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Abstract. We present the first maliciously secure protocol for suc-
cinct non-interactive secure two-party computation (SNISC): Each player
sends just a single message whose length is (essentially) independent of
the running time of the function to be computed. The protocol does
not require any trusted setup, satisfies superpolynomial-time simulation-
based security (SPS), and is based on (subexponential) security of the
Learning With Errors (LWE) assumption. We do not rely on SNARKs
or “knowledge of exponent”-type assumptions.

Since the protocol is non-interactive, the relaxation to SPS security is
needed, as standard polynomial-time simulation is impossible; however, a
slight variant of our main protocol yields a SNISC with polynomial-time
simulation in the CRS model.
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1 Introduction

Protocols for secure two-party computation (2PC) allow two parties to compute
any function (f) of their private inputs (x and y) without revealing anything
more than the output f(x, y) of the function. Since their introduction by Yao
[42] and Goldreich, Micali and Wigderson [22], they have become one of the
most central tools in modern cryptography. In this work, our focus is on 2PC
in a setting with a non-interactivity requirement: each player sends just a single
message. The first player—typically referred to as the receiver (or R)—computes
some message m1 based on its input x and sends m1 to the second player. The
second player—referred to as the sender (S)—next computes a response m2

(based on its input y and the message m1 it received) and sends it back to the
receiver. Upon receiving the response m2, the receiver can finally compute and
output f(x, y). (Note that in such a non-interactive scenario, it is essential that
only the receiver obtains the output—in other words, that the functionality is
“one-sided”; otherwise, since the protocol only has two rounds, the sender will
be able to compute the output given only m1, meaning that it could obtain
f(x, y∗) on any number of inputs y∗ of its choice.)

SNISC: Succinct Non-Interactive Secure Computation. As far as we know, this
notion of non-interactive 2PC was first formally studied in [30] under the name
non-interactive secure computation (NISC); however, informal versions of it be-
came popular in connection with Gentry’s breakthrough result on fully homo-
morphic encryption (FHE) [21]. One of the original applications of FHE was the
private outsourcing of some computation to a remote party: for instance, consider
a scenario where a client (the receiver) has some secret input x and wishes a pow-
erful server (the sender) to compute some potentially time-consuming function f
on x (and potentially another input y belonging to the server). Using FHE, the
client/receiver simply lets m1 be an FHE encryption of x; the server/sender can
next use homomorphic evaluation to obtain an encryption m2 of f(x, y) to send
back, which can be decrypted by the client/receiver. Indeed, an FHE scheme not
only directly yields a NISC, but it also yields a succinct NISC (SNISC)—where
both the communication complexity of the protocol and the running time of an
honest receiver are “essentially” independent of the running time of f . More
formally, we define a SNISC as a NISC where the communication complexity
and receiver running time depend only on the length of the inputs and outputs,
and polylogarithmically on the running time of the function f to be computed
(where we assume that f is given as a Turing machine).

The problem with this folklore approach towards “private outsourcing” or
succinct NISC is that using FHE alone only satisfies semi-honest security, as op-
posed to fully malicious security. For instance, a malicious sender could decide to
compute any other function of its choice instead of the correct f ! Of course, we
could always extend the protocol using ZK-SNARKs (succinct non-interactive
arguments of knowledge) [32,27,6,8,20] to prove correctness of the messages m1

and m2, but doing so comes at a cost. First, we now need to assume some trusted
setup, such as a common reference string (CRS). Additionally, all known con-
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structions of SNARKs are based on knowledge- or extractability-type assump-
tions, which in general are known to be problematic with respect to arbitrary
auxiliary input [7,9].4 Thus, the question as to whether succinct non-interactive
secure computation with malicious security is possible in the plain model re-
mains open:

Does there exist a succinct non-interactive secure computation proto-
col without any trusted setup (and without using extractability assump-
tions)?

NISC protocols in models with trusted setup have been extensively studied.
There exist known constructions of NISC in the OT-hybrid model [30], in the
CRS model based on cut-and-choose [1,33], assuming tamper-proof stateful [26]
and stateless [29,4] hardware tokens, and in the global random oracle model [15].
As far as we know, none of the above protocols are succinct.

The plain model, however, presents additional issues: Goldreich-Oren’s [23]
classic impossibility result for two-round zero-knowledge proofs immediately
shows that even a non-succinct (let alone succinct) NISC with malicious security
cannot satisfy the standard polynomial-time simulation-based notion of security.5

Thus, to get any NISC, let alone a succinct one, we need to use some relaxed no-
tion of simulatability for the definition of secure computation. Superpolynomial-
time simulation-based security (SPS) [36,38] has emerged as the standard relax-
ation of simulation-based security: under SPS security, the attacker is restricted
to be a non-uniform polynomial time algorithm, but the simulator (in the def-
inition of secure computation) is allowed to run in (slightly) superpolynomial
time (e.g., in quasi-polynomial time). Non-succinct NISC protocols with SPS
simulation are known under various standard assumptions [36,41,3]. Most no-
tably, the work of [3] constructs a maliciously secure (non-succinct) NISC with
quasi-polynomial simulation in the plain model which can securely compute any
functionality based on the subexponential security of various standard hard-
ness assumptions; we return to this result in more detail later on. However, all
previous works only construct NISC protocols that are non-succinct.

Towards achieving succinctness for NISC, a very recent work by Brakerski
and Kalai [13] takes us a step on the way: they focus on a notion of “private del-
egation” where the receiver’s/ client’s input x is publicly known (and thus does
not need to be kept hidden) but the input y of the sender/server is considered
private. The authors present a delegation protocol that achieves witness indis-
tinguishability (WI) for the sender—as shown in [36], WI is a strict relaxation of

4 Finally, even forgetting about the issues with extractability assumptions, formalizing
this approach requires dealing with some subtle issues, which we will discuss later
on. Works where this has been done (in the orthogonal setting of “laconic” function
evaluation) include [16,39].

5 Furthermore, if we restrict to black-box simulation, [31,19] proved that four rounds
are necessary and sufficient for secure one-sided 2PC in the plain model.
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SPS security.6 While their protocol achieves the desired notion of succinctness,
it still falls short of the goal of producing a succinct NISC protocol due to the
fact that its only considers privacy for one of the players (namely, the sender);
this significantly simplifies the problem. Additionally, their notion of privacy
(witness indistinguishability) is also weaker than what we are aiming to achieve
(i.e., simulation-based SPS security).

1.1 Our Results

In this work, we provide an affirmative answer to the above question, presenting
the first SNISC for general functionalities. Our protocol is in the plain model (i.e.,
no trusted setup), and we do not rely on any extractability-based assumptions.

Theorem 1 (Informally stated). Assuming subexponential security of the
LWE assumption, there exists a maliciously SPS-secure SNISC for any effi-
cient functionality. Furthermore, the simulator of the protocol runs in quasi-
polynomial time.

Our protocol relies on three primitives:

– A (leveled) FHE scheme [21] with quasi-polynomial security. For our pur-
poses, we additionally require the FHE to satisfy perfect correctness. Such
schemes can be based on the (quasi-polynomial security of the) LWE (Learn-
ing With Errors) assumption [40], as shown in [11,24].

– A (non-private) delegation scheme for polynomial time computations with
quasi-polynomial security. For our purpose, we require a scheme that sat-
isfies perfect completeness and allows the sender to adaptively choose the
functionality (i.e., we need what is referred to as an “adaptive delegation
scheme”). Such schemes can in fact be based on the above notion of quasi-
polynomial FHE, and hence in turn on the quasi-polynomial security of the
LWE assumption [12].

– A (non-succinct) SPS-secure NISC for general functionalities f with a quasi-
polynomial simulator. Such a scheme exists based on the existence of a
subexponentially-secure “weak oblivious transfer” protocol7 [3]8; this in turn
can be based on the subexponential security of any one of the DDH [35],
Quadratic Residuosity, or N th Residuosity [28] assumptions, or (as shown in
[10]) on subexponential security of the LWE assumption.

6 In the context of interactive proofs, WI is equivalent to a relaxed form of SPS secu-
rity where the simulator’s running time is unbounded (as opposed to some “small”
superpolynomial time).

7 Roughly speaking, a weak oblivious transfer protocol is an OT protocol that sat-
isfies SPS-security against a malicious receiver, but only indistinguishability-based
(“game-based”) security against a malicious sender.

8 While [3] claim a construction of SPS NISC from just the existence of a weak OT
protocol, their security proof additionally relies on the existence of an onto one-way
function. As far as we know, onto one-way functions are not known based on the
existence of Weak OT. Consequently, in the full version [34] we present a variant of
their protocol that dispenses of this additional assumption.
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More precisely, if the underlying NISC protocol has a T (n) · poly(n)-time
simulator, and if all the other primitives are secure against T (n) · poly(n) time
attackers, the final protocol is secure and has a T (n) · poly(n)-time simulator:

Theorem 2 (Informally stated). Assuming the existence of a T (n)-time sim-
ulatable NISC protocol, a subexponentially sound adaptive delegation scheme for
polynomial-time computations with perfect completeness, and a subexponentially
secure leveled FHE scheme with perfect correctness, there exists T (n) · poly(n)-
time simulatable SNISC for any efficient functionality.

As a corollary, we can directly instantiate our protocol using a NISC with
polynomial-time simulation in the CRS model based on a two-round universally
composable OT protocol (in the CRS model), which [37] shows can be based on
the polynomial security of LWE. Hence:

Corollary 1 (Informally stated). Assuming the polynomial security of the
LWE assumption, there exists a maliciously-secure SNISC (with a polynomial-
time simulator) in the CRS model for any efficient functionality.

We defer the proof of this corollary to the full version of our paper [34].

1.2 Technical Overview

At a high level, our approach begins with the semi-honestly secure approach of
using FHE (which we detailed in the introduction) and attempts to compile it to
become secure with respect to malicious attackers. Instead of using ZK-SNARKs
(which rely on non-standard assumptions and trusted setup), we will instead use
an adaptive delegation scheme and a non-succinct NISC. For our approach to
work, we will strongly rely on perfect correctness/completeness properties of both
the FHE and the delegation scheme; as far as we know, perfect correctness of
these types of primitives has not previously been used to enable applications
(where the goal itself isn’t perfect correctness).9. Despite this, though, recent
constructions (or slight variants) of both FHE and delegation protocols fortu-
nately do provide these guarantees.

Adaptive Delegation: A Starting Point. To explain the approach, we shall start
from a (flawed) candidate which simply combines an FHE scheme and an adap-
tive delegation scheme. In an adaptive delegation scheme (as given in [12]), a
verifier generates a public/secret key-pair (pk, sk) and sends pk to the prover.
The prover next picks some statement x̃ and function g, computes the output
ỹ = g(x̃), and produces a “short” proof π of the validity of the statement that
ỹ = g(x̃). The prover finally sends (x̃, g, ỹ, π) to the verifier, who can use its
secret key sk to check the validity of the proof. We will rely on an adaptive
delegation scheme satisfying perfect completeness—that is, for all public keys in

9 The only work we are aware that uses perfect correctness of a FHE is a very recent
work [2] which uses perfectly correct FHE as a tool to get perfectly correct iO.
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the range of the key generation algorithm, the prover can convince the verifier
with probability 1.

The candidate SNISC leverages delegation to “outsource” the computation
of the homomorphic evaluation to the sender: specifically, the receiver first gen-
erates a public/secret key-pair (pkFHE, skFHE) for the FHE, encrypts its input x
using the FHE (obtaining a ciphertext ctx), generates a public/secret key pair
(pkDel, skDel) for the delegation scheme, and finally sends (ctx, pkFHE,
pkDel) to the sender. The sender in turn encrypts its input y, obtaining a cipher-
text cty; next, it lets g be the function for homomorphically evaluating f on
two ciphertexts, computes g(ctx, cty) (i.e., homomorphically evaluates f on ctx
and cty) to obtain a ciphertext ctout, and computes a delegation proof π (with
respect to pkDel) of the validity of the computation of g. Finally, the sender sends
(cty, ctout, π) to the receiver, who verifies the proof and, if the proof is accepting,
decrypts ctout and outputs it.

Intuitively, this approach hides the input x of the receiver, but clearly fails
to hide the input y of the sender, as the receiver can simply decrypt cty to
obtain y. So, rather than providing cty and π in the clear (as even just the
proof π could leak things about cty), we instead use the (non-succinct) NISC
to run the verification procedure of the delegation scheme. That is, we can add
to the protocol a NISC instance where the receiver inputs skDel, the sender
inputs ctx, cty, ctout, π, and the functionality runs the verification algorithm for
the delegation scheme, outputting either ⊥ if verification fails or, otherwise, ctout
(which can be decrypted by the receiver).

Input Independence: Leveraging Perfect Correctness of FHE. The above ap-
proach intuitively hides the inputs of both players, and also ensures that the
function is computed correctly. But there are many problems with it. For in-
stance, while it guarantees that the sender does not learn the receiver’s input
x, it does not guarantee “input independence”, or that the sender’s input does
not depend on the receiver’s somehow: for instance, the sender can easily maul
ctx into, say, an encryption cty of x + 1 and use that as its input. On a more
technical level, simulation-based security requires the simulator to be able to
extract the inputs of malicious players, but it is not clear how this can be done
here—in fact, a simulator cannot extract the sender’s input y due to the above
malleability attack.

To overcome this issue, we again leverage the non-succinct NISC to enable
extractability: we add x and the randomness, rx, needed to generate ctx as an
input from the receiver, and we add ctx (i.e., the ciphertext obtained from the
receiver), y, and the randomness needed to generate cty as input from the sender.
The functionality additionally checks that the ciphertexts ctx, cty respectively
are valid encryptions of the inputs x, y using the given randomness. (It is actually
essential that the sender includes the ciphertext ctx from the receiver as part of
its input, as opposed to having the receiver input it, as otherwise we could not
guarantee that the receiver is sending the same ciphertext to the sender as it is
inputting to the NISC). If we have perfect correctness for the underlying FHE
scheme with respect to the public-keys selected by the receiver, this approach
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guarantees that we can correctly extract the inputs of the players. The reason
that we need perfect correctness is that the NISC only guarantees that the ci-
phertexts have been honestly generated using some randomness, but we have no
guarantees that the randomness is honestly generated. Perfect correctness en-
sures that all randomness is “good” and will result in a “well-formed” ciphertext
on which homomorphic computation, and subsequently decryption, will always
lead to the correct output.

Dealing with a Malicious Receiver: Interactive Witness Encryption and Perfectly
Correct Delegation. While the above protocol suffices to deal with a malicious
sender (although, as we shall discuss later on, even this is not trivial due to the
potential for “spooky interactions” [17]), it still does not allow us to deal with
a malicious receiver. The problem is that the receiver could send invalid public
keys, either for the FHE or for the delegation scheme. For instance, if the public
key for the FHE is invalid, perfect correctness may no longer hold, and we may
not be able to extract a correct input for the receiver. Likewise, if the public key
for the delegation scheme is invalid, we will not be able to determine whether the
verification algorithm of the delegation scheme will be accepting, and thus cannot
carry out a simulation. Typically, dealing with a malicious receiver would require
adding a zero-knowledge proof of well-formedness of its messages; however, given
that the receiver is sending the first message, this seems problematic since, even
with SPS-security, one-message ZK is impossible (with respect to non-uniform
attackers [36,5]).

To explain our solution to this problem, let us first assume that we have
access to a witness encryption scheme [18]. Recall that a witness encryption
scheme enables encrypting a message m with a statement x̃ so that anyone hav-
ing a witness w to x̃ can decrypt the message; if the statement is false, however,
the encryption scheme conceals the message m. If we had access to such a wit-
ness encryption scheme, we could have the functionality in the NISC compute a
witness encryption of ctout with the statement being that the public keys have
been correctly generated. This method ensures that the receiver does not get
any meaningful output unless it actually generated the public keys correctly. Of
course, it may still use “bad” randomness—we can only verify that the public
keys are in the range of the key generating function. But, if the delegation scheme
also satisfies a “perfect correctness” property (specifically, both correctness of
the computation and perfect completeness of the generated proof), this enables
us to simulate the verification of the delegation scheme (as once again, in this
case, perfect correctness guarantees that there is no “bad” randomness).

We still have an issue: perfect correctness of the FHE will ensure that the
decryption of the output is correct, but we also need to ensure that we can
simulate the ciphertext output by the NISC. While this can be handled using an
FHE satisfying an appropriate rerandomizability/simulatability property (also
with respect to maliciously selected ciphertext), doing so introduces additional
complications. Furthermore, while we motivated the above modification using
witness encryption, currently known constructions of witness encryption rely on
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non-standard, and less understood, hardness assumptions; as such, we would like
to altogether avoid using it as an underlying primitive.

So, to circumvent the use of witness encryption—while at the same time
ensuring that the output of the NISC is simulatable—we realize that in our
context, it in fact suffices to use a two-round version of witness encryption,
where the receiver of the encryption chooses the statement and can first send a
message corresponding to the statement. And such a non-interactive version of
witness encryption can be readily implemented using a NISC! As we are already
running an instance of a NISC, we can simply have the NISC also implement
this interactive witness encryption. More precisely, we now additionally require
the receiver to provide its witness—i.e., the randomness for the key generation
algorithms—as an input to the NISC, while the sender additionally provides
the public keys pkFHE and pkDel which it receives. The functionality will now
only release the output ctout if it verifies that the keys input by the sender are
correctly generated from the respective randomness input by the receiver. Better
still, since the randomness used to generate the public/secret key-pair is now an
input to the functionality, the functionality can also recover the secret key for
the FHE, and next also decrypt ctout and simply output plain text corresponding
to ctout. This prevents the need for rerandomizing ctout, since it is now internal to
the NISC instance (and is no longer output). With all of the above modifications,
we can now prove that the protocol satisfies SPS security.

The Final Protocol. For clarity, let us summarize the final protocol.

– The Receiver generates (pkFHE, skFHE) and (pkDel, skDel) using randomness
rFHE and rDel (respectively) and generates an encryption ctx of its input x
using randomness rx. It then sends (pkFHE, pkDel, ctx) and the first message
msg1 of a NISC using the input x′ = (x, rFHE, rDel, rx) (for a functionality to
be specified shortly).

– The Sender, upon receiving pkFHE, pkDel,msg1 generates an encryption cty
of its input y using randomness ry, applies the homomorphic evaluation
of f to ctx and cty to obtain a ciphertext ctout = g(ctx, cty), generates a
proof π using the delegation scheme (w.r.t. pkDel) of the correctness of the
computation that ctout = g(ctx, cty), and finally sends the second message
msg2 of the NISC using the input y′ = (y, pkFHE, pkDel, ctx, cty, ctout, π, ry).

– Finally, the receiver, upon getting msg2, computes the output z of the NISC
protocol and outputs it.

– The functionality computed by the NISC on input x′ = (x, rFHE, rDel, rx) and
y′ = (y, pkFHE,
pkDel, ctx, cty, ctout, π, ry) does the following: it checks that:

1. the public keys pkFHE, pkDel were respectively generated using random-
ness rFHE, rDel;

2. the ciphertexts ctx, cty are respectively encryptions of x, y using random-
ness rx, ry; and,

3. π is a valid proof of ctout = g(ctx, cty) w.r.t. (pkDel, skDel) (as generated
from rDel).
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If the checks pass, it decrypts ctout (by first generating skFHE from rFHE),
obtaining the plaintext z, and finally outputs z. (If any of the checks fail, it
instead outputs ⊥.)

A summary of the message flow can be found in Figure 1.

Sender(y)

(pkFHE, skFHE)← GenFHE(rFHE)

(pkDel, skDel)← GenDel(rDel)

ctx ← EncFHE(pkFHE, x; rx)

msg1 ← NISC1(x, rFHE, rDel, rx)

z ← NISC3(msg2) ; output z

pkFHE, pkDel, ctx,msg1

Receiver(x)

msg2

cty ← EncFHE(pkFHE, y; ry)

(π, ctout)← CompDel(pkDel, g, ctx, cty)

msg2 ← NISC2(y, pkFHE, pkDel, ctx, cty,

ctout, π, ry)

Fig. 1. The final SNISC protocol. (NISC1,NISC2,NISC3) denotes the underlying (non-
succinct) NISC protocol and and the functionality g denotes the homomorphic evalu-
ation g(c1, c2) = EvalFHE(pkFHE, f, c1, c2).

A Subtlety in the Security Proof One subtle point that arises in the proof of
security is that, to simulate a malicious sender, we need to simulate the ciphertext
ctx without knowledge of x. But the functionality of the underlying NISC takes
as input the randomness used for both the key generation of pkFHE and for
encrypting ctx, and thus the functionality implicitly knows how to decrypt ctx. A
similar issue has arisen in the related context of constructing delegation schemes
from FHE and related primitives (see [17]), where it was shown that so-called
“spooky interactions” can arise, where a malicious sender (even though it does
not how to decrypt the ciphertext) can in fact use this dependence to make the
receiver output values that correlate in undesirable ways with the input x (in
particular, in ways that would not have been possible if using an “idealized”
FHE). Fortunately, in our context, we are able to overcome this issue by using
the perfect correctness of the FHE scheme and soundness of our underlying
delegation scheme to perform a carefully designed hybrid argument.

A bit more precisely, the key point is that when simulating a malicious sender
in communication with an honest receiver, the receiver’s public key and cipher-
text ctx will always be correctly generated (as such, we do not have to perform
the checks involving the receiver to simulate the underlying NISC’s output); fur-
thermore, by soundness of delegation and the perfect correctness of the FHE,
the decryption of ctout must equal f(x, y) (with overwhelming probability) if π
is accepting, so we can use this fact to show that decrypting ctout is actually
also unnecessary. As such, we do not need to use either rFHE or rx to emulate
the experiment for a malicious sender, and we can create (and prove security
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in) a hybrid functionality for the underlying NISC which is independent of this
randomness (and only depends on pkFHE).

2 Preliminaries

2.1 Fully Homomorphic Encryption

Definition 1 (based on [21]). A fully homomorphic encryption (or FHE)
scheme consists of a tuple of algorithms (Gen,Enc,Eval,Dec), where Gen, Enc
are PPT and Eval, Dec are (deterministic) polynomial-time algorithms, such
that:

– (pk, sk)← Gen(1n; ρ): takes the security parameter n as input and outputs a
public key pk and secret key sk.

– ct← Enc(pk,m; ρ): takes as input a public key pk and a message m ∈ {0, 1},
and outputs a ciphertext ct. (For multi-bit messages −→m ∈ {0, 1}p(n), we let−→
ct ← Enc(pk,−→m) be such that cti = Enc(pk,mi).)

– ct′ = Eval(pk, C,
−→
ct): takes as input a list of ciphertexts

−→
ct and a circuit

description C of some function to evaluate and outputs a ciphertext ct′.
– m′ ← Dec(sk, ct): takes as input a ciphertext ct and outputs a message m′.

We furthermore require that the following properties are satisfied:

1. Full homomorphism: There exist sets of boolean circuits {Cn}n∈N, negli-
gible function ε(n), and polynomial p(·) such that C =

⋃
n Cn includes the set

of all arithmetic circuits over GF(2)10, and, for any n ∈ N, we have that, for
all C ∈ Cn and −→m ∈ {0, 1}p(n):

Pr[z 6= C(−→m) : (pk, sk)← Gen(1n),
−→
ct ← Enc(pk,−→m),

z ← Dec(sk,Eval(C, pk,
−→
ct))] < ε(n),

Furthermore, if this probability is identically zero, we refer to the scheme as
having perfect correctness.

2. Compactness: There exists a polynomial q(·) such that the output length
of Eval given (any number of) inputs generated with security parameter n is
at most q(n).

Definition 2 (based on [25]). We say that an FHE (Gen,Enc,Eval,Dec) is
secure if, for all non-uniform PPT D, there exists a negligible ε(·) such that for
any n ∈ N:

|Pr[D(1n, pk,Enc(pk, 0)) = 1]− Pr[D(1n, pk,Enc(pk, 1)) = 1]| < ε(n)

over (pk, sk) ← Gen(1n). If this condition holds also with respect to subexpo-
nential size distinguishers D (i.e., algorithms implemented by circuits of size
poly(2n

ε

) for some ε > 0), we refer to the scheme as being subexponentially
secure.
10 GF(2) is the set of arithmetic circuits consisting only of + and × gates over the field

F2.
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We have the following consequence for encryptions of poly(n)-bit messages −→m0

and −→m1:

Fact 1 If an FHE scheme (Gen,Enc,Eval,Dec) is secure (resp., subexponentially
secure), then, for any polynomial p(·) and for any non-uniform PPT (resp.,
subexponential-size) (A, D) where A outputs messages −→m0,

−→m1 ∈ {0, 1}p(n) for
polynomial p(·), there exists a negligible ε(·) such that for any n ∈ N:

|Pr[D(1n, pk,Enc(pk,−→m0)) = 1]− Pr[D(1n, pk,Enc(pk,−→m1)) = 1]| < ε(n)

where
(pk, sk)← Gen(1n), (−→m0,

−→m1)← A(1n, pk)

We can construct an FHE scheme with all of the above properties based on the
Learning With Errors (LWE) assumption:

Theorem 3 ([11,24,2]). Based on computational (resp., subexponential) hard-
ness of the Learning With Errors assumption, there exists a secure (resp., subex-
ponentially secure) fully homomorphic encryption scheme satisfying perfect cor-
rectness.

2.2 Adaptive Delegation Schemes

A delegation scheme allows for the effective “outsourcing” of computation from
one party to another; that is, using delegation, the sender can compute both the
correct result of some (possibly expensive) computation on a receiver’s input and
a (short) proof which can convince the receiver of the correctness of the com-
putation without requiring the receiver to perform the computation themselves.
We consider a notion of delegation with the additional property, formalized in
[12], that the functionality f(·) whose computation is to be delegated can be
decided adaptively after the keys pk, sk are computed (i.e., the key-generation
algorithm Gen is independent from f). Formally:

Definition 3 (based on [12]). An adaptive delegation scheme is given by
a triple of algorithms (Gen,Comp,Ver), where Comp and Ver are (deterministic)
polynomial-time algorithms and Gen is PPT, such that:

– (pk, sk)← Gen(1n; ρ) takes as input a security parameter n and probabilisti-
cally outputs a public key pk and secret key sk.

– (y, π, 1T ) ← Comp(pk, f,−→x ) takes as input a Turing machine description
of the functionality f to be computed, as well as the inputs −→x to f , and
produces a result y which the sender claims to be the result of the computa-
tion, a poly(n)-size proof π of its correctness, and the running time T of the
computation in unary.

– {Accept,Reject} ← Ver(sk, f,−→x , y, π, T ) takes as input the functionality f to
be computed, inputs −→x , result y, proof π, and running time T , and returns
Accept or Reject depending on whether π is a valid proof of f(−→x ) = y.



12 Andrew Morgan, Rafael Pass, and Antigoni Polychroniadou

Furthermore, we require the following properties:

1. Completeness: There exists a negligible function ε(·) such that, for any
n ∈ N, any f computable by a Turing machine that runs in time at most 2n,
and any −→x in the domain of f :

Pr
[
(pk, sk)← Gen(1n); (π, y, 1T ) = Comp(pk, f,−→x ) :

Ver(sk, f,−→x , π, y, T ) = Reject] < ε(n)

In addition, if the above probability is identically zero, we say that the adap-
tive delegation scheme satisfies perfect completeness.

2. Correctness: For any n ∈ N, any f computable by a Turing machine that
runs in time at most 2n, and any −→x in the domain of f :

Pr [(pk, sk)← Gen(1n) : Comp(pk, f,−→x ) = (f(−→x ), ·, ·)] = 1

3. Soundness: For any non-uniform PPT adversary A, there exists a negligi-
ble function ε(·) such that, for any n ∈ N:

Pr
[
(pk, sk)← Gen(1n), (f,−→x , y1, y2, π1, π2, 1T1 , 1T2)← A(1n, pk) :

T < 2n ∧ Ver(sk, f,−→x , y1, π1, T1) = Accept

∧Ver(sk, f,−→x , y2, π2, T2) = Accept ∧ y1 6= y2] < ε(n)

Furthermore, if this condition holds with respect to subexponential-size ad-
versaries, we say that the scheme is subexponentially sound.

A construction of an adaptive delegation scheme with perfect completeness
can be found in the work of Brakerski et al. [12], and is based on a secure private
information retrieval (PIR) scheme, which in turn can be constructed based on
a leveled FHE scheme (including the one presented in Theorem 3). Hence:

Theorem 4 ([11,24,12,2]). Given computational (resp., subexponential) hard-
ness of the Learning With Errors assumption, there exists a sound (resp., subex-
ponentially sound) adaptive delegation scheme satisfying perfect completeness.

2.3 Non-Interactive Secure Computation

Definition 4 (based on [42,22,3]). A non-interactive two-party compu-
tation protocol for computing some functionality f(·, ·) (we assume f to be
computable by a polynomial-time Turing machine) is given by three PPT algo-
rithms (NISC1,NISC2,NISC3) defining an interaction between a sender S and a
receiver R, where only R will receive the final output. The protocol will have com-
mon input 1n (the security parameter); the receiver R will have input x, and the
sender will have input y. The algorithms (NISC1,NISC2,NISC3) are such that:

– (msg1, σ) ← NISC1(1n, x) generates R’s message msg1 and persistent state
σ (which is not sent to S) given the security parameter n and R’s input x.
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– msg2 ← NISC2(msg1, y) generates S’s message msg2 given S’s input y and
R’s message msg1.

– out ← NISC3(σ,msg2) generates R’s output out given the state σ and S’s
message msg2.

Furthermore, we require the following property:

– Correctness. For any parameter n ∈ N and inputs x, y:

Pr [(msg1, σ)← NISC1(1n, x) : NISC3(σ,NISC2(msg1, y)) 6= f(x, y)] ≤ ε(n)

Defining non-interactive secure computation will require us to add a security
definition, which we formalize as follows:

Security. We adopt a standard notion of simulation-based security, with the
relaxation that we allow superpolynomial-time simulation (as originally proposed
in [36,38]). We define security by comparing two experiments conducted between
the sender and receiver, either of whom may be corrupted and act arbitrarily
(while the other is honest and follows the protocol). In the real experiment, the
two parties will perform the actual protocol; in the ideal experiment, the two
parties will instead send their inputs to a “trusted third party” who performs the
computation and returns the result only to, in this case (because the protocol is
one-sided), the receiver. Informally, we say that a protocol is secure if, for any
adversary A against the real experiment, acting either as the sender or receiver,
there is a simulated adversary S in the ideal experiment which produces a near-
identical (i.e., computationally indistinguishable) result; intuitively, if this is the
case, we can assert that the real adversary cannot “learn” anything more than
they could by interacting with a trusted intermediary. Let us formalize this
notion for the case of SNISC:

– Let the real experiment be defined as an interaction between a sender S with
input y and a receiver R with input x, defined as follows:

• R computes (msg1, σ)← NISC1(1n, x), stores σ, and sends msg1 to S.
• S, on receiving msg1, computes msg2 ← NISC2(msg1, y) and sends msg2

to R.
• R, on receiving msg2 computes out← NISC3(σ,msg2) and outputs out.

In this interaction, one party I ∈ {S,R} is defined as the corrupted party;
we additionally define an adversary, or a polynomial-time machine A, which
receives the security parameter 1n, an auxiliary input z, and the inputs of the
corrupted party I, and sends messages (which it may determine arbitrarily)
in place of I.
Letting Π denote the protocol to be proven secure, we shall denote by
OutΠ,A,I(1

n, x, y, z) the random variable, taken over all randomness used
by the honest party and the adversary, whose output is given by the outputs
of the honest receiver (if I = S) and the adversary (which may output an
arbitrary function of its view).
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– Let the ideal experiment be defined as an interaction between a sender S, a
receiver R, and a trusted party Tf , defined as follows:

• R sends x to Tf , and S sends y to Tf .
• Tf , on receiving x and y, computes out = f(x, y) and returns it to R.
• R, on receiving out, outputs it.

As with the real experiment, we say that one party I ∈ {S,R} is corrupted
in that, as before, their behavior is controlled by an adversary A. We shall

denote by Out
Tf
Πf ,A,I(1

n, x, y, z) the random variable, once again taken over
all randomness used by the honest party and the adversary, whose output
is again given by the outputs of the honest receiver (if I = S) and the
adversary.

Given the above, we can now formally define non-interactive secure compu-
tation:

Definition 5 (based on [42,22,36,38,3]). Given a function T (·), a non-inter-
active two-party protocol Π = (NISC1,NISC2,NISC3) between a sender S and
a receiver R, and functionality f(·, ·) computable by a polynomial-time Turing
machine, we say that Π securely computes f with T (·)-time simulation,
or that Π is a non-interactive secure computation (NISC) protocol (with
T (·)-time simulation) for computing f , if Π is a non-interactive two-party
computation protocol for computing f and, for any polynomial-time adversary
A corrupting party I ∈ {S,R}, there exists a T (n) · poly(n)-time simulator S
such that, for any T (n) ·poly(n)-time algorithm D : {0, 1}∗ → {0, 1}, there exists
negligible ε(·) such that for any n ∈ N and any inputs x, y ∈ {0, 1}n, z ∈ {0, 1}∗,
we have:∣∣∣Pr [D(OutΠ,A,I(1

n, x, y, z)) = 1]− Pr
[
D(Out

Tf
Πf ,S,I(1

n, x, y, z)) = 1
]∣∣∣ < ε(n)

where the experiments and distributions Out are as defined above.
Furthermore, if Π securely computes f with T (·)-time simulation for T (n) =

nlog
c(n) for some constant c, we say that Π securely computes f with quasi-

polynomial simulation.

Succinctness. The defining feature of our construction will be a notion of suc-
cinctness; specifically, for functionality f(·, ·) with Turing machine description
M and running time bounded by Tf , we show the existence of a NISC proto-
col Π = (NISC1,NISC2,NISC3) for computing f whose message length (i.e., the
combined output length of NISC1 and NISC2) and total receiver running time on
input 1n are relatively short and essentially independent of the running time of
f . Formally:

Definition 6. We say that a NISC protocol Π = (NISC1,NISC2,NISC3) has
communication complexity ρ(·) if, for any n ∈ N, x, y ∈ {0, 1}n, and z ∈
{0, 1}∗, the outputs of NISC1(1n, x) and NISC2(1n, y, z) contain at most ρ(n)
bits.
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We shall define a NISC protocol which, given functionality f : {0, 1}n×{0, 1}n ←
{0, 1}`(n) computable by a Turing machine M with running time Tf (n), fea-
tures communication complexity and receiver running time bounded above by
p(n, log(Tf (n)), |M |, `(n)) for an a priori fixed polynomial p.

There exist non-succinct non-interactive secure computation protocols in the
standard model based on a notion of “weak oblivious transfer” [3], which in turn
can be based on subexponential security of the Learning With Errors assumption
[10]:

Theorem 5 ([3,10]). Assuming subexponential hardness of the Learning With
Errors assumption, for any functionality f(·, ·) computable by a polynomial-time
Turing machine there exists a (non-succinct) non-interactive secure computation
protocol with quasi-polynomial simulation for computing f .

We note that this theorem essentially follows from [3,10]; however, [3] required
as an additional assumption the existence of an onto one-way function. In the
full version of our paper [34], we present a variant which demonstrates how to
prove Theorem 5 without this added assumption.

3 Protocol

We state our main theorem:

Theorem 6. Assuming subexponential hardness of the Learning With Errors
assumption, there exists polynomial p(·, ·, ·, ·) such that, for any polynomials Tf (·)
and `(·) and any Turing machine M with running time bounded by Tf (·) com-
puting functionality f(·, ·) : {0, 1}n × {0, 1}n ← {0, 1}`(n), there exists a non-
interactive secure computation protocol for computing f with quasi-polynomial
simulation which is additionally succinct in that both its communication com-
plexity and the running time of the honest receiver are at most p(n, log(Tf (n)),
|M |, `(n)).

We propose the protocol Π given in Figure 2 for secure non-interactive secure
computation of a function f(x, y) given a receiver input x and sender input y,
where Π shall use the following primitives:

– Let π = (NISC1,NISC2,NISC3) be a non-succinct NISC protocol with T (n)-
time simulation for T (n) = nlog

c(n) (i.e., quasi-polynomial simulation), for
which the functionality h will be determined in the first round of the pro-
tocol. (The existence of such a primitive is guaranteed by Theorem 5 under
subexponential LWE.)

– Let (GenFHE,EncFHE,DecFHE,EvalFHE) be a fully homomorphic encryption
scheme satisfying perfect correctness, compactness, and subexponential se-
curity (in particular, with respect to T (n) · poly(n)-time adversaries). (The
existence of such a primitive is guaranteed by Theorem 3 under subexpo-
nential LWE.)
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– Let (GenDel,CompDel,VerDel) be an adaptive delegation scheme with perfect
completeness, correctness, and subexponential soundness (in particular, with
respect to T (n) ·poly(n)-time adversaries). (The existence of such a primitive
is guaranteed by Theorem 4 under subexponential LWE.)

Input: The receiver R and the sender S are given input x, y ∈ {0, 1}n, respec-
tively, and both parties have common input 1n.
Output: R receives f(x, y).

Round 1: R proceeds as follows:

1. Generate random coins rFHE ← {0, 1}∗ and compute (pkFHE, skFHE) =
GenFHE(1n; rFHE).

2. Let Tg denote the running time of the functionality g(c1, c2) =
EvalFHE(pkFHE, f, c1, c2), and let λ = max(n, log(Tg)). Generate random
coins rDel ← {0, 1}∗ and compute (pkDel, skDel) = GenDel(1

λ; rDel).
3. Generate random coins rEnc(x) ← {0, 1}∗ and compute ctx =

EncFHE(pkFHE, x; rEnc(x)).
4. Generate message msg1 ← NISC1(x, rFHE, rDel, rEnc(x)) to compute the func-

tionality h described in Figure 3.
5. Send (pkFHE, pkDel, ctx,msg1) to S.

Round 2: S proceeds as follows:

1. Generate random coins rEnc(y) ← {0, 1}∗ and compute cty =
EncFHE(pkFHE, y; rEnc(y)).

2. Compute (ctout, πDel, 1
T ) = CompDel(pkDel, g, ctx, cty) for the functionality

g(c1, c2) = EvalFHE(pkFHE, f, c1, c2).
3. Generate message msg2 ← NISC2(y, pkFHE, pkDel, ctx, cty, ctout, πDel, rEnc(y),

T ) to compute the functionality h described in Figure 3.
4. Send msg2 to R.

Output phase: R computes out = NISC3(msg2) and returns the result.

Fig. 2. Protocol Π for succinct non-interactive secure computation.

4 Proof

Overview. After first proving the succinctness and correctness of the protocol,
we turn to proving its security. We do this in two steps. In the first step, we
consider a “hybrid” model in which the underlying NISC protocol is replaced by
an “ideal” third party Th. If the underlying protocol were universally composable
[14], this step would be trivial; unfortunately, it is not, so we need to take care
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Input: The receiver R has input (x, rFHE, rDel, rEnc(x)), and the sender S has
input (y, pkFHE, pkDel, ctx, cty, ctout, πDel, rEnc(y), T )
Output: Either a message out or the special symbol ⊥.

Functionality:

1. Verify that all of the following checks hold. If any fail, return ⊥.
(a) (pkFHE, ·) = GenFHE(1n; rFHE)
(b) (pkDel, ·) = GenDel(1

λ; rDel)
(c) ctx = EncFHE(pkFHE, x; rEnc(x))
(d) cty = EncFHE(pkFHE, y; rEnc(y))

2. Compute (·, skFHE) = GenFHE(1n; rFHE) and (·, skDel) = GenDel(1
λ; rDel).

3. If VerDel(skDel, g, ctx, cty, ctout, πDel, T ) = Reject for the functionality
g(c1, c2) = EvalFHE(pkFHE, f, c1, c2), then return ⊥.

4. Compute out = DecFHE(skFHE, ctout) and return the result.

Fig. 3. Functionality h used for the underlying 2PC protocol π.

to formally reduce this transformation to the simulation-based security of the
underlying protocol. Crucially, this will rely on the fact that we restrict our
attention to two-round protocols.

Next, in the second step, we can create and prove the respective simula-
tors for a corrupted sender and corrupted receiver in the Th-hybrid model. The
corrupted receiver case follows in a fairly straightforward way, relying on the
perfect correctness and completeness of the delegation and FHE schemes. The
corrupted sender case, however, has some interesting subtleties in the reduction,
and in fact will require another hybrid with a slightly different third party Th′ to
complete; we discuss these subtleties in more detail when they arise during the
proof. We begin the formal proof by proving that the protocol Π is succinct :

Lemma 1. There exists polynomial p(·, ·, ·, ·) such that, for any polynomials
Tf (·) and `(·) and any Turing machine M with running time bounded by Tf (·)
computing functionality f(·, ·) : {0, 1}n × {0, 1}n ← {0, 1}`(n), the respective
non-interactive secure computation protocol Π has communication complexity
and honest receiver running time bounded above by p(n, log(Tf (n)), |M |, `(n)).

Proof. We begin by analyzing the communication complexity, as succinctness of
the receiver’s running time will follow immediately from this analysis. Aside from
messages msg1 and msg2 for the underlying NISC π, the only communication
consists of the public keys pkFHE and pkDel and the ciphertext ctx. pkFHE has
length poly(n) since GenFHE is a polynomial-time algorithm running on input
1n, and the ciphertext ctx (which consists of a ciphertext for each bit in x ∈
{0, 1}n) also has length poly(n) since EncFHE is polynomial-time and is run on
inputs of length poly(n). pkDel will have length poly(n, log(Tf )); specifically, its
length is given to be poly(λ) = poly(n, log(Tg)), where Tg is the running time of
the functionality g(c1, c2) = EvalFHE(pkFHE, f, c1, c2) with inputs generated from
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common input 1n. However, since pkFHE has poly(n) length, the input ciphertexts
both have poly(n) length by the efficiency of EncFHE, and f in this case is given as
a circuit description, which will have size poly(Tf (n)), we have by the efficiency
of EvalFHE that Tg = poly(n, Tf (n)), implying poly(λ) = poly(n, log(Tf (n))).

So it suffices now to bound the length of the NISC messages msg1 and msg2.
Specifically, even for a non-succinct NISC protocol π, the honest sender and
receiver must be efficient, and so the message length is still at most polynomial
in the input length and running time of the functionality h. We argue that these
are poly(n, log(Tf (n)), |M |, `(n)) to complete the proof of the claim:

– The input length to π is given as the size of the inputs (x, rFHE, rDel, rEnc(x))
from the receiver and (y, pkFHE, pkDel, ctx, cty, ctout, πDel, rEnc(y), T ) from the
sender. x and y have length n by assumption. pkFHE, ctx, and cty have length
poly(n) as argued above, and ctout (which consists of a ciphertext output from
EvalFHE for each bit of f(x, y) ∈ {0, 1}`(n)) has length poly(n, `(n)) by the
compactness of the FHE scheme. pkDel has length poly(n, log(Tf (n))) as ar-
gued above, and πDel also has length poly(λ) = poly(n, log(Tf (n))); T will
have size λ = poly(n, log(Tf (n))) as T ≤ 2λ is required by the properties
of the delegation scheme. Lastly, the randomness rFHE, rDel, rEnc(x), rEnc(y)
cannot have length greater than the running times of the respective algo-
rithms GenFHE,GenDel,EncFHE, all of which we have already noted are at most
poly(n, log(Tf (n))).

– To bound the running time of the functionality h, notice that it consists of
the following:
• GenFHE (run twice), EncFHE (run 2n times, once for each bit of x and
y), EvalFHE (run `(n) times, once for each bit of out), all of which are
efficient algorithms run on inputs of at most length poly(n) (and hence
have running time poly(n));

• DecFHE (run `(n) times), which has inputs skFHE with size poly(n) and
ctout with size poly(n, `(n)), and hence has running time poly(n, `(n));

• GenDel (run twice), which runs in time poly(λ) = poly(n, log(Tf (n)));
• VerDel (run once), which, given inputs skDel, πDel of size poly(λ) = poly(n,

log(Tf (n))), ctx, cty of size poly(n), ctout of size poly(n, `(n)), g (the de-
scription of g(c1, c2) = EvalFHE(pkFHE, f, c1, c2), where we here interpret
f as the Turing machine M) of size poly(|M |), and T ≤ 2λ of size
at most λ = poly(n, log(Tf (n))), has running time which is at most
poly(n, log(Tf (n)), |M |, `(n));

and a poly(n) number of comparisons between input values and function out-
puts which have already been established to have at most poly(n, log(Tf (n)))
length.

The above shows that the communication complexity of Π is succinct. Fur-
thermore, as the honest receiver runs only GenFHE, GenDel, EncFHE, and the (effi-
cient) receiver protocol for the underlying NISC on the aforementioned inputs,
and as we have already established that all of these algorithms have running
time poly(n, log(Tf (n)), |M |, `(n)), the receiver will inherit the same running
time bound. ut



Succinct Non-Interactive Secure Computation 19

Towards proving security for Π, let OutΠ,A,I(1
n, x, y, z) denote the ran-

dom variable, taken over all randomness used by the honest party and the
adversary, of the outputs of the honest receiver (if I = S) and the adversary
in the execution of protocol Π given adversary A controlling corrupted party
I ∈ {S,R}, receiver input x, sender input y, and adversary auxiliary input z.
Let ExecΠ,A,I(1

n, x, y, z) denote the respective experiment.
Let us also define the “ideal” execution by letting Tf denote the ideal func-

tionality corresponding to the computation target f(x, y) and letting Πf be the
“ideal” version of the protocol where R sends x to Tf , S sends y to Tf , and then
R finally outputs the result out output by Tf . We want to show the following
theorem:

Theorem 7. Assume, given functionality f(·, ·), the respective protocol Π de-
scribed in Figure 2 and the assumptions required in Theorem 6, and let T (·) be
such that the underlying NISC π is secure with T (·)-time simulation. For any
efficient adversary A corrupting party I ∈ {S,R}, there exists a T (n) · poly(n)-
time simulator S such that, for any non-uniform polynomial-time distinguisher
D, there exists a negligible function ε(·) such that, for all n ∈ N, x, y ∈ {0, 1}n,
and auxiliary input z, D distinguishes the distributions OutΠ,A,I(1

n, x, y, z) and

Out
Tf
Πf ,S,I(1

n, x, y, z) with at most probability ε(n).

Notice that correctness of Π holds trivially from the perfect correctness of
the underlying FHE, the correctness and perfect completeness of the underlying
adaptive delegation scheme, and the correctness of the underlying NISC protocol
π; hence, Theorem 7, which proves security, and Lemma 1, which proves suc-
cinctness, will in conjunction directly imply Theorem 6 (where quasi-polynomial
simulation results from our use of an underlying NISC protocol with quasi-
polynomial simulation, as given in Theorem 5). The remainder of the section,
then, is devoted to proving Theorem 7.

We begin by defining a “trusted third party” Th which executes the ideal
functionality for h—that is, given the corresponding sender and receiver inputs,
Th outputs the correct value of h computed on those inputs. Our first task is
to show, then, that the “real” experiment’s outputs OutΠ,A,I(1

n, x, y, z) cannot
be distinguished from those of a “hybrid” experiment, which we shall denote by
OutThΠh,A′,I(1

n, x, y, z).
Formally, we let Πh denote a protocol which is identical to Π with the ex-

ception that, in rounds 1 and 2, rather than generating msg1 and msg2, R and
S instead send the respective inputs to Th, and, in the output phase, R receives
and returns the output from Th rather than unpacking msg2. We then state the
following lemma, the proof of which is deferred to the full version of our paper
[34] as it is rather straightforward.

Lemma 2. For any efficient adversary A corrupting party I ∈ {S,R}, there is
a T (n) · poly(n)-time adversary A′ such that, for any non-uniform polynomial-
time distinguisher D, there exists a negligible function ε(·) such that, for all
n ∈ N, x, y ∈ {0, 1}n, and auxiliary input z, D distinguishes the distributions
OutΠ,A,I(1

n, x, y, z) and OutThΠh,A′,I(1
n, x, y, z) with at most probability ε(n).
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4.1 Comparing Hybrid and Ideal Executions

Next, we need to compare the hybrid execution ExecThΠh,A′,I(1
n, x, y, z) to the

“ideal” execution Exec
Tf
Πf ,S,I(1

n, x, y, z) to finish the proof of Theorem 7.

Lemma 3. For any T (n) · poly(n)-time adversary A′ corrupting some party
I ∈ {S,R}, there exists a T (n) ·poly(n)-time simulator S such that, for any non-
uniform polynomial-time distinguisher D, there exists a negligible function ε(·)
such that, for all n ∈ N, x, y ∈ {0, 1}n, and auxiliary input z, D distinguishes

the distributions OutThΠh,A′,I(1
n, x, y, z) and Out

Tf
Πf ,S,I(1

n, x, y, z) with at most

probability ε(n).

Proof. We again separate into two cases, based on whether I = R (the receiver
is corrupted) or I = S (the sender is corrupted).

Corrupted Receiver. In this case, define a T (n) ·poly(n)-time simulator SR which
does as follows:

1. Run the corrupted receiver A′. A′, in the first round, will output a message
(x, rFHE, rDel, rEnc) to be sent to Th. Send x to the ideal functionality Tf .

2. Receive an output message out from the ideal functionality Tf . If out is ⊥,
return ⊥ to A′ (as the output of Th).

3. Verify the following. If any checks fail, return ⊥ to A′.
(a) (pkFHE, ·) = GenFHE(1n; rFHE)
(b) (pkDel, ·) = GenDel(1

λ; rDel)
(c) ctx = EncFHE(pkFHE, x; rEnc(x))

4. If all checks in the previous step pass, return out to A′. Finally, output
whatever A′ outputs.

It suffices here to argue that the output which SR returns to A′ in the ideal
experiment is identically distributed to the output which Th would return toA′ in
the hybrid experiment, as this, combined with the observation that the only input
A′ receives (aside from the auxiliary input z) is the output from Th, allows us to

conclude that A′’s views in ExecThΠh,A′,R(1n, x, y, z) and Exec
Tf
Πf ,SR,R(1n, x, y, z)

(and hence A′’s outputs) are likewise identically distributed. We can argue this
using the following claims:

Claim 1 If S is honest, then, given the messages (x, rFHE, rDel, rEnc) and (pkFHE,
pkDel, ctx) from A′, step (4) of SR succeeds (i.e., does not return ⊥) in Πf if and
only if all checks in step (1) of the functionality h described in Figure 3 succeed
in the respective instance of Πh.

Proof. The “if” direction is trivial since the checks in step (4) of SR are a strict
subset of the checks in step (1) of h.

The “only if” direction follows from the assumption that S is honest, and
will hence compute cty = EncFHE(pkFHE, y; rEnc(y)) correctly using the correct
inputs. ut
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Claim 2 If S is honest and all checks in step (1) of the functionality h described
in Figure 3 succeed in Πh, then, with probability 1, step (3) of the functionality
h will not return ⊥.

Proof. Since step (1) is successful, we know that (pkDel, skDel) = GenDel(1
λ, rDel);

moreover, since S is honest, we know that it must have computed (ctout, πDel, 1
T )

= CompDel(pkDel, g, ctx, cty) correctly (and using the correct pkDel and ctx, since
the checks in step (1) passed). It follows by perfect completeness of the delegation
scheme (GenDel,CompDel,VerDel) that

VerDel(skDel, g, ctx, cty, ctout, πDel, T ) = Accept

as desired. ut

Claim 3 If S is honest and, in Πh, all checks in step (1) of the functionality h
described in Figure 3 succeed, and step (3) of the functionality h does not return
⊥, then the value of out returned by step (4) of h will be equal to f(x, y) with
probability 1.

Proof. Since S is honest and step (1) is successful, we know, as in the previous
claim, that (pkDel, skDel) = GenDel(1

λ, rDel) and furthermore (ctout, πDel, 1
T ) =

CompDel(pkDel, g, ctx, cty). It follows by correctness of the delegation scheme
(GenDel,CompDel,VerDel) that

ctout = g(ctx, cty) = EvalFHE(pkFHE, f, ctx, cty)

It suffices to show that this will decrypt to the correct output out = f(x, y).
This holds due to perfect correctness of (GenFHE,EncFHE,DecFHE,EvalFHE); specif-
ically, since ctx and cty are encryptions of x and y, respectively:

DecFHE(skFHE, ctout) = DecFHE(skFHE,EvalFHE(pkFHE, f, ctx, cty)) = f(x, y)

ut

Chaining together Claims 1, 2, and 3 leads us to the conclusion that (by Claim

1), SR returns ⊥ in Exec
Tf
Πf ,SR,R(1n, x, y, z) if and only if Th would return ⊥ (from

step (1)) in the respective execution of ExecThΠh,A′,R(1n, x, y, z), and furthermore,
if this event does not occur, then (by Claims 2 and 3 as well as the definition

of SR) both SR (in Exec
Tf
Πf ,SR,R(1n, x, y, z)) and Th (in the respective execution

of ExecThΠh,A′,R(1n, x, y, z)) will return an output out that is precisely equal to
f(x, y), where x is the value sent by the adversary to Th and y is the (honest)
sender’s input. This completes the argument for the case I = R.

Corrupted Sender. In the case I = S, define a T (n) · poly(n)-time simulator SS
which does as follows:

1. Generate rFHE, rDel, rEnc(x) ← {0, 1}∗, (pkFHE, ·) = GenFHE(1n; rFHE), (pkDel, ·)
= GenDel(1

λ; rDel), ctx = EncFHE(pkFHE, 0; rEnc(x)).
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2. Run the corrupted senderA′ using input (pkFHE, pkDel, ctx).A′ will generate a
message (y′, pk′FHE, pk

′
Del, ct

′
x, ct

′
y, ct

′
out, π

′
Del, r

′
Enc(y), T

′) to send to Th. Perform

the following checks to verify this message, and return ⊥ to Tf (causing it
to output ⊥) if any of them fail.

(a) pkFHE = pk′FHE, pkDel = pk′Del, ctx = ct′x.
(b) ct′y = EncFHE(pkFHE, y

′; r′Enc(y))

(c) VerDel(skDel, g, ctx, cty, ct
′
out, π

′
Del, T

′) = Accept for the functionality given
by g(c1, c2) = EvalFHE(pkFHE, f, c1, c2).

3. Otherwise (if the above checks pass), send y′ to Tf . Finally, output whatever
A′ outputs.

As this case has interesting subtleties, we lead the formal proof with a brief
overview. Recall that, for this case, we need not only to verify that the adversary

A′’s views in the experiments ExecThΠh,A′,S(1n, x, y, z) and Exec
Tf
Πf ,SS ,S(1n, x, y, z)

(and hence A′’s outputs) cannot be distinguished, but also that the honest re-
ceiver R’s outputs cannot be distinguished between the two experiments.

The natural way to do this would be to begin by creating a hybrid protocol
Π ′h where the receiver, instead of sending a ciphertext of their input x in the
first round, sends the corresponding ciphertext of 0 (as the simulator does when
running A′ in Πf ). Ostensibly, this would allow us to show that the output
distributions between Πh and Π ′h are close by using the CPA-security of the
underlying FHE protocol to assert that the ciphertexts, and hence the views
of A′, are indistinguishable between the two experiments. And while this does
indeed directly imply that the adversary’s outputs are close, we run into an issue
the moment we consider the receiver’s output; specifically, the receiver’s output
is the output from the ideal functionality Th, which among other things depends
on the secret key skFHE and the randomness rFHE used to generate it. In fact, this
makes a reduction from Π ′h to the security of the FHE scheme impossible (using
current techniques), since a hypothetical adversary simulating this functionality
would only know pkFHE.

Instead we will have to consider an alternate functionality h′ which only
depends on the public key pkFHE and does not use the randomness or secret key.
Specifically, rather than decrypting the final result ctout, h

′ will instead simply
return f(x, y′). We then show that the output distribution of Πh′ is statistically
close to that of Πh. Specifically, they are identical except when the adversary
A′ can force the ideal functionality h′ to verify a proof πDel of an incorrect
ciphertext ctOut—this implies that their statistical distance must be at most
the (negligible) soundness error of delegation.11 Now, given Πh′ , we can finally
consider a protocol Π ′h′ where the receiver uses a ciphertext of 0; now that h′

11 An attentive reader might wonder at this point why, in doing this, we are not simply
backing ourselves into the same corner, since indeed Th and even Th′ are very much
dependent on the randomness rDel and secret key skDel. The intuitive answer is that,
unlike with the reduction to FHE, we are able to “outsource” the dependence on skDel

in Th′ to the security game for the soundness of delegation, allowing us to effectively
emulate h′ without said secret key in the adversary we construct.
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no longer depends on skFHE, the reduction to the CPA-security will go through
(for both the adversary’s and receiver’s outputs), and we can lastly compare

ExecThΠ′
h′ ,A

′,S(1n, x, y, z) and Exec
Tf
Πf ,SS ,S(1n, x, y, z) to show that, actually, the

output distributions are identically distributed.
We continue to the formal proof. Let h′ be the functionality defined as h, but

with four key differences:

– h′, instead of taking input rFHE from the receiver, takes input pkFHE.
– In step (1), instead of verifying that (pkFHE, ·) = GenFHE(1n, rFHE), h′ verifies

that the sender’s and receiver’s inputs pkFHE match.
– In step (2), h′ no longer computes (·, skFHE) = GenFHE(1n; rFHE).
– In step (4), h′ returns f(x, y) rather than DecFHE(skFHE, ctout).

Let Πh′ be defined identically to Πh except that both parties use the ideal
functionality Th′ in place of Th and the receiver inputs pkFHE to Th′ instead of
rFHE as specified above. We state the following claim:

Claim 4 There exists negligible ε(·) such that, for all n ∈ N and inputs x, y, z,

the output distributions OutThΠh,A′,S(1n, x, y, z) and Out
Th′
Πh′ ,A′,S(1n, x, y, z) are

ε(n)-statistically close.

Proof. Intuitively, this will follow from the soundness of the delegation scheme
(GenDel,CompDel,VerDel). First, observe that the adversary’s views in experi-

ments ExecThΠh,A′,S(1n, x, y, z) and Exec
Th′
Πh′ ,A′,S(1n, x, y, z), and thus the adver-

sary’s outputs, are identically distributed; hence, it suffices to argue about the
honest receiver’s output, i.e., the output of Th or Th′ .

Second, since the receiver R is honest, the fact that h′ verifies that the
sender’s and receiver’s inputs pkFHE match is equivalent to the verification in
h of the sender’s pkFHE (that (pkFHE, ·) = GenFHE(1n, rFHE)), since the receiver’s
input pkFHE will always be equal to GenFHE(1n, rFHE). So the only change that
can possibly affect the output of Th′ compared to Th in the corrupted sender
case is the fact that h′ returns f(x, y) rather than DecFHE(skFHE, ctout).

Now, assume for the sake of contradiction that there is some polynomial p(·)
such that, for infinitely many n ∈ N, there exist x, y, z so that the ideal function-

ality’s output is different between ExecThΠh,A′,S(1n, x, y, z) and Exec
Th′
Πh′ ,A′,S(1n, x,

y, z) with probability 1/p(n). We shall use this to construct a T (n) ·poly(n)-time
adversary ADel to break the soundness of the delegation scheme with probability
1/p(n). Specifically, let ADel do as follows on input (1n, pkDel):

1. Generate rFHE, rEnc(x) ← {0, 1}∗ and (pkFHE, ·) = GenFHE(1n; rFHE), ctx =
EncFHE(pkFHE, x; rEnc(x)).

2. Run the corrupted sender A′ on input y, auxiliary input z, and first-round
message (pkFHE, pkDel, ctx).A′ will generate the message (y′, pk′FHE, pk

′
Del, ct

′
x,

ct′y, ct
′
out, π

′
Del, r

′
Enc(y), T

′) to send to the ideal functionality (Th or Th′).

3. Run (ctout, πDel, 1
T ) ← CompDel(pkDel, g, ctx, ct

′
y) for the functionality given

by g(c1, c2) = EvalFHE(pkFHE, f, c1, c2)
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4. Verify the following and abort if any are false.
(a) pkFHE = pk′FHE, pkDel = pk′Del, ctx = ct′x
(b) ct′y = EncFHE(pkFHE, y

′; r′Enc(y))

5. Otherwise, return (g, ctx, ct
′
y, ctout, ct

′
out, πDel, π

′
Del, 1

T , 1T
′
).

We claim that ADel returns a tuple (g, ctx, ct
′
y, ctout, ct

′
out, πDel, π

′
Del, 1

T , 1T
′
)

such that ctout 6= ct′out but VerDel(skDel, g, ctx, ct
′
y, ctout, πDel, T ) = VerDel(skDel, g,

ctx, ct
′
y, ct

′
out, π

′
Del, T

′) = Accept—that is, ADel breaks soundness of the delegation
scheme—precisely when h decrypts a ciphertext that is not equal to ctout as
returned by CompDel(pkDel, g, ctx, cty) for the corresponding functionality and
inputs; furthermore, we claim that this is the only case where h and h′ may not
be identically distributed.

To verify this, we start by observing that the input to A′ in step (2) of ADel

is identically distributed to the inputs in the experiments ExecThΠh,A′,S(1n, x, y, z)

and Exec
Th′
Πh′ ,A′,S(1n, x, y, z), since pkDel is honestly generated and the receiver

is honest. Furthermore, given the message from A′ to the ideal functionality, as
well as the fact that R is honest, we can assert that the checks in step (4) of
ADel are equivalent to the checks in step (1) of h or h′, since the receiver’s inputs
pkFHE, pkDel, ctx are guaranteed to be honestly generated. So, comparing Th and
Th′ for a particular interaction, there are four possible outcomes, which we shall
analyze:

1. Step (1) of h or h′ fails, in which case both return ⊥ (and ADel will abort).
2. Step (1) succeeds, but the verification in step (3) fails, in which case both will

return ⊥ (and ADel will produce output (g, ctx, ct
′
y, ctout, ct

′
out, πDel, π

′
Del, 1

T ,

1T
′
) which is rejected because (ct′out, π

′
Del) fails to verify).

3. Steps (1) and (3) succeed, and ct′out given by the adversary is the same as
the correct (ctout, ·, ·) = CompDel(pkDel, g, ctx, ct

′
y), in which case the outputs

of h and h′ are identical and not ⊥ by perfect correctness of Enc and Eval,
as well as correctness of the delegation scheme.
Specifically, considering the inputs to h, we know by correctness of delega-
tion that, since (ct′out, ·, ·) = CompDel(pkDel, g, ctx, ct

′
y), ct′out = g(ctx, ct

′
y) =

EvalFHE(pkFHE, f, ctx, ct
′
y). Furthermore, by perfect correctness of the FHE

scheme and the fact that ctx and ct′y are encryptions of x and y, respec-
tively:

DecFHE(skFHE, ctout) = DecFHE(skFHE,EvalFHE(pkFHE, f, ctx, ct
′
y)) = f(x, y′)

that is, the output of h will be identical to the output f(x, y′) of h′. In this
case, ADel will produce output (g, ctx, ct

′
y, ctout, ct

′
out, πDel, π

′
Del, 1

T , 1T
′
) which

is rejected because ct′out = ctout.
4. Steps (1) and (3) succeed, and ct′out given by the adversary is not the

same as the correct (ctout, ·, ·) = CompDel(pkDel, g, ctx, ct
′
y), in which case

the outputs of h and h′ may be different (and ADel will produce output
(g, ctx, ct

′
y, ctout, ct

′
out, πDel, π

′
Del, 1

T , 1T
′
) which is accepted because ct′out 6=

ctout and (ct′out, π
′
Del, 1

T ′
) verifies successfully).
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The above implies that the probability over possible interactions that the outputs
of h and h′ are different—which, as we have argued above, is equal to the statisti-

cal distance between the distributions OutThΠh,A′,S(1n, x, y, z) and Out
Th′
Πh′ ,A′,S(1n,

x, y, z)—is no greater12 than the probability with which ADel’s output is ac-
cepted. In particular, by our assumption that, for infinitely many n ∈ N, there
were x, y, z such that this statistical distance was greater than 1/p(n), this im-
plies that the probability that ADel’s output is accepted (for the corresponding
inputs) must be greater than 1/p(n) for infinitely many n ∈ N. But this contra-
dicts the soundness of delegation, so the claim is proven. ut

Now let Π ′h′ be identical to Πh′ , with the sole exception that the receiver’s
first-round message to the sender replaces the correctly generated ctx = EncFHE(
pkFHE, x; rEnc(x)) with the simulated encryption ctx = EncFHE(pkFHE, 0; rEnc(x))

of 0. We present the following claim comparing Exec
Th′
Πh′ ,A′,S(1n, x, y, z) and

Exec
Th′
Π′
h′ ,A

′,S(1n, x, y, z):

Claim 5 For any polynomial-time non-uniform distinguisher D, there exists
negligible ε(·) such that, for any n ∈ N and inputs x, y, z, the distributions

Out
Th′
Πh′ ,A′,S(1n, x, y, z) and Out

Th′
Π′
h′ ,A

′,S(1n, x, y, z) cannot be distinguished by D

with probability greater than ε(n).

Proof. Intuitively, this follows from the CPA-security of the FHE scheme with
respect to T (n) ·poly(n)-time adversaries and the fact that both h′ and the view
of A′ are independent of rFHE and skFHE.

Formally, assume for contradiction that there exist some non-uniform polyno-
mial-time distinguisher D and polynomial p(·) such that, for infinitely many
n ∈ N, there are inputs x, y, z such that D is able to distinguish the distribu-

tions Out
Th′
Πh′ ,A′,S(1n, x, y, z) and Out

Th′
Π′
h′ ,A

′,S(1n, x, y, z) with probability 1/p(n).

We define a tuple of T (n) ·poly(n)-time algorithms (AFHE, D
′) that can break the

CPA-security of the FHE scheme (GenFHE,EncFHE,EvalFHE,DecFHE) with proba-
bility 1/p(n) as follows:

– AFHE, on input 1n, outputs (0, x).
– D′, on input (1n, pkFHE, ctx), where c is given as either ct0x = EncFHE(pkFHE, 0)

or ct1x = EncFHE(pkFHE, x), does the following:
1. Generate rDel ← {0, 1}∗ and (pkDel, skDel) = GenDel(1

λ; rDel).
2. Run the corrupted sender A′ with sender input y, auxiliary input z,

and first-round message (pkFHE, pkDel, ctx). A′ will generate a message
(y′, pk′FHE, pk

′
Del, ct

′
x, ct

′
y, ct

′
out, π

′
Del, r

′
Enc(y), T

′) to send to Th′ and output
outA′ . Store outA′ .

3. Verify the following and set outR = ⊥ if any are false. Otherwise, set
outR = f(x, y′).
(a) pkFHE = pk′FHE, pkDel = pk′Del, ctx = ct′x

12 Note that equality is not guaranteed, as h could possibly accept a ciphertext ct′out 6=
ctout that still decrypts to f(x, y).
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(b) ct′y = EncFHE(pkFHE, y
′; r′Enc(y))

(c) VerDel(skDel, g, ctx, ct
′
y, ct

′
out, π

′
Del, T

′) = Accept for the functionality
given by g(c1, c2) = EvalFHE(pkFHE, f, c1, c2)

4. Return D(1n, (outA′ , outR)).

First, notice that (given that the inputs pkFHE and ctx = EncFHE(pkFHE,m) for
either m = 0 or m = x are generated correctly) the inputs to A′ in step (2) of

D′ are identically distributed to either the inputs in Exec
Th′
Πh′ ,A′,S(1n, x, y, z) (if

m = x) or the inputs in Exec
Th′
Π′
h′ ,A

′,S(1n, x, y, z) (if m = 0). Hence, the view of

A′ in D′ is identically distributed to the corresponding view in the respective
experiment, which implies that the output outA′ must be as well, as must the
message sent to Th′ .

It remains to argue about the receiver’s output outR; recall that the hon-
est receiver’s output in either experiment is given by the output of the ideal
functionality Th′ . However, outR as defined in step (3) of D′ can easily be seen
to be identically distributed to the output of h′ in the respective experiment

Exec
Th′
Πh′ ,A′,S(1n, x, y, z) (if m = x) or Exec

Th′
Π′
h′ ,A

′,S(1n, x, y, z) (if m = 0). This

holds because, since R is honest, R’s inputs (pkFHE, pkDel, ctx) are honestly gener-
ated and so the verifications in steps (3a) and (3b) are identical to the respective
checks in step (1) of h. Furthermore, the verification in step (3c) of D′ is identical
to the verification in step (3) of h, so it follows that outR = ⊥ exactly when h′ in
the respective experiment would return ⊥, and that, otherwise, outR = f(x, y′),
which by the definition of h′ is identical to what h′ would return if not ⊥.

So we have argued that the distribution (outA′ , outR) is identical to the distri-

bution Out
Th′
Πh′ ,A′,S(1n, x, y, z) when m = x and to Out

Th′
Π′
h′ ,A

′,S(1n, x, y, z) when

m = 0. But we have assumed that for infinitely many n ∈ N there exist x, y, z so

that D can distinguish Out
Th′
Πh′ ,A′,S(1n, x, y, z) and Out

Th′
Π′
h′ ,A

′,S(1n, x, y, z) with

probability 1/p(n), i.e., that there is at least a 1/p(n) difference between the
probability that D(1n, (outA′ , outR)) returns 1 in the m = x case and the respec-
tive probability in the m = 0 case. But, since D′ returns precisely D(1n, (outA′ ,
outR)), this gives us

|Pr[D(1n, pkFHE,EncFHE(pkFHE, 0)) = 1]

−Pr[D(1n, pkFHE,EncFHE(pkFHE, x)) = 1]| ≥ 1/p(n)

which, since AFHE always returns (0, x), means that (AFHE, D
′) is able to break

the CPA-security of the underlying FHE scheme (w.r.t. T (n) · poly(n)-time ad-
versaries) with probability 1/p(n) for infinitely many n ∈ N, a contradiction. ut

It remains to compare Out
Th′
Π′
h′ ,A

′,S(1n, x, y, z) and Out
Tf
Πf ,SS ,S(1n, x, y, z); we

claim that in fact these distributions are already identical. First, observe that
the input provided to A′ in SS is identically distributed to the input provided to

A′ in Exec
Th′
Π′
h′ ,A

′,S(1n, x, y, z); in both cases this consists of an honestly gener-

ated pkFHE, pkDel, ctx such that ctx is the respective encryption of 0. So it follows
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that the adversary’s output, as well as the message sent by the adversary to
the ideal functionality, must be identically distributed between the two experi-
ments. Demonstrating that the receiver’s outputs are identical—that is, that the

output of h′ in Exec
Th′
Π′
h′ ,A

′,S(1n, x, y, z) is always equal to the output f(x, y) in

Exec
Tf
Πf ,SS ,S(1n, x, y, z)—will follow from the following claim, to which we have

already alluded in the previous two reductions:

Claim 6 If R is honest, then, given messages (x, pkFHE, rDel, rEnc) sent to Th′ ,
(pkFHE, pkDel, ctx) sent to A′, and (y′, pk′FHE, pk

′
Del, ct

′
x, ct

′
y, ct

′
out, π

′
Del, r

′
Enc(y), T

′)

sent by A′ to Th′ , the checks in step (2) of SS succeed if and only if all checks
in steps (1) and (3) of the functionality h′ succeed.

Proof. If R is honest, it must be the case that (pkDel, ·) = GenDel(1
λ; rDel) and

ctx = EncFHE(pkFHE, x; rEnc(x)); hence step (2a) of SS is equivalent to verifying

pk′FHE = pkFHE, (pk′Del, ·) = GenDel(1
λ; rDel), and ct′x = EncFHE(pk′FHE, x; rEnc(x)),

i.e., the first three checks of step (1) of h′. Step (2b) is trivially equivalent to the
last check in step (1) of h′ and step (2c) is trivially equivalent to the check in
step (3) of h′, completing the argument. ut

This implies that the receiver in Exec
Th′
Π′
h′ ,A

′,S(1n, x, y, z) will return ⊥ as the

output from h′ precisely when SS will return ⊥ to the ideal functionality (based

on the checks in step (2)) and cause the receiver in Exec
Tf
Πf ,SS ,S(1n, x, y, z) to

return ⊥. However, when Tf does not output ⊥, it will always output f(x, y′)
on the respective inputs x from the honest receiver and y′ from SS ; similarly,
when Th′ does not return ⊥, it will, by definition, also always output f(x, y′)
on the respective input x from the honest receiver and y′ from A′. The above,

then, is sufficient to conclude that the distributions Out
Th′
Π′
h′ ,A

′,S(1n, x, y, z) and

Out
Tf
Πf ,SS ,S(1n, x, y, z) are identical.
We conclude the proof of the lemma with a standard hybrid argument; specif-

ically, if there exists some non-uniform polynomial-time distinguisher D and
polynomial p(·) such that, for infinitely many n ∈ N, there are inputs x, y, z

so that D can distinguish OutThΠh,A′,S(1n, x, y, z) and Out
Tf
Πf ,S,S(1n, x, y, z) with

probability 1/p(n), then D must likewise be able to distinguish one of the fol-
lowing pairs with probability 1/p′(n) for some polynomial p′(·):

– OutThΠh,A′,S(1n, x, y, z) and Out
Th′
Πh′ ,A′,S(1n, x, y, z)

– Out
Th′
Πh′ ,A′,S(1n, x, y, z) and Out

Th′
Π′
h′ ,A

′,S(1n, x, y, z)

– Out
Th′
Π′
h′ ,A

′,S(1n, x, y, z) and Out
Tf
Πf ,S,S(1n, x, y, z)

The first case would contradict Claim 4, the second case would contradict Claim
5, and the third case is impossible because we showed the distributions to be
identical. Therefore, such a distinguisher D cannot exist. ut

By the same logic, a standard hybrid argument shows that Lemmas 2 and 3
imply Theorem 7: if there were some non-uniform polynomial-time distinguisher
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D and polynomial p(·) such that, for infinitely many n ∈ N, there were inputs

x, y, z so that D could distinguish OutΠ,A,I(1
n, x, y, z) and Out

Tf
Πf ,S,I(1

n, x, y, z)

with probability 1/p(n), then D would be able to distinguish either:

– OutΠ,A,I(1
n, x, y, z) and OutThΠh,A′,I(1

n, x, y, z), or

– OutThΠh,A′,I(1
n, x, y, z) and Out

Tf
Πf ,S,I(1

n, x, y, z)

with probability 1/p′(n) for some polynomial p′(·). The first case would contra-
dict Lemma 2 and the second Lemma 3; hence, Theorem 7 is proven.
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16. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: La-
conic oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Heidelberg (Aug
2017). https://doi.org/10.1007/978-3-319-63715-0 2

17. Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succinct Proofs for
NP and Spooky Interactions (2004)

18. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 467–
476. ACM Press (Jun 2013). https://doi.org/10.1145/2488608.2488667

19. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round
complexity of secure computation. In: Fischlin, M., Coron, J.S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (May
2016). https://doi.org/10.1007/978-3-662-49896-5 16

20. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (May 2013).
https://doi.org/10.1007/978-3-642-38348-9 37

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) 41st ACM STOC. pp. 169–178. ACM Press (May / Jun 2009).
https://doi.org/10.1145/1536414.1536440

22. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC. pp. 218–229. ACM Press (May 1987). https://doi.org/10.1145/28395.28420

23. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptology 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

24. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 555–564. ACM Press (Jun
2013). https://doi.org/10.1145/2488608.2488678

25. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of computer and sys-
tem sciences 28(2), 270–299 (1984)

26. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding
cryptography on tamper-proof hardware tokens. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (Feb 2010).
https://doi.org/10.1007/978-3-642-11799-2 19

https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/3055399.3055497
https://eprint.iacr.org/2018/375
https://eprint.iacr.org/2018/375
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/BF00195207
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1007/978-3-642-11799-2_19


30 Andrew Morgan, Rafael Pass, and Antigoni Polychroniadou

27. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(Dec 2010). https://doi.org/10.1007/978-3-642-17373-8 19

28. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptology 25(1), 158–193 (2012)

29. Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in
the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith,
A.D. (eds.) TCC 2016-B, Part I. LNCS, vol. 9985, pp. 367–399. Springer, Heidel-
berg (Oct / Nov 2016). https://doi.org/10.1007/978-3-662-53641-4 15

30. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Ef-
ficient non-interactive secure computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (May 2011).
https://doi.org/10.1007/978-3-642-20465-4 23

31. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (Aug 2004). https://doi.org/10.1007/978-3-540-28628-8 21

32. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS. pp. 436–453. IEEE
Computer Society Press (Nov 1994). https://doi.org/10.1109/SFCS.1994.365746

33. Mohassel, P., Rosulek, M.: Non-interactive secure 2PC in the offline/online
and batch settings. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part III. LNCS, vol. 10212, pp. 425–455. Springer, Heidelberg (Apr / May 2017).
https://doi.org/10.1007/978-3-319-56617-7 15

34. Morgan, A., Pass, R., Polychroniadou, A.: Succinct Non-Interactive Secure Com-
putation (full version). Cryptology ePrint Archive, Report 2019/1341 (2019),
https://eprint.iacr.org/2019/1341

35. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA. pp. 448–457
(2001)

36. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (May 2003). https://doi.org/10.1007/3-540-39200-9 10

37. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (Aug 2008). https://doi.org/10.1007/978-3-540-
85174-5 31

38. Prabhakaran, M., Sahai, A.: New notions of security: Achieving universal compos-
ability without trusted setup. In: Babai, L. (ed.) 36th ACM STOC. pp. 242–251.
ACM Press (Jun 2004). https://doi.org/10.1145/1007352.1007394

39. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
Thorup, M. (ed.) 59th FOCS. pp. 859–870. IEEE Computer Society Press (Oct
2018). https://doi.org/10.1109/FOCS.2018.00086

40. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005). https://doi.org/10.1145/1060590.1060603
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