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Abstract. We provide new constructions of non-interactive zero-knowledge
arguments (NIZKs) for NP from discrete-logarithm-style assumptions
over cyclic groups, without relying on pairings. A previous construc-
tion from (Canetti et al., Eurocrypt’18) achieves such NIZKs under the
assumption that no efficient adversary can break the key-dependent mes-
sage (KDM) security of (additive) ElGamal with respect to all (even in-
efficient) functions over groups of size 2λ, with probability better than
poly(λ)/2λ. This is an extremely strong, non-falsifiable assumption. In
particular, even mild (polynomial) improvements over the current best
known attacks on the discrete logarithm problem would already contra-
dict this assumption. (Canetti et al. STOC’19) describe how to improve
the assumption to rely only on KDM security with respect to all efficient
functions, therefore obtaining an assumption that is (in spirit) falsifiable.
Our first construction improves this state of affairs. We provide a con-
struction of NIZKs for NP under the CDH assumption together with
the assumption that no efficient adversary can break the key-dependent
message one-wayness of ElGamal with respect to efficient functions over
groups of size 2λ, with probability better than poly(λ)/2cλ (denoted 2−cλ-
OW-KDM), for a constant c = 3/4. Unlike the previous assumption, our
assumption leaves an exponential gap between the best known attack
and the required security guarantee.
We also analyse whether we could build NIZKs when CDH does not
hold. As a second contribution, we construct an infinitely often NIZK
argument system for NP (where soundness and zero-knowledge are only
guaranteed to hold for infinitely many security parameters), under the
2−cλ-OW-KDM security of ElGamal with c = 28/29+o(1), together with
the existence of low-depth pseudorandom generators.
Keywords: Non-interactive zero-knowledge arguments, pairing-free groups,
KDM security

1 Introduction

Zero-knowledge proof systems, introduced in [21], are a fundamental crypto-
graphic primitive, allowing a prover to convince a verifier of the veracity of a
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statement, while not divulging anything beyond whether the statement is true.
When the proof consists of a single message from prover to the verifier, this re-
sults in a non-interactive zero-knowledge proof system (NIZK) [5]. Due to their
large number of applications in cryptography, NIZKs enjoy particular interest,
ranging from efficient implementations to feasibility results.

On Building NIZKs from Concrete Assumptions. While one-way func-
tions are known to be necessary [36] and sufficient [20] for zero-knowledge proof
systems, the exact relation of NIZKs to other cryptographic assumptions and
primitives is considerably less clear. NIZKs are known to exist in the plain model
only for trivial languages [35]. To circumvent this issue, cryptographers design
NIZKs in the common reference string (CRS) model, where a common reference
string is honestly generated beforehand in a setup phase and is given to both
prover and verifier. A large body of work has been dedicated to the construction
of NIZKs in the CRS model from various cryptographic assumptions. As a re-
sult, NIZKs are known to exist from a wide range of assumptions, from pairing
groups [22, 23], factorization assumptions [5, 13], and indistinguishability obfus-
cation [40], to circularly-secure LWE [6] and plain LWE [37]. Yet, in spite of
three decades of efforts, it remains an intriguing open question whether one can
construct NIZKs from discrete-logarithm-style assumptions (without relying on
pairing groups), which are among the most well-established assumptions in cryp-
tography. Here, the only known result is the recent work of [7], which constructs
NIZKs under the exponential key-dependent message security of ElGamal with
respect to all (even inefficient) functions. While this is a remarkable stepping
stone, it remains an extremely strong and non-standard assumption. Therefore,
an important question remains open:

“Is it possible to build NIZKs from (weaker) discrete-logarithm-style
assumptions?”

NIZKs from Correlation Intractability. Our work follows the blueprint of a
recent line of research, which seeks to compile interactive protocols into NIZKs us-
ing the Fiat-Shamir paradigm [15], by instantiating the underlying hash function
by a correlation-intractable hash function. Informally, a correlation-intractable
hash function (CIH) with respect to a relation R is a hash function such that
it is infeasible to find an input x satisfying (x,H(x)) ∈ R. CIH have been in-
troduced in [8], where it was also shown that correlation-intractability for all
sparse relations suffices to instantiate the Fiat-Shamir paradigm. Despite some
impossibility results [4], a recent line of work has shown how to construct CIH
for various sparse relations of interest [6,7,24,25,37], obtaining NIZKs from new
assumptions. Out of these works, [7] relies on the exponential key-dependent
messages (KDM) security for all (even inefficient) functions of an encryption
scheme with universal ciphertexts, which can be instantiated over pairing-free
groups with a suitable variant of ElGamal; unfortunately, this is an extremely
strong assumption, which has several undesirable features. In this paper, we
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seek to improve the result of [7] and to construct NIZKs for NP from weaker
assumptions over pairing-free groups.

On the Strong-KDM Security Assumption of [7]. The construction of [7]
relies on the following assumption over cyclic groups: let G be a group of order
p ≈ 2λ with a generator g. Then, for any probabilistic polynomial time adversary
A, any (possibly inefficient) function f : Zp 7→ Zp, and any superpolynomial
function s, it holds that

Pr
[
(a, k)←r Z2

p : A
(
ga, gak+f(k)

)
= k

]
≤ s(λ)

2λ
.

While this assumption is not contradicted by known attacks on the discrete log-
arithm over suitably chosen elliptic curves, it is an extremely strong assumption,
with several undesirable features:

– Optimality. Optimal security means that every PPT adversary has advan-
tage at most λO(1)/2λ. 4 The above assumption requires optimal security,
which is equivalent to assuming that no improvement (by more than poly-
nomial factors) to the best known existing attack will ever be found. Hence,
even mild cryptanalytic improvements would already contradict the above
assumption.

– Non-Falsifiablity. The above assumption is not falsifiable, in the sense
of [17, 33], since it might not be possible to efficiently check whether an
adversary breaks the assumption with respect to some specific inefficient
function. However, [6] notes that it is possible to construct NIZKs even when
the functions f considered in the assumption are efficient.

Insecurity with Auxiliary Inputs. In the same spirit as knowledge of expo-
nent assumptions, which are known to become insecure (under obfuscation-style
assumptions) when auxiliary inputs are allowed, unfalsifiable flavors of KDM
security have been recently shown to be insecure as soon as auxiliary inputs
are allowed, assuming that LWE is hard and one-way permutations exist [16].
While this does not directly contradict the unfalsifiable flavour of the assump-
tion above, it makes it very sensitive to any side information an adversary might
have access to when it is used in a higher-level application.

1.1 Our Contribution

We propose new constructions of NIZKs, improving over the NIZK of [7] in terms
of the underlying assumption. As noted in [6], the assumption in [7] can be
4 In the case of DDH groups, the best known generic PPT adversary is Pollard’s
rho algorithm [38], which runs in time O(2λ/2) and has constant success probability.
However, restricted to polynomial time, it only provides a polynomial advantage over
randomly guessing the discrete logarithm. Moreover, it is known [41] that no generic
algorithm with T oracle queries can have better succes probability than O

(
T2

2λ

)
.
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improved to consider only efficient functions and thus construct NIZKs based on
a falsifiable-style notion of KDM-security 5. In this work, we remove the need of
relying on optimal security of the underlying assumption, while maintaining the
falsifiable flavor of KDM security.

We note that our second construction satisfies a weaker notion of security,
infinitely-often security, where soudness and zero-knowledge are only required
to hold for infinitely many security parameters. For a discussion on the notion
of infinitely-often security and its usage in cryptography, please refer to the full
version of the paper.

In more detail, the assumption at the core of our new construction is a
strong flavor of the OW-KDM security of ElGamal: given a group G of size ≈ 2λ

with generator g, the 2−cλ-OW-KDM assumption states that for a family of
(randomized) efficient functions F , any PPT adversary receiving an ElGamal
ciphertext encrypting F (k) (in the exponent) with the key k is unable to recover
the plaintext with advantage greater than s(λ)/2cλ, for any superpolynomial
function s:

Pr
(k,a)←rZ2

q

m←rF (k)

[A(ga, gak+m) = m] ≤ s(λ)/2cλ for some c ∈ [0, 1].

The value c determines the strength of the assumption: c = 1 corresponds to
assuming optimal security (as in [7]), while smaller values of c leave a gap between
the success probability of the best known attacks and the success probability that
can be tolerated by the assumption. In particular, a constant c < 1 indicates
that the assumption can stand even exponential improvements in the success
probability of the best known attacks.

1. Assuming the hardness of CDH and the 2−cλ-OW-KDM security of ElGamal
with c = 3/4, we propose an adaptively-sound multi-theorem NIZK for all
of NP. Both soundness and zero knowledge are computational, the first is
implied by OW-KDM, while the second is implied by CDH.

2. Our second construction aims at analysing the complementary landscape.
More precisely, we investigate the possibility of building NIZKs in groups
where CDH does not hold, building upon the fact that this implies (using
known results) the existence of a self-bilinear map. We leverage this self-
bilinear map to obtain an adaptively-sound, adaptively multi-theorem zero-
knowledge (infinitely often) NIZK for all of NP, under the 2−cλ-OW-KDM
security of ElGamal with c = 28/29 + o(1), together with the assumption
that Goldreich’s PRG [18] instantiated under the Lombardi-Vaikuntanathan
predicate [29] is secure up to some (arbitrarily small) polynomial stretch.6
Combining this result with our first construction, we obtain a construction of

5 More precisely, these assumptions are falsifiable in spirit in the sense that they can
be modeled as an efficient game with a challenger, but the winning condition can
occur with exponentially small probability.

6 The security of Goldreich’s PRG is a well-established and widely studied assumption,
which provably resists large classes of attacks [2, 3, 10,32,34].
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(infinitely-often) NIZKs for NP under the same assumptions, independently
of whether CDH holds.

In both constructions, an important effort is devoted to obtaining the smallest
possible constant c, to minimize the strength of the underlying assumption.
We view it as an interesting open problem to further minimize the value of c,
especially in our second construction.

1.2 Our Techniques – First Construction

Both our constructions follow a similar footprint: we start from a Σ-protocol
for a carefully chosen, but limited language. We compile this Σ-protocol using
a correlation-intractable (CI) hash function into a NIZK for the same limited
language. Then we use different techniques to bootstrap this restricted NIZK to
NIZK for all of NP, by using them to build a verifiable pseudorandom genera-
tor (VPRG) [11, 26, 39], which in turns leads to NIZKs for NP. Our approach is
inspired by [7], their strategy is to design a correlation-intractable (CI) hash func-
tion based on a scheme with universal ciphertexts, which they use to transform
an underlying sigma protocol into a NIZK. In their case, the interactive proto-
col is the one in [14, Section 2.1]. We diverge from this approach by applying
the CI hash function to a sigma protocol for a more restricted, but still expres-
sive enough language (which we bootstrap later to a fully-fledged NIZK through
VPRGs). Looking ahead, the parameters of the KDM security assumption are
instrinsically tied to the ratio between the size of the first flow of the sigma
protocol and its adaptive soundness. By allowing the underlying sigma protocol
to support only a more restricted language, we expand the field of potential
candidates and eventually identify a protocol with a better first flow/soundness
ratio. Our initial attempt is to start with the standard Σ-protocol for the Diffie-
Hellman relation LDH, described in figure 1. Choose a cyclic group G of prime
order p, along with two generators g and h. The relation consists of all pairs
of group elements of the form (gx, hx). To transform the sigma protocol into a

Prover Verifier
r ←r Zp and

set (R,S) = (gr, hr)
e←r Zp

d = e · x+ r Check gd = Xe ·R
and hd = Y e · S

(R,S)

e

d

Fig. 1. Σ-protocol for the Diffie-Hellman language for the word (g, h,X = gx, Y = gy).
This is a variant of a protocol by [1]

NIZK for LDH, the idea of the CI framework is to apply the Fiat-Shamir trans-
form, but instead of using random oracles, the random oracle is replaced with a
CI hash function.
CI Hash Functions. A CI hash function H for a specific relationR is a function
for which it is hard to find an input α, such that (α,H(α)) ∈ R. Consider the
case where the initial relation is sparse, meaning that for every α, the number of
potential β’s satisfying (α, β) ∈ R is negligible. Then, the sigma protocol can be
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transformed into a NIZK by asking the prover to generate the second flow himself,
by running e = H(R,S). The verifier will only accept if the resulting transcript
is accepting and also e = H(R,S). From the correlation intractability of H, even
a malicious prover will be unable to cheat by finding a properly chosen initial
flow (R,S), such that ((R,S),H(R,S)) ∈ R (this also holds because the sparsity
of the relation R is bounded by the soundness error of the sigma protocol, which
is negligible).
Choice of H. To construct the hash, we choose a function closely related to
the one used in [7], where H(x,K) interprets the input x as a decryption key,
and the key K as a ciphertext, end returns Decx(K). For our instantiation, we
crucially rely on a specific property of the additive variant of ElGamal (which
is, informally, that keys and plaintexts are “interchangeable”). Since additive
ElGamal does not provide efficient decryption (the decryption procedure recovers
only G̃m, and we cannot guarantee that m will be small in our construction),
we modify the CI hash of [7] so that it returns Trunc(G̃m), where Trunc is some
function that parses its input as a bitstring and truncates it appropriately. More
precisely, we pick a second cyclic group G̃ of order q, generated by G̃ (dlog qe =
2dlog pe). The CI function is keyed by key C̃ = (C̃0, C̃1), where (C̃0, C̃1)←r G̃2.
Then, we define:

H(C̃0,C̃1)
(α)← first dlog pe bits of C̃1/C̃

α
0 .

Parameters. This protocol has 1
p soundness and the size of the first flow is

2dlog pe, which translates into a 2−λ/2-KDM assumption for the CI hash func-
tion. Unfortunately, this Σ-protocol does not satisfy adaptive soundness (given
an honestly-generated first flow and challenge, there always exist words that are
not in the relation, for which there exists an accepting third flow). Adaptive
soundness is a crucial requirement for bootstrapping our first NIZK to cover all
NP statements. Fortunately, performing a parallel repetition of the Σ-protocol
yields adaptive soundness, albeit at the cost of worse parameters in our assump-
tion (c = 3/4).
Reduction to KDM for Efficient Functions. The above construction re-
duces to the KDM security of ElGamal, but only with respect to an inefficient
function f , which maps first flows to accepting challenges. From there, we lever-
age the fact that an ElGamal encryption (G̃r, G̃kr+m) of a plaintext m with
key k, with respect to a generator G̃, can be equivalently seen as an ElGamal
encryption of k with the key m with respect to the generator G̃r. Building upon
this observation and the fact that f−1 is efficient, we show that the security of
our NIZK for the DDH language can in fact be reduced to the KDM security of
ElGamal with respect to the efficient function f−1.
From NIZKDH for LDH to a NIZK for all of NP. In this step, we use an idea
implicitly employed in [11, 26, 39]. We use the NIZKDH for the LDH relation to
construct a verifiable pseudo-random generator (VPRG), which we then in turn
use to instantiate the hidden bits model of [14], to obtain NIZKs for all of NP.
Intuitively, a VPRG is a pseudo-random generator with the additional property
that one can compute proofs for any individual bit of the output, certifying
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that the bit is consistent with a commitment of the initial seed. Let G be a
cyclic group of order p, the VPRG public parameters will consist of m+1 group
elements (g, h1, . . . , hm). Seeds are elements τ ←r Zp, and commiting to a seed
is Commit(τ) = gτ . The ith output bit of the VPRG is of the form B(gτ , hτi ),
where B is the Goldreich-Levin hardcore bit. Now notice than we can actually
certify this as a correctly computed bit, by noticing that (gτ , hτi ) ∈ LDH and
computing a proof using our NIZKDH. (additionally, we need to output hτi as
well, so that the verifier can compute B(gτ , hτi ) itself). Intuitively, this VPRG
satisfies the following security properties:

1. Binding: if xi is the ith output of the VPRG with respect to a seed τ , one
should not be able to certify bit 1 − xi. This is implied in our construction
by the soundness of NIZKDH.

2. Hiding: An adversary should not be able to recover the ith output of the
VPRG, even if it received all the other output bits and proofs certifying that
they are correct. In our construction, this property reduces to the CDH as-
sumption.

NIZK for all of NP through the Hidden-Bit Model. In this model [14],
the prover and the verifier benefit from having access to a common reference
string with special properties. The bits of the common reference string are ini-
tially hidden from the verifier. When proving a statement, the prover can decide
to selectively reveal some bits of the common reference string, which allows the
verifier to check the proof. The work of [14] has showed that NIZKs exist un-
conditionally in this model. The VPRG we construct allows us to simulate the
hidden-bits model on the prover side. Initially, all bits are hidden from the veri-
fier from the hiding property of the VPRG. Subsequently, the prover can decide
to reveal several bits, which corresponds to computing VPRG proofs.

1.3 Our Techniques – Second Construction

The previous construction relies on the CDH assumption. In our second con-
struction, we take the complementary road: we seek to construct NIZKs for NP
(under the strong KDM security of ElGamal assuming that CDH does not hold.
Together with our first construction, this implies a NIZK for NP that does not
rely on the CDH assumption (albeit with an infinitely-often security notion). To
this end, we also seek to build a VPRG.
Self-Pairing. First, we notice that if CDH does not hold, there exists an efficient
adversary solving it with non-negligible advantage. We use previous results by
[31,41] to amplify the succes probability of this adversary to obtain a self-pairing
map. Since from the definition of CDH, the adversary is only guaranteed to
suceed on infinitely-many security parameters, our NIZK will be secure only on
infinitely-many security parameters. This self-pairing will allow us to perform
homomorphic computations and to evaluate bounded integer arithmetic circuits
in the exponent. Our core idea, informally, is to rely on this self-pairing to let the
parties homomorphically evaluate a pseudorandom generator in the exponent:
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at a high level, given a (bit-by-bit) commitment c to the seed, the parties can
homomorphically compute, using the self-pairing, a commitment ci to the i-th
output bit of the PRG (for all i). Then, the prover will open a given PRG value
by providing a NIZK proof of correct opening.
A Commitment from Short-Exponent Discrete Logarithm. To instanti-
ate this idea, we introduce a new commitment scheme which is perfectly bind-
ing, and which is hiding under the short-exponent discrete logarithm assumption
(which states that given gx for a random but short x, it is infeasible to retrieve
x). This does not introduce any new assumption, as we further show that the
short-exponent discrete logarithm assumption is implied by the strong OW-KDM
security of ElGamal. Furthermore, we carefully design this commitment scheme
so that it suffices, to convince the verifier that the opening was correct, to demon-
strate that the randomness r of the commitment is almost short. By almost short,
we mean that there exists short values (u, v) such that v ·r = u mod p. This turns
out to be a crucial property, since the language of group elements with almost-
short exponents is precisely one for which we are able to build a NIZK under the
2−cλ-OW-KDM security of ElGamal, for some c < 1.
A Σ-protocol for Almost-Short Exponents. Let G be a cyclic group of p
elements. We consider a simple Σ-protocol for proving that a word gx has a short
exponent, i.e. writing x as an integer yields a number ≤ 2`, for some carefully
chosen ` < dlog pe. Our protocol has a similar shape to the sigma protocol used
in the previous construction, and is described in figure 3. However, we are unable
to directly prove soundness, meaning that a malicious prover can convince the
verifier of the validity of words gx, where x is not short. Fortunately, we are able
to ensure that if gx is accepted, then x = u · v−1, where u and v are themselves
short. We denote this as the language Lα,β of (α, β)-almost-short elements:

Lα,β = {gx | x = u · v−1 ∈ Zp, u ∈ [−2α, 2α], v ∈ [0, 2β ]}.

Our Σ-protocol is somewhat atypical, in the honest run the prover must start
with a word of the form gx and a short witness x (notice that if x is short it
belongs to the almost-short language). However, when proving soundness, we
only safeguard membership to the larger almost-short set of words; therefore,
there is a gap between the correctness requirement, and the soundness guarantees
(this is similar to some lattice constructions, for example [30]).
NIZKAS for the Language of Almost-Short Exponents. We will design
another CI hash function, closely related to the one we built for the first con-
struction, to transform the Σ-protocol above into a NIZK for the almost-short
exponent language. This CI hash function will additionally employ a 2-universal
hash function, which we use to reduce the security loss in our security analysis
and achieve a better parameter c for the OW-KDM assumption. Now, equipped
with our NIZKAS, we only need one final tool before moving on to our VPRG.
A Low-Depth Local PRG. Equipped with the above tools, it remains to find a
suitable PRG to be used in our construction. For correctness, we need to ensure
that no overflow occurs during the homomorphic operations in the exponent;
therefore, we must pick the group size large enough so that the homomorphic
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PRG evaluation does not cause an overflow. Since picking a larger group trans-
lates into a larger security loss in our reduction, we seek to rely on a PRG (with
some arbitrary small polynomial stretch) that has a minimal arithmetic degree.
Fortunately, such PRGs were recently studied in [29], which exhibits a PRG with
arithmetic degree 3 which provably resists a large class of attacks for a stretch up
to 1.25− ε. Combining this low-degree PRG with our new commitment scheme
and our NIZK for the almost-short language yields a VPRG in groups where CDH
does not hold, hence NIZKs for NP.
Wrapping Up. Combining our first and second construction, we get the follow-
ing: assume that ElGamal is 2−cλ-OW-KDM secure with respect to efficient func-
tions (with c = 28/29+ o(1)), and that the previous PRG is secure. Then either
CDH holds, in which case our first construction implies a NIZK for NP, or CDH
does not hold, in which case our second construction implies an (infinitely-often)
NIZK for NP. Therefore, under a PRG assumption and the strong OW-KDM se-
curity of ElGamal, we prove the existence of an infinitely-often NIZK for NP (but
our proof is non-constructive, in that it does not tell which of the two candidate
constructions is actually secure; only that one is).

1.4 Organization

Section 2 introduces necessary preliminaries. Section 3 presents our first NIZK
construction and section 4 contains our second construction. Please consult the
full version for supplementary material, on how to construct an algorithm for
evaluating an arithmetic circuit in the exponent from groups where CDH is
insecure, with bounds on the parameter growth when manipulating bounded-
size exponents. The full version also contains all missing proofs of our theorems
and a discussion on the notion of infinitely-often security.

2 Preliminaries

Notation. Throughout this paper, λ denotes the security parameter. A proba-
bilistic polynomial time algorithm (PPT, also denoted efficient algorithm) runs
in time polynomial in the (implicit) security parameter λ. A function f is negli-
gible if for any positive polynomial p there exists a bound B > 0 such that, for
any integer k ≥ B, |f(k)| ≤ 1/|p(k)|. We will write f(λ) ≈ 0 to indicate that
f is a negligible function of λ; we also write f(λ) ≈ g(λ) for |f(λ) − g(λ)| ≈ 0.
An event occurs with overwhelming probability p when p ≈ 1. Given a finite set
S, the notation x ←r S means a uniformly random assignment of an element
of S to the variable x. For a positive integer n,m such that n < m, we denote
by [n] the set {1, · · · , n}, by [±n] the set {−n, · · · , n}, and by [n,m) the set
{n, n + 1, · · · ,m − 1}. Given an element x of a set Zp, we denote by int(x) the
integer x′ ∈ [±p/2] such that x = x′ mod p. When manipulating elements (x, y)
of Zp, we will generally abuse the notation and write x ≤ y for int(x) ≤ int(y).
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The Computational Diffie-Hellman Assumption. Let DHGen be a de-
terministic algorithm that on input 1λ returns a description G = (G, p) where
G is a cyclic group of prime order p. Then the computational Diffie-Hellman
assumption is defined as follows.

Definition 1 (CDH Assumption). We say that the computational Diffie-
Hellman (CDH) assumption holds relative to DHGen if for all PPT adversaries A,

Pr
[
G ← DHGen(1λ), g ←r G, α, β ←r Zp : gαβ ←r A(1λ,G, g, gα, gβ)

]
≤ negl(λ).

Here, note that DHGen outputs a fixed group G per security parameter.

2.1 Non-Interactive Zero-Knowledge

A (publicly-verifiable) non-interactive zero-knowledge (NIZK) argument system
for an NP relation R, with associated language L (R) = {x | ∃w, (x,w) ∈ R}
is a 3-tuple of efficient algorithms (Setup,Prove,Verify), where Setup outputs a
common reference string, Prove(crs, x, w), given the crs, a word x, and a witness
w, outputs a proof π, and Verify(crs, x, π), on input the crs, a word x, and a
proof π, outputs a bit indicating whether the proof is accepted or not. A NIZK
argument system satisfies the following: completeness, adaptive soundness, and
selective single-theorem zero-knowledge properties: (we let Rλ denote the set
R ∩ ({0, 1}λ × {0, 1}∗)).

– A non-interactive argument system (Setup,Prove,Verify) for an NP relation
R satisfies completeness if for every (x,w) ∈ R,

Pr[crs←r Setup(1
|x|),π ← Prove(crs, x, w) : Verify(crs, x,π) = 1] ≈ 1.

– A non-interactive argument system (Setup,Prove,Verify) for an NP relation
R satisfies adaptive soundness if for any PPT A,

Pr

[
crs←r Setup(1

λ), (x,π)←r A(crs) :
Verify(crs, x,π) = 1 ∧ x /∈ L

]
≈ 0.

– A non-interactive argument system (Setup,Prove,Verify) for an NP rela-
tion R satisfies (computational, statistical) selective single-theorem zero-
knowledge if there exists a PPT simulator Sim such that for every (x,w) ∈ R,
the distribution {(crs,π) : crs ←r Setup(1λ),π ← Prove(crs, x, w)} and
{(crs,π) : (crs,π)←r Sim(x)} are (computationally, statistically) indistin-
guishable.

Furthermore, we say that a NIZK for an NP relation R satisfies (computational,
statistical) adaptive multi-theorem zero-knowledge if for all (computational, sta-
tistical) A, there exists a PPT simulator Sim = (Sim1,Sim2) such that if we
run crs ←r Setup(1λ) and crs ←r Sim1(1

λ), then we have |Pr[AO0(crs,·,·)(crs)
= 1] − Pr[AO1(crs,·,·)(crs) = 1]| ≈ 0, where O0(crs, x, w) outputs Prove(crs, x, w)
if (x,w) ∈ R and ⊥ otherwise, andO1(crs, x, w) outputs Sim2(crs, x) if (x,w) ∈ R
and ⊥ otherwise.
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We use the following result regarding the existence of NIZKs in the hidden-
bits model (HBM). Since the full definition of NIZK in the HBM will not be
required in our work, we refer the readers to [13] for more details.

Theorem 2 (NIZK for all of NP in the HBM). Let λ denote the security
parameter and let k = k(λ) be any positive integer-valued function. Then, un-
conditionally, there exists NIZK proof systems for any NP language L in the
HBM that uses hb = k · poly(λ) hidden bits with soundness error ε ≤ 2−k·λ,
where λ denotes the security parameter and poly is a function related to the NP
language L .

2.2 Verifiable Pseudorandom Generators

Definition 3 (Verifiable Pseudorandom Generator). Let δ(λ) and s(λ)
be positive valued polynomials. A (δ(λ), s(λ))-verifiable pseudorandom generator
(VPRG) is a four-tuple of efficient algorithms (Setup,Stretch,Prove,Verify) such
that

– Setup(1λ,m), on input the security parameter (in unary) and a polynomial
bound m(λ) ≥ s(λ)1+δ(λ), outputs a set of public parameters pp (which con-
tains 1λ);

– Stretch(pp), on input the public parameters pp, outputs a triple (pvk, x, aux),
where pvk is a public verification key of length s(λ), x is an m-bit pseudo-
random string, and aux is an auxiliary information;

– Prove(pp, aux, i), on input the public parameters pp, auxiliary informations
aux, an index i ∈ [m], outputs a proof π;

– Verify(pp, pvk, i, b, π), on input the public parameters pp, a public verification
key pvk, an index i ∈ [m], a bit b, and a proof π, outputs a bit β;

which is in addition complete, hiding, and binding, as defined below.

Definition 4 (Completeness of a VPRG). For any i ∈ [m], a complete
DVPRG scheme (Setup,Stretch,Prove,Verify) satisfies:

Pr

pp←r Setup(1
λ,m),

(pvk, x, aux)←r Stretch(pp), : Verify(pp, pvk, i, xi, π) = 1
π ←r Prove(pp, aux, i),

 ≈ 1.

Note that our definition of VPRG is slightly relaxed than what is considered
in [11, 12, 39], in that, we do not require the size of s(λ) to be independent of
m(λ). This relaxation still allows us to construct NIZKs for NP as long as the
stretch δ(λ) is larger than some positive constant.

Definition 5 (Binding Property of a VPRG). Let (Setup,Stretch,Prove,Verify)
be a VPRG. A VPRG is binding if there exists a (possibly inefficient) extractor
Ext such that for any PPT A, it holds that

Pr

pp←r Setup(1
λ,m),

(pvk, i, π)←r A(pp), : Verify(pp, pvk, i, 1− xi, π) = 1
x← Ext(pp, pvk)

 ≈ 0.
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Note that, following [11, 26, 39], we consider a significantly weaker flavor of
binding compared to [12], which still allows to construct NIZKs for NP.

Definition 6 (Hiding Property of a VPRG). A VPRG scheme (Setup,Stretch,Prove,
Verify) is hiding if for any i ∈ [m] and any PPT adversary A that outputs bits,
it holds that:

Pr

pp←r Setup(1
λ,m),

(pvk, x, aux)←r Stretch(pp), : A(pp, pvk, i, (xj , πj)j 6=i) = xi
(πj ←r Prove(pp, aux, j))j

 ≈ 1/2.

The following shows that VPRG with a sufficient stretch is sufficient to con-
struct NIZKs for all of NP.

Theorem 7 ((δ, s)-VPRGs ⇒ NIZKs for all of NP). Fix an NIZK proof system
for any NP language L in the HBM that uses hb = hb(λ) hidden bits with
soundness error ε ≤ 2−λ where hb ≥ λ w.l.o.g. Suppose that a (δ(λ), s(λ))-
verifiable pseudorandom generator where s(λ) ≥ max{λ, (hb2/λ)1/δ(λ)} exits.
Then, there exist adaptively sound and adaptively multi-theorem zero-knowledge
NIZK arguments for the NP relation L .

We provide a proof sketch in the full version. Since existence of an NIZK in the
HBM for any NP language L is implied by Theorem 2, the above shows that
VPRGs with some mild condition on δ(λ) and s(λ) implies existence of an NIZK
for any NP language L .

2.3 Correlation-Intractable Hash Functions

We recall the definition of correlation intractability [9].

Definition 8 (Correlation Intractable Hash Function). A collection H =
{Hλ : Kλ × Iλ 7→ Oλ}λ∈N of (efficient) keyed hash functions is a R-correlation
intractable hash (CIH) family, with respect to a relation ensemble R = {Rλ ⊆
Iλ ×Oλ}, if for every (non-uniform) PPT adversary A, it holds that

Pr
k←rKλ
x←rA(k)

[(x,Hλ(K,x)) ∈ Rλ] = negl(λ).

For CIH to be useful as a building block for NIZK, we require an additional
property referred to as programmability [6].

Definition 9 (Programmability). A collection H = {Hλ : Kλ×Iλ 7→ Oλ}λ∈N
of (efficient) keyed hash functions is called programmable if there exists an ef-
ficient algorithm, which given x ∈ Iλ and y ∈ Oλ, outputs a uniformly random
key k from Kλ, such that H(k, x) = y.

Finally, we define the standard notion of sparsity.

Definition 10 (Sparsity). For any relation ensemble R = {Rλ ⊆ Iλ × Oλ},
we say that R is ρ(·)-sparse if for λ ∈ N and any x ∈ Iλ, Pry←rOλ [(x, y) ∈
Rλ] ≤ ρ(λ). When ρ(λ) = negl(λ), we simply say it is sparse.
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2.4 Σ-Protocol

We recall the definition of Σ-protocols from [28]. A Σ-protocol is a three-move
interactive proof between a prover P and a verifier V for a language L , where the
prover sends an initial message α, the verifier responds with a random β ←r Sλ
for some challenge space Sλ, and the prover concludes with a message γ. Lastly,
the verifier outputs 1, if it accepts and 0 otherwise. Three properties we require
from a Σ-protocol are completeness, special honest-verifier zero-knowledge, and
adaptive soundness.

Definition 11 (Completeness). A Σ-protocol for a relation R with prover P
and verifier V is complete, if Pr[out〈P(x,w),V(x)〉 = 1|(x,w) ∈ R] = 1.

Definition 12 (Special honest-verifier zero-knowledge). A Σ-protocol for
a relation R is special honest-verifier zero-knowledge, if there exists a polynomial-
time simulator Sim such that the distributions Sim(x, β) and 〈P(x,w),V(x)〉 are
statistically close for (x,w) ∈ R, β ∈ Sλ.

Definition 13 (Adaptive soundness). A Σ-protocol for a relation R is ρ(·)-
adaptive sound, if for any (possibly inefficient) cheating prover P∗ and any first
flow α, it holds that Pr[β ←r Sλ; (x, γ)←r P

∗(α, β) : ∃x 6∈ L ∧V (x, α, β, γ) =
1] ≤ ρ(λ). When ρ(λ) = negl(λ), we simply say it is adaptive sound.

In the above notion, when the cheating P∗ does not have the freedom to
choose the word x, we say it is selectively sound. Note that a selective soundness
is implied by the standard notion of special soundness of the Σ-protocol. The
following lemma is due to [25], which at a high level claims that any adaptive
sound Σ-protocol induces a natural sparse relation.

Lemma 14. Let Π be an arbitrary ρ(·)-adaptive sound Σ-protocol for a lan-
guage L . Then, the following relation induced by the Σ-protocol Π is ρ(·)-parse:

Rsparse = {(α, β) : ∃x, γ s.t. x 6∈ L ∧ V (x, α, β, γ) = 1}.

2.5 Secret Key Variant of ElGamal

Definition 15 (Secret Key ElGamal). Let G̃ = {G̃λ}λ∈N be an ensemble of
groups where each group G̃λ is of order q such that dlog qe = λ. The natural
(secret-key) variant of additive ElGamal with message space Zq consists of the
following three PPT algorithms.

– Setup(1λ) : output public-parameter G̃←r G̃λ and secret key k ←r Zq.
– EncG̃(k,m) : pick R̃←r G̃ and output C̃ = (R̃, R̃k · G̃m).
– HalfDec(k, C̃) : parse C̃ as (C̃0, C̃1) and output C̃1/C̃

k
0 .

Throughout the paper, we omit the subscript when the meaning is clear. Note
that the scheme does not allow for full decryption, but only for decryption “up to
discrete logarithm”: for every (G̃, k,m), it holds that HalfDec(k,EncG̃(k,m)) =

G̃m. One important property of the scheme is that it enjoys the notion of uni-
versality. Informally, the notion claims that the ciphertexts are not associated
with a specific key, but rather, could have been an output of any key.
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Definition 16 (Universality). For all λ ∈ N, G̃ ∈ G̃λ, and k∗ ∈ Zq, the
ciphertexts of ElGamal satisfies

{C̃ : (k,m)←r Z2
q, C̃←r EncG̃(k,m)} = {C̃ : m←r Zq, C̃←r EncG̃(k

∗,m)} = UG̃2 .

Definition 17 (OW-KDM Security). Let F = {Fλ}λ∈N be an ensemble of
sets of functions where each Fλ = {Fu}u is a family of (possibly randomized)
efficiently-computable functions. We say that ElGamal satisfies (one-query) δ-
OW-KDM security with respect to F if for every Fu ∈ Fλ, every superpolynomial
function s, and every (non-uniform) PPT adversary A, it holds that

Pr
(G̃,k)←rG̃λ×Zq
m←Fu(G̃,k)

C̃←rEncG̃(k,m)

[A(G̃, C̃) = m] ≤ s(λ) · δ(λ).

If ElGamal satisfies δ-OW-KDM security with δ(λ) = 2−cλ for some constant
c ∈ (0, 1], then we say it is strong OW-KDM secure.

2.6 Low-Depth Pseudorandom Generators

Definition. A pseudorandom generator is a deterministic process that expands
a short random seed into a longer sequence, so that no efficient adversary can
distinguish this sequence from a uniformly random string of the same length:

Definition 18 (Pseudorandom Generator). A m(n)-stretch pseudorandom
generator, for a polynomialm, is a pair of PPT algorithms (PRG.Setup,PRG.Eval)
where PRG.Setup(1n) outputs some public parameters pp, which are implicitely
given as input to PRG.Eval, and PRG.Eval(x), on input a seed x ∈ {0, 1}n, out-
puts a string y ∈ {0, 1}m(n). It satisfies the following security notion: for any
probabilistic polynomial-time adversary A and every large enough n,

Pr[pp←r PRG.Setup(1
n), y ←r {0, 1}m(n) : A(pp, y) = 1]

≈Pr[pp←r PRG.Setup(1
n), x←r {0, 1}n, y ← PRG.Eval(x) : A(pp, y) = 1]

A pseudorandom generator PRG is d-local (for a function d) if for any n ∈ N,
every output bit of PRG.Eval on input a seed x ∈ {0, 1}n depends on at most
d(n) input bits.

Goldreich’s Pseudorandom Generator. Goldreich’s candidate local PRGs
form a family FG,P of local PRGs: PRGG,P : {0, 1}n 7→ {0, 1}m, parametrized
by an (n,m, d)-hypergraph G = (σ1, . . . , σm) (where m = m(n) is polynomial in
n), and a predicate P : {0, 1}d 7→ {0, 1}, defined as follows: on input x ∈ {0, 1}n,
PRGG,P returns the m-bit string (P (xσ1

1
, . . . , xσ1

d
), . . . , P (xσm1 , · · · , xσmd )).
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The Lombardi-Vaikuntanathan (LV) Predicate. For concreteness, we will
rely on Goldreich PRG instantiated with the following predicate:

PLV(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ (x1 ⊕ x3)(x2 ⊕ x4)⊕ x5 .

This predicate leads to a PRG with locality five. This predicate was intro-
duced and studied in [29], were it was shown that it provably resists all F2-linear
attacks, as well as all attacks using the SDP hierarchies (such as the Lassere-
Parrilo sum-of-squares hierarchy), when stretching n bits to n1.25−ε bits. In
addition, this predicate enjoys an optimaly low arithmetic degree, since it can
be computed by the following degree 3 polynomial over the integers:

PLV(x1, x2, x3, x4, x5) = x5 + (x1(x4 − 1) + x2(x1 + x3 − 1)− x3x4) · (2x5 − 1) .

3 NIZK based on the Security of CDH and Strong
OW-KDM Security of ElGamal

In this section, we describe a construction of a NIZK from the strong OW-KDM
security of ElGamal with respect to efficient functions by assuming the CDH
problem is hard to solve. We first provide a NIZK for the specific language of the
Diffie-Hellman (DH) language. This is done by constructing a CIH based on the
strong OW-KDM security of ElGamal for the natural sparse relation induced by
the Σ-protocol for DH languages. We then show that such a NIZK for the DH
language allows us to construct a VPRG, which in return, allows us to construct
a NIZK for all of NP by Theorem 7.

3.1 Σ-Protocol for the Diffie-Hellman Language

Definition 19 (Diffie-Hellman Language). Let G be a group with prime
order p. We define the Diffie-Hellman (DH) language LDH,t parameterized by
t ∈ Z∗p as LDH,t = {(g, h, gx, hx) : g, h ∈ G, x ∈ Zp, dloggh = t}.

Below we recall the standard Σ-protocol for the DH relation (with parallel
repetition). Here, the word is (g, h,X, Y ) ∈ LDH,t where (X,Y ) = (gx, hx).

Prover Verifier
(r1, r2)←r Z2

p and
set (R1, S1) = (gr1 , hr1)
(R2, S2) = (gr2 , hr2)

(e1, e2)←r (Z∗
p)

2

d1 = e1 · x+ r1
d2 = e2 · x+ r2

Check gdi = Xei ·Ri
and hdi = Y ei · Si, for i ∈ {1, 2}

(R1, S1, R2, S2)

e1, e2

d1, d2

Fig. 2. Σ-protocol for the Diffie-Hellman language for the word (g, h,X = gx, Y = gy).
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The above Σ-protocol achieves the standard notion of correctness and special
honest-verifier zero-knowledge. Adaptive soundness is covered by the following
lemma, the proof is standard and provided for completeness in the full version
of the paper.

Lemma 20 (Adaptive Soundness). The Σ-protocol in Figure 2 satisfies 1
p−1 -

adaptive soundness.

3.2 Correlation-Intractable Hash Function H

Let λ be a security parameter. We consider a group G̃ of order q(λ) with dlog qe ≈
λ. Let Trunc : G̃ 7→ {0, 1}λ/2 be the function which, on input a group element
G̃ ∈ G̃, parses it as a dlog qe-bit string and returns the first λ/2 bits of its input.
We consider the following hash function H : G̃2 × Zq 7→ {0, 1}λ/2:

– Sampling the key: pick (G̃, k,m)←r G̃×Z2
q and set C̃←r EncG̃(k,m). Note

that the key distribution is exactly the uniform distribution over G̃2.
– Evaluating H(C̃, ·) : H(C̃, x) = Trunc(HalfDec(x, C̃)).

Correlation-Intractability of H. Consider a group G of order p(λ) with
dlog pe ≈ λ/4. Then the output of H can be interpreted as two elements of G.
Fix a parameter t ∈ Z∗p. Define Rλ,t to be the natural sparse relation associated
to the language LDH,t (see Lemma 14). That is,

Rλ,t = {(α, β) ∈ G4 × (Z∗p)2 : ∃x, γ s.t. x /∈ LDH,t ∧ V (x, α, β, γ) = accept}.

Here, the above relation can also be described alternatively using the following
(inefficient) randomized function:

ft(a; z) :

{
G4 × Z∗p 7→ (Z∗p)2

(R1, S1, R2, S2)× z → (z, log(Rt1/S1)(R
t
2/S2) · z)

.

The following is the main contribution of this section.

Theorem 21. Assume that ElGamal satisfies 2−3λ/4-OW-KDM security with
respect to efficient functions. Then the hash family {H : H : G̃2×Zq 7→ {0, 1}λ/2}λ
is correlation-intractable with respect to RH := {Rλ := {Rλ,t}t}λ.

Proof. We prove the theorem in two steps. We first show that an adversary
against the correlation intractability of H can be shown to be an adversary
against the OW-KDM security of ElGamal with respect to inefficient functions.
We then show via the symmetry of messages and secret keys of ElGamal to
conclude that such an adversary can indeed be used to break OW-KDM security
of ElGamal with respect to efficient functions. The first step is summarized in
the following lemma.
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Lemma 22. Let A be an adversary against the RH-correlation intractability of
H with (non-negligible) advantage ε(λ). Then, for some t ∈ Z∗p, it holds that:

Pr
(G̃,a∗,m)←rG̃×Z2

q

C̃←rEncG̃(a∗,m)

[A(G̃, C̃) = a∗|(a∗,H(C̃, a∗)) ∈ Rλ,t] ≥
ε(λ)

23λ/4
.

The proof follows closely the approach of [7], but simplifies some steps of the
proof and makes the exact security loss explicit. We provide it in the full version
of the paper. Given Lemma 22, it remains to show that this implies a contra-
diction to the OW-KDM security of ElGamal for efficient functions. The main
difficulty here is that the above can be rewritten as

Pr
(G̃,a∗)←rG̃×Zq
m←rαt(G̃,a

∗)

C̃←rEncG̃(a∗,m)

[A(G̃, C̃) = a∗] ≥ ε(λ)

23λ/4
. (1)

with αt : G̃×Zq×{0, 1}λ/2×Z∗p 7→ Zq, such that αt(G̃, a; z1, z2) = dlogG̃(ft(a; z2)||z1).
which naturally translates to an adversary against the KDM security of ElGamal
where m is sampled as αt(G̃, a∗; z1, z2), which is not an efficiently computable
function. We show below how to get around this apparent issue. Define the
(randomized) efficiently computable function f−1t as follows:

f−1t (e1, e2; r1, r2, s1) :=

{
(Z∗p)2 ×G3 7→ G4

(e1, e2; r1, r2, s1)→ (gr1 , gs1 , gr2 , g
e2(t·r1−s1)

e1
−t·r2).

Furthermore, define Ft to be the following (efficient, randomized) function:

Ft :

{
G̃× Zq × {0, 1}λ/2 7→ Zq
(G̃,m; z) → f−1t (Trunc(G̃m); z),

.

where we assume in case the first λ/4-bits of Trunc(G̃m) corresponds to 0 ∈
Zp, then it outputs some fixed element in Zq. Consider now the distribution
obtained by sampling (G̃, a∗) ←r G̃ × Zq, m ←r αt(G̃, a

∗), and outputting
C̃ ←r EncG̃(a

∗,m). Observe that we obtain the same distribution (up to some
negligible difference) by first sampling (G̃,m)←r G̃×Zq, setting k ←r Ft(G̃,m),
and outputting C̃←r EncG̃(k,m). We build upon this observation to construct,
using A, an adversary against the one-query OW-KDM security of ElGamal
with respect to the class of (efficient, randomized) functions {Ft}t. Let A be the
previous adversary, which satisfies Equation 1. By our observation above, this
can be rewritten as

Pr
(G̃,k)←rG̃×Zq
a∗←rFt(G̃,k)

C̃←rEncG̃(a∗,k)

[A(G̃, C̃) = a∗] ≥ ε(λ)

23λ/4
.
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We build an adversary B against the OW-KDM security of ElGamal as follows: on
input (G̃, C̃), B parses C̃ as (C̃0, C̃1). B sets G̃′ ← C̃0 and C̃′ ← (G̃, C̃1). Then, B
runs A(G̃′, C̃′) and outputs whatever A outputs. Observe that the distributions

{(G̃, C̃) : (G̃, k)←r G̃× Zq, a∗ ←r Ft(G̃, k), C̃←r EncG̃(a
∗, k)},

which corresponds to the experiment in the previous probability, and

{(C̃0, (G̃, C̃1)) : (G̃, k)←r G̃× Zq, a∗ ←r Ft(G̃, k), (C̃0, C̃1)←r EncG̃(k, a
∗)}

are identical. Therefore,

Pr
(G̃,k)←rG̃×Zq
a∗←rFt(G̃,k)

C̃←rEncG̃(k,a∗)

[B(G̃, C̃) = a∗] ≥ ε(λ)

23λ/4
,

which contradicts the (one-query) 2−3λ/4-OW-KDM security of ElGamal with
respect to the family of (efficient, randomized) functions {Ft}t.

3.3 NIZK for LDH via RH-Correlation-Intractability

Lemma 23. Our RH-correlation intractable hash function family is programmable.

The proof is given in the full version.

Theorem 24 (NIZK for LDH). Assume there exists a programmable corre-
lation intractable hash family for relation RH. Then, there exists an adaptively
sound and selective single-theorem zero-knowledge NIZK argument system for
the Diffie-Hellman language LDH,t for any t ∈ Z∗p. Moreover, our NIZK is in-
dependent of the value t and all algorithms can be run oblivious of the value
t.

The proof follows in a relatively natural way by compiling the Σ-protocol for
DDH with the correlation-intractable hash function H. We provide an explicit
description of the proof system and a security analysis in the full version. As
stated in Theorem 24, our NIZK for LDH,t is agnostic of the value of t ∈ Z∗p, since
the value of t is only significant during the security proof. Therefore, whenever
the meaning is clear, we will drop the subscript t and simply state it as an NIZK
for LDH. The important thing to keep in mind is that for each crs generated by
SetupDH, it is only adaptive secure for LDH,t with a fixed t.

3.4 VPRG from NIZK for LDH

Our construction relies on the CDH assumption and the NIZK argument system
(SetupDH,ProveDH,VerifyDH) for LDH from the previous section. We prepare a
predicate B : G2 7→ {0, 1} satisfying the following property: given (ga, gb), com-
puting B(gb, gab) should be as hard (up to polynomial factors) as computing
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(gb, gab). Note that this implies that distinguishing B(gb, gab) from a random bit
given random tuple (ga, gb) is as hard as solving CDH. One way to instantiate
such a predicate is to use the Goldreich-Levin hard-core predicate [19].
Construction. Let m := m(λ) be an arbitrary polynomial. Our construction of
VPRG proceeds as follows:

– Setup(1λ,m) : run G = (G, p) ←r DHGen(1λ) and sample g ←r G. Further,
for i = 1 to m, pick hi ←r G and generate crsi ←r SetupDH(1λ). Finally,
output pp = (g, (hi, crsi)i≤m).

– Stretch(pp) : pick τ ←r Zp, set pvk ← gτ , and for i = 1 to m, set xi ←
B(pvk, hτi ). Output (pvk, x = (xi)i≤m, aux = τ).

– Prove(pp, aux, i) : set τ := aux and run πDH
i ←r Prove

DH(crsi, (g, hi, pvk, h
τ
i ), τ).

Output π = (hτi ,π
DH
i ).

– Verify(pp, pvk, i, b, π) : parse (u,πDH) ← π. If b = B(pvk, u), then return
VerifyDH(crsi, (g, hi, pvk, u),π

DH). Otherwise, return 0.

Security Analysis. Correctness of the VPRG follows from the correctness of
the underlying NIZK. In addition, the size of the verification key gτ is p, and in
particular, is independent of m. Hence, we can set the stretch δ := δ(λ) to be
an arbitrary polynomial, where we can set m = s1+δ by definition.

Theorem 25. If the CDH assumption holds relative to DHGen and the NIZK
argument system for the Diffie-Hellman language LDH is adaptive sound and se-
lective single-theorem, then the above construction provides a (δ, s)-VPRG that is
binding and hiding, where δ is an arbitrary polynomial in the security parameter
λ and s = |G|.

The binding property is shown by guessing the position where the adversary
forges an opening, and showing that this implies an adversary against the adap-
tive soundness of the NIZK for DDH. Hiding relies on a careful modification of
the CRS generation, together with the zero-knowledge property of the NIZK for
DDH. We provide a complete proof in the full version of the paper. As a direct
consequence of Theorems 7, 31, 33, and 38, the following is obtained.

Theorem 26. Assume that the CDH assumption holds relative to DHGen and
that ElGamal satisfies 2−3λ/4-OW-KDM security with respect to efficient func-
tions, then there exists an adaptive sound and adaptive multi-theorem NIZK for
all of NP.

4 NIZK from Insecurity of CDH and Strong OW-KDM
Security of ElGamal

In this section, we describe a construction of an infinitely often NIZK from the
strong OW-KDM security of ElGamal with respect with efficient functions by
assuming that the CDH problem is easy to solve. We first provide a NIZK for
the specific language of the almost-short language. This is done by constructing
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a CIH based on the strong OW-KDM security of ElGamal for the natural sparse
relation induced by the Σ-protocol for the almost-short language. We then show
that such a NIZK for the almost-short language along with the short-exponent
discrete-log (SEDL) assumption allows us to construct a VPRG, which in return,
allows us to construct an (infinitely often) NIZK for all of NP by Theorem 7.
Note that, as we will show, SEDL is not an extra assumption since it follows
from the strong OW-KDM security of ElGamal.

4.1 Σ-Protocol for the Language of Almost-Short Elements

In this section, we introduce the language Lα,β of elements of G with (α, β)-
almost-short exponents to be the subset of G containing elements of the form
gx where x is almost-short. We say that x is (α, β)-almost-short if there exists a
short value v ≤ 2β such that vx is short as well: vx ∈ [±2α]. More formally:

Definition 27 ((α, β)-Almost-Shortness). Let G be a group of prime order
p. We define Lα,β over G with respect to the generator g ∈ G to be the language
of (α, β)-almost-short elements as:

Lα,β = {gx | x = u · v−1 ∈ Zp, int(u) ∈ [±2α], int(v) ∈ [2β ]}.

A Σ-Protocol for the Almost-Short Language. We start by introducing a
simple Σ-protocol for proving membership of an element gx ∈ G to Lα,β . The
protocol satisfies the following relaxed notion of correctness: an honest prover
is guaranteed to produce an accepting proof if the input word gx is such that
x ≤ 2` (with log p � `), but soundness only guarantees that the word actually
belongs to L`′,c, where c is the challenge length, and `′ > c + ` + κ, for some
statistical security parameter κ. 7 The protocol is represented on Figure 3. Note
that it only satisfies selective soundness.

Prover Verifier

r ←r [±2`
′−1] e←r [2

c]

d = e · x+ r
Check gd = gr · (gx)e

and int(d) ∈ [±2`
′−1]

gr

e

d

Fig. 3. Σ-protocol for the almost-shortness language, for the word gx. In a honest run,
the prover posseses a short witness x ∈ [0, 2`]

In the full version, we prove the following lemmas:
7 This is similar in spirit to various Σ-protocols for lattice-based relations, where the
Σ-protocol proves knowledge of a short preimage, but the protocol has some slack-
ness, i.e., a gap between the shortness needed for the honest proof to be accepted,
and the shortness actually guaranteed by the soundness property; here, we have an
additional “slackness” in that x is only guaranteed to be the product of a short value
with the inverse of another short value.
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Lemma 28 (Correctness). If x ∈ [0, 2`], and `′ > max{c, `}+ κ, then the Σ-
protocol from Figure 3 is correct (and the verifier accepts with probability greater
than 1− 1

2κ ).

Lemma 29 (Selective Soundness). If X /∈ L`′,c, then the probability that
the verifier accepts is at most 1

2c

Lemma 30 (Honest-Verifier Zero-Knowledge). When `′ > c + ` + κ and
x ∈ [0, 2`), the Σ-protocol in Figure 3 is honest-verifier zero-knowledge for words
in x ∈ [0, 2`]. In particular, the statistical distance between honest transcripts and
those produced by the simulator described in the full version is 1

2κ .
8

Adaptive Soundness. The above protocol only enjoys selective soundness,
which does not suffice in our context. As for our previous construction, however,
adaptive soundness can be obtained using sufficiently many parallel repetitions
of the underlying Σ-protocol, via standard complexity leveraging: since there
are p possible words gx, if the above Σ-protocol is amplified N -times with N ≥
dlog pe/c, then it is p/2N ·c-adaptively sound. We denote ΠN (p, `, κ, c) the Σ-
protocol obtained by repeating N times in parallel the above Σ-protocol for
L`′,c, with `′ = ` + c + κ + 1. When (p, `, κ, c) are clear from the context, we
simply denote it ΠN .
Admissible First Flow. Given a Σ-protocol for a language L , we say that a
candidate first flow a is (adaptively) admissible if there exists a word X /∈ L ,
a challenge e, and an answer d, such that (a, e, d) form an accepting transcript
for X. Note that in ΠN , there are pN possible first flows, but only p · 2N(`′+c)

admissible first flows, since an admissible first flow is of the form (gdi/(gx)ei)i≤N ,
for some di ∈ [±2`′−1], ei ∈ [2c], and gx ∈ G.

4.2 Correlation-Intractable Hash Function

Let λ be a security parameter and fix parameters (N(λ), c(λ), p(λ), `(λ), κ(λ)).
We consider a group G̃ of order q(λ) with dlog qe ≈ λ, and a group G of order
p(λ). Let Trunc′ : G̃ 7→ {0, 1}N ·c be the function which, on input a group element
G̃ ∈ G̃, parses it as a dlog qe-bit string and returns the first N · c bits of its
input. Let h : GN → {0, 1}λ be a 2-universal hash function, for a security
parameter λ which will be defined afterward. We consider the following hash
function H′λ : G̃2 ×GN 7→ {0, 1}N ·c:

– Sampling the key: pick (G̃, k,m)←r G̃×Z2
q and set C̃←r EncG̃(k,m). Note

that the key distribution is exactly the uniform distribution over G̃2.
– Evaluating H′λ(C̃, ·) : H′λ(C̃, x) = Trunc′(HalfDec(h(x), C̃)).

8 To be precise, this does not meet the definition of our honest-verifier zero-knowledge
since we only consider a small set of L`′,c. However, this notion suffices for our
application.
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Setting the Security Parameter λ. Let Rλ(N, c, p, `, κ) = Rλ be the natural
sparse relation associated to the language L`′,c overG with respect to a generator
g ∈ G, where `′ = `+ c+ κ (see Lemma 14). That is,

Rλ = {(a, b) ∈ GN × {0, 1}N ·c : ∃X, d s.t. X /∈ L`′,c ∧ V (X, a, b, c) = accept},

where V is the verifier from the Σ-protocol for the language L`′,c in Figure 3.
The purpose of the 2-universal hash function h in our correlation-intractable
hash H′λ is to compress the size of the first flow to λ bits, without significantly
decreasing the winning probability of the adversary. The core observation is that
when the adversary manages to output a such that (a,H′λ(C̃, a)) ∈ Rλ, then
a must at least be an admissible first flow. Since there are at most p · 2N(`′+c)

admissible first flows, we set λ← dlog pe+N(`′+c)+κ, where κ is some statistical
security parameter. Then, the 2-universality of h guarantees that, except with
probability at most 2−κ over the random choice of the hash key, all possible λ-
bit strings will have at most a single admissible preimage a. In the following, we
denote by Invh the (inefficient) function which, on input a λ-bit string s, outputs
the unique admissible preimage of s (or ⊥ if s has no admissible preimage).

Correlation-Intractability of H′.

Theorem 31. Fix parameters (N(λ), c(λ), p(λ), `(λ), κ(λ)). Assume that ElGa-
mal satisfies p−1 · 2Nc−λ-OW-KDM security with respect to efficient functions.
Then the hash family {H′λ : G̃2 × GN 7→ {0, 1}N ·c}λ is correlation-intractable
with respect to RH′ := {Rλ(N, c, p, `, κ)}λ = {Rλ}λ.

The structure of the proof is similar to the proof of Theorem 21, the core
difference being that we rely on a 2-universal hash function to compress the size
of the first flow, and only guess the compressed hash; then, we rely on the fact
the 2-universal hash is injective with high probability over the set of admissible
first flow. We provide a detailed proof in the full version.

4.3 NIZK for the almost-short Language via RH′
-Correlation-

Intractability

Lemma 32. Our RH′-correlation intractable hash function family is programmable.

The proof is essentially identical to the proof for RH.

Theorem 33 (NIZK for the almost-short language L`′,c). Assume there
exists a programmable correlation intractable hash family for the relation RH′ .
Then, there exists an adaptive sound and selective single-theorem zero-knowledge
NIZK argument system for the almost-short language L`′,c.

The proof of adaptive soundness and selective single-theorem zero-knowledge
are essentially identical to the proof of Theorem 24. We provide an explicit
description of the NIZK proof system in the full version.
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4.4 A Commitment Scheme from the Short-Exponent Discrete
Logarithm Assumption

Before providing our VPRG construction, we introduce one last set of tools. We
first introduce the T -short-exponent discrete-logarithm (T -SEDL) assumption
and then provide a simple commitment scheme based on T -SEDL.

Definition 34. The T -SEDL assumption over an abelian group G of order p
with respect to the generator g states that for every PPT A,

Pr[x←r [p/T ], h← gx : A(h) = x] ≈ 0.

It is well known that under the T -SEDL assumption, it is infeasible to dis-
tinguish {gx | x←r [p/T ]} from the uniform distribution over G [27].
A Commitment from T -SEDL. A commitment scheme is a pair of algo-
rithms (Commit,Open) such that given (c, d) ←r Commit(m), c hides m (more
formally, no adversary can distinguish whether c was output by Commit(m) or
Commit(m′), for two messages (m,m′) of their choice), but d binds the com-
mitter to m (more formally, no adversary can find (c, d, d′,m,m′) with m 6= m′

such that Open(c, d,m) = Open(c, d′,m′) = 1). We now introduce the bit com-
mitment scheme that will underly our construction. Let G be a group of order
p. Fix some integers (`, k). Commit(b), on input a bit b, picks w ←r {0, 1}` and
outputs com = gw+2kb. Opening the commitment is done by revealing w. The
commitment is perfectly binding, and hiding under the p/2`-SEDL assumption.
From T -SEDL to Strong OW-KDM Security of ElGamal. In the full version
of the paper, we show the following, which states that T -SEDL will be redundant
with our other assumptions:

Lemma 35. Assume that ElGamal satisfies (1/T )-OW-KDM security with re-
spect to efficient functions. Then the T -SEDL assumption holds.

Binding Property with Almost-Short Randomness. A useful property of
the above commitment, which will play a crucial role in our construction, is that
it remains computationally binding if instead of revealing w, the opener reveals
b and proves (using any computationally binding argument) that com · g−2kb ∈
Lα,β , provided that k ≥ α + 2 and under some condition on the size p of the
group. We elaborate below.

Lemma 36. Let com = gw+2α+2b be a commitment to b, where gw ∈ Lα,β.
Further assume that p > 2α+2β+4. Then no computationally bounded prover can
produce an accepting argument that gw+2α+2 ∈ Lα,β.

Looking ahead, we will use this lemma together with a NIZK with relaxed
correctness for the language Lα,β to guarantee correct opening of the above
commitment. The relaxed correctness requirement is the same as in Section 4.1
and will be satisfied when the commitment is constructed honestly.
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Proof. Let com ∈ G be any group element. We prove that it can never simultane-
ously hold that com ∈ Lα,β and com·g2α+2 ∈ Lα,β . Assume toward contradiction
that both com and com · g2α+2

belong to Lα,β . Let x ← dlogg(com). Then we
have:

x = u · v−1 mod p for some u ∈ [±2α], v ∈ [2β ],

x+ 2α+2 = u′ · (v′)−1 mod p for some u′ ∈ [±2α], v′ ∈ [2β ].

Hence, uv−1 + 2α+2 = u′(v′)−1 mod p, which gives v′(u + 2α+2v) = u′v mod p.
However, since p > 2α+2β+4, we have that this equation holds over the integers as
well. This implies (still using the bound on p) that v′(u + 2α+2v) = u′v ≤ 2αv.
However, u + 2α+2v ≥ 2α+2v − 2α > 2αv (since v ≥ 1). Therefore, we also
get 2αv < v′(u + 2α+2v) (since v′ ≥ 1), which is a contradiction. Therefore, no
bounded prover can provide an accepting argument of membership in Lα,β (with
any computationally sound argument system) for both com and com · g2α+2

.

4.5 A VPRG from NIZK for the Almost Short Language and the
SEDL Assumption

With the tools we introduced, we are now ready to present our construction of
a VPRG in a group where CDH is insecure.

Intuition of the Construction. Let DHGen be a deterministic algorithm that,
on input 1λ, returns a description G = (G, p) where G is a cyclic group of prime
order p. Assume that CDH does not hold with respect to DHGen. In the full ver-
sion, we show that this means that there exists a strong CDH solver that allows
to compute “self-pairings” over (G, p) = DHGen(1λ) with negligible error proba-
bility, for infinitely many security parameters λ. We denote (EvalCom,EvalOpen)
the self-pairing algorithm, which evaluates integer arithmetic circuits (IAC) in
the exponent, together with the evaluation algorithm “in the clear” EvalOpen,
satisfying the following:

Theorem 37. Let {Cλ}λ∈N be an ensemble of sets of IAC (with gates (+,×,−))
where each circuit in Cλ has input length n = n(λ) and size L = L(λ). Let the
CDH assumption relative to DHGen be easy. Moreover, let S ⊂ N be the infinite
set of security parameters for which a strong CDH solver exists. Then there exists
a PPT algorithm EvalCom and a deterministic polytime algorithm EvalOpen with
the following properties for all λ ∈ S:

– EvalCom(C, g1, · · · , gn)→ h: on input an IAC C ∈ Cλ and (g1, · · · , gn) ∈ G,
it outputs h ∈ G.

– EvalOpen(C, z1, b1, · · · , zn, bn) → z: on input an IAC C ∈ Cλ and ((z1, b1),
· · · , (zn, bn)) ∈ (Z× {0, 1})n, it outputs z ∈ Z.

– Let (`, t) ∈ N2 such that `+ t > 2L2. Further, assume p = |G| to be greater
than L(` + t) · log2B where B = maxC∈Cλ,(bi∈{0,1})i C(b1, · · · , bn). Let bi ∈
{0, 1} and wi ∈ [−2`, 2`] for all i ∈ [n]. Then, for any C ∈ Cλ with degree
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D and gi = gwi+2`+tbi , if we run h ←r EvalCom(C, g1, · · · , gn), we have
dloggh = w∗ + 2(D+1)(`+t) ·C(b1, · · · , bn), where w∗ ∈ [±(2D(`+L+t+2))] and
EvalOpen(C, (wi, bi)i≤n) = w∗, except with negligible probability 2−λ.

We will use this strong CDH solver to build a VPRG over DHGen, which will
satisfy correctness, binding, and hiding for infinitely many security parameters.
We set (PRG.Setup,PRG.Eval) to be Goldreich’s PRG instantiated with the LV
predicate; let PRGi be IAC that computes, given a seed (s1, · · · , sn) as input, the
i-th output bit of PRG.Eval(s1, · · · , sn). Observe that PRGi is a degree-3 integer
arithmetic circuit with 9 gates (ignoring the subtractions by a constant, which are
“for free”), where all intermediate values belong to [±1] provided that the inputs
to the IAC are bits. We fix an arbitrary small positive constant δPRG < 0.25,
such that Goldreich’s PRG instantiated with the LV predicate is conjectured to
be secure when stretching n bits to m = n1+δPRG bits.

Fix integers (l, t, κ, c). The high-level intuition of our VPRG is relatively
simple. The commitment to the seed (s1, · · · , sn) is a bit-by-bit commitment
(com1, · · · , comn), with the commitment scheme given in Section 4.4, which com-
putationally hides the seed under the short-exponent discrete logarithm assump-
tion. The pseudorandom string is simply PRG.Eval(pp, (s1, · · · , sn)). Given the
commitment to the seed, both parties will use the strong CDH solver, which ex-
ists since we assume that CDH does not hold over G. In the full version, we prove
a theorem that shows that the parties can both use EvalCom(PRGi, com1, · · · , comn)

for i = 1 to m = n1+δPRG . For each such i, denoting comi = gwi+2l+tsi with
wi ∈ [±2l] and si ∈ {0, 1}, the parties get

com∗i ← EvalCom(PRGi, (g
wj+2l+tsj )j≤n) = gw

∗
i+23(l+t)PRGi(s1,··· ,sn),

with w∗i ∈ [±(23l+2t+31)]. Let ` ← 3l + 2t + 31 and `′ ← ` + κ + c + 1. Let
bi ← PRGi(s1, · · · , sn). We set t = 34 + κ + c, which guarantees that `′ + 2 =

3(l + t). Therefore, we have com∗i = gw
∗
i+2`

′+2bi . To provably open the i-th
bit of the pseudorandom string to the bit bi, the prover reveals bi, and both
parties homomorphically compute gw

∗
i from com∗i . It remains for the prover to

demonstrate that he revealed the right value bi, which he does using a NIZK
to prove that gw

∗
i belongs to L`′,c (which he can do since w∗i ∈ [±2`]). More

precisely, we will use the CIH from Section 4.2 to compile the Σ-protocol for
the language L`′,c from Section 4.1, with challenge length c, into a NIZK. Since
`′ + 2 = 3(l+ t), and using Lemma 36 from Section 4.4, this uniquely binds the
prover to bi.
Parameters and Assumptions. To apply Lemma 36, we must pick p such
that log p > `′ +2c+4 = 3l+5c+3κ+104, where l is such that the p/2l-SEDL
assumption holds over G, and κ is a statistical security parameter. Choosing c
to be polynomially larger than l + κ, we have `′ = 3c + o(c), and we can set p
such that log p = 5c+ o(c). Therefore, setting the number of parallel repetitions
of the Σ-protocol for L`′,c to N = 6, we get λ = 5c+6(`′+c)+o(c) = 29c+o(c).
In turns, this gives p−1 · 2Nc−λ = 2−28c−o(c) = 2−(28/29+o(1))λ. Therefore, the
adaptive soundness of our NIZK for L`′,c reduces to the 2−(28/29+o(1))λ-OW-KDM
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security of ElGamal (over the group G̃ of size q ≈ 2λ) w.r.t. efficient functions.
Observe that with this choice of parameters, it holds that p/2l = 2O(

√
log p),

hence the p/2l-SEDL assumption is implied by the 2−O(
√
log p)-OW-KDM security

of ElGamal over G, which is clearly implied by the 2−(28/29+o(1)) log p-OW-KDM
security of ElGamal over G. Due to the large number of parameters involved in
our construction, and to make it more readable, we summarize our parameters
and the constraints they must satisfy in the full version.
Construction. Let NIZKAS = (SetupAS,ProveAS,VerifyAS) be a NIZK for the
almost-short language L`′,c over the group generator DHGen where the CDH
problem is insecure. Given a security parameter n for the VPRG, we set l(n) =
κ(n) = n and c(n) = n2 (so that κ + l = o(c)). We set (`(n), `′(n), λ(n), p(n))
as described previously, and s(n) = n · dlog pe. Let m = m(n) be n1+δPRG . Our
construction of VPRG proceeds as follows:

– Setup(1n,m) : run G = (G, p) ←r DHGen(1λ(n)) and sample g ←r G.9
Further, for i = 1 to m, generate crsi ←r SetupAS(1λ(n)) and ppPRG ←r

PRG.Setup(1n). Finally, output pp = (g, (crsi)i≤m, ppPRG).
– Stretch(pp) : pick a seed seed = (s1, · · · , sn) ←r {0, 1}n for PRG. For i =

1 to n, pick wi ←r [2l] and compute comi ← gwi+2l+tsi . Output pvk ←
(com1, · · · , comn), x = PRG.Eval(seed), and aux← (seed, w1, · · · , wn).

– Prove(pp, aux, i) : compute com∗i ← EvalCom(PRGi, (com1, · · · , comn)) and

w∗i ← EvalOpen(PRGi, (w1, s1), · · · , (wn, sn)).

Set xi = PRGi(seed), Xi = com∗i /g
2l+txi and run πAS

i ← ProveAS(crsi,
Xi, w

∗
i ). Output π = πAS

i .
– Verify(pp, pvk, i, b, π) : compute com∗i ← EvalCom(PRGi, (com1, · · · , comn))

and set X = com∗i /g
2l+tb. Output VerifyAS(crsi, X, π).

Setting (δ(n), s(n)) for VPRG. Before going into the security proofs, let us as-
sess the parameter values of δ(n) and s(n) of our VPRG. First, we have m(n) =
n1+δPRG where the constant δPRG is the stretch of the underlying PRG that can be
set arbitrary within 0 < δPRG < 0.25. The size of the verification key is s(n) :=
n · dlog pe, and in particular, s(n) ≤ n1+δPRG/2 for all sufficiently large n. There-
fore, by setting δ(n) := δPRG/3, we conclude s(n)1+δ(n) ≤ (n1+δPRG/2)1+δPRG/3 =
n1+δPRG = m(n). Specifically, we have a (s(n) = n·dlog pe, δ(n) = δPRG/3)-VPRG.

Theorem 38. If the p/2l-SEDL assumption holds relative to DHGen, CDH does
not hold relative to DHGen, PRG is a secure pseudorandom generator stretch-
ing n bits to n1+δPRG bits for some arbitrarily small positive constant δPRG, and
the NIZK argument system for the almost language L`′(n),c(n) is adaptive sound
and selective single-theorem zero-knowledge, where `′(n) and c(n) are chosen as
described above, then our construction provides an (s(n), δPRG/3)-VPRG (with
s(n) = n · dlog pe) that is binding and hiding.
9 We remark that we assume the CDH problem is insecure over the group G for the
specific parameter λ(n).
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The proof of binding is very similar to the proof of Theoremn 25. For the
hiding property, in a first hybrids, we first simulate all NIZK proofs, still providing
correct openings. Then, we replace the commitment to the seed by random group
elements, which is indistinguishable from the previous hybrids under the short-
exponent discrete logarithm assumption. Eventually, we replace the PRG values
by random bits, which is indistinguishable under the pseudorandomness of the
PRG. In the last game, the value of all opened bits is perfectly independent of the
value of the unopened bit, hence the advantage of the adversary is 0. We provide
a complete proof in the full version. Since the above is an (s(n), δ(n))-VPRG for
a constant δ(n) = δPRG/3, by setting n large enough, we can satisfy the condition
required in Theorem 7 for constructing NIZKs for all of NP. In particular, as a
consequence of Theorem 7, 21, 24, and 25, the following is obtained.

Theorem 39. Assume that the CDH assumption does not hold relative to DHGen,
that ElGamal satisfies 2−(28/29+o(1))λ-OW-KDM security with respect to efficient
functions, and that Goldreich’s PRG instantiated with the LV predicate is secure
for some (arbitrarily small) polynomial stretch. Then there exists an infinitely
often adaptive sound and adaptive multi-theorem NIZK for all of NP.

In the full version, we show that combining the results of Section 3 with the
results of this section gives us the following theorem.

Theorem 40. Assume that ElGamal satisfies 2−(28/29+o(1))λ-OW-KDM secu-
rity with respect to efficient functions, and that Goldreich’s PRG instantiated
with the LV predicate is secure for some (arbitrarily small) polynomial stretch.
Then there exists an adaptively sound and adaptive multi-theorem infinitely-often
NIZK for NP, whose multi-theorem zero-knowledge property holds against uni-
form adversaries.
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