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Abstract. Functional Encryption denotes a form of encryption where a
master secret key-holder can control which functions a user can evaluate
on encrypted data. Learning With Errors (LWE) (Regev, STOC’05) is
known to be a useful cryptographic hardness assumption which implies
strong primitives such as, for example, fully homomorphic encryption
(Brakerski-Vaikuntanathan, FOCS’11) and lockable obfuscation (Goyal
et al., Wichs et al., FOCS’17). Despite its strength, however, there is just
a limited number of functional encryption schemes which can be based
on LWE. In fact, there are functional encryption schemes which can be
achieved by using pairings but for which no secure instantiations from
lattice-based assumptions are known: function-hiding inner product en-
cryption (Lin, Baltico et al., CRYPTO’17) and compact quadratic func-
tional encryption (Abdalla et al., CRYPTO’18). This raises the question
whether there are some mathematical barriers which hinder us from re-
alizing function-hiding and compact functional encryption schemes from
lattice-based assumptions as LWE.

To study this problem, we prove an impossibility result for function-
hiding functional encryption schemes which meet some algebraic restric-
tions at ciphertext encryption and decryption. Those restrictions are
met by a lot of attribute-based, identity-based and functional encryption
schemes whose security stems from LWE. Therefore, we see our results
as important indications why it is hard to construct new functional en-
cryption schemes from LWE and which mathematical restrictions have
to be overcome to construct secure lattice-based functional encryption
schemes for new functionalities.

Keywords: Functional Encryption - Function-Hiding - Impossibility -
LWE - Lattice-based - Online/Offline.

1 Introduction

Functional Encryption (FE) schemes are special encryption schemes in which
the holder of a master secret key can issue secret keys for specific functions to
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users. By knowing a secret key for a function f and a ciphertext for a message =,
an adversary shall learn nothing more of z than f(z). FE schemes have proven
to be extremely versatile. Not only does their notion generalize other forms of
encryption like Attribute-Based (ABE) or Identity-Based Encryption (IBE), but
also do we know that compact single-key FE and linearly compact FE for cu-
bic polynomials together with plausible assumptions imply indistinguishability
obfuscation [10,14,29].

Function-Hiding Functional Encryption (FHFE) schemes are an even stronger
subclass of FE where we demand that an adversary — given a secret key for a
function f and a ciphertext for a message x — learns nothing about f and x
except of f(x); i.e., the secret keys now hide the functions they are supposed to
evaluate.

We know that FE schemes with a bounded number of secret keys, an adversary
may learn, are already achievable from minimal assumptions [11]. However, if
we try to achieve security for an unbounded number of secret keys, then we are
left with (function-hiding) inner-product encryption, linearly compact quadratic
FE and FE schemes for constant-degree polynomials which are yielded by re-
linearizing. Of course, there are special cases of FE like attribute-based and
identity-based encryption schemes. In those schemes, a ciphertext is accompa-
nied with a non-hidden attribute or identity and decryption is successful iff the
attribute/identity matches the policy of the secret key. However, the main focus
in this work are FE schemes, since we are interested in schemes which perform
various computations on hidden inputs. We stress here that for linearly compact
quadratic FE and function-hiding inner-product FE there are just pairing-based
constructions known so far [13,21,12,28,3].

Learning With Errors (LWE) [30] is a well-established hardness assumption. It
states that it is hard to solve a system of linear equations over a modulus ¢, if
the solution has sufficient entropy, the coefficients of the equations are chosen
uniformly random from Z, and one column of the presented system has been
perturbed by a small noise-vector whose entries are sampled from a suitable
error-distribution. Because of its strong homomorphic properties, there are fully
homomorphic encryption schemes and lockable obfuscation schemes whose secu-
rity can be proven solely under LWE [17,24,32]. Up to now, it is not possible to
construct those schemes from other standard assumptions. Intuitively, one would
assume that its homomorphic properties imply a lot of different FE schemes. But
as we have stressed, the most complex already existing FE schemes cannot be
replicated by lattice-based constructions. In fact, inner product encryption is
the only FE scheme whose security can be based on LWE (again, putting ABE
and IBE aside). Because of the aforementioned amply homomorphic properties
of LWE, this is very surprising and leads us to the following question:

What hinders us from constructing function-hiding inner-product encryption schemes
whose security can be proven solely from the learning with errors assumption?

We show that there are two properties, both very common under LWE-based FE
schemes, which make it impossible for a function-hiding inner-product encryp-
tion scheme to be secure. The first property lies in the decryption algorithms
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of LWE-based encryption schemes: If we take a close look at the pairing-based
schemes, we see that decryption is always complex, for it involves computing
discrete logarithms of the target group of the pairing. On the other hand,
a lot of LWE-based IBE and FE schemes have simple decryption algorithms
[19,4,6,16,2,7]. In most cases, for moduli ¢ > p > 1, a secret key sk in such a
scheme usually determines a multivariate polynomial ge(Y7,...,Ys) of constant
total degree, while the ciphertext is a vector ct € Zj. At decryption, the polyno-
mial is evaluated at the ciphertext which yields a value gs(ct) € Zg; this value
will be rounded to the nearest number of Zy, i.e., it will be divided by |¢/p| and
then rounded to the nearest integer in {0,...,p — 1}. In full detail, this means

e -1

We believe that this property already suffices to render a FHFE scheme insecure.
Therefore, we state here the following conjecture:

Conjecture 1. Let FE = (Setup, KeyGen, Enc, Dec) be a correct private-key func-
tional encryption scheme for computing inner-products of vectors in Zj. If there
is a constant d’ € N and a polynomial s in the security parameter, s.t.

— each ciphertext ct sampled by Enc is a vector in Z,

— each secret key sk sampled by KeyGen is a multivariate polynomial
in Zy[Y1,...,Ys] of total degree < d’

— and the decryption algorithm works by

oo - 142

then FE cannot be function-hiding secure for an unbounded number of secret
keys.

We leave it as an open question to prove or refute conjecture 1. Instead, we prove
in this work a weaker version of the above statement. If we are to take a closer
look at the aforementioned IBE and FE schemes and some ABE schemes [23,15],
we can distinguish an additional property which seems to be common for some
LWE-based schemes. They tend to have very algebraic encryption algorithms.
Take, for example, a closer look at ciphertext encryption in the LWE-based
inner-product encryption schemes of Agrawal et al. [7]. For an input vector = €
{0, ...,p—1} and two publicly known matrices A € Zg<m, U € ZfIX", ciphertexts
are generated by sampling a uniformly random vector s < Zy, two gaussian noise
vectors eg <= Dzm aq, €1 < Dz o4 and outputting ct = (As 4 e, Us + ey +b-x)
where b is either |¢/K | or p*~1. Note that we can distinguish two parts in this
encryption algorithm: a very complex offline part, where m + [ multivariate
degree-1 polynomials g1(X),..., gm(X),h1(X),...,h(X) are sampled by only
knowing the public key (4, U, p, ¢, K) and without looking at the input a:

gi(X1,..., Xq) = (a; | 8) +eo,
hi(X17~-~7Xl) = <u, I S> —|—€1,i + I_q/KJ Xz
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And, a simple online part which just consists of inserting x in the polyno-
mials sampled before and outputting the ciphertext ct = (g1(z), ..., gm(x),
hi(x),...,h(z)). This distinction in a complex offline and a simple online part
can be seen in the other aforementioned schemes, too. Therefore, we extract it
as an additional characteristic of some LWE-based schemes and make it more
precise in the following:

We say Enc is an encryption algorithm of depth d over Z, if there is a ppt algo-
rithm Encomine, S.t. we have for each master secret key msk and input x € Zg:

Enc(msk, z) ={

(r1,...,7s) < Encoiine(msk) (1)
return (r1(z),...,rs(x)) (2)
}
where we demand that each r; is a multivariate polynomial in Z4[X7, ..., X,] of

total degree < d. We will call line (1) the offfine part and line (2) the online part
of Enc. Indeed, with this additional property we can prove an FHFE scheme to
be insecure.

1.1 Contribution

For moduli ¢ = g(A\) > p = p(A) such that ¢ is prime, % is polynomially bounded

and p is not bounded by a constant, we prove the following:

Theorem 1 (Informal Main Theorem). Assume that the prerequisites of
conjecture 1 hold and that additionally Enc is of depth d over Z, for some
constant d € N.

Then, FE cannot be function-hiding secure for an unbounded number of secret
keys.

To be more precise, we give a bound of the maximum number of secret keys which
can be issued to an adversary before he can break FE (corollary 4). On a very
high level, our proof idea is to use the algebraic structure of the composition
Deco Enc. By doing so, we show that the decryption noises are generated in
a very algebraic way, are small and contain information about the encrypted
ciphertexts. Therefore, we can prove theorem 1 by analysing them.

As an additional result, we show that private-key encryption schemes where
the encryption algorithms are of constant depth and the ciphertext vectors are
short enough cannot be secure (theorem 5 and corollary 3). This result does not
depend on the decryption algorithms of the private-key encryption schemes.

Generality of Our Results. We note here that there are a lot of LWE-based
ABE schemes whose decryption algorithms are too complex to be subsumed by
the equation Dec(sk,ct) = [sk(ct)/|g/p|]. This is because they allow policy-
predicates which cannot be computed by constant-depth circuits. Since the
policy-predicate needs to be computed at decryption, their decryption algorithms
must be at least as complicated as the most complex policy-predicate they allow.
However, the aforementioned ABE schemes in [23,15] have decryption algorithms
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that become simple enough to fit the equation Dec(sk,ct) = [ge(ct)/|q/p]], if
we restrict the policy-circuits in those schemes to be of constant depth and if
attributes and policy match at decryption.

Two-Input Quadratic Functional Encryption. We can derive from the-
orem 1 an impossibility result for 2-input quadratic FE schemes. A 2-input
quadratic FE scheme evaluates functions with two distinguished inputs and has
a left and a right encryption algorithm. To decrypt a value f(z,y), one needs a
secret key for f, a left ciphertext for  and a right ciphertext for y. Since such
a scheme contains a secret key for the quadratic function f(z,y) = (z | y), it
can emulate a function-hiding inner-product encryption scheme, even if it is only
single-key secure.

Corollary 1. Let 2 FE = (Setup, KeyGen, Enc?, Enc, Dec) be a correct private-
key 2-input functional encryption scheme for quadratic functions f : Zy x Z; —
Zy. If there are s € poly(A) and a constant d’ € N, s.t.

— Encl is of constant depth d over Zg,

— each ciphertezt ct sampled by Encl is a vector in Ly,

— each pair of a secret key sk and a right ciphertext ct® determines a mul-
tivariate polynomial g r € Zq[X1,...,X] of total degree < d' s.t. the
decryption algorithm works by

t
Dectsk et ) = [ ()|

la/p]

then 2 FE cannot be single-key secure.

1.2 Interpretation and Open Problems

To prove theorem 1, we assume that the exterior modulus ¢ of the FHFE scheme
FE is prime. Furthermore, we need that the fraction ¢/p is bounded by a poly-
nomial in the security parameter A and that the interior modulus p is for almost
all \ greater than some constant which depends on the depth of FE. Note that
q/p is usually a bound for the error noise used in LWE-based schemes. Since
LWE is assumed to be hard, even if its modulus ¢ is a prime and the deviation
of its error noise is bounded by a polynomial in A, we do not think that those
requirements are big restrictions for our results.

We see the results in this paper as a useful argument in understanding
the difficulties in constructing LWE-based function-hiding functional encryption
schemes. An even more useful argument would be to close the gap and prove
conjecture 1. Because of theorem 1, to prove our conjecture, it now suffices to
transform a function-hiding inner-product encryption scheme which is correct
and secure and fulfils the requirements of the conjecture to one that fulfils the
requirements of theorem 1. In other words, it suffices to take an FHFE scheme
which already decrypts in an LWE-like manner and simplify its encryption al-
gorithm to one of constant depth which stays secure and correct.

Another way to extend the results here is to prove theorem 1 for encryption
algorithms where, in the online part, one first computes a bit-decomposition
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G~1(z) of an input vector x and then applies the polynomials sampled in the
offline part to G=1(z). A lot of the techniques here would not be suitable for
this task; indeed, one would need to develop more advanced techniques to show
this.

1.3 Related Work

The idea of decomposing encryption algorithms into simple online and complex
offline parts has already been studied with the purpose of finding FE schemes
with practical usages (we cite [26,8] as examples). However, to the best of our
knowledge, this is the first work where the online/offline structure of encryption
has been used to prove an impossibility result.

Ananth and Vaikuntanathan showed that FE for P/poly with a bounded
number of secret keys can already be achieved from minimal assumptions, i.e.
public-key encryption in the asymmetric setting and one-way functions in the
symmetric setting [11]. The ciphertexts in their schemes are growing linearly with
the number of secret keys which can be handed out to an adversary. It is pre-
sumably hard to improve their result, since we know that a bounded FE scheme
with sufficiently compact ciphertexts would already imply indistinguishability
obfuscation [10,14].

As mentioned, it is hard to construct FE schemes for stronger functionali-
ties. In recent years, researchers circumvented this problem and looked at novel
FE schemes with additional properties: Abdalla, Chotard and other researchers
constructed mulit-input and decentralized multi-client inner-product encryption
schemes [3,20,1,5]. Those are inner-product encryption schemes where a function
has multiple inputs and to decrypt one needs a secret key and multiple suitable
ciphertexts. In the decentralized schemes, one gets rid of the master secret key
holder. Jain et al. introduced the notion of 3-restricted FE [9,27], which can be
understood as cubic FE where a ciphertext just hides two out of three factors.

1.4 Technical Overview

To prove theorem 1, we need to show the existence of a selective adversary
who wins the function-hiding IND-CPA game against the function-hiding inner-
product encryption scheme FE. In this game, the adversary submits an un-
bounded number of inputs z? and functions f]Q for world 0 and an unbounded
number of inputs x; and functions f} for world 1. Then, the challenger draws a
random bit b < {0, 1} and sends the corresponding ciphertexts and secret keys
of world b to the adversary. The adversary wins, if he guesses b correctly and if
the submitted inputs and functions would not tell him trivially in which world
he lives, i.e., if we have for all 7 and j

£ @) = f ().

We do not directly construct an adversary to break FE. Instead, we show how
an adversary can reduce the problem of breaking FE to the problem of breaking
other encryption schemes with additional properties. To do so, we apply multiple
transformations to FE. Eventually, we end with a private-key encryption scheme
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whose ciphertexts are short integer vectors and whose encryption algorithm is
of constant depth. Then, we construct a simple adversary who can break such
encryption schemes.

To make our argument go through, we need the transformations to preserve
the security and correctness of the transformed schemes. It is easy to see that
security is preserved, since we ensure that all changes to FE can be computed by
an adversary while he plays the above security game against FE. On the other
hand, we can not always guarantee that our transformations preserve correctness.
In fact, one transformation step applied to FE changes it in such a way that
decryption succeeds only in a non-negligible number of cases. Furthermore, it is
important that at each time we have an encryption algorithm of constant depth.
This means, each transformation step either changes the encryption algorithm
without changing its depth or at most changes its depth to another constant
value.

Our proof consists of three major steps:

(1) We first change FE s.t. all ciphertexts have short entries relative to the
modulus ¢. To do this, the adversary queries a lot of secret keys for the
zero-function and learns, by doing so, the structure of the space of secret
keys. Then, he can exchange a ciphertext with a vector of decryption noises.
Those noises have to be short, because otherwise they would make a correct
decryption impossible. On the other hand, however, we show that those
noises contain enough information about the original ciphertext to make
decryption possible in a non-negligible number of cases. Therefore, we can
assume FE to have short ciphertexts.

Then, we use a straightforward transformation to convert FE to a private-
key encryption scheme SKE, whose ciphertexts are short relative to ¢ and
whose encryption algorithm is of constant depth over Z,.

(2) Since the encryption algorithm of SKE, is of constant depth, SKE, encrypts
a number x by sampling some polynomials, evaluating those polynomials at
z and reducing the result modulo ¢. To analyse the ciphertexts of SKE,, we
need to get rid of the arithmetic overflows in the online part of its encryption
algorithm. We observe that, if #(X) is a polynomial with small coefficients,
then, for some small z values, r(z) does not change when we reduce it modulo
g. Furthermore, we know the ciphertexts of SKE, to be short relative to g.
By using this fact, we can apply simple changes to the encryption algorithm
of SKE, to ensure that the polynomials sampled by its offline algorithm
have very small coefficients. By doing so, we can change SKE, to a private-
key encryption scheme SKE of constant depth whose ciphertext vectors are
sufficiently short and where no arithmetic overflows do occur in the online
part of its encryption algorithm.

(3) In SKE, a message x gets encrypted by sampling random integer polynomials
T1,...,Tm of constant degree and computing (r1(z), ..., 7, (x)) as ciphertext
without any arithmetic overflows. Intuitively, such a scheme should not be
secure and, indeed, we show that such a scheme can only be secure, if its ci-
phertexts do not contain any information about the encrypted messages. But
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this makes decryption impossible. Since we showed that a correct and secure
FHFE scheme FE can be transformed into a secure private-key encryption
scheme whose ciphertexts contain a non-negligible amount of information,
it follows that FE could not be secure and correct in the first place.

We now take a closer look at the techniques used in each step.

Replacing Ciphertexts with Decryption Noise. We describe here how to
make the ciphertexts of FE short. For simplicity, let us assume that we have
already relinearized ciphertexts and secret keys, i.e. decryption works by

Dec(sk, ct) = {WJ .

Query a lot of secret keys vq,...,v,  KeyGen(msk,0) for the zero-function
and draw a ciphertext ct, for an arbitrary input z € Z;. Each v; must decrypt
ct, to zero, since this is the value of the zero-function applied to z. Because of
decryption correctness of FE, we can therefore assume that we have for each v;

(0r | ct)] < m .

Otherwise, (v; | ct,)/|g/p| would not round to zero. We can now exchange ct,
with the following new ciphertext for x:

/

ctl, = ((v1 | ctz) ..o, (Um | Ctz)).

This ciphertext just consists of noise values which are generated when decrypting
ct, with secret keys for the zero-function. Therefore, each entry of ct/, is bounded
by |¢/p]. The question remains, how much information about z is left in ct!, and
if it is even possible to recover f(z) from ct, and sk;. We show that in a non-
negligible number of cases a successful decryption is still possible. That is because
of the function-hiding property of FE which vaguely implies that a secret key for
f has to lie in span;,_{v1,...,vm} with non-negligible probability.

Getting Rid of Arithmetic Overflows. The key observation in step (2)
is that, if we evaluate a polynomial of degree d with small coefficients at a
small input, reducing the result modulo ¢ will not change its value. However,
the polynomials r1(X),...,r,(X) sampled in the offline part of the encryption
algorithm of SKE, do not necessarily have small coefficients. We only know them
to have small output values. We prove that there is a constant ¢, s.t. each ¢ - r;
has sufficiently small coefficients modulo ¢. The existence of ¢ can be shown by
using a quasi-inverse! of the Vandermonde matrix V for the tuple (0,1,...,d),
that is an integer matrix whose product with V equals a scaled identity matrix.
By simply multiplying ciphertexts of SKE, with ¢, we can make them behave
like they were outputted from an encryption algorithm of constant depth where

! Calling such matrices quasi-inverses is ambiguous. However, we will stick to this
notion, since we lack better names.
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no arithmetic overflows do occur in its online part. Therefore, we can transform
SKE, into SKE.

Quasi-inverses of Vandermonde have been recently used by Esgin et al. to

extract witnesses out of many polynomial relations [22]. However, in this work,
we use a different quasi-inverse than them, which yields better bounds for our
results.
Statistically Distinguishing Random Polynomials. We describe here, how
our adversary breaks SKE in step (3). It suffices to look at the j-th coordinate of
a ciphertext of SKE. At input x, the j-th coordinate is computed by sampling a
random polynomial r;(X) of constant degree d in the offline part and evaluating
it at z. Our adversary works by guessing one x # 0 and comparing E[r;(z)?]
and E[r;(0)?]. We show, if for each x the means E[r;(z)?] and E[r;(0)?] do not
differ by a non-negligible amount, then 7;(X) is of degree at most d — 1 with
overwhelming probability. By inductively using hybrids, one can see that r;(X)
must be of degree 0, i.e. constant, with overwhelming probability. But, if r;(X)
is constant, the value r;(z) does not carry any information about . Therefore,
if the ciphertexts of SKE contain a non-negligible amount of information about
the encrypted messages, it follows that there must be some j and = # 0 s.t. our
adversary can successfully distinguish E[r;(z)?] and E[r;(0)?] and, therefore,
successfully distinguish ciphertexts for 0 from ciphertexts for x.

1.5 Organization of this Work

We first introduce some preliminaries in section 2 and some important defini-
tions and concepts in section 3. Then, in section 4, we give an adversary who
breaks private-key encryption schemes of constant depth which do not make use
of arithmetic overflows. In section 5, we then derive an impossibility result for
private-key encryption schemes of constant depth with short ciphertexts over
Zg4 by transforming them to schemes we broke in the preceding section. Finally,
in section 6, we show the impossibility of LWE-like FHFE schemes with sim-
ple online/offline encryption by transforming them to schemes of the preceding
section.

Due to lack of space, we have ot omit the proofs of some lemmas. The reader
can find those proofs in the full version of this paper [31].

Acknowledgements. 1 would like to thank my doctoral supervisor Dennis Hof-
heinz and my former colleagues Geoffroy Couteau, Valerie Fetzer, Michael Kloof3
and Sven Maier for helpful comments and advices on how to improve this text.
Further, I would like to thank the reviewers and everyone who listened to the
talk preceding this work for their questions and suggestions.

2 Preliminaries

Forn e N={1,2,3,...}, set [n] := {1,...,n}. We define two sets of functions:

poly(A\) :={p:N—N|3e,d e NVAEN: X°+d>p()) > 1},
negl(\) :={e: N> R |Ve e N: limy_,,A%(A) =0}.
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For functions f,g : N — R, we write f(\) > g(\) — negl(}), if there is an
e € negl(A) s.t. we have f(A) > g(A) —e(A) for all A

For x € R, we define the following roundings: |z| := max{z € Z | z < z},
[z] :==min{z €Z | 2>z} and [z] :=max{z€Z| 2|z —z| <1}

For two discrete distributions D1, Dy over a set X we define the statistical
distance of (Dl,Dg) by A(Dl,Dg) = %ZZL’GX |D1(l‘) — Dg(.’L‘)|

2.1 Statistical Preliminaries

Theorem 2 (Hoeffding’s Inequality). Let n € N and B,t > 0. For n inde-
pendent random variables X1, ..., X, with |X;| < B, we have

n

Pr[ X1+...+Xn_E{X1+...+Xn}
n

> 9Bt } < 972t

Corollary 2. Let D be a memoryless source that outputs real numbers which
are bounded by B > 0. Let r € N and set n = 2r3. Let u be the mean of D and
let E, be the random variable which is sampled by n-fold querying D, summing
its outputs and dividing this sum by n. Then, we have

B
Pr [|En —pl < } >1—-2e".
r

2.2 Algebraic Preliminaries

Theorem 3. Let f(X) = Z?:o a; X? be a polynomial of degree d over R. Then

d'-ag = zd:(—l)dik (Z)f(k)'

k=0

This theorem can be proven by using discrete derivatives. For example, a proof
can be deduced by trick 2 of [25], section 5.3. Alternatively, the reader can find
a full proof in [31].

Now, let ¢ € N be a modulus.

Definition 1. For a € Z, we define the absolute value modulo q by

. q
dal fo |2}
jamod gf := min |a + 2] €40,..., | 5
Lemma 1. (a) For a € Z, we have |a mod q| =0 < a € ¢Z.
(b) For ay,...,a, € Z, we have |y, a; mod q| < > | |a; mod g.
(¢) For a,z € Z, we have |z -amod ¢| < |z| - |a mod q|.
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2.3 Learning Theory-Preliminaries

In this subsection, we study the problem of learning vector subspaces. Let F be
an arbitrary field.

Lemma 2. Let s € Ng = {0,1,2,...} and let D be a discrete distribution over
Fs. For m € N, we have
s
Pr [Um € spang {v1,...,U0;m—1}] > 1— —.

Voo, U <D m

Proof. Let m > s and fix v1,...,v,, € supp(D). Denote by S™ the group
of permutations of the set [m] and by T C S™ the subgroup of order m
which is generated by the cyclic rotation (123...m). For 7 € T set V, :=
spang {UT(1)7 e 7UT(m—1)}' Since each v; is an s-dimensional vector, we have

m—s <#{j € [m] | v; € spang {v; | i € [m]\ {j}}} =#{r €T [ vr(m) € V- }.

Therefore, for each fixed choice vy, ..., v, € supp(D) we have
m—s
7_(P_I"T [’U,,-(m) € V-,—] > .
Since the vectors vy, ..., v, are identically and independently distributed, we
furthermore have
Pr [Um € spang {v1,...,Um_1}] = Pr [Vr(m) € V7] .
V1o Um < V1o Um <
7T
Combining both things, we get
vl,...gieb [V € spang {vy,...,Um_1}] = vl,...,};zleD [vr(m) € V7]
7T
= Z TErT [’U.,-(m) € VT] -WI’MEJrMHD Vi: w; = v
V1,...,Um Esupp(D)
m-—s m—s
> . P Vi: w; =) = . o
- Z m wl,“.,wrmeD[ ! Wi Uz] m

V1y--+,Um ESUPP(D)

Theorem 4. Let s € Ny and let D be a discrete distribution over F°. Then,
there exists an algorithm which makes s queries to D and O(s®)-fold use of the
four basic arithmetic operations in F to compute a number k < s, a matriz
B € F*** which consists of k samples of D and a second matriz BT € F*>s s.t.
with V := B -F*

(a) we have BT - B = 1y,
(b) B- B is the identity on V, i.e., for allv € V, we have B - BT -v = v,
(¢) a certain proportion of the samples of D lies in V, i.e. Pryepv € V] > %
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3 Definitions

In this section, we give basic definitions and state elementary lemmas for this
work.
3.1 Functional Encryption

Throughout this work, let A denote the security parameter. Let (F))x be a
family of function descriptions with a family of domains (X)), and codomains
(Y2)x. We tacitly assume in the following that the size of each f € Fy,x € X
and y € Y, is bounded by a polynomial in A, that we can efficiently sample
uniformly random elements of those families and that there is a deterministic
polytime evaluation algorithm which on input (f,z) € F) x X, outputs the
correct value y € Y\. We denote the output of this algorithm by f(z).

Definition 2. A functional encryption scheme FE = (Setup, KeyGen, Enc,
Dec) for the family (F)\)x is a quadruple of four ppt algorithms where

Setup(l)‘) on input 1A generates a master secret key msk,
KeyGen(msk, ) on input msk and a function f € Fy generates a secret key sky,
Enc(msk, ) on input msk and an input value x € X generates a ciphertezt ct,,
Dec(sky, cty) on input a secret key sky and o ciphertext ct, outputs a value y € Y.

We call FE correct, if we have for each samplable? (f\)x € (F)\)x ane € negl(\),
s.t. it holds for all (xx)x € (Xa)x
msk < Setup(1),
Pr | Dec(sky, cty) = fa(xa) | sky < KeyGen(msk, f),| > 1 —¢e(N).
cty < Enc(msk, xy)
We call FE better than guessing (by + ), if there exists a polynomial v € poly(\)
s.t. we have for each (xx)x € (Xa)a and each samplable (fa)a € (Fx)a
msk < Setup(1™)
Pr | Dec(sky, cty) = fa(xa) | sky < KeyGen(msk, f),| >
cty < Enc(msk, )

1
= + s negl(\).

We call FE useless, if we have for each polynomial r € poly(\)

Pr Vo,y € Xy : A(Enc(msk,x), Enc(msk,y)) < ——

> 1 —negl(M).
msk<—Setup(1*) ’I"()\) - neg( )

While being correct is a common requirement for encryption schemes, being
useless implies that a successful decryption is almost impossible, since the ci-
phertexts contain nearly no information. Being better than guessing, however,
implies that in some cases the ciphertexts and secret keys contain enough in-
formation for a successful decryption. Now, one would assume that a scheme
cannot be useless and better than guessing at the same time and, indeed, we
have the following lemma:

2 By being samplable, we mean here that there is a uniform deterministic poly-time
algorithm which on input 1* outputs fy.
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Lemma 3. Let #Y)\ > 2 for all X\ and let (F)\)x contain a samplable (fa)r s.t.
each fy is surjective. Then, we have:

(a) If FE is correct, it is better than guessing.
(b) If FE is useless, it is not better than guessing.
3.2 Encryption Algorithms

Now, let R be a ring with an associated valuation |-|, : R — Ny. In this work,
we always assume R = Z or R = Z, for a prime ¢ = ¢()). In the first case

||z, = [-] is the archimedean absolute value. In the latter case |-|, = |- mod ¢| is
the absolute value modulo ¢ we defined in definition 1.
Furthermore, let X = {0,..., N}"™ now consist of n-dimensional vectors for

a polynomial n = n(A) € poly(A) and some N = N(A).

Definition 3. We say the scheme FE or rather its encryption algorithm Enc is
of length s over R, if the output of Enc is always an element of R®. Furthermore,
we say in this case that Enc is of

(a) width B, if the infinity-norm of almost all ciphertexts is bounded by B. Le.,
there is an € € negl(X), s.t. we have for each (x)x € (X))

msk(—Setltaup(l’\)[ ! [S} ‘C |R ‘ ¢ nc(ms .’L’)\)} E( )

(b) depth d, if Enc consists of two parts: an offline part — a ppt algorithm
Encofiine which on input msk generates s polynomials over R[Xq,...,Xp,]
of total degree < d — and an online part which generates a ciphertext by
evaluating the polynomials sampled by Encomine at the input x. Le., Enc
works as follows

Enc(msk, ) :

(p1,---,Ds) < Encogmine(msk)
ety := (pr(2), ... pe(2))
return cty

where we demand that each p; is a polynomial of total degree < d over R.

3.3 Security Notions

In this work, we study the notion of selective and function-hiding IND-CPA
security where the adversary is allowed to submit a priori multiple challenge
inputs (2, z;) and a bounded number of challenge functions (f7, fj). To be
feasible, the adversary must ensure that the output values f;-’(a:i-’) do not already
tell him, if he lives in world 0 or world 1, i.e. he must ensure f?(«9) = f}(x}).
The challenger will send the adversary the ciphertexts and secret keys for one
random bit b < {0,1}. To win, the adversary has to guess the bit b.
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Definition 4. Let FE = (Setup, KeyGen, Enc, Dec) be a functional encryption
scheme for the family (Fx)x and let m € poly(\). We say that FE is selectively
m-bounded function-hiding IND-CPA secure (m-fh-IND-CPA secure),
if each ppt adversary A has a negligible advantage in winning the following game:

Step 1: The adversary A submits two lists® of possible inputs (x?)7,, (x})™,
and two lists of possible functions (fjo);”:l, (fjl);”:1 to the challenger C.

Step 2: The challenger C generates a master secret key msk + Setup(1*) and
draws a secret bit b < {0,1}. Then, C computes ct,» := Enc(msk, xt) for
each i = 1,...,n, skfjp := KeyGen(msk, f;’) for each 7 = 1,....,m and
sends the lists (ct,»)i_, and (skff)}ll to A.

Step 8: The adversary A guesses b.

The adversary wins the above game, if he guesses b correctly, and, if we have
fjo(ac?) = f]l(xll) foralli=1,...,n and j =1,...,m. The advantage of A is
defined by

Adv(A) := 2Pr[A wins| — 1 = Pr[A wins | b = 0] + Pr[A wins | b=1] — 1.

We call FE selectively unbounded function-hiding IND-CPA secure
(fh-IND-CPA secure), if FE is m-fh-IND-CPA secure for each polynomial
m € poly(\), and we call FE selectively IND-CPA secure

(IND-CPA secure), if FE is 0-fh-IND-CPA secure.

3.4 Private-Key Encryption

We define private-key encryption schemes as a special case of functional encryp-
tion schemes:

Definition 5. A private-key encryption scheme is a functional encryption
scheme SKE = (Setup, KeyGen, Enc, Dec) for a function family (Fy\)x where each
F only contains the identity function Id : X — X).

When discussing private-key encryption schemes we sometimes omit KeyGen
from the header of the scheme and write Dec(msk,-) instead of
Dec(KeyGen(msk,Id), -). Note that we call SKE IND-CPA secure, if it is selec-
tively O-bounded function-hiding IND-CPA secure in the sense of definition 4.
This differs from the usual security notion in literature, where the adversary is
usually allowed to submit only one pair of challenge messages and can inquire
ciphertexts adaptively. However, by using a hybrid argument, one can show that
the security loss which occurs by allowing multiple challenge messages is poly-
nomially bounded. If we consider message spaces of superpoly size, then we can
construct private-key encryption schemes which are selectively, but not adap-
tively, secure. Therefore, the security notion for SKE we use here is weaker than
the usual one in literature.

3 The size n is determined by the descryiption of A and bounded by .A’s running time.
n may be zero, which means that A is always sending two empty lists of inputs.
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3.5 Transformations

Definition 6. Let FE = (Setup, KeyGen, Enc, Dec), FE' = (Setup’, KeyGen', Enc,
Dec') be two functional encryption schemes for the same functionality. We say
that FE is virtually FE, if Setup = Setup/, KeyGen = KeyGen', Dec = Dec
and there is an € € negl(\), s.t. for all sequences (xx)x € (Xa)x the statistical
distance between the following two distributions is bounded from above by e:

{(msk, ct;) | msk < Setup(1*), ct, < Enc(msk,zx)}
{(msk,ct,) | msk < Setup(1*), ct’, < Enc'(msk,x))} .

Now, let FE be a functional encryption scheme for functions (Fy) with inputs
(Xx) and let FE be one for functions (FY) with inputs (X}). We say there
is an adversarial transformation from FE to FE, if there are ppt algo-
rithms Tet, Tek, Tr, Tx s.t. we have the following equalities of distributions for
all ' € X4, f' € F}, msk € supp(Setup):

Setup' (1) = Setup(1*),
Enc (msk, ') = Tet(Enc(msk, Tx (z"))),
KeyGen' (msk, f') = Ta(KeyGen(msk, Tr(f'))).

If (F)\) = (FY}), then we always assume Tp =Idp, and Tx =Idy,.

Let k € N be constant and let (FE')%_, be a sequence of functional encryption
schemes. We say there is a virtual adversarial transformation from FE' to
FEk, if, foreachi=1,... k-1, FE' is virtually FE™™ or there is an adversarial
transformation from FE' to FE'T!.

We can now observe the following facts:

Lemma 4. (a) If FE is virtually FE , then FE is m-fh-IND-CPA secure, correct,
better than guessing resp. useless iff FE is so.

(b) If FE is m-fh-IND-CPA secure and there is an adversarial transformation
from FE to FE, then FE is m-fh-IND-CPA secure.

At some points, we want to ensure that an encryption algorithm Enc of width
B never outputs a ciphertext whose largest entry is not bounded by B. We can
ensure such a behaviour by replacing each ciphertext of Enc which is too big
with the zero vector. It is clear that this change just has a statistically negligible
impact on a scheme. One can even ensure that by doing so we do not harm the
depth of Enc:

Lemma 5. For n = 1, let FE be of length s, width B and depth d over R.
If d is constant and B is polynomial, then FE is virtually a scheme FE =
(Setup’, KeyGen', Enc', Dec') of length s and depth d over R where we have
Enc (msk,x) € {~B,...,B}* for all A\, x € X, and msk' € supp(Setup’(1*)).
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4 Online/Offline Encryption Without Overflows

In this section, we show that private-key encryption schemes of polynomial width
that are better than guessing cannot be IND-CPA secure, if their encryption
algorithms have a very simple online part in which no arithmetical overflows do
occur.

Theorem 5. Let d € N be constant, N > 2d and let SKE be a private-key
encryption scheme of depth d and width B € poly(X) with message space X =
{0,..., N} over Z.

If SKE is selectively IND-CPA secure, then SKE is useless.

Proof (Theorem 5 Part 1). Let SKE be an IND-CPA secure scheme of length s,
depth d and width B over Z for messages Xy = {0,..., N}. If we define SKE' =
(Setup’, Enc’, Dec’) like in lemma 5, then SKE is virtually SKE'. In particular,
SKE' is of the same length and depth and is secure and useless iff SKE is so.
Furthermore, SKE’ is now strictly of width B, i.e., it never outputs a ciphertext
outside of {—B, ..., B}*. It now suffices to prove that SKE' is useless. B

To prove theorem 5, we define an adversary which we will show to have a non-
negligible advantage against SKE', if SKE’ is not useless.

Definition 7. Let 7 € poly()\), N > 2d and s > 1. Set m = 2r3.
We define the following selective adversary A which plays the IND-CPA
security-game in definition 4 with the scheme SKE :

Step 1: The adversary A draws y < [2d] and then, for b = 0,1, submits the
following two lists of 3m messages each:

0, ifie{l,...,m},
b =Sb-y, ifie{m+1,...,2m},
Y, ifie{2m+1,...,3m}.

He submits two empty lists of possible functions.
Step 2: The adversary A receives a list of ciphertexts (ct’, )3 . Let ct’, ; denote

the j-th entry of ct;b. Fork=0,1,2 and j =1,...,s he computes the

arithmetical means

(k+1)m

1
Ck,j = E Z (Ctjx?»J)2

i=14+km

Step 3: If there is a j s.t. [caj — c1,5] > 2%, the adversary outputs 0. Otherwise,
if there is a j s.t. |coj — c1,5] > 2%, he outputs 1. If none of the above

requirements should be met, then the adversary outputs a random bit
b« {0,1}.

The following lemma shows in which cases A has a non-negligible advantage.
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Lemma 6. Letr € poly(\) s.t. 7 > X. For a fized msK , set CT, = Enc’ (msK ,y).
The adversary in definition 7 has a non-negligible advantage in the selective IND-
CPA game against SKE , if the following probability is non-negligible

B

P 3 € [s], *e2d:’E[CT*<2}—E{CT’4ﬂ‘>4— .
msk’eSei‘up’(lk) J [8] Y [ ] ( Yy 7]) ( Oa]) r
Proof. Fix for this proof a master secret key msk’ € supp(Setup’(1*)) and denote

;2 . . . . / / . .
by CT,” the distribution of drawing ct; < Enc’(msk . ) andQSquarmg 211 its
entries. In step 2, A approximates the means of CTj, ,CTZ_y and CT’y . By
Bounded we denote the event that for each & = 0,1,2 the distance between cy,
and its mean is at most B/r, i.e. the event Bounded holds iff

B

wslen]] ) <2

max (‘ ‘co —-E [CTGQ} , HC1 —E [CTé.yQ} )

Since Enc’ always outputs values bounded by B, we have, according to corollary
2, that the probability that event Bounded will occur is at least (1 — 2e77)3¢ >
1 — 6se". Therefore, for each fixed msk’, it follows

B 1
Pr[A fails|b=0] < Pr {|co — 1|l > 2} +3
r
1 _ 1
< Pr[-Bounded] + 3 < 6se” " + 3
Similarly, for each fixed msk’ € supp(Setup’(1*)), we get Pr[A fails |b=1] <
6se™" + %
Now, assume additionally for msk” that the following event Seperated does hold
B

. .

&mmw:ﬂfepﬂ:HEF%?—EF%fmm>4

Let y denote the value drawn by A in step 1. If Seperated holds for msk’, then
Pr[A wins|b =0,y = y”]

B
2P llea - all > 27 b =0,y =]

B
> Pr[Bounded] - Pr |:||C2 —clle >2—
T

Bounded, b =0,y = y*]
>(1—6se”")-1=1—6se".

Similarly, we get Pr[A wins|b =1,y = y*] > 1 — 6se~". Therefore, for msk’ <
Setup’(1*), we get now

Pr[A wins | Seperated|
1

2d — 1
:ﬂ(Pr [A wins | Seperated, y = y*] + —q Pr [A wins | Seperated, y # y*])

1 2d—-1 (1 1 1
>—(1—6se ")+ < - 6S€T) > — 4 - —6se".

2d 2d 2 ~4d 2
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Now, if we set e := Pr[Seperated], we have

Pr[A wins] = € - Pr [A wins | Seperated] 4 (1 — ¢) - Pr [A wins | —Seperated]

e Lyl e ) r1—o) (L —6se) —em L 4 Gse
= €& ad B se g B se —€4d B se .

Since our lemma requires € to be non-negligible and r > A, it follows that A has
a non-negligible advantage. a

To conclude the proof of theorem 5, we need to show that the prerequisites
of lemma 6 do occur, if SKE" is not useless. In fact, we show a purely math-
ematical statement in the following which implies the uselessness of SKE’, if
the prerequisites of lemma 6 are not met. Our statement says that for a dis-
tribution of polynomials the means of the squared outputs of the polynomials
for x = 0,...,2d need to be widespread, because, otherwise, it is very unlikely
for the sampled polynomials to be non-constant. If the polynomials sampled by
Enc/ (msk’) are with overwhelming probability constant, then, of course, the

offline
sampled ciphertexts do not carry any information about the encrypted input x.

Lemma 7. Let D be a distribution over integer polynomials of degree d > 0. If
there is a function € = e(\) s.t. for all z € {1,...,2d} we have

2 2
- <
E [p(e? - p(0?]| <,
then it follows
Pr [degp<d—1]>1—2e.
p<D
Proof. For p < D, we set f(X) := p(X)? — p(0)%. Then, f is a random inte-
ger polynomial of degree 2d. If we have p(X) = Z?:o a; X?, then the leading
coefficient of f is a%. Now, by theorem 3, it follows

2d
(2d)! - af =) (~1)* (2.d)f(i).

7

i=0
Hence
, 2d o (2d |
B (0] =gy |21 ( Z. )pg@b [£(0)
1 2d 2d . 1 2d 9 024
S(Qd)';(l) pIED[f(Z)]‘ = (260';(2) €= (2d)!€§2€'

If we draw p(X) = 2% a; X" « D, it follows

Prldegp=d] = Z Priag =1] < Z i -Prlag=i]= E [a3] <2e. O
i€Z\{0} i€Z\{0}
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Lemma 7 already implies that the offline algorithm of an IND-CPA secure en-
cryption scheme of depth d and polynomial width will — with overwhelming
probability — sample polynomials of degree d — 1. In the following theorem, we
generalize this observation for arbitrary degrees d — k.

Theorem 6. Let D be a distribution over integer polynomials of degree d. If
there are functions ¢ = €(A) and B = B(X\) s.t. for all x € {1,...,2d} and
p € supp(D) we have

|p(gj)2 _ p(0)2| < B2 and pED [p(x)Q —p(O)Q] < %8,

then we have for allk=10,...,d
Pr [degp <d—k] > 1—(2+2B?)"c.
p«D
Theorem 6 is proven by using induction over k where the base case and the

induction step both follow by lemma 7. Since its proof is very technical, we omit
it here. We can now finish the proof of theorem 5.

Proof (Theorem 5 Part 2). Let A be the adversary in definition 7. For A to have
negligible advantage against SKE’, according to lemma 6, it is necessary to have
for all r = 47/ B € poly()\)

Pr [w e lsl,y € [2d) : ’E [(CT;J)Q} _E {(CT()J)Q” < H > 1 — negl())

where we take the probability over msk’ « Setup’(1%). But now, by theorem 6,
we have for each r € (2 + 2B%)¢ - poly()\)

1
Pr [Vj € [s]: Pr [degp; =0l >1—(2+ 232)‘1] > 1 —negl()).
(P1ye-sPs)—Enclen;pe ’ r

Therefore, the uselessness of SKE' and, in particular, the uselessness of SKE
follow. a

5 Online/Offline Encryption With Short Ciphertexts

In section 4, we showed that encryption schemes of constant depth and poly-
nomial width without arithmetic overflows cannot be secure. In this section, we
show the same result for encryption schemes of constant depth and polynomial
width which may make use of arithmetic overflows but have short ciphertexts.
We do so by transforming such schemes to encryption schemes without arith-
metic overflows. I.e., if the ciphertexts are of short width, we can transform their
encryption algorithm to one of constant depth over Z by using a simple mul-
tiplication trick. As before, throughout this section, let A denote the security
parameter and let B = B()),d = d(\) and N = N()\) be arbitrary variables
depending on A. Let s € poly()). Additionally, introduce a modulus variable
g = q(\). We prove in this section the following theorem:
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Theorem 7. Let g be a prime, N > d+1 and let SKE; be a private-key encryp-
tion scheme of depth d and width B over Z, for messages X = {0,...,N} s.t.

2(d+1)2-(d)?-d*- N4 B<q—1.

If SKE, is selectively IND-CPA secure, then there exists a virtual adversarial
transformation to an encryption scheme SKE of depth d and width (d')?B over
Z for messages X = {0, ..., N} which preserves selective IND-CPA security and
— in both directions — correctness, being better than guessing and uselessness.

Theorem 7 and theorem 5 imply together the following impossibility result:

Corollary 3. Let g be a prime and let SKE, be a private-key encryption scheme
of depth d and width B for messages x = 0,...,N over Zq s.t. N > 2d and

2(d+1)2-(d)?-d*- N B<q—1.

If SKE, is selectively IND-CPA secure, B € poly(\) and d € N constant, then
SKE, is useless.

Proof. Because of theorem 7, there is an IND-CPA secure private-key encryption
scheme SKE over Z of polynomial width (d!)2B and constant depth d € N for
messages Xy = {0,..., N} which is useless iff SKE, is useless. Since N > 2d,
SKE is useless according to theorem 5. O

To prove theorem 7, let ¢ > 2 be a prime and define a map ¢ : Z; —

{—‘12;1,...,0,...,%1} C Z by setting for all a € Z,

tlamod q) :=a+z2q for z€Zst. |a+ zq| = |amod g|.
Then, ¢ preserves absolute values and we have
t(a mod ¢) mod ¢ = a mod q.

One first idea for proving theorem 7 could be to just apply ¢ component-wise
to each ciphertext, i.e. treat each ciphertext modulo ¢ as it would be an integer
vector. Technically, we would replace Enc by ¢ o Enc. While ¢ o Enc would be
indeed of length s and width B over Z, it is not clear, if it would be of depth
d over Z. To make this precise, for p € Z,[X], we denote by I(p mod ¢) the
coeflicient-wise application of ¢, i.e.

d d
I <Z a; X" mod q) = ZL(@Z' mod ¢) X",

=0 =0

Then, we have the equation I(p mod ¢) mod ¢ = p mod ¢ again. Now, for ¢ o Enc
to be of depth d over Z, we would need a suitable offline algorithm. We could,
for example, take I o Encomine as candidate. If p is a polynomial over Z, sampled
by Encofine, we would then need the following kind of equality for all x € X

t(p(x) mod q) = I(p mod q)(z). (3)
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While equation (3) holds for polynomials p with small coefficients, it does not
hold in general. Therefore, we need to apply minor changes to the polynomials
sampled by Encomine as we will see later. To this end, consider the Vandermonde
matrix for the tuple (0,1,...,d)

100 ...0
111...1
) d
V= ((i— 1)]_1)i,j:1,...,d+1 _ 4 ...2 c Zd+D)x(d+1)
1dd?...d¢

We can deduce the coefficients of a polynomial by applying V! to its output
values. However, V1 has very large entries modulo ¢, therefore we use the
following integer quasi-inverse W with bounded entries.

Lemma 8. There exists an integer matriz W € ZA+DXE@H0) yhose entries are
bounded by (d')3d?, s.t. V-W =W -V = (d!)?- Id(g41)x (d+1) -

Lemma 9. Let q > 2 be a prime, set c = (d!)? and let p € Zy[X] be a polynomial
of degree d. Furthermore, let N > d + 1. If we have for allz =0,...,d

qg—1
<
Ip(@) mod o} < 5oy (ane a1 va

then we have for allz=0,... N
I(c-pmod q)(x) = t(c- p(x) mod gq).
Proof. Tt is clear that we have for any integer polynomial p and any x € Z
I(c-pmod g)(x) mod ¢ = ¢- p(z) mod g = t(c- p(x) mod ¢) mod g.

Therefore, in our case, it suffices to show that the absolute value of
I(c-pmod ¢)(x) is bounded by q;—l, since ¢(c - p(xz) mod q) is a value of
{—%21, ..., %1} which differs from I(c - p mod ¢)() only by a value in ¢Z.

Let p(X) = 2%, a; X € Z,[X] and set a = (ag, ... ,aq) € Z3+1 to be the
column vector of p’s coefficients. Then, we have

100 ...0 ag p(0)
111...1 ay p(1)

d
Veamodg=|124 .29 a2 | modg= p(2) mod q.
1dd?...d¢ aq p(d)
Let W = (w; j); ; € Z@H1)*(4+1) be the quasi-inverse of V' from lemma 8. Since

WVa = ca mod ¢, we have for each a;

d
c-a; mod g = Zwiyjp(j) mod gq.
i=0
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In particular, we have now

|c-a; mod ¢ = ) mod ¢

d
Z |w; ;| - |p(j) mod ¢l .
i=0

Set

q—1
= <
Bi= max Ip(w) mod q| < 5o s N

Since each |w; ;| is bounded by (d!)3d® and each |p(j) mod q| is bounded by B,
we get

d
lc-a; mod ¢] < Z |wi ;| - [p(j) mod ¢| < Z d)3dB = (d +1)(d!)3d’B.
=0
Therefore, we have for all x =0,..., N

[I(c-pmod q)(z)|

d d
ZL (¢c-a; mod q) x Z (c-a; modq)xi|
i= =0
d d '
<> fuc-a;mod )| - [af| <D (d+1)(d)*d’B - |z’
i=0 1=0

d
<(d+1)(d!)*d’B- (Z Ni> < (d+1)(d)3d?B - (d+1)N? < %
1=0

Ergo, the claim follows. a

Proof (Theorem 7). Because of lemma 5, we can — by using the same argument
we used in the first part of the proof of theorem 5 — w.l.o.g. assume that the
encryption algorithm of SKE, = (Setup,, Enc,, Dec,) never outputs a ciphertext
whose entries modulo ¢ are not bounded by B. Set

=(@)?€Z h:=c'modqe?Z,

and define a scheme SKE = (Setup, Enc, Dec) over Z by applying the following
adversarial transformation to SKE,:

Setup(1*) ::Setupq(l’\),
Enc(msk, ) :=t(c - Ency(msk, z) mod ¢),
Dec(msk, ct) := Dec,(msk, (h - ct mod q)).

It is clear that SKE, is correct, better than guessing (resp. useless) iff SKE is
correct, better than guessing (resp. useless), since we have

(h- (t(c-ctmod ¢q)) mod q) = (h- (c-ct) mod ¢) = ct mod gq.
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Since SKE, is IND-CPA secure and the above transformations are adversarial,
SKE is IND-CPA secure.

It remains to show that Enc is an encryption algorithm of depth d and width
¢B over Z. Now, for each (cty,...,cts) < Ency(msk, ), we have

|t(c-ctjmod gq)| = |c-ctjmod ¢| < c-|ct; mod ¢| < ¢B,

therefore Enc is of width ¢B over Z. To show that Enc is of depth d we have to
give a feasible offline algorithm Encomine for Enc = ¢(c - Ency). This is done by
setting
Encomine (Msk) := I(c - Encoine,q(msk) mod g).
Let x € {0,...,N}. If we fix the randomness r of Enc(msk,z,r) and set
(p1,...,ps) = EnCofttine,q(msk, r) and (p!,...,p.) = Encofine(msk, r), then
Enc(msk, z, 1) = ¢(c - Ency(msk, z,7) mod q)

—(u(c- pr(@) mod ), ..., u(c - ps ) mod g))

(*

) (I(c - pr mod )(@), ..., I(c - ps mod q)(z)) = (F(2), .., P()),

where eq. (%) follows from lemma 9. Therefore, Enc(msk, z) is of depth d. O

N>

6 Lattice-Based Function-Hiding Functional Encryption

In this section, let n(A) > 1 be a polynomial in A and let g(A\) > p(A) > N(XA) > 1.
Further, let X, ={0,...,p}", Yy ={0,...,p} and let (F)), be a function family
which contains (besides other functions) the zero-function 0 € Fy — which maps
each z € X to zero — and the projection m; € F — which maps each x € X, to
its first coordinate.

Let FE = (Setup, KeyGen, Enc, Dec) be a functional encryption scheme for
(Fx)x of depth d; and length s over Z, and let da € N be a constant s.t. each
secret key sk € supp(KeyGen) is a polynomial in Z,[X7, ..., X,] of total degree
S d2 with

Dec(sk, ct) = [sk(ct)/|q/p]] -
Finally, set m = (ngz). We prove in this section the following theorem:
Theorem 8. If q is a prime and FE is selectively (m + 1)-bounded function-
hiding IND-CPA secure and correct, then there exists an adversarial transfor-
mation from FE to a private-key encryption scheme of depth d := dy - do, width
lg/p] and length m over Z, for messages x = 0,..., N which is selectively IND-
CPA secure and better than guessing.

Corollary 4 (Impossibility Result). Assume that q is a prime, d; is constant
and 1% is bounded by a polynomial in A and that for almost all A € N we have

p(\) > (d+1)%- 29+ (dN)3 . g%

Then, FE cannot be both selectively (m + 1)-bounded function-hiding IND-CPA
secure and correct.
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Proof. Assume that FE is both and set N = 2d. Because of theorem 8, we can
transform FE to a private-key encryption scheme over Z, with depth d and width
B := |q/p] for messages X} = {0,...,2d} which is IND-CPA secure and better
than guessing. Then, we have

B:{ngq_lg ¢—1 .
D D 2(d+1)2-(d)3 - d? - (2d)

Now, according to corollary 3, this encryption scheme must be useless and there-
fore cannot be better than guessing. In particular, FE cannot be correct. a

We prove theorem 8 by applying adversially three transformations to FE. First,
we relinearize the ciphertexts and secret keys s.t. decryption becomes evaluat-
ing a scalar product, dividing by |¢/p| and rounding down. Second, we draw
m secret keys vy, ..., v, < KeyGen'(msk,0) for the zero-function and replace a
ciphertext ct’ with a vector of decryption noises {ct’ | v;). Because of decryption
correctness, each noise value must be small; therefore, we get a new ciphertext
of small width. By using sufficiently many secret keys, we can ensure that the
new ciphertext contains enough information s.t. the probability of a correct de-
cryption becomes high enough. We will not always be able to decrypt correctly,
but we show that we are still better than guessing by % In fact, this is im-
plied by lemma 10 which states that a secret key of a non-zero function must
sufficiently resemble a secret key of the zero-function. As a last step, we con-
vert the current FE scheme into a private-key encryption scheme for messages
xz € {0,..., N} which is better than guessing and of small width over Z,. Since
all transformations can be applied by an adversary, the scheme stays IND-CPA
secure (however, we lose some security in the second transformation step, since
we have to ask for m secret keys). If we started with a FE scheme of constant
depth, then the final scheme will also be of constant depth.

Proof (Theorem 8 Step 1). As a first step, we relinearize the ciphertexts and
secret keys of FE. Note that each polynomial sk € Z,[ X1, ..., X,] of total degree
< ds can be written as a vector of its coefficients. This yields a linear transfor-
mation
("as?)

[ {Sk € Zq[Xl,...,XS] ‘ degsk < dg} — Zq 27
On the other hand, there is a polynomial map &+ : Ly — Ly of degree da which
maps each vector to a vector of different products of its entries s.t. we have for
all sk € Zy[ X1, ..., X;] of total degree < dy and all ct € Zy

sk(ct) = (@ (sk) | DT (ct)). (4)
Now, we define a new scheme FE' = (Setup’, KeyGen’, Enc’, Dec’) by setting
Setup’(1*) := Setup(1*), KeyGen'(msk', f) := @ (KeyGen(msk', f)),
Enc’(msk’, ) := &% (Enc(msk’, z)) , Dec’(sk’, ct’) := [{sk" | ct’)/|a/p]] .

Applying @ and &1 together forms an adversarial transformation, therefore FE’
is (m + 1)-fh-IND-CPA secure. Because of equation (4), FE' is correct. Further,
Enc’ is of depth d := d; - d» and its outputs are vectors of length m = (Sjgjz). | |
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Lemma 10. For each sampleable (fx)x € (Fx)x there is an € € negl(\) s.t.

msk' « Setup' (1)
Pr |sk; € spang, {vi, ., Um} | v1,..., vm < KeyGen'(msk,0)
sk < KeyGen'(msK', fx)

1
> — — .
“m+1 2Q

Proof. Lemma 2 states
msk’ < Setup’(1*)
P, :=Pr Sk6 € spaan{vl, ce ey Um b | V1, e, U+ KeyGen'(msk’,0) [ > I—T.
m
sky «+ KeyGen'(msk’, 0)

Consider an adversary A who plays the IND-CPA game from definition 4 against
FE' and works as follows:

Step 1: For b=0,1and i =1,...,m + 1, the adversary sets

sy )0, if i <m or b=0,
Y7, ifi=m+landb=1.

and submits two empty lists of possible inputs and two lists of possible

functions (¢9)i21", (¢})i27 "

Step 2: After receiving (sk’gg)?g[l, A computes V' := spang,_ {sk;?, . ’Sk;i’n }

Step 3: The adversary outputs 0, if sk;b " €V, and 1 otherwise.

If we set

msk’ < Setup’(1%),
P, :=Pr Sk} € spaan{vl, ey Um b | V1, U1 < KeyGen'(msk’, 0), | ,
sk’ <+ KeyGen'(msk’, f»)

then we can compute the advantage of A by
e:=Pr[Awins | b=0]+Pr[Awins |b=1]-1=P +(1—P,)—1=P, — Ps.

e is negligible, since FE' is (m + 1)-fh-IND-CPA secure. Therefore
1
Py=P —e(\) > —— —¢g()\). O
2 1 —e(A) > ] e(A)

Proof (Theorem 8 Step 2). Let FE' = (Setup’, KeyGen’, Enc’, Dec’) be a correct
and (m + 1)-fh-IND-CPA secure functional encryption scheme where Enc’ is of
depth d and length m over Z,. Let furthermore Dec’ be computed by

Dec’(sk’,ct’) = [(sk’ | ct’)/[qa/p]]-

We now adversarially transform FE’ to a functional encryption scheme FE” for
the same functionality which is 1-fh-IND-CPA secure, better than guessing and
whose encryption algorithm has depth d, width |¢/p| and length m over Z,.
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In the IND-CPA game against FE', our adversary first queries m secret keys

V1, ..., Um < KeyGen'(msk’,0) for the zero function and then makes use of the
algorithm B described in theorem 4 to compute V, A, AT < B(vy,...,vy) s.t.
V =spany {vi,...,vm} and A € Zy>k, AT € ZE*™ are matrices with

V:A-ij and A-Atv=vforallveV.

After our adversary queried m secret keys, FE' remains 1-fh-IND-CPA secure.
However, by doing so, the adversary gained the additional data V, A, AT with
which he can transform FE' to FE” = (Setup”, KeyGen”, Enc”, Dec”) by setting:

Setup”(1*) := Setup’(1*) Enc”’(msk”,2) := AT - Enc(msk”, x)

K?yGenH(mSkN; f) -~ Dec” (sk”, ct”) :

sk’ < KeyGen'(msk’, f) TR —

if sky eV g {0,....p}
sk7 = AT - sk, else

else y < Dec'(sk” ct”)
sk/]ﬁ =1 return y

"
return skf

FE” has the following properties:

Security: The above changes can be applied by an adversary while he plays the
IND-CPA game from definition 4. Therefore, FE” is 1-fh-IND-CPA secure, since
our adversary has to query m secret keys for the zero function which does not
leak any information about encrypted messages.

Depth and Length: Since the transformation of the encryption algorithm is
done by multiplication with the matrix A7 € Zlgxm, the depth of the encryption
algorithm does not change. Furthermore, Enc” is of length* k& < m over Z,.
Width: We have to show that Enc” is of width [g/p|. To this end, let (z))) €
(X))a, draw msk” < Setup”(1%), ct” < Enc”(msk”,z)) and fix a component
ctf of ct” = (ctf,...,ct{) € Zi. Note that the columns of the matrix A =
(vj,|. .. |v;,) are some of the vectors v1, ..., v, + KeyGen'(msk’, 0) according to
theorem 4. Since ct” = AT ct’ for some ct’ + Enc’(msk’, ), there is, because of
the correctness of FE', an gy € negl()\) s.t. for all (z))x € (X))

pr [t < |2 = -t < [ 2] 2 [L /';jJ ]

p
msk’ < Setup’(1*)
=Pr |Dec(vj,,ct’) = 0| w;, + KeyGen'(msk’,0),| >1—¢e())
ct’ + Enc'(msk’, )

4 Note that k is not fixed but rather a random variable. However, this is not a problem,
since we can always pad the output of Enc” to be of length m over Z,.
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where in the first three terms we take the randomness over the computation of
msk” and ct”. Therefore, Enc” is of width |q/p].

Better than Guessing: It remains to show that FE” is better than guessing.
Fix (z)x € (X)) and a samplable (fy)x € (F)x and draw msk” < Setup” (1*),
sk's < KeyGen" (msk”, fx), ct// + Enc”(msk”, z). Then, we have

f@)]
f(z) ‘ sk = L] - Pr sk} = 1]
f(x) ‘ sk7 # L] - Pr sk} # 1]

:I% -Pr sk} = L] +Pr[Dec”(skf,cty) = f(x)| skf # L] - Pr[sk} # L].

Pr [Dec”(sk’7, ct)
=Pr [Dec” (sk’7, ct}))
+ Pr [Dec” (sk’s, ct}})

Now, we have sk;ﬁ # L iff sk} € V. Because of lemma 10, the probability for this
is at least %H — &1 for some &) € negl()). If sk; € V, we have

Ki | ct” Atsk, | AT ct!
Dec” (s ;ﬁ,ct_’,é) =Dec'(s /Jﬁ,ctg) = <S s le m> = < K | < m>
La/p) la/p]

_ (AAT K | ct)
la/p)

The last term equals fy(x)) with probability at least 1—¢e5 for some €5 € negl()\).

Now, let A be big enough s.t. 1 —ea(A\) > W’ then

J = Dec’(sk’s, ct},).

Pr [Dec”(sk7, ctl) = f(z)] (5)

:I% - Pr [sk;ﬁ =1]+Pr [Dec”(sk}, ct!) = f(x) ‘ sk'y # L]-Pr [sk;ﬁ # 1]

Zlﬁ(l—Pr[s T # L))+ (1 —ep) - Pr[sk} # 1]
SN (1_52_1>
p+1 7 p+1
S N
“p+1 m+1 p+1
! P — negl()).

o1 T D+ D

Therefore, FE” is better than guessing by 4 |

D
m+1)(p+1) "

Since (Fy), contains the projection onto the first coordinate, there is a straight-
forward way to adversially transform FE” to a private encryption scheme over
Z4 with width |g/p] and depth d which is better than guessing and selectively

IND-CPA secure. For this purpose set X, = {0,...,N(\)}.

Proof (Theorem 8 Step 3). Let FE” = (Setup”, KeyGen”, Enc”, Dec”) be the func-
tional encryption scheme of the preceding step. Then, FE” is 1-fh-IND-CPA
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secure, better than guessing and of depth d and width B := |g/p] over Z,. Ad-
ditionally, FE” has the special property that for all samplable (fy) there is an
e € negl(A), s.t. we have for all (z)x

sk’ < KeyGen” (msk”, f1)
Pr Dec”(sk’s, ctly) = fa(za) | ety = Enc”(msk”, ) >1—e(M).

71X
msk’’ «—Setup’/ (1*) Sk/f/ £ 1

We adversarially transform FE” to a private-key encryption scheme SKE”' =
(Setup”’,Enc”’, KeyGen"’, Dec”’) of depth d and width B over Z, for the message

space X » which is IND-CPA secure and better than guessing. For this end set:

Setup”’(1*) := Setup” (1) Dec”’(sk™, ct”)
Enc”(msk”, ) := Enc” (msk”’, (x,0...,0)) if sk” =1
KeyGen”'(msk”,Id g ) := KeyGen” (msk”, ) y<+{0,...,N}
else
y < Dec”’(sk”’, ct”)
return y

Note that this adversarial transformation is the only one in this work, where we
have two functional encryption schemes for different functionalities. Now, SKE"”
is IND-CPA secure, because FE” is 1-fh-IND-CPA secure (in fact, FE” being
0-fh-IND-CPA secure would already suffice). Enc”’ is of depth d and width B
over Z,, since Enc” is so. The computations marked by the number (5) in the
preceding transformation step show — mutatis mutandis — that SKE" is better
than guessing by WN(N—H) a
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