈ N. Rather than proving that g(T )(x0) =
xT directly, they split the computation into different sub-computations of geo-
metrically decreasing size such that the proof for every sub-computation com-
pletes by time T .

To demonstrate this idea, suppose for simplicity that each iteration takes one
unit of time to compute and that there is a succinct argument that can non-
interactively prove any computation of k iterations of g in 2k additional time.
Then, in order to prove that g(T )(x0) = xT , they first perform 1/3 of the compu-
tation to obtain g(T/3)(x0) = xT/3 and then prove its correctness. Observe that
xT/3 can be computed in time T/3 and the proof can be generated in time 2T/3

7 To clarify notation, IOPs (introduced by [9]) are equivalent to the notion of Proba-
bilistically Checkable Interactive Proofs (introduced concurrently and independently
by [39]).
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by assumption, so the proof that g(T/3)(x0) = xT/3 completes by time T . In

parallel to proving that g(T/3)(x0) = xT/3, they additionally compute and prove

1/3 of the remaining computation (namely, that g((T−T/3)/3)(xT/3) = x5T/9) in
a separate parallel thread, which also will finish by time T . They continue in
this fashion recursively until the remaining computation can be verified directly.

In this construction, the prover only needs to start at most O(log T ) par-
allel computation threads and finishes in essentially parallel time T . The final
proof consists of O(log T ) proofs of the intermediate sub-computations. The ver-
ifier checks each proof for the sub-computations independently and accepts if all
checks pass and the proposed inputs and outputs are consistent with each other.
More generally, if the given non-interactive argument had α multiplicative over-
head, the resulting number of threads needed would be O(α · log T ). So, when
the overhead is quasi-linear (i.e. α ∈ polylog T ), the resulting argument is still
succinct.

2.2 Extending SPARKs to Arbitrary Computations

The focus of this work is extending the above example to handle arbitrary non-
deterministic polynomial-time computation (possibly with a long output) which
introduces many complications. Specifically, suppose we are given an statement
(M,x, T ) with witness w, where M is a RAM machine and we want to prove
that M(x,w) outputs some value y within T steps. We emphasize that our goal
is to capture general non-deterministic, polynomial-time computation where the
output y is not known in advance, so we would like to simultaneously compute
y given (M,x, T ) and w, and prove its correctness. Since M is a RAM machine,
it has access to some (potentially large) memory D ∈ {0, 1}n where n consists
of at most 2|x| bits. To capture NP computation, we let the security parameter
λ be roughly the input size |x|, and we let T be a arbitrary polynomial in λ. Let
us try to employ the above strategy in this more general setting.

As M does not necessarily implement an iterated function, the first problem
we encounter is that there is no natural way to split the computation into many
sub-computations with small input and output. For intermediate statements, the
näıve solution would be to prove that running the RAM machine M for k steps
starting at some initial memory Dstart results in final memory Dfinal. However,
this is a problem because the size of the memory, n, may be large—perhaps even
as large as the full running time T—so the intermediate statements we need to
prove may be huge!

A natural attempt to mitigate this would be to instead provide a succinct
commitment to the memory at the beginning and end of each sub-computation,
and then have the prover additionally prove that it knows a memory string con-
sistent with each commitment. Concretely, each sub-computation corresponding
to k steps of computation would contain commitments cstart, cfinal. The prover
would show that there exist strings Dstart, Dfinal such that (1) cstart, cfinal are com-
mitments to Dstart, Dfinal, respectively, and (2) starting with memory Dstart and
running RAM machine M for k steps results in memory Dfinal. This seems like
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a step in the right direction, since the statement size for each sub-computation
would only depend on the output size of the commitment and not the size of
the memory. However, the prover’s witness—and hence running time to prove
each sub-computation—still scales linearly with the size of the memory in this
approach. Therefore, the main challenge we are faced with is removing the de-
pendence on the memory size in the witness of the sub-computations.

Using local updates. To overcome the above issues, we observe that in each
sub-computation the prover only needs to prove that the transition from the
initial commitment cstart to the final commitment cfinal is consistent with k steps
of computation done by M . At a high level, we do so by proving that there
exists a sequence of k local updates to cstart which result in cfinal. Then in order
to verify a sub-computation corresponding to k steps, we can simply check the
k local updates to the commitment of the memory, rather than checking the
memory in its entirety. To formalize this idea, we rely on short commitments
that allow for local updates which can be efficiently computed in parallel to
the main computation. We call such commitments concurrent locally updatable
commitments.

Given such commitments, will use a succinct argument of knowledge (PsARK,
VsARK) for an NP language Lupd that corresponds to checking that a sequence
of local updates are valid. Specifically, a statement (M,x, k, cstart, cfinal) ∈ Lupd if
and only if there exists a sequence of updates u1, . . . , uk such that, starting with
short commitment cstart, running M on input x for k steps specifies the updates
u1, . . . , uk that result in a commitment cfinal. Then, as long as the updates are
themselves succinct, the size of the witness scales only with the number of steps
of the computation and not with the size of the memory.

In order to make the above approach work, we need locally updatable com-
mitments that satisfy the following two properties:

1. Updates can be computed efficiently in parallel to the main computation.

2. Local updates can be verified as modifying at most a single location in the
committed memory.

We next explain how we obtain the required commitments satisfying the above
properties. We believe that this primitive and the techniques used to obtain it
are of independent interest.

Concurrent locally updatable commitments. Roughly speaking, a con-
current locally updatable commitment is a standard computationally binding
string commitment scheme with a local update property which supports updat-
ing a single bit in the underlying message without re-committing to the whole
message. For efficiency we additionally require that one can perform several local
updates concurrently. For soundness, we require that no efficient adversary can
find two different openings for the same location even if it is allowed to perform
polynomially-many update operations. A formal definition appears in Section 4.
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Our construction relies on Merkle trees [33] and hence can be instantiated
with any collision resistant hash function. Recall that a Merkle tree uses a com-
pressing hash function, which we assume for simplicity is given by h : {0, 1}2λ →
{0, 1}λ, and is obtained via a binary tree structure where nodes are associated
with values. The leaves are associated with arbitrary values and each internal
node is associated with a value that is the hash of the concatenation of its chil-
dren’s values.

It is well known that Merkle trees, when instantiated with a collision resis-
tant hash function h, act as short commitments with local opening. The latter
property enables proving claims about specific blocks in the input without open-
ing the whole input, by revealing the authentication path from some input bit to
the root (i.e. the hashes corresponding to sibling nodes along the path from the
leaf to the root). Not only do Merkle trees have the local opening property, but
the same technique allows for local updates. Namely, one can update the value of
a specific bit in the input and compute the new root value without recomputing
the whole tree (by updating the hashes along the authentication path of the bit).
All of these local procedures cost time which is proportional to the depth of the
tree, log n, as opposed to the full memory n. We denote this update time as β
(which may additionally depend polynomially on λ, for example, to compute the
hash function at each level in the tree).

Let us see what happens when we use Merkle trees as our commitment.
Recall that the Merkle tree contains the hash of the memory at every step
of the computation, and we update its value after each such step. The latter
operation, as mentioned above, takes β time. So even with local updates, using
Merkle trees näıvely incurs a β delay for every update operation which implies
a β multiplicative delay for the whole computation (which we want to avoid)!
To handle this, we use a pipelining technique to perform the local updates in
parallel.

Pipelining local updates. Consider two updates u1 and u2 that we want to ap-
ply to the current Merkle tree sequentially. We observe that since Merkle trees
updates work “level by level,” we can first update the first level of the tree (corre-
sponding to the leaves) according to u1. Then, update the second layer according
to u1 and in parallel update the first layer using u2. Continuing in this fashion,
we can update the third layer according to u1 and in parallel update the second
layer using u2, and so on. The idea can be generalized to pipeline u1, . . . , uk,
so that the final update uk completes after (k − 1) + β steps, and the mem-
ory is consistent with the Merkle tree given by performing update operations
u1, . . . , uk sequentially. The implementation of this idea requires β additional
parallel threads since the computation for at most β updates will overlap at a
given time. A key point that allows us to pipeline these concurrent updates is
that the operations at each level in the tree are data-independent in a standard
Merkle tree. Namely, each processor can perform all of the reads/writes to a
given level in the tree at a single time step, and the next processor can continue
in the next time step without incurring any delay.
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Ensuring optimal prover run-time. Using the above ingredients, we dis-
cuss how to put everything together to ensure optimal prover run-time. Con-
cretely, suppose we have a concurrent locally updatable commitment where each
update takes time β, and a succinct non-interactive argument of knowledge with
α ∈ polylog T multiplicative overhead.

As discussed above, to prove that M(x,w) output a value y in T steps, we
split the computation into m sub-computations which all complete by time T .
The ith sub-computation will consist of a “compute” phase, where we compute
ki steps of the total T computation steps, and a “proof” phase, where we use
the succinct argument to prove correctness of those ki steps. For the “compute”
phase, recall that performing ki steps of computation while also updating the
commitment takes ki ·β total work. However, as described above, we can pipeline
these updates so that the parallel time to compute these updates is only (ki −
1) + β.

For the “proof” phase, recall that we that we use a succinct argument for
the update language Lupd such that a statement (M,x, k, cstart, cfinal) ∈ Lupd if
there exists a sequence of k updates such that (1) the updates are consistent
with the computation of M and (2) applying these updates to cstart results in
cfinal. To compute the proofs in the desired amount of time, we need to set the
values of ki appropriately. As the total work to compute ki steps with updates
is ki · β, this implies that each proof takes at most ki · α · β time. Therefore, the
largest “chunk” of computation we can compute and prove by time T time is
T/(αβ+1). For convenience, let γ , αβ+1. Then, in the first sub-computation,
we can compute and prove k1 = T/γ steps of computation. In each subsequent
computation, we compute and prove a γ fraction of the remaining computation.
Putting everything together, we get that ki = (T/γ) · (1−1/γ)i−1 for i ∈ [m−1]
and then km < γ is the number of remaining steps such that

∑m
i=1 ki = T .

In Figure 1 we show the structure of the compute and proof phases for all
m sub-computations. We emphasize that the entire protocol completes within
T+β parallel time. As β ∈ polylog T , this implies that only have a small additive
rather than multiplicative overhead. This is tight in the sense that computing
the commitment for T steps of computation with updates takes T+β time, so all
of the proofs about the updates to the commitments are computed completely in
parallel. Next, we note that we have a β gap between the time that the “compute”
phase ends and the “proof” phase begins for a particular sub-computation. This
is because we have to wait β additional time to finish computing the updates
before we can start the proofs. However, we can immediately start computing
the next sub-computation without waiting for the updates to complete. Lastly,
the number of processors used in the protocol is β at all times in the constantly
running “compute” phase which is additionally computing updates to the com-
mitment in parallel. Then we have at most m − 1 additional processors for the
proofs of the first m− 1 sub-computations. The last sub-computation, we don’t
have the prover compute the proof, and instead the prover will send the updates
in the clear for the verifier to check directly.
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Parallel time T β

k1 k1 · α · β
β-gap

k2 k2 · α · β

k3 k3 · α · β

k4 k4 · α · β

k5

β

Fig. 1. The “compute” and “proof” phases for each of m sub-computations. For
i ∈ [m − 1], the ith sub-computation consists of ki steps, while pipelining updates
which each take β time. After finishing all updates, the prover computes the proof
which takes ki · α · β time. In the final sub-computation, we send the updates to the
verifier in the clear instead of giving a proof.

Computing the initial commitment. Before giving the full protocol, we
address a final issue, which is for the prover to compute the commitment to
the initial memory string. Specifically, the prover needs to commit to a string
D ∈ {0, 1}n, which the RAM machine M assumes contains its inputs (x,w).
Directly committing to the string x||w would require roughly |x|+ |w| additional
time, which could be as large as T . To circumvent the need to compute the
initial commitment, we simply do not commit to the initial memory! Instead,
we start with a commitment to an uninitialized memory that can be computed
efficiently and allows each position to be initialized exactly once whenever it is
first accessed. In Section 4, we discuss the full details of how we deal with this
issue for our commitments.

2.3 Our SPARK Construction

We now summarize our full SPARK construction. Suppose that we have (1) a
concurrent locally updatable commitment that starts as uninitialized where each
update takes time β and (2) a succinct non-interactive argument of knowledge
(PsARK, VsARK) for the update language Lupd with α ∈ polylog T multiplicative

overhead. Let γ , αβ+ 1, as described above, which is the fraction of remaining
computation done at each step. The protocol (P, V ) for a statement (M,x, T ) is
as follows:

1. V samples public parameters pp for the commitment and sends them to P .
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2. Using pp, P computes the commitment cstart for the uninitialized memory
Dstart = ⊥n.

3. P computes T/γ steps of M(x,w) while in parallel updating Dstart and the
corresponding local updates to c1 = cstart.

4. After completing the T/γ steps of the computation (but not necessarily
completing all corresponding updates), P starts recursively computing and
proving the remaining T − T/γ steps in parallel.

5. Let u1, . . . , uT/γ be the current updates, which result in commitment c′1. Af-
ter computing the current updates, P uses PsARK(u1, . . . , uT/γ) for language
Lupd to prove that starting with commitment c1, running M on input x for
T/γ steps results in commitment c′1.

6. P continues until there are at most γ steps of the computation. At this point,
P computes the remaining steps and sends the corresponding updates to V
in the clear to be verified directly.

7. After finishing the computation and all corresponding updates, P uses the
final commitment to open the output y and give a proof of its correctness. V
accepts if the proof certifying y verifies and VsARK accepts all sub-protocols,
which are consistent with each other.

Handling interactive protocols. The same transformation described above
applies to interactive r-round succinct argument of knowledge. However, since
the protocol is interactive, the prover starts an interactive protocol in order to
prove that sub-computations were performed correctly. It is not necessarily the
case that the messages in the various interactive arguments will be “synced”
up, and so our transformation suffers from (at most) a polylog T factor increase
in the round complexity. For specific underlying succinct argument, however, it
may be the case that it is easy to synchronize the rounds in reduce the round
complexity.

Security proof and argument of knowledge definition. We note that
proving security in the above construction is somewhat non-trivial. The key
issue is that we need to simultaneously extract witnesses from super logarith-
mically many concurrent or parallel arguments of knowledge, without causing
a blow-up in the complexity of the resulting extractor. Towards resolving this
issue, we introduce a new argument of knowledge definition, which 1) enables
dealing with this issue in our proof of security, yet 2) is satisfied by known suc-
cinct arguments of knowledge for NP. We view this definition as an additional
independent contribution. For more details, see Section 5.2.

3 Preliminaries

We defer some standard notation to the full version of the paper and instead
focus on the necessary ingredients for our construction. We also defer the formal
definition of succinct arguments of knowledge, as it is a natural analogue to the
SPARK definition given in Section 5.2.
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3.1 Random Access Memory

RAM computation consists of a machine M which keeps some local state state
and has read/write access to memory D ∈ ({0, 1}λ)n (equivalent to the tape of
a Turing machine). Here, λ is the security parameter and length of a word,8 and
n ≤ 2λ is the number of words in memory used by M . When we write M(x)
to denote running M on input x, this means that M expects its initial memory
D to be equal to x||0nλ−|x|. The computation is defined using a function step,
which has the following syntax:

(state′, op, `, vwt) = step(M, state, vrd).

Specifically, step takes as input the description of the machine M , the current
state state, and a word vrd that was read in the last step from memory. Then,
it outputs the next state state′, the operation op ∈ {rd,wt} to do next, the next
location ` ∈ [n] to access, and the word vwt to write next if op = wt (or ⊥ if
op = rd).

Using step, we can define each step of RAM computation to run step, and
then either do a read or a write. We assume that each write operation returns
the value in the memory location before the write. Formally, starting with an
initially empty state state0 and letting brd

0 = ⊥, the ith step of computation for
i ≥ 1 is defined as:

1. Compute (statei, opi, `i, v
wt
i ) = step(M, statei−1, v

rd
i−1).

2. If opi = rd, let vrd
i be the word in location `i of D.

3. If opi = wt, let vrd
i be the word at location `i in D and write vwt

i to that
location.

The computation halts when step outputs a special halting value with the
output y of M(x) written at the start of the memory, where we assume that M
specifies its output length. Without loss of generality, we assume that the state
size can hold O(log n) bits.

We also consider the parallel-RAM (PRAM) setting, where each step of the
machine can potentially branch to multiple processors that have access to the
same memory D. We formalize this by allowing step to output multiple values for
(state′, op, `, vwt), each associated with a process identifier specifying the process
to continue the computation from that state. The computation halts when there
are no running processors. We are in the exclusive-read exclusive-write (EREW)
model, i.e., the most restrictive PRAM model, where if some process accesses a
location (either a read or a write) in memory while another process accesses the
same location (either a read or a write), there are no guarantees for the resulting
effect. We also assume that n words in memory can be allocated and intialized
to zeros for free.

8 We note that the length of a word only needs to be greater than logn, but can be
as large as any fixed polynomial in λ. We set it to λ for simplicity.
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(P)RAM Complexity. Each step of RAM computation is allowed to make a
single access to memory. We think of step, which computes the transition function
from state to state′, as being implemented by an efficient CPU algorithm with
access to a constant number of words. As a result, we define the running time of a
RAM machine M as the number of accesses it makes to its working memory. For
PRAM machines, each step of computation may make multiple parallel accesses
to memory via different processors.

To model the complexity of a (P)RAM machine M , we consider two com-
plexity measures: work and depth. Specifically, we let workM (x) denote the total
amount of computation done by all processors measured in steps (or equiva-
lently memory accesses). When M is a non-deterministic machine, we denote
this by workM (x,w) where w is the witness. We let depthM (x) (analogously,
depthM (x,w)) denote the number of sequential steps until M halts, where steps
that occur in parallel are counted as one step. For a (non-parallel) RAM machine,
we simply denote its running time by workM (x).

3.2 Universal and NP Relations

Next, we define a variant of the universal relation, introduced by [5]. For effi-
ciency reasons, it will be helpful to define this relative to different computational
models, so we give definitions for Turing machine computation and RAM ma-
chine computation.

Definition 3.1. The universal relation for Turing machines RTM
U is the set of

instance-witness pairs ((M,x, t, L, y), w) where M is a Turing machine such that
M(x,w) outputs y within t steps, and additionally |y| ≤ L. We let LTM

U be the
corresponding universal language. We similarly define RRAM

U and LRAM
U to the be

universal relation and language, respectively, for RAM computation, where the
given machine M is a RAM machine.

Following [17, 11], we define the NP relation RTM
c as follows. For every c ∈ N,

we let RTM
c ⊆ RTM

U be a subset of the universal relation consisting of pairs
((M,x, t, L, y), w) where t ≤ |x|c. We let LTM

c be the corresponding language.
The relation RRAM

c and language LRAM
c are defined analogously for the case where

M is a RAM machine.
The main difference between our definition and the standard universal re-

lation of [5] is that we consider computation with long outputs y, and we also
include an upper bound L on the length of y. We include y so as to have a defi-
nition which captures both deterministic and non-deterministic polynomial-time
computation. A similar relation was given in [17] to define a canonical relation
for P. Moreover, the universal relation of [5] is linear-time reducible to our defini-
tion above. With regards to L, we include this because in our main construction
of SPARKs, the output y of the computation will not be known in advance.
However, the complexity of the scheme inherently depends on L (as the output
of the protocol is y).

Finally, we note that for a statement (M,x, y, L, t) with respect to RAM
computation, we do not place any restriction on the length of the witness w.
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Specifically, the machine M may only access t positions in w, but it could be
the case that |w| is significantly greater than t.

4 Concurrent Locally Updatable Commitment

In this section we define and construct a commitment that allows for local up-
dates. Furthermore, we require that these local updates can be computed con-
currently using multiple processors in a pipelined fashion (described in more
detail below). We define our construction in the PRAM model.

For a security parameter λ ∈ N, our commitment will be for strings D con-
sisting of n ≤ 2λ words of length λ. It will also be helpful for us to capture the
case when D is not defined at every location, that is, some words are set to ⊥.
To formalize this, below we define the notion of a partial string, which is simply
a succinct way to represent strings over ({0, 1}λ ∪{⊥})n.

Definition 4.1 (Partial string). For any string s ∈ ({0, 1}λ∪{⊥})∗ of words,
we define the partial string D which represents s as follows. D is given by tuple
(n, I, A), where n is the number of words (or ⊥ elements) in s, I ⊆ [n] is the
set of non-⊥ locations in s, and A ∈ {0, 1}|I| is the assignment to those indices.
We let Di denote the ith word in s.

4.1 Concurrent Locally Updatable Commitment

Our commitment scheme C consists of algorithms with the following syntax:9

• pp← C.Gen(1λ): A PPT algorithm that on input the security parameter λ,
outputs a key pp.

• (ptr, com) = C.Commit(pp, D): A deterministic algorithm that on input a key
pp and a partial string D = (n, I, A), outputs a pointer ptr to a location in
memory and a string com.

• (v, π) = C.Open(pp, ptr, `): A read-only deterministic algorithm that on in-
put a key pp, a pointer ptr, and a location ` ∈ [n], outputs a value v ∈
{0, 1}λ ∪{⊥}, and a proof π.

• (com, τ) = C.Update(pp, ptr, `, v): A deterministic algorithm that on input a
key pp, a pointer ptr, a location ` ∈ [n], and a word v ∈ {0, 1}λ, outputs a
commitment com and a proof τ .

• b′ = C.VerOpen(pp, com, `, v, π): A deterministic algorithm that on input a
key pp, a commitment com, a location ` ∈ [n], a value v ∈ {0, 1}λ ∪ {⊥},
and a proof π, outputs a bit b′.

• b′ = C.VerUpd(pp, com, `, v, com′, τ): A deterministic algorithm that on input
a key pp, a commitment com, a location ` ∈ [n], a word v ∈ {0, 1}λ, a
commitment com′, and a proof τ , outputs a bit b′.

9 For simplicity, the only randomized algorithm in our definition is the key generation
algorithm, and the rest are deterministic. However, with minor modifications to our
main protocol, we could use a commitment where all algorithms may be randomized.



SPARKs: Succinct Parallelizable Arguments of Knowledge 17

We require the following properties.

Definition 4.2 (Completeness). Let λ ∈ N, pp in the support of C.Gen(1λ),
and let D = (n, I, A) be a partial string. For any m ≥ 0, and `i ∈ [n], vi ∈ {0, 1}λ
for i ∈ [m], do the following:

1. Compute (ptr, com0) = C.Commit(pp, D).
2. For i = 1, . . . ,m, compute (comi, τi) = C.Update(pp, ptr, `i, vi).

Let D′ be the partial string resulting from writing vi to D`i for i = 1, . . . ,m.
Then, the following hold for any ` ∈ [n]:

• Open Completeness. Let (v, π) = C.Open(pp, ptr, `). Then,

C.VerOpen(pp, comm, `, v, π) = 1 ∧ D′` = v.

• Update Completeness. For any v ∈ {0, 1}λ, let (com, τ) = C.Update(pp,
ptr, `, v). It holds that

C.VerUpd(pp, comm, `, v, com, τ) = 1.

Definition 4.3 (Soundness). For all non-uniform PPT adversaries A = {Aλ}λ∈N,
there exists a negligible function negl such that for all λ ∈ N, it holds that

Pr


C.VerOpen(pp, com0, `0, v0, π0) = 1 ∧
∀i ∈ [m] : C.VerUpd(pp, comi−1, `i, vi, comi, τi) = 1 ∧
C.VerOpen(pp, comm, `0, v, π) = 1 ∧
v 6= vj

 ≤ negl(λ),

where j is the largest index with `j = `0, and the probability is over the choice of
pp← C.Gen(1λ) and (m,{(comi, `i, vi, τi)}i∈[m] , com0, `0, v0, π0, v, π)← Aλ(pp).

Lastly, we require the following efficiency properties, which at a high level
say that any sequence of k updates can be computed (while opening the previous
values) in a pipelined fashion with only additive overhead.

Definition 4.4 (Efficiency). Let λ ∈ N and let D = (n, I, A) be a partial string
where n ≤ 2λ. We say that a concurrent locally updatable commitment satisfies
efficiency if there exists a polynomial β = β(λ, log n) such that the following hold:

– The algorithms C.Open, C.Update, C.VerOpen, and C.VerUpd can each be
computed with β work.

– Computing C.Commit(pp, D) can be done with β · (|I|+ 1) work.
– For any key pp, pointer ptr, location ` ∈ [n], and word v, define (π, com, τ)

as follows:
• (v′, π) = C.Open(pp, ptr, `)
• (com, τ) = C.Update(pp, ptr, `, v)

There exists an algorithm OpenUpdate(pp, ptr, `, v) which outputs (v′, π, com,
τ), such that k sequential calls to OpenUpdate can be computed with kβ work,
which can be decoupled into depth (k − 1) + β using β processors.
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We say that a concurrent locally updatable commitment satisfies β-efficiency if
the above hold with respect to a particular function β.

Remark 4.5. We emphasize that the completeness and soundness properties we
give for concurrent locally updatable commitments must hold for any sequence of
m “valid” local updates. At a high level, these notions stipulate that an opening
will always give the correct value (with a proof) and that no adversary can
find an opening for a value you wouldn’t expect (based on the local updates).
Furthermore, we require C.VerUpd to ensure that a local update a one location
does not affect any other locations.

We note that our definition generalizes standard notions of completeness and
position binding for vector commitments [16], as when there are no updates (i.e.,
m = 0), they are equivalent. Our definition also generalized the read and write
security properties of other Merkle tree commitments, such as those in [29]. We
note that it does not suffice to consider the properties to hold with respect to a
single update (i.e., when m = 1). This is because our commitments keep state,
so it may be the case that it internally keeps a counter and artificially breaks
completeness or soundness after some m > 1 updates have occurred.

4.2 Construction

Before giving our construction, we discuss the building blocks we will be using.

Merkle trees. Let h : {0, 1}2λ → {0, 1}λ be a compressing hash function. A
Merkle tree [33] for a string D ∈ {0, 1}nλ consists of a complete binary tree of
log n + 1 levels labelled 0, . . . , log n where level i consists of n/2i nodes. Each
node is associated with a value in {0, 1}λ. The leaves at level 0 correspond to D,
split into n blocks of length λ. The value of each node at level i > 0 is defined to
be the hash (using h) of the concatenation of its children’s values at level i− 1.
The single node at level log n is referred to as the root or commitment of the
Merkle tree.

An authentication path π = (π0, . . . , πlogn−1) for a leaf i ∈ [n] consists of the
values in the tree corresponding to the siblings of all nodes along the path from
the leaf to the root, ordered from level 0 to log n − 1. An authentication path
π = (π0, . . . , πlogn−1) for a leaf i is said to be a valid opening for v ∈ {0, 1}λ
with respect to a commitment com if when hashing the value v at leaf i with
π0, hashing the resulting value with π1, and so on for all values in π, the final
value equals com. Whenever updating the value of a leaf i with block block, we
additionally re-compute the hash values along the path to the root using its
authentication path. The overall size needed to store the Merkle tree in memory
is 2nλ bits.

Assuming the underlying hash function h is collision resistant, it is well known
that a Merkle tree is a binding commitment to a fully defined string that allows
for local opening and updates. Moreover, it is known that a standard Merkle tree
satisfies the standard completeness and binding properties of a commitment.
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In our construction, we will want to use a Merkle tree for values v ∈ {0, 1}λ∪
{⊥}. Therefore, we will use a Merkle tree for 2λ-bit values, so that we can
uniquely encode each element of {0, 1}λ ∪{⊥} as a string of length 2λ and each
node in the Merkle tree corresponds to two consecutive words in memory.

Segment Tree. A segment tree is a data structure that provides a way for the
prover to efficiently check if a range of indices in the partial string D = (n, I, A)
are ⊥. To this end, we want to represent the set I (which will be constantly
updated) in a way that allows us to check if [i1, i2]∩ I = ∅ in O(log n) time and
independent of |I| and |i2 − i1|.

To do so, we use a segment tree which mirrors the Merkle tree and consists of
a complete binary tree with n leaves. Each node has an associated bit which is 1
if the corresponding node in the Merkle tree has been initialized and 0 otherwise.
Every time a leaf in the Merkle tree is updated, we initialize all nodes in the tree
along the path to the root, meaning we set the corresponding bits in the segment
tree to 1. Then, if any node in the segment tree has a bit of 0, it guarantees that
all indices corresponding to the leaves that are descendants of this node are ⊥.
This implies that for any range [i1, i2], we can check if [i1, i2]∩I = ∅ by checking
the bits of O(log n) nodes in the tree that cover this range of indices. This data
structure only requires 2n additional bits to store.

Our Construction. Let H = {Hλ}λ∈N be a collision-resistant hash function

family ensemble with h : {0, 1}4λ → {0, 1}2λ for each h ∈ Hλ. Let thash(λ) be
an upper bound on the running time of each h ∈ Hλ. We also assume that we
have a canonical, deterministic encoding of each value in {0, 1}λ ∪{⊥} to 2λ-bit
strings, denoted by block(v) for v ∈ {0, 1}λ ∪{⊥}, which can efficiently decoded
(for example, we could represent v ∈ {0, 1}λ as v||0λ and ⊥ as 12λ).

We now give our full concurrent updatable commitment construction C =
(C.Gen,C.Commit,C.Open,C.Update,C.VerOpen,C.VerUpd).

• pp← C.Gen(1λ): Sample h← Hλ and output pp = h.
• (ptr, com) = C.Commit(pp, D):

1. Allocate 4nλ + 2n + 2λ log n bits of memory at a pointer ptr, starting
with a Merkle tree with n leaves at ptr, a corresponding segment tree at
pointer segtree, and log n extra blocks of size 2λ at pointer aux.
We assume that all memory is initialized to 0.

2. Define dummy(0) = block(⊥). Let h = pp, and for j = 1, . . . , log n,
compute dummy(j) = h(dummy(j − 1)||dummy(j − 1)) and write it to
the next block of free memory at aux.

3. Recall that D = (n, I, A) specifies a set I of non-⊥ indices. For each loca-
tion ` ∈ I, run the update procedure defined below by C.Update(pp, ptr, `,
D`).

4. Let com be the value of the root in ptr and output (ptr, com).

• (v, π) = C.Open(pp, ptr, `): Let segtree be the pointer to the segment tree in
memory. For j ∈ {0, . . . , log(n)− 1}, let nodej be the ancestor of leaf ` at
level j and let sibj be its sibling.
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For each level j = 0, . . . , log(n)− 1:

1. Read nodej in ptr, and let its value be yj .

2. Read nodej in segtree, and if its value is 0, let yj = block(⊥).

3. Read sibj in ptr, and let its value be πj .

4. Read sibj in segtree, and if its value is 0, set πj = dummy(j).

Let v ∈ {0, 1}λ ∪{⊥} be the value such that y0 = block(v), or ⊥ if there is
no such value. Output (v, π) where π = (π0, π1, . . . , πlog(n)−1).

• (com, τ) = C.Update(pp, ptr, `, v): Let segtree be the pointer to the segment
tree in memory. For j ∈ {0, . . . , log(n)− 1}, let nodej be the ancestor of leaf
` at level j and let sibj be its sibling. Let y0 = block(v).

For each level j = 0, . . . , log(n)− 1:

1. Access Step. Do the following in parallel:

(a) Write yj to nodej in ptr, and let zj ∈ {0, 1}2λ be the value overwritten
at that location.10

(b) Write 1 to nodej in segtree.
(c) Read sibj in ptr, and let its value be πj .
(d) Read sibj in segtree, and if its value is 0, set πj = dummy(j).

2. Hash Steps. Let yj+1 be the hash of the concatenation yj and πj (with
the leftmost sibling first), using pp.

Let v′ ∈ {0, 1}λ ∪{⊥} be the value such that z0 = block(v′), or ⊥ if there is
no such value. Output (com, τ) where com = ylogn and τ = v′||(π0, π1, . . . ,
πlog(n)−1).

• b′ = C.VerOpen(pp, com, `, v, π): Verify that the authentication path π for
leaf ` is valid for value block(v) with respect to com.

• b′ = C.VerUpd(pp, com, `, v, com′, τ): Output 1 if and only if the following
hold:

1. τ can be parsed as v′||π where v′ ∈ {0, 1}λ ∪{⊥} and π is an authenti-
cation path.

2. C.VerOpen(pp, com, `, v′, π) = 1.

3. C.VerOpen(pp, com′, `, v, π) = 1.

We now prove that our construction satisfies the completeness, soundness,
and efficiency properties above assuming collision-resistant hash functions.

Theorem 4.6. Assuming the existence of collision-resistant hash function fam-
ilies, there exists a concurrently updatable commitment scheme.

We prove this theorem by showing that C, as described above, satisfies com-
pleteness, soundness, and efficiency. The proofs are deferred to the full version.

10 Note that this is one place where we use the fact that writing to a location in memory
returns the value being overwritten. We use this to put the value v′ at leaf ` in the
Merkle tree before the update into the update proof τ , which is used to verify that
the commitment before the update and the commitment after the update only differ
at one location.
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5 Succinct Parallelizable Arguments of Knowl-
edge

In this section, we define SPARKs and show how to construct them from any
concurrent locally updatable commitment and succinct argument of knowledge
with quasilinear overhead, for a specific NP language, defined in Section 5.1.
More precisely, we construct a succinct argument system where the prover runs in
optimal parallel time (i.e., depth). We define Succinct Parallelizable Arguments
of Knowledge formally below, using the following syntax for interactive protocols.
We denote by 〈P (w), V 〉 the output of V in the interaction, which may be of
arbitrary (polynomial) length. Furthermore, we let V output ⊥ to indicate reject,
and output y 6= ⊥ to accept the output y.

Definition 5.1 (SPARK). A Succinct Parallelizable Argument of Knowledge
(SPARK) for a relation R ⊆ RRAM

U is a tuple of probabilistic interactive machines
(P, V ) where P is a PRAM machine, satisfying the following properties:

• Completeness: For every λ ∈ N and ((M,x, y, L, t), w) ∈ R,

Pr
[
〈P (w), V 〉(1λ, (M,x, t, L)) = y

]
= 1,

where the probability is over the random coins of P and V .
• Argument of Knowledge: There exists a probabilistic oracle machine E

and a polynomial q such that for every non-uniform polynomial-time prover
P ? = {P ?λ}λ∈N, there exists a negligible function negl such that for every
λ ∈ N, (M,x, t, L) ∈ {0, 1}∗ with |M,x, t| ≤ λ and L ≤ λ, and z, s ∈ {0, 1}∗,
the following hold.
Let P ?λ,z,s denote the machine P ?λ with auxiliary input z and randomness s

fixed, let Vr denote the verifier V using randomness r ∈ {0, 1}`(λ) where `(λ)
is a bound on the number of random bits used by V (1λ, ·). Then:
1. The expected running time of EP

?
λ,z,s,Vr (1λ, (M,x, t, L)) is bounded by

q(λ, t), where the expectation is over r ← {0, 1}`(λ) and the random
coins of E.

2. It holds that

Pr

 r ← {0, 1}`(λ)y = 〈P ?λ,z,s, Vr〉(1λ, (M,x, t, L))

w ← EP
?
λ,z,s,Vr (1λ, (M,x, t, L))

: y 6= ⊥ ∧ ((M,x, y, L, t), w) 6∈ R


≤ negl(λ).

• Succinctness: There exist polynomials p and q such that for any λ ∈ N and
M,x, t, L ∈ {0, 1}∗, it holds that

workV (1λ, (M,x, t, L)) ≤ p(λ, |(M,x)|, L, log t)

and the length of the transcript produced in the interaction between P (w)
and V on common input (1λ, (M,x, t, L)) is bounded by q(λ, L, log t).
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• Optimal prover depth: There exists a polynomial p such that for all λ ∈ N
and ((M,x, t, L, y), w) ∈ R, it holds that

depthP (1λ, (M,x, t, L), w) = t+ p(λ, |(M,x)|, L, log t)

and the total number of processors used by P is in poly(λ, L, log t).

A SPARK for NP is a uniformly computable ensemble {(Pc, Vc)}c∈N where (Pc,

Vc) is a SPARK for RRAM
c .

We next remark about some subtleties in our definition and compare to
related notions.

Remark 5.2 (Delayed output). We note that our definition of SPARKs has a
“delayed output” property where the prover picks the output of the protocol
rather than it being known a priori to both the prover and verifier. For typical
NP languages, this distinction is not important because the prover is always
trying to prove that the relation outputs 1. However, for proving more general
polynomial-time computation, the output may not be known in advance, so the
prover must compute both the output and a proof.

Remark 5.3 (Execution by execution extraction). Since there may be many pos-
sible outputs y of the computation, it is very important that the extractor finds
a witness for the actual output y that V accepts in the interaction. Morally, this
definition should capture the fact that the prover actually knows a witness for
that output, instead of a witness for an arbitrary output y′ that the prover may
never convince the verifier of. This is particularly relevant for NP relations, since
when a prover convinces a verifier of an accepting witness (i.e., one where the
relation outputs 1) it is not meaningful to extract a witness which makes the
relation output 0. Note that it does not suffice to run the protocol and simply
give the extractor y (and require the extractor to provide a witness for that
output), as the malicious prover may only convince V of any particular y with
small probability.

A similar challenge motivated the work on precise proofs of knowledge [35],
where they defined arguments of knowledge where the extractor’s behavior de-
pended on a specific instance of the protocol.11 To capture this, their extractor
receives a uniformly sampled view of the prover in the protocol and extracts a
consistent witness. In our definition above, we choose to give the extractor oracle
access to the fixed prover as well as the verifier with fixed randomness which
results in accepting a particular output y. This is akin to giving the extractor an
interactive version of the view, while additionally making the extractor black-
box in both the malicious prover and (fixed) verifier. As such, the extractor can
emulate the interaction to deterministically figure out the output y it needs to
extract for.

11 They considered instances with different running times, whereas we consider in-
stances with different outputs.



SPARKs: Succinct Parallelizable Arguments of Knowledge 23

Remark 5.4 (On composition). It is often important for an argument of knowl-
edge to be composable—that is, to be able to be used as a sub-protocol (possibly
many times). Indeed, we require this for our transformation from arguments of
knowledge to SPARKs. Often, the challenge with composing proofs of knowledge
is obtaining the desired running time of the final extractor.

One definition which composes well is precise argument of knowledge [35]. As
explained above, in that definition the extractor receives the prover’s view in the
protocol, and for every view, the running time of the extractor is a fixed polyno-
mial (in the prover’s running time on that view). However, this notion is quite
strong, and hence is not known to hold for standard arguments of knowledge.

A more standard notion is witness-extended emulation [32], where the ex-
tractor is not given a view, but instead must output a uniformly distributed
view of the verifier as well as a witness. Moreover, the extractor only needs to
run in expected polynomial time, and may use rewinding. However, when this is
used as a sub-protocol, the view picked by the extractor may not be compatible
with the external view in the rest of the protocol.

To fix this issue, our definition essentially gives the extractor a uniformly
sampled view, and we require that the extractor runs in expected polynomial
time over the choice of the view. This can be seen as a relaxation of precise
argument of knowledge, since it doesn’t need to be efficient for every view, but
also as a strengthening of witness-extended emulation, because the extractor
must work on a given view, rather than being able to sample one itself.

Remark 5.5 (Standard arguments of knowledge). The definition we use for a suc-
cinct argument of knowledge (rather than SPARKs) can be obtained from the
above definition by including y in the statement (as is standard for arguments)
and making the necessary syntactic changes. The formal definition is deferred
to the full version. We note that for succinct arguments of knowledge, the cor-
responding extraction definition is implied by the definition used in [37].

We our now ready to state our main result.

Theorem 5.6. [Restatement of Theorem 1.3] Suppose there exists a succinct
argument of knowledge for NP with quasilinear overhead and a concurrent locally
updatable commitment. Then, there exists a SPARK for NP.

Next, we discuss some implications and details of this theorem. Then, to
prove Theorem 5.6, we describe a helper language (Section 5.1) and then give
the protocol (Section 5.2). We defer the proofs to the full version. We also discuss
various extensions of the protocol in the full version.

The round complexity, prover’s space complexity, and verifier’s efficiency in
the SPARK from the above theorem are all preserved from the underlying suc-
cinct argument up to poly(λ, |M,x| , L, log t) factors. Furthermore, we observe
that our SPARK has universal completeness, prover runtime, and succinctness,
meaning that these three properties hold with respect to the universal relation
RRAM
U . Our soundness guarantee, however, requires knowing a polynomial upper

bound on t, and as such we construct a protocol for RRAM
c for each c such that
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t = |x|c. Alternatively, we could have achieved universal soundness by relying
on a superpolynomial assumption on the soundness of the commitment scheme.

We can instantiate Theorem 5.6 with Kilian’s 4-round succinct argument of
knowledge [31], which exists assuming only collision resistant hash functions. Fur-
thermore, we can instantiate the PCP used by Kilian’s succinct argument with
an efficient PCP (say [10] which has quasilinear prover running time and poly-
logarithmic verifier running time). Since we already assume collision resistant
hash functions for the commitment, this shows that we can achieve SPARKs for
NP from collision resistance alone. Applying the transformation as specified, the
round complexity of the resulting transformation would be poly(λ, |M,x| , log t).
However, we can use the fact that for the standard implementation of Kilian
(where the prover stores the entire PCP), the prover can compute the last two
rounds in poly(λ, log t) time, so we can do the last two rounds of Kilian in par-
allel to reduce the round complexity to four. This gives Theorem 1.1. The full
details of this modification are described in the full version.

By suitably modifying the SPARK definition to be non-interactive, and re-
lying on any SNARK with quasi-linear overhead, the above transformation can
be used to obtain a non-interactive SPARK. This gives Theorem 1.2, for which
the formal details are also deferred to the full version.

5.1 The Update Language

For any c ∈ N, we would like to give a SPARK for RRAM
c . Let (M,x, y, L, t) be

any statement in LRAM
c , where M is a RAM program with access to a string

D ∈ {0, 1}nλ in memory for n ≤ 2λ. To help with our construction, we de-
fine the language Lupd in Figure 2. This language corresponds to k steps of a
RAM computation where at each step we additionally update a commitment
corresponding to the memory of M . Specifically, a statement

(M,x, k, pp, state0, com0, v
rd
0 , statefinal, comfinal, v

rd
final)

is in Lupd if there exists a sequence of k consistent updates starting at state
state0 and ending at statefinal. The ith update specifies the commitment comi

after that step, the value vrd
i read from memory during that step (if any), and

proofs πi, τi validating the operation (read or write) performed at that step.
The relation of this language is defined relative to the values given by (statei,

opi, `i, v
wt
i ) = step(M, statei−1, v

rd
i−1) for i ∈ [k]. The relation first checks that the

final state statek and commitment and comk match those given by the statement.
Then, for every step i, it checks (1) that the update from comi−1 to comi is valid
(using proof τi) and (2) in the case of a read operation, namely opi = rd, there is
a valid opening for comi−1 at position `i (using proof πi). Specifically, this check
guarantees that vrd

i either already appeared in position `i in comi−1, or that the
position was ⊥ before step i and was initialized correctly to vrd

i in step i.
The key properties of this language are (1) the witness scales with the length

of the computation and not the size of the memory, and (2) witnesses for con-
secutive Lupd computations can be merged into a single witness for a larger Lupd
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Language Lupd:

Statement. (M,x, k, pp, state0, com0, v
rd
0 , statefinal, comfinal, v

rd
final)

Witness. (u1, . . . , uk), where ui = (comi, v
prev
i , vrd

i , πi, τi) for all i ∈ [k]
Relation Rupd. Let (statei, opi, `i, v

wt
i ) = step(M, statei−1, v

rd
i−1) for i ∈ [k].

Then, (statek, comk, v
rd
k ) = (statefinal, comfinal, v

rd
final) and for all i ∈ [k] the

following hold:
1. C.VerUpd(pp, comi−1, `i, v

opi
i , comi, τi) = 1.

2. C.VerOpen(pp, comi−1, `i, v
prev
i , πi) = 1.

3. vprev
i ∈

{
⊥, vrd

i

}
.

4. If vprev
i = ⊥ and `i < |x|, then vrd

i = x`i .

Fig. 2. A language for verifying k steps of a RAM computation M on input x from
initial state state0 to final state statefinal.

computation. This allows us to prove that (M,x, y, L, t) ∈ LRAM
c with witness

w by splitting a proof that M(x,w) = 1 into proofs of many sub-computations,
where the proof of each sub-computation will correspond to a statement in Lupd.

The complexity of Lupd. Note that the language Lupd is a standard NP lan-
guage. In particular, verifying that an instance-witness pair corresponding to
k updates is in the relation for Lupd can be done by a circuit C with |C| =
k · p(λ, |M,x| , log n) for a polynomial p. Since we will only be using the succinct
argument to prove statements in Lupd, we only need it to have quasi-linear over-
head with respect to the circuit (or Turing Machine) complexity of this language.

5.2 The Protocol

Before defining our protocol in Figures 3 and 4, we give an overview to introduce
the necessary notation and emphasize certain aspects that were omitted for sim-
plicity from the technical overview. Let (PsARK, VsARK) be the succinct argument
of knowledge and let α be its prover efficiency. Let C be the concurrent locally
updatable commitment and let β be its efficiency.

As mentioned in Section 5.1, to prove that ((M,x, y, L, t), w) ∈ RRAM
c , we

split the computation of M(x,w) into m sub-computations in such a way that
the proof of each sub-computation completes roughly by time t. The ith sub-
computation consists of a “compute” phase, where we compute ki steps of the
total t steps of computation and maintain a commitment to the memory at
each step, and a “proof” phase, where we use (PsARK, VsARK) to prove correctness
of those ki steps. For the “compute” phase, recall that performing ki steps of
computation while also updating the commitment takes ki · β total work, yet
computed in depth (ki − 1) + β using β processors by Theorem 4.6.

To complete the “proof” phase in the desired amount of time, suppose that
the work of the prover in the interactive protocol (PsARK, VsARK) is bounded by a
function α of the security parameter and total work of the computation (where
we recall that the security parameter also upper bounds the statement size).
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For any k ≤ t steps of computation, it will be convenient to consider α? to
be an upper bound on the multiplicative overhead of computing a proof for a
statement in Lupd. We define this formally below, but it can be roughly thought
of as a value upper bounded by α(λ, β · t)/(β · t). Then, the largest number of
steps of the computation that we can compute and prove and ensure we finish
before time t is k1 = t/(α? · β+ 1) steps. This is because it takes k1 + β steps to
compute (with corresponding hash updates using β processors) and then can be
proven in time k1 · α? · β. Put these together, computing and proving will finish
roughly in time t + β. Furthermore, after computing the first k1 steps, we can
recursively carve out the next largest piece of computation we can finish in time
t.

In general, let γ , α? · β + 1. The size of the ith sub-computation will be
ki = (t/γ)·(1−1/γ)i−1, which intuitively holds because at each sub-computation
we are left with a (1 − 1/γ) fraction of the total remaining computation. We
continue recursively until the remaining computation is less than log λ steps,
which the verifier can then compute directly given the witness, and thus in total
recurse for m = γ log t steps. We formalize the above idea in Figure 3 with the
algorithm Compute-and-prove.

In the full protocol (formalized in Figure 4), the verifier V first sends public
parameters for the commitment (which alternatively could be part of a trusted
common reference string in the non-interactive setting). The prover P then
hashes an initially empty string (corresponding to uninitialized memory) and
allocates memory to store the memory D for use when emulating M . M expects
D to start with x and w. One way to achieve this would be for P to copy x,w
to the start of D in |x| + |w| time, but we want to avoid having P run in time
depending on |w| since this could be large. To resolve this, we instead have P
translate all accesses to D that correspond to the witness to instead access its
own memory where w is located. Because w is only needed to emulate M , if
M overwrites the memory containing w, it will not cause any other issues for
P . Finally, the prover P runs Compute-and-prove with V as discussed above.
After proving all sub-computations, the prover sends the output y and a proof
authenticating each word in y. Finally, V accepts if all sub-protocols are valid,
the claimed statements are consistent with each other, and if the proofs of the
claimed output are valid.

Parameters. For ease of readability for the protocol and corresponding proofs,
we define the parameters and assumptions for the protocol with respect to λ ∈ N,
the relation RRAM

c , and M,x, t, L ∈ {0, 1}∗ as follows:

– β , β(λ, log(n)) is the efficiency of C.
– α is a function representing the prover efficiency of (PsARK, VsARK). For any

security parameter Λ, machine and input of total length X, and time bound
T , we assume that α(Λ,X, T )/T ∈ poly(Λ,X, log T ) and is an increasing
function in each of its inputs.

– α? , α(λ, |M,x|+6λ+`Gen(λ)+log t, tβ)/(tβ) is the worst-case multiplicative
overhead of running PsARK to prove a statement in Lupd corresponding to at
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Compute-and-prove

Input: T, state0, com0, v
rd
0

Prover Input: Witness w, ptr
Hardcoded Values: 1λ,M, x, γ, pp
Protocol:
1. If T ≥ γ, set k = dT/γe, which will be the number of steps to compute,

and otherwise set k = T .

2. P does the following for i = 1, . . . , k:
(a) Compute (statei, opi, `i, v

wt
i ) = step(M, statei−1, v

rd
i−1).

(b) If opi = wt, update D with vwt
i in location `wt

i and let vrd
i be the value

at that location that was overwritten.

(c) If opi = rd, let vrd
i be the value at location `i in D.

(d) Spawn a parallel process to compute OpenUpdate(pp, ptr, `i, v
opi
i )

(specified by Definition 4.4) and let (vprev
i , πi, comi, τi) be the output.

3. Without waiting Step 2d to halt, if T ≥ γ, P spawns a process to run
Compute-and-prove with V on input (T − k, statek, comk, v

rd
k ).

4. Once step 2d halts, set statement = (M,x, k, pp, state0, com0, v
rd
0 , statek,

comk, v
rd
k ) and wit = ((com1, v

prev
1 , vrd

1 , π1, τ1), . . . , (comk, v
prev
k , vrd

k , πk, τk)).

5. If T ≥ γ, P spawns a process to run an interactive argument of knowledge
with V to prove that statement ∈ Lupd using (PsARK(wit), VsARK).

6. Otherwise, when T < γ, P sends wit to V , and V uses wit directly to
verify that statement ∈ Lupd.

Fig. 3. A parallel algorithm, used in the SPARK in Figure 4, that computes and proves
T steps of RAM computation.

most t steps of computation, where `Gen(λ) is the output length of C.Gen(1λ),
and so |M,x| + 6λ + `Gen(λ) + log t is an upper bound on the length of the
Lupd statements. Note that α? is a function of λ, M , x, t, and β.

– γ , α? ·β+1 is the fraction of remaining computation done at each recursive
call to Compute-and-prove. Note that γ is a function of λ, M , x, t, and β.

We formalize the protocol in Figures 3 and 4. We prove Theorem 5.6, that
this protocol is a SPARK by showing completeness, argument of knowledge,
succinctness, and prover efficiency. The proofs are deferred to the full version.
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Protocol Π(1λ, (M,x, t, L)) for RRAM
c between P (w) and V :

1. V computes pp← C.Gen(1λ) and (∗, comstart) = C.Commit(pp, D⊥), where
where D⊥ is the empty partial string. V sends pp to P .

2. Both parties compute γ (as in the parameters paragraph), initialize
statestart as the initial (empty) state of M , and set vrd

start = ⊥.

3. P computes (ptr, comstart) = C.Commit(pp, D⊥). P additionally allocates
memory for M , denoted D, and initialized to zeros (which we assume is
free), and copies x to the start of the D. Whenever P needs to access
a location ` in D that would correspond to the witness (i.e., |x| < ` <
|x| + |w|), it instead accesses the corresponding location in w in its own
memory. For simplicity, when we write that P accesses a location in D,
we implicitly assume it translates the location appropriately.

4. P and V run the sub-protocol Compute-and-prove(t, statestart, comstart,
vrd

start). For i ∈ [m], let Πi be the ith sub-protocol proving statementi :=
(Mi, xi, ki, ppi, statei, comi, v

rd
i , state

′
i, com

′
i, v

rd′
i ).

5. P computes (yi, πi,final) = C.Open(pp, ptr, i) for i ∈ [L′] where L′ = dL/λe.
Then, P sends y = y1‖ . . . ‖yL′) and πfinal = (π1,final, . . . , πL′,final) to V .

6. V outputs y if the following hold, and outputs ⊥ otherwise:
(a) VsARK accepts in Π1, . . . , Πm−1 and V accepts in Πm.

(b) For all i ∈ [m], it holds that (Mi, xi, ppi) = (M,x, pp).

(c)
∑m
i=1 ki = t and t ≤ |x|c.

(d) (statestart, comstart, v
rd
start) = (state1, com1, v

rd
1 ).

(e) (state′i, com
′
i, v

rd′
i ) = (statei+1, comi+1, v

rd
i+1) for all i ∈ [m− 1].

(f) state′m is a halting state, |y| ≤ L, and C.VerOpen(pp, comm, i, yi,
πi,final) accepts for all i ∈ [L′].

Fig. 4. A SPARK for RRAM
c .
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